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Abstract ─ We present the parallel implementation on 

Graphics Processing Units (GPUs) of a type-3 Non-

Uniform FFT (NUFFT) approach, namely, of a NUFFT 

for which data and results are located at irregular points. 

The performance of the algorithm is assessed against that 

of a parallel implementation of the same algorithm on 

multi-core CPUs using OpenMP directives. 

 

Index Terms ─ CUDA, Non-Uniform FFT, OpenMP. 
 

I. INTRODUCTION 
In many areas of electromagnetics, the need arises 

of evaluating Non-Uniform Discrete Fourier Transforms 

(NUDFTs), namely DFTs with data and/or results on 

irregular grids. Imaging [1], solutions to differential and 

integral equations [2], fast array antenna analysis [3]  

and synthesis [4] and antenna diagnosis [5] are just few 

examples. 

Unfortunately, the calculation of a NUDFT does  

not promptly benefit of the use of standard Fast Fourier 

Transforms (FFTs) (𝑂(𝑁𝑙𝑜𝑔𝑁) complexity) which on 

the contrary require Cartesian input and output grids. 

This solicited the development of Non-Uniform FFT 

(NUFFT) algorithms capable to perform accurate 

computations essentially with the same 𝑂(𝑁𝑙𝑜𝑔𝑁) 

complexity. NUFFTs achieve such a complexity by 

exploiting fast and accurate pre- and/or post-interpolation 

stages, properly tailored to the problem at hand, from/to 

regular to/from irregular grids. 

Apart from fast approaches, efficiency and 

effectiveness in the calculation of a NUDFT can be 

pursued also by adopting high performance, massively 

parallel computing (HPC) platforms as Graphics 

Processing Units (GPUs). The use of HPC is of course 

not disjoined from the numerical aspect since the 

appropriate exploitation of parallel hardware requires the 

choice of conveniently parallelizable algorithms. 

The purpose of this paper is to present and discuss 

the parallel implementation on GPUs of a type-3 NUFFT 

approach (henceforth, NUFFT-3), namely, of a NUFFT 

for which data and results are located at irregular points.  

NUFFT-3 finds important applications from the  

electromagnetic point of view. Indeed, it has been 

applied in [6] to effectively compute the aggregation and 

disaggregation stages of the Fast Multipole Method. 

Furthermore, it is of interest in aperiodic antenna 

analysis and synthesis when the far-field pattern is 

required into a non-uniform grid of the spectral plane [7]. 

NUFFT-3 has been originally dealt with using 

Gaussian interpolation windows [1, 8] or as a combination 

of type-1 and type-2 transforms [9, 10]. Most recently, 

we have improved [6] the choice of the Gaussian window 

parameters over that detailed [1, 8]. Despite type-1 and 

type-2 NUFFTs have been extensively researched also 

from the point of view of GPU approaches, it should  

be also noticed that only standard sequential CPU 

implementations for the NUFFT-3 have appeared 

throughout the literature, with neither parallel CPU nor 

GPU cases ever dealt with. Accordingly, in this paper, a 

NUFFT-3 GPU implementation is described for the first 

time. 

Our approach is based on the recent scheme in [6]. 

Its timing performance is assessed against that of a 

parallel implementation of the same algorithm on multi-

core CPUs, while its accuracy performance is pointed 

out thanks to a case of electromagnetic interest. 
 

II. TYPE-3 NUFFT 
Let {(𝑥𝑖 , 𝑦𝑖)}𝑖=0

𝑁−1 be a set of N 2D non equispaced 

points, {𝑓}𝑖=0
𝑁−1 a set of corresponding coefficients and 

{(𝑠𝑘 , 𝑡𝑘)}𝑘=0
𝐾−1 a set of K 2D non-equispaced spectral 

points. The transformation: 

 𝐹𝑘 = ∑ 𝑓𝑖
𝑁−1
𝑖=0 𝑒−𝑗𝑥𝑖𝑠𝑘𝑒−𝑗𝑦𝑖𝑡𝑘, (1) 

is referred to as a 2D NUDFT-3 [1]. 

