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Abstract As discussed in the recent literature, several innovative car insur-
ance concepts are proposed in order to gain advantages both for insurance
companies and for drivers. In this context, the “pay how you drive” paradigm
is emerging, but it is not thoroughly discussed and much less implemented. In
this paper we propose an approach in order to identify the driver behaviour
exploring the usage of unsupervised machine learning techniques. A real world
case study is performed to evaluate the e↵ectiveness of the proposed solu-
tion. Furthermore, we discuss how the proposed model can be adopted as risk
indicator for car insurance companies.
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1 Introduction

As of 2015, there were over 263 million registered vehicles on the roads in
the United States. Of those millions of registered vehicles, each year there are
also millions of vehicle crashes. In 2015, there were 32,166 fatalities, 1,715,000
injuries and 4,548,000 car crashes which involved property damage. Of these
fatalities, there are far more driver deaths, than passenger, pedestrian or mo-
torcyclist deaths1. Therefore the statistics indicate the importance of auto-
mobile insurance and in most cases, auto insurance is required by law. Car
insurance is really important because not only it covers any physical damage
that may occur in an accident, but also any damage or injury that might be
caused because of a vehicular accident or which may be done upon oneself or
ones vehicle by another vehicle or accident, as a falling tree for example [1].

The insurance industry is a key component of the economy by virtue of the
amount of premiums it collects, the scale of its investments and, more funda-
mentally, the essential social and economic role it plays by covering personal
and business risks.

Auto insurance markets are changing rapidly. As technology has evolved
and as the price of data has fallen, rates can now be produced through mil-
lions of variables in a multivariate analysis. Through telematics, risks can be
rated on an individual basis; an insurer can now identify, measure and rate a
particular person’s driving ability. The Usage Based Insurance (UBI) concept
was introduced into the personal motor insurance market over a decade ago. It
consists of two typical models: “pay as you drive” (PAYD) and “pay how you
drive” (PHYD). Premiums are based upon time of usage, distance driven, driv-
ing behavior and places driven to. In particular, in PHYD insurance premium
is calculated based on how the vehicle is driven, in PAYD scheme insurance
premium is calculated dynamically, according to the amount driven. PHYD
is the more mature of the two o↵erings, giving more detailed data to insurers
and costumers 2[2,3,4].

This represents a di↵erent approach with respect to traditional insurance,
which attempts to di↵erentiate and reward “safe” drivers, giving them lower
premiums and/or a no-claims bonus. However, conventional di↵erentiation is
a reflection of historic rather than present patterns of behaviour. This means
that it may take a long time before safer (or more reckless) patterns of driving
and changes in lifestyle feed through into premiums.

UBI programs o↵er many advantages to insurers, consumers and society.
Linking insurance premiums more closely to actual individual vehicle or fleet

1
https://www.statista.com/topics/3087/car-insurance-in-the-united-states/

2
http://www.ey.com/Publication/vwLUAssets/ey-introducing-pay-how-you-drive-insurance/

$FILE/ey-introducing-pay-how-you-drive-insurance.pdf

https://www.statista.com/topics/3087/car-insurance-in-the-united-states/
http://www.ey.com/Publication/vwLUAssets/ey-introducing-pay-how-you-drive-insurance/$FILE/ey-introducing-pay-how-you-drive-insurance.pdf
http://www.ey.com/Publication/vwLUAssets/ey-introducing-pay-how-you-drive-insurance/$FILE/ey-introducing-pay-how-you-drive-insurance.pdf
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performance allows insurers to price premiums more accurately. [5]. This in-
creases a↵ordability for lower-risk drivers, many of whom are also lower-income
drivers. It also gives consumers the ability to control their premium costs by
encouraging them to reduce miles driven and adopt safer driving habits. Fewer
miles and safer driving also aid in reducing accidents, congestion, and vehicle
emissions, which benefits society 3.

Starting from these considerations, in this paper we propose an approach
able to characterize the driver behaviour using a set of features gathered from
the vehicle CAN bus.

