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Abstract. The global interest in renewable energy sources has increased the attention to the 

manufacturing of wind turbine towers, since they are largely diffused in seismic areas too. 

Different types of towers have been produced in recent years. Among them, the truss structures 

assure a reduced mass and the modular characteristics necessary for easy transportation. 

Reduced costs of production, installation and maintenance are typical of these structures. 

Nonlinear dynamics is an efficient framework to analyze structures subjected to variable 

actions, i.e. to assess the seismic safety of wind turbine towers in case of earthquake actions. 

This study outlines a procedure to evaluate the post-elastic behavior of truss towers for wind 

turbines. Rigid-plastic behaviour is taken into account to develop approximate solutions for the 

problem of a tower modeled as a vertical cantilever beam and subjected to harmonic base 

motion. A comparison with the results of a finite element model is proposed. 

1. Introduction 

The need of renewable energy production has enhanced the construction of eolian parks, i.e. sets of 

modern wind turbine [1]. Several of these parks have been realized in seismic areas, like those built in 

Irpinia, a region of Southern Italy devastated by a strong earthquake in 1980. Nonlinear dynamics is a 

reliable tool to examine the effects of earthquake actions on these structures [2]. 

In general when the elastic response can be disregarded and micromechanical behaviour involves 

complex experimental tests [3], rigid-plastic approximations, i.e. constitutive and structural models 

with sufficient accuracy and low numerical complexities are useful [4, 5]. A limiting aspect of the 

rigid-plastic model is linked to the numerical stability of the derived computer methods, due to the 

instantaneous jump of stiffness between zero and infinite. The model presented in the following 

sections overcomes this last limit, although plastic shear models are less diffused than the rigid-plastic 

bending ones. Despite the limited use in dynamic problems, nevertheless the procedures involve low 

computational competence and limited number of mechanical parameters, i.e. the yield characteristics 

[6, 7]. Simple relationships are derived between the strength of the structure and parameters useful for 

design purposes [8]. 

                                                      
1
  Via Claudio 21, 80125 Napoli, Italy. 

2
  Abazia di San Lorenzo, Via San Lorenzo 1, 81031 Aversa (CE), Italy. 

3
  Piazzale Tecchio 80, 80125 Napoli, Italy 

http://creativecommons.org/licenses/by/3.0


International Conference on Mathematical Modelling in Physical Sciences

IOP Conf. Series: Journal of Physics: Conf. Series 1141 (2018) 012078

IOP Publishing

doi:10.1088/1742-6596/1141/1/012078

2

 
 
 
 
 
 

A large amount of literature now exists for the dynamic plastic bending response of structural 

elements, both steel and reinforced concrete structures. Bending hinges represent in fact general 

response characteristics of several structural elements under transverse load [9, 10]. In both the 

bending and shear problems the important question is linked to the localization and extension of 

plastic hinges [11, 12]. Closed solution of the problem have been developed with the classical tools of 

numerical analysis like the linear complementarity [13, 14], while different approaches involving 

discretization of the structure into a finite number of mass points [15] have been recently attempted. 

The single-degree-of-freedom model provides a preliminary assessment of the structure and a good 

estimation of the response mode, which is normally responsible for overall structural failure [16, 17]. 

The rigid-plastic cantilever beam can be in fact a simple structural scheme to clarify the behaviour of 

more complex structures [18, 19] and to verify the accuracy of the numerical methods in a nonlinear 

dynamic analysis [20, 21]. In some cases, like that of rigid bodies, efficient schematizations are 

needed to solve complex dynamic problems [22, 23]. In the case of wind turbine towers a strong 

analogy with the cantilever beam can be recognized, so that the single degree of freedom provides 

useful results, also in the cases where there is a variation of strength and mass over the height. In 

general, pulses that occur during earthquakes have qualitative and quantitative characteristics that can 

adequately be approximated by specific functional expressions obtained by means of wavelet analysis 

[24]. Several strong ground motions contain in fact an acceleration pulse responsible for most of the 

inelastic deformations of structures. That acceleration pulse has been determined in some cases 

analyzing the main strong earthquakes occurred in the last 50 years [25]. The accurate choice of 

harmonic pulses to represent the ground motion are necessary to evaluate elastic and inelastic response 

spectra [26]. Sensitive analyses of responses due to different simple pulse shapes due to elastic and 

inelastic behaviour has shown that local site effects on structures can be modelled with an appropriate 

choice of the pulse [27, 28, 29]. These considerations are the basis of the numerical analysis 

performed, since the harmonic pulse can be a suitable representation of near-fault ground motions 

[30]. 