The problem of computing the 𝐹𝑘’s amounts to the 

fact that Eq. (2) is not in the form of a standard Discrete 

Fourier Transform (DFT) since spatial and spectral 

points are irregularly located. Fortunately, reformulating 

the problem by interpolating non-uniformly sampled 

exponentials by uniformly sampled ones is in order. This 

can be achieved by the Poisson formula [11]: 

 𝑒−𝑗𝜉𝑥 = √2𝜋
∑ ℱ[Φ(𝜉)𝑒−𝑗𝜉𝑥;𝑚]𝑒𝑗𝑚𝜉

𝑚𝜖ℤ

∑ Φ(𝜉+2𝑚𝜋)𝑒−𝑗2𝑚𝜋𝑥
𝑚𝜖ℤ

, (2) 

where Φ is an appropriate interpolation window and  
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ℱ denotes Fourier transformation. Accordingly, a 

computational scheme analogous to a Non-Uniform  

FFT (NUFFT) procedure of Type-3 [1, 6] can be set up.  

We briefly illustrate such a procedure by assuming the 

window functions Φ to be Gaussian [1, 6].  

 

A. Step #1 

The contributions from non-uniformly spaced input 

sampling points corresponding to 𝐞𝐱𝐩 [−𝒋(𝒔𝒌𝒙𝒊 + 𝒕𝒌𝒕𝒊)] 

are “spread” by Gaussian windows 𝐞𝐱𝐩 [−
𝒙𝟐

𝟒𝝉𝒙
−

𝒚𝟐

(𝟒𝝉𝒚)
] 

with parameters 𝝉𝒙 and 𝝉𝒚, to a regular grid (𝒏𝚫𝒙, 𝒎𝚫𝒚). 

Step #1 thus produces [6]: 

 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) =

𝑒[𝜎𝑥(𝑛Δ𝑥)2+𝜎𝑦(𝑛Δ𝑦)2]

√4𝜎𝑥𝜎𝑦
  

              ∑ 𝑓𝑖𝑒
−[

(𝑛Δ𝑥−𝑥𝑖)
2

4𝜏𝑥
+

(𝑚Δ𝑦−𝑦𝑖)2

4𝜏𝑦
]

,𝑁−1
𝑖=0  (3) 

where the presence of the exponential function 

𝐞𝐱𝐩 [𝝈𝒙𝒙𝟐 + 𝝈𝒚𝒚𝟐] is related to the pre-compensation of 

the Gaussian window used in Step #3. Due to the  

rapid decay of the exponential functions, 𝒇𝒊 significantly 

contributes to only few samples of 𝒇𝝉
−𝝈(𝒏𝚫𝒙, 𝒎𝚫𝒚). On 

defining 𝑰𝒏𝒕[𝜶] as the nearest integer to 𝜶, by letting 

𝝃𝒊 = 𝑰𝒏𝒕[
𝒙𝒊

𝚫𝒙
] and 𝜼𝒊 = 𝑰𝒏𝒕[

𝒚𝒊

𝚫𝒚
], 𝒊 = 𝟎, … , (𝑵 − 𝟏), 

denote the nearest regular grid points to 
𝒙𝒊

𝚫𝒙
 and 

𝒚𝒊

𝚫𝒚
, 

respectively, and assigning 𝒏′ = 𝒏 − 𝝃𝒊 and 𝒎′ = 𝒎 −
𝜼𝒊, the contributions of each 𝒇𝒊 to 𝒇𝝉

−𝝈(𝒏𝚫𝒙, 𝒎𝚫𝒚) can 

be ignored when |𝒏′| > 𝒎𝒔𝒑 or |𝒎′| > 𝒎𝒔𝒑, where 𝒎𝒔𝒑 

is a parameter properly selected according to the required 

accuracy. In other words, the summation in (3) provides 

a non-negligible contribution to only (𝟐𝒎𝒔𝒑 + 𝟏) ×

(𝟐𝒎𝒔𝒑 + 𝟏) terms. 
 