As a matter of fact, as demonstrated in the current literature, drivers typi-
cally exhibit di↵erent driving style on di↵erent kind of roads [6,7,8,9]. Basing
on this evidence, the proposed method considers the unsupervised machine
learning i.e., the machine learning task of inferring a function to describe hid-
den structure from unlabeled data, to discriminate between urban and highway
roads. In order to perform this task, we consider cluster analysis in order to
group the feature extracted from the driver under analysis: the main assump-
tion that will be verified in the experiment is that CAN bus features gathered
from the highway path exhibits di↵erent values from the ones gathered from
urban road (and for this reason grouped in di↵erent clusters). Furthermore, on
the basis of the cluster analysis results, we compute an aggressiveness index of
the driver under analysis in order to propose a “pay how you drive” possible
risk assessment calculation.

We evaluate the proposed approach on a real-world dataset gathered from
a vehicle running through several (urban and highway) roads.

The reminder of the paper is organized as follows: Section 2 discusses the
current literature, Section 3 introduces the method, Section 4 illustrates the
results of the cluster analysis based experiment, Section 5 describe a possible
risk index computation. Finally, conclusions and future works are given in
Section 6.

2 Related Work

In the following section we review the current literature related to the driving
style recognition. We discuss the approaches that involve driving data anal-
ysis, i.e., methods connecting driver behavior with car-related feature. These
methods are di↵erent from the ones that identify the driver behavior by the
usage of smartphone sensors, video motion or questionnaire. Furthermore, we
discuss also current literature about risk assessment.

3
http://www.naic.org/cipr_topics/topic_usage_based_insurance.htm

http://www.naic.org/cipr_topics/topic_usage_based_insurance.htm
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2.1 Approaches using car-related features

In the past, the automotive real-world data retrieving was limited due to the
di�culty to equip the sensors in cars, since the introduction of CAN this limit
is overcome.

Authors in [10] propose a driver identification method that is based on
the driving behavior signals that are observed while the driver is following
another vehicle. They analyze signals, as accelerator pedal, brake pedal, vehicle
velocity, and distance from the vehicle in front, were measured using a driving
simulator. The identification rates were 81% for twelve drivers using a driving
simulator and 73% for thirty drivers.

Data from the accelerator and the steering wheel were analyzed by re-
searchers in [11]. Observing the considered features, they employ hidden Markov
model (HMM) to model the driver characteristics. They build two models for
each driver, one trained from accelerator data and one learned from steering
wheel angel data. The models can be used to identify di↵erent drivers with an
accuracy equal to 85%.

Researchers in [12] classify a set of features extracted from the powertrain
signals of the vehicle, showing that their classifier is able to classify the human
driving style based on the power demands placed on the vehicle powertrain
with an overall accuracy of 77%.

Van Ly et alius [13] explore the possibility of using the inertial sensors of the
vehicle from the CAN bus to build a profile of the driver observing braking and
turning events to characterize an individual compared to acceleration events.

Researchers in [14,15] model gas and brake pedal operation patterns with
Gaussian mixture model (GMM). They achieve an identification rate of 89.6%
for a driving simulator and 76.8% for a field test with 276 drivers, resulting in
61% and 55% error reduction, respectively, over a driver model based on raw
pedal operation signals without spectral analysis.

Driver behavior is described and modeled in [16] using data from steering
wheel angle, brake status, acceleration status, and vehicle speed through Hid-
den Markov Models (HMMs) and GMMs employed to capture the sequence of
driving characteristics acquired from the CAN bus information. They obtain
69% accuracy for action classification, and 25% accuracy for driver identifica-
tion.

In reference [17] the features extracted from the accelerator and brake
pedal pressure are used as inputs to a fuzzy neural network (FNN) system to
ascertain the identity of the driver. Two fuzzy neural networks, namely, the
evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy
inference system (ANFIS), are used to demonstrate the viability of the two
proposed feature extraction techniques.

A hidden-Markov-model-(HMM)-based similarity measure is proposed in
[18] in order to model driver human behavior. They employ a simulated driving
environment to test the e↵ectiveness of the proposed solution.

Authors in [19] propose a method based on driving pattern of the car. They
consider mechanical feature from the CAN vehicle evaluating them with four
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di↵erent classification algorithms, obtaining respectively an accuracy equal
to 0.939 with Decision Tree, equal to 0.844 with KNN, equal to 0.961 with
RandomForest and equal to 0.747 using MLP algorithm.