In this paper approximate solutions for rigid-plastic shear response of structures subjected to 

harmonic base pulse is presented, implemented in a numerical procedure on purpose developed. The 

results of the step by step solution of the general nonlinear dynamic problem are shown in form of 

time histories. The fundamental equations of the problem [31] are based on the rigid-plastic 

constitutive model and applied to the structure of a truss tower for a wind turbine considered like a 

cantilever beam subjected to harmonic forcing motion of the base support. The failure is assumed 

depending on the formation shear hinges and the results are expressed in general terms for application 

to real cases.  

2. The nonlinear dynamic problem 

Simplified constitutive models are of limited validity if applied to structures subjected to short 

duration and high intensity loading, on the contrary they are useful in case of estimate of major 

deformations due to very large dynamic loads [32, 33]. This estimation can be successively refined to 

include the initially neglected aspects. In what follows geometry changes are small and the yield stress 

is assumed to be independent on the strain rate. Reference is made to the elastic perfectly plastic body 

in Fig. 1, where: 

 

t u     :  total boundary of the body   and t u     

,t u   :  free and constrained boundary of the body   

( ) ( )t t x : surface loads on the free boundary t  

( ) ( )t b x : body forces in   

( , )g tu x : assigned velocity vector and ( , )0 u x 0  on u  

( )t : time dependent load multiplier function. 
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Fig. 1 The elastic perfectly plastic body 

 

 

The solution of the elastoplastic problem gives the strain rate ( , )tE x  and velocity fields ( , )tu x  

satisfying the kinematical admissibility conditions and the stress field ( , )tT x  equilibrated with the 

applied loads ( ) ( )t t x , ( ) ( )t b x  and the inertial forces *( ) ( , )t x u x , being ( ) x  the mass 

density function. In the following the approximate response field [34] is assumed in the form: 

 
*( , ) ( ) ( )t L tu x Φ x   (1) 

with: 
*( , ) ( , )gt tu x u x on u

 
  ;  

*( , )t u x 0  in   and t
 

where the assigned vector ( )Φ x  depends on the initial position only and ( )L t  is an unknown 

scalar function of the time [35] to be determined. The difference between the real stress field and the 

approximate one is in balance with the variation of the associate force fields, reduced to the difference 

between the inertial forces. The problem solution does not require that 
*( , )tT x  and 

*( , )tE x  are 

associated by the plastic law, so that the stress field is dynamically admissible with respect to the 

D’Alembert principle. Applying the principle of virtual power 

 

* * * *( ) ( ) ( ) ( )d d 0         
  u u u u Τ Τ E E  (2) 

and stating 

 

* *1
( ) ( ) ( )

2
t d     u u u u  (3) 

the first derivative of ( )t  is calculated: 

 

* *( ) ( )
d

d
dt

   


 u u u u  (4) 

In view of (4) and (2) it has: 

 

* *( ) ( )
d

d 0
dt

     


Τ Τ E E    

thus: 
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* * * * * * *( ) ( ) ( ) ( )
d

d d
dt

                    


 Τ Τ E Τ Τ E Τ Τ E Τ Τ E  (5) 

The stress field Τ  and the strain rate E  are associated through the plastic flow rule, while *
Τ  

satisfies the plasticity condition. The Drucker's stability postulate holds: 

 
*( ) 0  Τ Τ E .  (6) 

In the regions where *( , )t E x 0 , the generalized stress field *

*

E
Τ  associated to *

E  through the 

flow rule satisfies the plasticity condition: 

 
*

* *( ) 0  
E

Τ Τ E .  (7) 

By Drucker's stability postulate the equation (5) may therefore be put in the form: 

 

* * *( ) ( )
d

d
dt

        


Τ Τ Ε Τ Τ Ε  (8.a) 

 
* *

* * * * * *( ) ( ) ( )d d d             
  

E E
T T E T Τ E Τ T E  (8.b) 

 
*

* * *( ) ( ) ( ) 0d t t        
E

Τ T E  (8.c) 

where the first and the second integral in 8(b) are both less or equal to zero, hence the last term in 

(8.c) results non-negative, so that: 

 
( )

d
t

dt



 .  (9) 

The integration of the previous relation from 0 to time t gives the approximation measure ( )t : 

 0

( ) ( ) ( )

t

t t t dt     . (10) 

The maximum value m  of the non decreasing time function ( )t  is ( )T , being T the duration 

of the external forcing function. The function ( )L t  satisfies the initial conditions: 

 ( )L 0 0 .  (11) 