B. Step #2 

The “spread” contributions are transformed to the 

spatial frequency domain via a standard FFT. In other 

words, the second step produces 

           𝐹𝜏
−𝜎(𝑝Δ𝑠, 𝑞Δ𝑡) ≅

∆𝑥∆𝑦

4𝜋
      

∑ ∑ 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦)

𝑀𝑟𝑦

2

𝑚=−
𝑀𝑟𝑦

2

𝑀𝑟𝑥
2

𝑛=−
𝑀𝑟𝑥

2

𝑒−𝑗𝑝𝑛∆𝑥∆𝑠𝑒−𝑗𝑞𝑚∆𝑦∆𝑡.

 (4) 
 

C. Step #3 

The “transformed” data are interpolated from the FFT 

output uniform grid to the non-uniform grid {(𝒔𝒌, 𝒕𝒌)}𝒌=𝟎
𝑲−𝟏, 

again by Gaussian windows, 𝐞𝐱𝐩 [−
𝒔𝟐

𝟒𝝈𝒙
−

𝒕𝟐

(𝟒𝝈𝒚)
]. The 

final output is thus: 

           𝐹𝑘 =
∆𝑠∆𝑡

4𝜋√𝜏𝑥𝜏𝑦
𝑒𝜏𝑥𝑠𝑘

2
𝑒𝜏𝑦𝑡𝑘

2
     

 ∑ ∑ 𝐹𝜏
−𝜎(𝑛Δ𝑠, 𝑚Δ𝑡)

𝑀𝑟𝑦

2

𝑚=−
𝑀𝑟𝑦

2

𝑀𝑟𝑥
2

𝑛=−
𝑀𝑟𝑥

2

𝑒
−

(𝑛Δ𝑠−𝑠𝑘)2

4𝜎𝑥 𝑒
−

(𝑚Δ𝑡−𝑡𝑘)
2

4𝑦
.
 

 (5) 

Similarly to Step #1, the presence of the Gaussian 

functions 𝐞𝐱𝐩 [𝝉𝒙𝒔𝟐 + 𝝉𝒚𝒕𝟐] is related to the post-

compensation of the Gaussian windows used in Step #1. 

Again due to the rapid decay of the involved exponential 

functions, 𝑭𝝉
−𝝈(𝒏𝚫𝒔, 𝒎𝚫𝒕) significantly contributes  

to only few samples of 𝑭𝒌. In particular, on letting  

�̃�𝒌 = 𝑰𝒏𝒕[
𝒔𝒌

𝚫𝒔
] and �̃�𝒌 = 𝑰𝒏𝒕[

𝒕𝒌

𝚫𝒕
], 𝒌 = 𝟎, … , 𝑲 − 𝟏, and 

𝒑′ = 𝒑 − �̃�𝒌 and 𝒒′ = 𝒒 − �̃�𝒌, the contributions of 

𝑭𝝉
−𝝈(𝒏𝚫𝒔, 𝒎𝚫𝒕) can be ignored when |𝒑′| > 𝒎𝒔𝒑 and 

|𝒒′| > 𝒎𝒔𝒑. In other words, the summation in (5) can be 

truncated to (𝟐𝒎𝒔𝒑 + 𝟏) × (𝟐𝒎𝒔𝒑 + 𝟏) terms. 

 

D. “Centering” and choice of the relevant parameters 

Before applying the above procedure, a “centering” 

of the input and output sampling points is required, see 

[6]. Similarly, for the choices of 𝚫𝒙, 𝚫𝒚, 𝝉𝒙, 𝝉𝒚, 𝝈𝒙, 𝝈𝒚 

and 𝒎𝒔𝒑, see [6] and Table 1. In such a table, 𝑹 is  

chosen strictly larger than 2, 𝑿 = 𝒎𝒂𝒙{|𝒙𝒊
′|}𝒏=𝟎

𝑵−𝟏, 𝒀 =
𝒎𝒂𝒙{|𝒚𝒊

′|}𝒏=𝟎
𝑵−𝟏, 𝑺 = 𝒎𝒂𝒙{|𝒔𝒌

′ |}𝒌=𝟎
𝑲−𝟏, 𝑻 = 𝒎𝒂𝒙{|𝒕𝒌

′ |}𝒌=𝟎
𝑲−𝟏 

following the “centering” step, 𝒎𝒔𝒑 = 𝟐𝝅𝒃, b is chosen 

according to successive approximations of the following 

equation: 