Di↵erently from the discussed current literature, we propose a method to
assess two di↵erent aggressiveness indexes. To this aim, the method is focused
on the road identification issue, discriminating between urban and highway
roads. Finally, a driver-related risk index is estimated. In addition, relating to
road identification task, we highlight that the classification does not require
previous knowledge about the type of road, since a cluster analysis algorithm
is considered.

2.2 Risk Assessment

Risk assessment, also called underwriting, is exploited by insurers for evaluat-
ing and assessing the risks associated with an insurance policy. It is also useful
in the premium calculation for an insured. A detailed analysis of risk factors
and rating factors for general insurance is discussed in [20]. In [21], the esti-
mation of risk premium for traditional individual car models is discussed. The
authors exploit cluster analysis with the aim to identify groups of car exhibit-
ing similar technical attributes. Credibility theory is used to combine estimates
of risk premium from individual car model claim statistics and technical as-
sessment. Thr Usage-based motor insurance (UBI) concept is introduced in
[3], where the existing literature is critically reviewed and research gaps are
identified. Findings show that there is a multiplicity and diversity of several
research studies accumulated in modern literature examining the correlation
between Pay-as-you-drive (based on driver’s exposure) and Pay-how-you-drive
(based on driving behavior) schemes and tra�c risk in order to determine ac-
cident risk. Moreover, it seems that UBI implementation would eliminate the
cross-subsidies phenomenon, which implies less insurance costs for goods and
less exposed drivers. An approach to risk assessment is provided in [5]: the au-
thors present a platform able to acquire data from the vehicle under analysis
to a framework as part of a Pay-As-You-Drive system. Their main aim is to
monitor vehicle usage and, exploiting these information, assess the associated
risk with the aim to set the appropriate insurance premium. To determine
vehicle usage, the system analyses the driver’s respect for speed limits, driving
style (aggressive or non-aggressive), mobile telephone use and the number of
vehicle passengers. This work is the only one in the current state of the art
that propose a risk formula based on features like the number of kilometers
travelled by the vehicle. Di↵erently from the proposed risk assessment formula,
we take into account the driver aggressiveness as a parameters to determine
the insurance premium.
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Fig. 1: Flow diagram of the proposed approach for risk index computation.

3 The Method

In following section we describe the considered approach in order to evaluate
the driving style (in terms of aggressiveness) from a set of features extracted
from the in-vehicle CAN data and from GPS sensor.

Figure 1 depicts the flow diagram of the proposed approach for the risk
index computation.

As Figure 1 shows, the cluster analysis process is concerned to OBD data
in order to label the gathered data as belonging to the urban or to the highway
roads. The OBD is a standard available on all cars (European and American)
and from since 1996 is mandatory [22]. In our analysis we considered the
feature set (belonging to OBD and to GPS) shown in Table 1.
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Feature Description Info OBD GPS
F1 Engine RPM Revolutions Per Minute X
F2 Mass Air Flow expressed in g/s X
F3 Instantaneous Fuel Consumption expressed in liters/100 km X
F4 Boost pressure estimation expressed in KPa/Bar/Kg X
F5 Acceleration expressed as g (gravity) X
F6 Engine power expressed in KW X
F7 Engine torque expressed in NM/Kg X
F8 Altitude expressed in degree X
F9 Longitude expressed in degree X
F10 Time expressed in hh:mm:ss X

Table 1: Features involved in the study.

We considered features gathered from di↵erent sources: the first one is
represented by the OBD (i.e., F1, F2, F3, F4, F5, F6 and F7) while the second
one is computed by the user device GPS sensor (i.e., F8, F9 and F10).

The GPS sensor features are considered in order to add meta information
useful to have the confirmation about the kind of road (i.e., urban or highway).
It is identified by the cluster analysis using the F8 and F9 features. Moreover,
the GPS sensor features are used to know whether the route was taken in the
daytime or at night (using the F10 feature): in Figure 3 this task is represented
by the GPS-based feature computation block.

As stated into the introduction, in order to characterize the driver style
in terms of aggressiveness, we resort to an unsupervised machine learning
approach i.e., cluster analysis.