Due to the condition 
*( , )0 0u x . If ( )Ψ x  is the vector involving the strain generalized 

components associated to modal vector ( )Φ x , the acceleration *( , )tu x  and the strain rate *
E  are 

given by: 

 
*( , ) ( ) ( )t L tu x Φ x    ;   

*( , ) ( ) ( )t L tE x Ψ x  (12) 

The principle of virtual velocity gives: 

 

* * * * *( , ) [ ( , ) ] ( , ) ( , )
LS

t dS t d t t d        
  p x u F x u u Τ x E x  (13) 

that can be manipulated with reference to (1) and (12): 

 
  *

( , ) ( ) ( , ) ( )

( ) ( ) ( ) ( , ) ( )

L

T T

S

T

t dS t d

L t d t d

 

 

 

 



 



  

p x Φ x F x Φ x

x Φ x Φ x Τ x Ψ x
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so that the function ( )L t  can be evaluated by integration of the following function: 

 

*( , ) ( ) ( , ) ( ) ( , ) ( )
( )

( ) ( ) ( )

L

T T

S

T

t dS t d t d
L t

d

 

  



 



 

 

p x Φ x F x Φ x Τ x Ψ x

x Φ x Φ x
. (14) 

This method can be applied to pulse loads, with the two conditions that the tractions applied to t  

are null and the initial velocities are prescribed over the whole structure at time t 0 ; therefore, no 

external forces do work on the structure. 

3. Plastic shear behaviour of a cantilever beam 

The single-degree-of-freedom (SDOF) model is a good schematization for the dynamic behaviour 

of various structure [36]. In particular the wind turbine towers can be easily represented by a 

cantilever beam supported at the base.  
 

( )gu t

( , )
( , )

v z t
z t

z







dv

dz

( , )z t

h

z

0
T 

0
T 

0
T 



T
(a) (b) 

(c) 

 
Fig. 2 Wind turbine tower geometry (a), rigid-plastic constitutive law (b) and shear strain 

representation (c) 

 

As elsewhere shown [7] the rigid-plastic cantilever beam allows to develop a simplified approach to 

the nonlinear dynamic problem arising for sinusoidal excitation at the base of the tower. The problem 

is one-dimensional, so that parameters and relations developed in the previous section become scalar. 

In the model presented the Cartesian reference frame has the origin in the support section and the z 

axis coincident with the wind tower axis (Fig. 2a). The local yield kinematism corresponds to the 

activation of a shear hinge in which the total shear force ( )T z,t  attains its bound value. The 

mechanical characteristics are shown in Fig. 2b and 2c, where: 
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( )z : linear mass density of the tower 

( )gu t : horizontal motion of the supported section 

( )T z,t : shear stress whose bounds are ( )
0

zT   and ( )
0

zT   

( , )z t : shear strain  

h : total length of the tower. 

The shear plastic constitutive relations are the following: 

 

( , ) ( ) ( , ) ( ) ( , ) 0

( ) ( , ) ( )

0 0

0 0

T z t T z T z t T z z t

T z T z t T z

 

 

        

  


 (15) 

that is 

 

and

.

0 0 0 0

0 0

0 0

T T T 0 T T 0 T T 0

T T 0 T T 0

T T 0 T T 0

   

 

 

              

      

       

  

 

 

 

where the plastic strain rate   depends on the shear stress only. The dynamic equilibrium equation 

in the cross section at the z level involves the inertial forces only: 

 

( , )
( ) ( , ) ( )[ ( ) ( , )]g

T z t
z u z t z u t v z t

z


  


  . (16) 

where: 

 
( , ) ( ) ( , )gu z t u t v z t  , (17) 

is the absolute displacement and: 

 

( , ) ( , ) ( , )

z z t

0 0 0

v z t x t dx x d dx         (18) 

is the relative one. A plastic shear hinge occurs when the limit value of shear stress is reached. One 

or more shear hinges can be activated in the sections 1 2, , ..., nz z z  during the plastic phase, and their 

abscissa varies according to the time. The kinematic compatibility states that the plastic strain rate is 

non null in the active hinges only: 

 

( , )
( , ) '( , )

v z t
z t v z t

z


 


 . (19) 

The relative displacement ( , )v z t  in (18) can be deduced integrating (19) with respect to z  and 

introducing the Heaviside function ( )H z  ( ( ) forH z 0 z 0  , ( )H z 1 for z 0  ): 

 

 ( , ) ( , ) ( , ) , ( )

z z h

0 0 0

v z t v x t dx x t dx x t H z x dx       . (20) 