𝒃 =
𝟏

𝜸
𝒍𝒐𝒈 (

𝟒𝜶

𝒆
𝒃 +

𝟗𝜶

𝒆
),             (6) 

with 

𝜶 = 𝟐 +
𝟏

√𝟐𝝅
,   𝜸 = 𝝅𝟐 (𝟏 −

𝟐

𝑹𝟐),             (7) 

and e is the requested accuracy [6]. 

 

Table 1: Summary of the parameters choice 

Δ𝑥 =
𝜋

𝑅𝑆
 Δ𝑦 =

𝜋

𝑅𝑇
 

Δ𝑠 =
2𝜋

∆𝑥𝑀𝑟𝑥

 Δ𝑡 =
2𝜋

∆𝑦𝑀𝑟𝑦



𝑀𝑟𝑥 ≥ 2 (
𝑋𝑆𝑅2

𝜋
+ 2𝜋𝑅𝑏) 𝑀𝑟𝑦 ≥ 2 (

𝑌𝑇𝑅2

𝜋
+ 2𝜋𝑅𝑏)

τ𝑥 = 𝑏Δ𝑥2 τ𝑦 = 𝑏Δ𝑦2

σ𝑥 = 𝑏Δ𝑠2 σ𝑦 = 𝑏Δ𝑡2

 

III. IMPLEMENTATIONS 
The illustrated NUFFT-3 algorithm has been 

implemented in both GPU and CPU multithreaded 

codes. The latter has been developed in C++ parallelized 

by OpenMP directives. Such a choice matches with the 

use of the CUDA environment to develop the GPU 

counterpart. Both the codes are structured according  

to the above Steps and have been highly optimized. To 

perform a fair comparison, the CPU implementation has 

benefitted of most of the optimizations applied to the 

CUDA code. In the following, some implementation 

details are presented.  

 

A. GPU multithreaded implementation 

Step #1. The computation of 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) is the  

CAPOZZOLI, CURCIO, LISENO, PICCINOTTI: THE 2D TYPE-3 NON-UNIFORM FFT IN CUDA 932



most critical step of the three and requires some care 

since different approaches could be envisaged. The 

difficulty is due to the need of “pseudo-randomly” 

accessing the elements of 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) when selecting 

the (2𝑚𝑠𝑝 + 1) × (2𝑚𝑠𝑝 + 1) indices (𝑛, 𝑚) to which 

each coefficient 𝑓𝑖 contributes. 

A first parallelization strategy would be to commit  

a thread to compute a single matrix element 

𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) using a 2D thread grid with each thread 

associated to a different (𝑛, 𝑚) couple. However, in  

this way, the generic thread should perform, due to the 

“pseudo-random” filling, a time-consuming browsing  

of the input elements to establish whether they contribute 

to the committed element of 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) or not. 

As an alternative, our code employs a 1D thread grid 

with each thread associated to a different input index 𝑖. 
In this, way, the browsing is avoided since each thread is 

assigned to a different 𝑓𝑖 and updates the (2𝑚𝑠𝑝 + 1) ×

(2𝑚𝑠𝑝 + 1) corresponding elements of 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦). 

However, notice that, by this solution, more than one 

thread may need to simultaneously update (namely,  

read, compute and store a new value) the same 

𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦). When this happens, a “race condition” 

occurs. To preserve data integrity, atomic operations 

have been exploited ensuring the semantic correctness  

of the algorithm. Although serializing the updating 

operations, they have become very fast in the recent 

CUDA architectures.  