The reason why we consider unsupervised machine learning algorithms is
that our aim is understand whether the considered features exhibits di↵erent
values in urban and highway paths. Di↵erently from the supervised machine
learning algorithms, where to each trained instances there is the target label,
cluster analysis algorithms splitting the data in several clusters without no a
priori knowledge.

The cluster analysis itself is not one specific algorithm, but the general task
to be solved: it can be achieved by various algorithms that di↵er significantly
in their notion of what constitutes a cluster and how to e�ciently find them
[23]. Popular notions of clusters include groups with small distances among
the cluster members, dense areas of the data space, intervals or particular
statistical distributions.

In this paper we consider following unsupervised classification algorithms:
k-means algorithm [24], one of the simplest unsupervised learning algorithms
that solve the well known clustering problem [25], Cobweb [26,27], Canopy
[28] and FarthestFirst[29] ones.

The k-means procedure follows a simple and easy way to classify a given
data set through a certain number of clusters that are fixed a priori. Let
us assume k clusters; with particular regard to the designed approach we
consider k=2. The main idea is to define 2 centroids, one for each cluster.
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These centroids should be placed in a cunning way because di↵erent location
causes di↵erent results [30]. Therefore, the better choice is to place them as
much as possible far away from each other. The next step is to take each point
belonging to a given data set and associate it to the nearest centroid. When
no point is pending, the first step is completed and an early groupage is done
[31]. At this point we need to re-calculate k new centroids as barycenter of the
clusters resulting from the previous step. After we have these k new centroids,
a new binding has to be done between the same data set points and the nearest
new centroid [24]. A loop has been generated. As a result of this loop we may
notice that the k centroids change their location step by step until no more
changes are done. In other words, centroids do not move any more.

We consider the k-means implementation in the Weka data mining toolkit 4

i.e., SimpleKMeans. This implementation can use either the Euclidean distance
(as default) or the Manhattan distance. In this study we set the SimpleKMeans
algorithm with the Euclidean distance, maximum iterations number equal to
500 and maximum of generated clusters equal to 2. Since the features given
to the learner are unlabeled, there is no evaluation of the accuracy of the
structure that is output by the relevant algorithm (this is one way of distin-
guishing unsupervised learning from supervised learning): for this reason we
consider the incorrectly clustered instances number and percentage in order
to evaluated the goodness of the proposed method (i.e., to evaluate whether
the first cluster contains the majority of urban while the second one contains
the majority of highway ones).

Once the k-means algorithm are evaluated, in order to distinguish between
features gathered while the driver is traveling on urban roads and features
gathered while the driver is traveling on highway ones, we discuss an approach
to use this information providing an aggressiveness index for the PHYD car
insurance.

Cobweb is an incremental system for hierarchical conceptual clustering,
basically it incrementally organizes observations into a classification tree. In
this tree each node represents a class and is labeled by a probabilistic concept
able to summarizes the attribute-value distributions of objects classified under
the node [26]. This classification tree can be used to predict missing attributes
or the class of a new object.

Canopy clustering algorithms requires the specification of distance thresh-
olds, its applicability for high-dimensional data is limited by the curse of di-
mensionality [28].

FathersFirst traversal of a bounded metric space is a sequence of points
in the space, where the first point is selected arbitrarily and each successive
point is as far as possible from the set of previously-selected points. The same
concept can also be applied to a finite set of geometric points, by restricting
the selected points to belong to the set or equivalently by considering the finite
metric space generated by these points [29]. The farthest-first traversal of a

4
https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/
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Fig. 2: The DashCommand (OBD ELM App) app while is running on the
highway track.

finite point set may be computed by a greedy algorithm that maintains the
distance of each point from the previously selected points.

Also with regards to Cobweb, Canopy and Farthestfirst algorithms we con-
sider their implementation in the Weka machine learning tool suite.

4 Experimental Evaluation

In this section we discuss the experiment we performed by means of cluster
analysis, in order to classify between urban and highway paths.

The evaluation consists of two stages: (i) a comparison of descriptive statis-
tics of the populations of features and (ii) an unsupervised classification anal-
ysis aimed to assess whether the urban and highway features are grouped in
di↵erent clusters.