A double time derivation gives the relative acceleration ( , )v z t : 

 

 ( , ) ( , ) , ( )

z h

0 0

v z t x t dx x t H z x dx      (21) 
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In case of only one shear hinge active the time dependent position is denoted with ( )0z t , so the 

relative displacement velocity and the plastic strain rate have the form: 

 
( , ) ( ) [ ( )]1 0v z t v t H z z t   

 
( , ) '( , ) ( ) [ ( )]1 0z t v z t v t z z t     

being [ ( )]0z z t   the Dirac function relative to the plastic hinge position. The shear stress become: 

 

( , ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ) [ ( )]

z z z z

g g 1 0

h h h h

T z t u t x dx x v x t dx u t x dx v t x H x z t dx             

The mass functions are: 

 

( ) ( ) ; [ , ( )] ( ) [ ( )]

z z

H 0 0

h h

m z x dx m z z t x H x z t dx      (22) 

the time derivative of the second relation (22) gives: 

 

[ , ( )] [ , ( )]
( ) ( ) [ ( )] ( ) .H 0 H 0

0 0 0

m z z t m z z t
z z t H z z t z t

t z

 
    

 
  

The shear stress and its derivatives in function of the masses are: 

 
( , ) ( ) ( ) ( ) [ , ( )]g 1 H 0T z t u t m z v t m z z t   

 

[ , ( )]( , )
( ) ( ) ( )

[ , ( )]( , )
( ) ( ) ( ) [ , ( )] ( ) ( ) .

H 0
g 1

H 0
g 1 H 0 0 1

m z z tT z t
z u t v t

z z

m z z tT z t
m z u t v t m z z t z t v t

t z


 

 


  

 



 

The approximation by the Taylor series of the shear stress is: 

 

[ , ( )]
( , ) ( , ) ( ) ( ) ( )

[ , ( )]
( ) ( ) ( ) [ , ( )] ( ) ( ) .

0

0

H 0
0 0 0 0 g 1 o

z z

H 0
0 g 1 H 0 0 1 0

z z

m z z t
T z dz t dt T z t z u t v t dz

z

m z z t
m z u t v t m z z t v t z t dt

z





  
      

  

  
   

  



 (23) 

taking in mind that in the plastic hinge the shear is equal to the yield value ( , ) ( )0 0T z t T z . Indeed, 

if at the instant t dt  the position of the plastic shear hinge is 0 0z dz , it must be also 

( , ) ( )0 0 0 0 0T z dz t dt T z dz    , and ( , ) ( ) ( )0 0 0 0 0 0 0T z dz t dt T z T z dz    . The equation (23) in this 

case is more conveniently written as: 

 

[ , ( )]
( ) ( ) ( )

[ , ( )]
( ) ( ) ( ) [ , ( )] ( ) ( ) ( )

0

0

H 0
0 g 1 0

z z

H 0
0 g 1 H 0 0 1 0 0 0 0

z z

m z z t
z u t v t dz

z

m z z t
m z u t v t m z z t v t z t dt T z dz

z





  
  

  

  
    

  



 (24) 
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and being 0
0

dz
z

dt
 , it is: 

 
 [ ( ) ( ) ( )] ( ) ( ) ( ) [ , ( )]0 g 0 0 0 0 g 1 H 0 0z u t T z z t m z u t v t m z z t 0    . 

By equation (22) the time evolution of the plastic shear hinge is governed by the relation: 

 

( ) ( ) ( ) ( ) [ ( )]
( ) .

( ) ( ) ( )

0 g 1 0

0

0 g 0 0

m z u t v t H 0 m z t
z t

z u t T z


 


 (25) 

When the plastic hinge moves, residual plastic deformations ( , )r 0z t  can be detected in the 

previous position: 

 

( )
( , )

( )

1
r 0

0

v t
z t

z t
  

and their value do not vary until the plastic hinge forms again at the same position. Hence the 

acceleration ( , )v z t  can be determined as functions of the shear: 

 

( )
( , ) ( ) ( , ) ( )

( )

( )
( , ) ( ) ( , ) ( ).