We realize a real-world dataset, gathering data from the in-vehicle CAN
bus. The vehicle involved in the experiment is a Fiat Punto Evo 1.3 Diesel
with 75 horsepowers and with one driver.

In order to collect data, the DashCommand (OBD ELM App)5 application
and Mini Bluetooth ELM327 OBD 2 Scanner were used.

OBD is available on modern car to produce the self-diagnostic report by
monitoring vehicle system in terms of measurement and vehicle failure [22].

5
https://play.google.com/store/apps/details?id=com.palmerperformance.

DashCommand&hl=it

https://play.google.com/store/apps/details?id=com.palmerperformance.DashCommand&hl=it
https://play.google.com/store/apps/details?id=com.palmerperformance.DashCommand&hl=it
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Fig. 3: The urban path considered in the study highlighted in blue: it consists
of 22 Km from the Istituto di Informatica e Telematica in Pisa to Cascina, in
the center of Italy.

The data are recorded every 1 second during driving using the DashCom-
mand application by an Android smartphone (i.e., a Huawei p8 lite 2017 with
Android 7.0 Nougat onboard) fixed in the car by a car support.

In order to label the track using the “urban” or the “highway” label, we de-
veloped a Java script able to generate an address from a latitude and longitude
through the reverse geocoding Java wrapper 6 able to query the Nominatim
search engine for OpenStreetMap data7.

We collected data from the vehicle in an urban an a highway area in Italy,
in Figure 3 the urban path considered: it consists of 22 Km from the Istituto
di Informatica e Telematica in Pisa to Cascina, in the center of Italy. The
highway path 4 is related to the main Italian highway (the A1, Autostrada
del Sole) between the Center and the South of Italy and it consists of 234
Km. In order to balance to traveled kilometers between the urban and the
highway paths, we have considered 10 urban paths (i.e., ten di↵erent routes
of the urban path of 22 Km) and one highway path: in this way we have a
dataset composed of 220 Km of urban path and 234 Km of highway path for
a total equal to 454 Km.

We represent two scatterplots with the aim to give statistical evidence
that considered feature population exhibits di↵erent trend between the urban
and the highway ones. Similar considerations can be addressed for the other
considered features.

Figure 5 shows the scatterplot related to the Engine RPM (i.e., the F1
feature) and Boost pressure estimation (i.e. the F4 feature): the Engine RPM
feature is represented on the X axis while the Boost pressure estimation one
on the Y axis.

6
https://www.daniel-braun.com/technik/reverse-geocoding-library-for-java/

7
http://nominatim.openstreetmap.org/

https://www.daniel-braun.com/technik/reverse-geocoding-library-for-java/
http://nominatim.openstreetmap.org/
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Fig. 4: The highway path considered in the study highlighted in blue: it is
related to the main Italian highway between the Center and the South of Italy
and it consists of 234 Km

Fig. 5: Scatterplot related to the F1 feature and the F4 feature (the red dis-
tribution is related to the urban path, while the blue distribution in related
to the highway path).

The red distribution is related to the urban path, while the blue one is
related to the highway path: from the scatterplot it is clear the division between
the red points, mostly allocated on the center-low left side of the scatterplot,
and the blue one, mostly allocated on the high and low right side of the
scatterplot.

Figure 6 shows the scatterplot related to the F1 feature and the F7 one
i.e., the Engine torque: the F1 feature is represented on the X axis while the
F7 one on the Y axis.

In the scatterplot in Figure 6 the red distribution is related to the urban
path, while the blue one is related to the highway path (as in Figure 5). In
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Fig. 6: Scatterplot related to the F1 feature and the F7 feature (the red dis-
tribution is related to the urban path, while the blue distribution in related
to the highway path).

Fig. 7: Scatterplot related to the F1 feature and the F5 feature (the red dis-
tribution is related to the urban path, while the blue distribution in related
to the highway path).

this case, both the red and the blue distributions are allocated in the down
side of the graph, however we can distinguish them clearly: the red points are
in the left and middle part of the scatterplot, while the blue points are most
allocated in the left side.

In the scatterplot in Figure 7 the red distribution is related to the urban
path, while the blue one is related to the highway path. In this case, both the
red and the blue distributions are allocated on the left and on the right side
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Fig. 8: Scatterplot related to the F1 feature and the F2 feature (the red dis-
tribution is related to the urban path, while the blue distribution in related
to the highway path).

of the graph: the red points are in the left part of the scatterplot, while the
blue points are most allocated in the right side.

In the scatterplot in Figure 8 the red distribution is related to the urban
path, while the blue one is related to the highway path. In this case, both the
red and the blue distributions are allocated on the left and on the right side
of the graph: the red points are in the down left part of the scatterplot, while
the blue points are most allocated in the high right side.

From the considerations related to scatterplots in Figures 5 , 6, 7 and 8
we state that the features under analysis can be useful to discriminate be-
tween urban and highway paths and, consequently, they can represent good
candidates for the cluster analysis phase.

Relating the unsupervised classification, we compute the incorrectly clus-
tered instances number and the percentage in three di↵erent scenarios (i.e.,
we perform three di↵erent clustering experiments) with following instances:

– C1: instances related only to the urban path;
– C2: instances related only to the highway path;
– C3: instances related to the urban and highway path (i.e., the full dataset);

We consider three di↵erence instance set (i.e., C1, C2 and C3) with the
aim to demonstrate that the more appropriate clusters are obtained using the
C3 instances (related to the urban and highway path).

Table 2 shows the results of the C1, C2 and C3 unsupervised classifications.
As shown in Table 2, the C1 experiment (with only urban path instances)

obtains an Incorrectly clustered instances value equals to 5551 (i.e., 63% of the
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Algorithm Exp. ICI % time
C1 5551 63.4545% 0.06

SimpleKMeans C2 8735 83.5437% 0.09
C3 444 2.4636% 0.06
C1 6527 69.5443% 0.08

Coweb C2 9974 84.3256% 0.18
C3 845 3.9865% 0.07
C1 8064 83.4956% 0.06

Canopy C2 11486 92.0032% 0.10
C3 1042 5.0002% 0.05
C1 5930 64.5673% 0.07

Farthestfirst C2 9042 81.9358% 0.08
C3 678 2.9983% 0.06

Table 2: Results of the C1, C2 and C3 experiments.

instances considered) with the SimpleKMeans algorithm, to 6527 (i.e., 69% of
the instances considered) with the Coweb algorithm, to 8064 (i.e., 83% of the
instances considered) with the Canopy algorithm and to 5930 (i.e., 64% of
the instances considered) with the Farthestfirst algorithm; the C2 experiment
(with only highway path instances) obtains an Incorrectly clustered instances
(ICI) value equals to 8735 (i.e., 83% of the instances considered) with the
SimpleKMeans algorithm, to 9974 (i.e., 84% of the instances considered) with
the Coweb algorithm, to 11486 (i.e., 92% of the instances considered) with
the Canopy algorithm and to 9042 (i.e., 81% of the instances considered) with
the Farthestfirst algorithm, while the C3 experiment (with both urban and
highway paths instances) gives an Incorrectly clustered instances value that
equals to 444 with a percentage of incorrectly clustered instances of 2% with
the SimpleKMeans algorithm, to 845 (i.e., 3% of the instances considered)
with the Coweb algorithm, to 1042 (i.e., 5% of the instances considered) with
the Canopy algorithm and to 678 (i.e., 2.9% of the instances considered) with
the Farthestfirst algorithm.

We obtain better results when using the SimpleKMeans algorithm: consid-
ering the full dataset only the 2% if instances are misclassified.

These results demonstrate that the adoption of the unsupervised machine
learning techniques is promising: as a matter of fact, considering the di↵erent
driving styles that should be adopted in urban and highway roads, we can
consider the Incorrectly clustered instances value as an estimator of the driving
style. In case this value is low, the driver exhibits a di↵erent driving style
between urban and highway paths and this is the result of the di↵erent driving
style that should be adopted on di↵erent roads. On the other hand, whether the
Incorrectly clustered instances value exhibits an high value (for instance, in the
C1 and C2 experiment), as we demonstrated, the cluster analysis is not able to
correctly define the clusters (C1 and C2 experiment), and this is symptomatic
that the driver under analysis exhibits a driving style pretty similar in urban



A “Pay How You Drive” Car Insurance Approach through Cluster Analysis 15

and highway roads and the feature set considered is representative of the kind
of traveled roads.