( )

0
g0

0
g0

T z
T z t T z v z t u t

z

T z
T z t T z v z t u t

z










    


    





 

At the abscissa z  the inertial force: 

 

( ) ( )[ ( ) ( , ) ]

z

g

0

q z z u t x t dx      

allows the total shear written as: 

 

( , ) ( ) ( ) ( ) ( ) ( , )

z z x

g

h h 0

T z t q x dx u t m z x y t dy dx       . (26) 

The (26) can be put after some algebraic manipulations [7] in the form: 

 

( ) ( )
[ ( ) ( , ) ][ ( ) ( , ) ]

( ) ( )

( ) ( )
( ) ( , ) ,

( ) ( )

1 1

1

z z

1 10 0
g g

1 10 0

z

0 0
g 1

0

T z T z
u t y t dy u t y t dy 0

m z m z

T z T z
u t y t dy z z

m z m z

 

 

    

    

 



 



 (27) 

According the (27) the plastic deformations stop at the abscissa 
pz  and cannot propagate upward. 

The abscissa 
pz  can be obtained solving a minimum problem independent on time t and on ground 

acceleration ( )gu t : 

 

 

 

,

,

( ) ( )

( ) ( )
( , )

( ) ( )

( ) ( )

p10 0
p1

z 0 h
p1

p p1 p2

p20 0
p2

z 0 h
p2

T z T z
z min

m z m z
z max z z

T z T z
z min

m z m z

 

 





 
   

  
 

  
    

  

 (28) 

when equation (28) is satisfied for 
pz 0  the beam response involves only one degree of freedom. 
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4. Results 

A wind turbine tower can be represented by a vertical cantilever beam subjected to harmonic base 

motion and symmetric yield response of the truss structure, in which the contribute to the total shear 

force due to the normal force on the diagonal element has been taken into account [7]. The case study 

is the truss structure whose geometrical properties are reported in [37] and summed in the following: 

 

2

2 3 2 3 1

2

76.12 ( )

( )( )

6.9 10 30 , 4.904 10

( ) sin ( )

6 ( )

( )( )

w

g 0

0

h m total height of  the tower

mass linear densityz a z b z c

with a kg m e kg m c kg m

u t a t basemotion

D sec durationof the timehistory

yield shearT z d z e z f





   



  

    





  
3 2 1 7ith 1.944 10 518.61 , 3.18 10d Nm e Nm f N 












    

 

The plastic boundary ( )0z t  evolves depending on the harmonic forcing time history [38]. The 

numerical analyses identify a large plastic zone, extended in the range between two sections, the first 

one near the support (0.5 m) and the second one at 1 m level, both in the first truss bay. Above the 

plastic sections the remaining part of the tower is in the elastic field. In Figure 3 the time histories of 

both the plastic shear strain rate at hinge level and the displacement at the tower top are reported. 

     
( 0.5 )z m ( ) / 20gu t

[ ]t s [ ]t s

2

1

[ ]

[ ]

gu ms

s





( )gu t ( 76 )v z m

2[ ]

[ ]
gu ms

v cm



 
Fig. 3 Time histories of the plastic shear strain rate at the plastic level (left) and displacement at the 

top of the tower (right) for amplitude 0.20a g  and / 2 0.4775f Hz    with 
13s
 

 

 

   

2 ( )gu t

[ ]t s

( 76 )v z m

2[ ]

[ ]
gu ms

v cm



[ ]t s

( 0.5 )z m  ( ) / 20gu t

2

1

[ ]

[ ]

gu ms

s





 
Fig. 4 Time histories of the displacement at the plastic hinge levels (left) and at the top of the 

tower (right) for amplitude 0.30a g  and / 2 0.4775f Hz    with 
13s
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As it can be noted, the shear rate is in both cases a periodic function, ranging in the same numerical 

interval [39]. The displacement at the top of the tower presents a similar shape, but the maximum 

displacement value in the examined time interval present an increase of 50%.  

5. Conclusions 

The behaviour of a truss tower for wind turbines subjected to harmonic ground motion has been 

analyzed in this paper. The failure is considered due to the formation of shear hinges and the step by 

step integration method is adopted to calculate the dynamic response of the structure in the whole time 

domain. This procedure can be efficiently applied when a shear failure is acknowledged, as several 

collapsed wind towers have shown. The formation of a plastic shear hinge can be easily recognized in 

the first bay of the truss structure. The model here presented is able to describe the geometrical 

distribution of shear hinges with a relatively simple procedure.  

The proposed procedure provides an efficient representation of the tower post-elastic behaviour and 

a good estimation of the fundamental response modes with the benefit of low computational efforts 

and limited number of mechanical parameters. Small modifications allow the analysis of elastoplastic 

structures with several degree of freedom and generic ground acceleration. The elastoplastic dynamics 

by means of discretization methods involves in fact significant computational efforts to obtain reliable 

time histories. With the proposed approach a set of necessary information are provided, among them 

the localization of damage due to the extension of the plastic front that allows the designer to 

recognize the segment of tower needing special attention. 
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