Once the clusters with regards to the urban and to the highway path
are obtained, in order to compute the two driver aggressiveness indexes, we
consider the acceleration feature (i.e., F5) variation: this is the reason why we
resort to the standard deviation statistical dispersion index i.e., an estimate
of the variability of a data population or a random variable (in this case the
variable is represented by the F5 feature).

Considering u
i

the value of the i-th urban path occurrence of the F5 feature,
N

u

the total number of urban path occurrences of the F5 feature (with 1 
i  N

u

) we define the driver aggressiveness index �

urban

in urban path as
follows:

�

urban

=
qPNu

i=1(ui�x̄urban)2

Nu

where x̄

urban

represents the arithmetic mean of F5 feature urban path
distribution and it is defined as:

x̄

urban

= 1
Nu

P
Nu

i=1 ui

Relating to the driver aggressiveness index �

highway

in highway path, con-
sidering h

k

the value of the k-th highway path occurrence of the F5 feature,
N

h

the total number of highway path occurrences of the F5 feature (with
1  i  N

h

), we define the �

highway

index as follows:

�

highway

=

r
PNh

i=1(hk�x̄highway)2

Nk

where x̄
highway

represents the arithmetic mean of F5 feature highway path
distribution and it is defined as:

x̄

highway

= 1
Nh

P
Nk

i=1 uk

The estimated values of the driver aggressiveness indexes are the following:
�

urban

= 6.4734 and �

highway

= 2.4519.
From these results, we deduce that the driver under analysis exhibits a

more aggressive driving style in the urban path (with �

urban

= 6.4734) than
in the highway one (i.e., �

urban

= 2.4519).
We consider this behaviour as normal: typically urban roads require more

accelerations and decelerations if compared to the highway ones.
The opposite behavior would be considered highly aggressive.

5 A Risk Assessment Calculation

Behavioural aspects of driving, should be incorporated in insurance models in
order to contribute towards current trends of personalized vehicle insurance.[3].
In line with this observation, in the following we discuss a possible risk assess-
ment calculation taking into account several parameters:

– driver aggressiveness index in urban path (i.e., �
urban

);
– driver aggressiveness index in highway path (i.e., �

highway

);
– time bands (day/night): identification of two time bands, each of which

is assigned an appropriate penalty (this information is acquired using the
GPS sensor);
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– road traveled (in Km);
– history: number of times that the driver in previous analysis was considered

as aggressive / not aggressive, we consider the history of the previous urban
and highway aggressiveness index (with an appropriate penalty defined by
constant values).

A possible risk index (i.e., RI) calculation is shown below:

RI = (KM⇤K1)+(
Pt

i=1 i⇤�urbaniPt
i=1 i

)+K4⇤(
Pt

i=1 i⇤�highwayiPt
i=1 i

)+(K2⇤%day+K3⇤%night

100 )

where: KM represents the road traveled expressed in KM, K1 = 0.001
(constant value), �

urbani represents the i-th urban aggressiveness index value,
K4 = 2 (constant value),�

highwayi represents the i-th highway aggressiveness
index value, K2 = 40 (constant value) [3], %day is the percentage of time the
vehicle is used during the daytime,K3 = 60 (constant value) [3] and %night
is the percentage of time the vehicle is used at night and t is the length of
the historical series of the aggressiveness indexes. We set di↵erent values for
K2 = 40 and K3 = 60 because we consider the time in which the vehicle is
used at night potentially more dangerous than the time in which the vehicle is
used during day, for this the reason the same kilometers traveled during night
have a greater impact than the ones traveled during the day time. The reason
why we set K1 = 0.001 is that we do not want that the kilometers traveled
can be decisive for the risk index calculation (for this reason we multiply the
kilometers traveled with 0.001).

In order to assign a greater weight to the most recent aggressiveness indexes
(both the urban and the highway one), we consider the last i-th value as the
most recent aggressiveness index computed.

In the following, we present an example of RI calculation for three di↵erent
drivers: A, B and C. Table 3 shows the results where t=5 for Driver A and
Driver C and t=3 for Driver B.

Variables Driver A Driver B Driver C
KM 248 480 384

5�
urban5 5.34 n.a. 5.98

4�
urban4 4.23 n.a. 4.93

3�
urban3 2.34 6.43 4.76

2�
urban2 4.21 5.45 6.08

�

urban1 4.28 5.38 5.38
5�

highway5 2.26 n.a. 3.89
4�

highway4 1.89 n.a. 3.63
3�

highway3 2.45 2.17 2.48
2�

highway2 3.07 3.09 2.85
�

highway1 3.52 2.58 2.44
%day 31% 76% 42%
%night 69% 24% 58%
RI 63.05 56.29 64.01

Table 3: Risk index computation for three di↵erent drivers.
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As shown in Table 3, from the risk index computation of the A, B and
C drivers we obtained that driver with the lower risk index is the B driver
(but we highlight that the B driver exhibits 3 aggressiveness index values
(i.e., 1  i  3)). Relating to the A and C drivers (both of them with 5
aggressiveness index values (i.e., 1  i  5))), we obtain that the A driver
presents a lower risk index if compared with the C one: as a matter of fact the
RI for the A driver is equal to 63.01, while the IR related to the C driver is
equal to 64.01.

6 Conclusion and Future Work

“Pay How You Drive” insurance scheme presents many potentials and appears
to have many benefits. In line with the need to develop new methodologies
which take into account several parameters to evaluate driving behaviour, we
propose an approach assessing driver’s aggressiveness through cluster analysis
and unsupervised machine learning techniques.

Basing on the evidence that drivers exhibit di↵erent driving styles on dif-
ferent kind of roads (urban or highway), we propose an approach to compute
the driver aggressiveness. We identify the kind of road traveled through unsu-
pervised machine learning in order to assess the driver aggressiveness on urban
and highway paths. Than we propose a driver related risk index. In order to
verify the cluster analysis method discerning between urban and highway data,
we use a set of features extracted from the CAN bus of real-world car while
traveling in di↵erent roads (i.e., urban and highway) in the center and south of
Italy. As future work we plan to adopt formal verification techniques aimed to
identify whether a driver can be classified in several predefined categories (for
instance: the young driver, the ruthless driver, the cautious driver) in order
to propose a risk index considering the category to which a driver belongs. In
addition we explore whether deep learning algorithms can be helpful to obtain
better performances in driver aggressiveness computation.

Acknowledgment

This work has been partially supported by H2020 EU-funded projects NeCS
and C3ISP and EIT-Digital Project HII and PRIN “Governing Adaptive and
Unplanned Systems of Systems” and the EU project CyberSure 734815.

7 Compliance with Ethical Standards

Maria Francesca Carfora declares that she has no conflict of interest
Fabio Martinelli declares that he has no conflict of interest
Francesco Mercaldo declares that he has no conflict of interest
Vittoria Nardone declares that she has no conflict of interest
Albina Orlando declares that she has no conflict of interest



18 M. F. Carfora et al.

Antonella Santone declares that she has no conflict of interest
Gigliola Vaglini declares that she has no conflict of interest
All procedures performed in studies involving human participants were in

accordance with the ethical standards of the institutional and/or national re-
search committee and with the 1964 Helsinki declaration and its later amend-
ments or comparable ethical standards.

This article does not contain any studies with animals performed by any
of the authors.

Informed consent was obtained from all individual participants included in
the study.

References

1. A. Marotta, F. Martinelli, S. Nanni, A. Orlando, and A. Yautsiukhin, “Cyber-insurance
survey,” Computer Science Review, 2017.

2. P. Desyllas and M. Sako, “Profiting from business model innovation: Evidence from
pay-as-you-drive auto insurance,” Research Policy, vol. 42, no. 1, pp. 101–116, 2013.

3. D. I. Tselentis, G. Yannis, and E. I. Vlahogianni, “Innovative insurance schemes: pay
as/how you drive,” Transportation Research Procedia, vol. 14, pp. 362–371, 2016.
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