Step #2. This step is implemented using cuFFT and 

a customized CUDA kernel executing the FFT shift 

operation. 

Step #3. Parallelizing the calculation of Eq. (5) is 

easier than that of eq. (3), as it does not suffer from race 

condition hazards. The implemented code employs a 1D 

thread grid where each thread is associated to a different 

output index 𝑘. 

 

B. CPU multithreaded implementation 

Step #1 has been implemented in an analogous  

to what done for the CUDA case. More in detail, the 

parallelization has been applied according to the input 

index 𝑖. Accordingly, the #pragma omp atomic has 

been used to prevent race conditions.  

Concerning Step #2, the FFT step required by Eq. 

(4) has been achieved by the multithreaded version of  

the FFTW routine contained in the Intel Math Kernel 

Library (MKL). 

Finally, Step #3 has been implemented analogously 

to that done for the CUDA case, by applying the 

parallelization strategy to the output index 𝑘. 

 

IV. NUMERICAL RESULTS 
The performance of GPU and CPU implementations 

has been assessed with random spatial and spectral  

location vectors (𝑥𝑖 , 𝑦𝑖) and (𝑠𝑘, 𝑡𝑘) and random complex 

coefficients 𝑓𝑖. Two cases have been considered: the case 

when 𝑁 = 𝐾, 𝐾 = 2𝑝, 𝑝 = 8, … ,20 and the case when 

𝑁 = 𝐾2, 𝐾 = 2𝑝, 𝑝 = 8,9,10. The former case is of 

interest for scattering by impenetrable objects, i.e., when 

only the scatterer’s surface must be discretized, where 

discretization is essentially 1D and 𝑁 = 𝐾. The latter 

case, instead, is of interest for the scattering by 

penetrable objects [12], i.e., when the scatterer’s interior 

must be discretized, where discretization is essentially 

2D and 𝑁 = 𝐾2. The computational speeds have been 

measured by averaging a number of 10 realizations for 

each individual test. The codes have been run on an Intel 

Core i7-6700K, 4GHz, 4 cores (8 logical processors), 

equipped with an NVIDIA GTX 960 card, compute 

capability 5.2. 

Figure 1 (upper panel) displays, for the case 𝑁 = 𝐾, 

the partial timings of the three mentioned calculation 

steps for the CUDA implementation. As it can be seen, 

the most computationally demanding operations are the 

spatial and spectral interpolations, namely, Step #1 and 

Step #3. Despite employing atomic operations, the spatial 

interpolation step is only slightly more demanding than 

the spectral implementation. This is due to two reasons. 

First, the implementation of Step #1 has been highly 

optimized. Second, atomic operations are extremely fast 

for the Maxwell architecture. 

 

Table 2: Partial timings (in [ms]) for the CUDA 

implementation and for the case 𝑁 = 𝐾2 

𝐾 Step #1 Step #2 Step #3 

   

   

   

 

The partial timings of the three steps for the case 

𝑁 = 𝐾2 and for the CUDA implementation are reported 

in Table 2. Due to the larger number of input points as 

compared to the output ones, now Step #1 is the most 

time consuming part of the computation. 

Figure 1 (lower panel) displays the speedup obtained 

by the parallel GPU implementation, against the OpenMP 

one, for the two cases of 𝑁 = 𝐾 and 𝑁 = 𝐾2. The GPU 

timings do not comprise CPU-GPU memory movements, 

as the use of the NUFFT-3 CUDA code is understood to 

be exploited within a fully GPU-based computation. As 

it can be seen, speedups of up to 8 are obtained for the 

case 𝑁 = 𝐾. Larger speedups are achieved for the case 

𝑁 = 𝐾2 since, in this case, Step #1 is the most time 

consuming one and more significantly benefits of the 

GPU acceleration. Notably, according to Amdahl’s law 

[13], the amount of achievable speedup depends on the 

portion of the code that can be parallelized. A speedup of 

5/6 can be already considered a satisfactory result.  
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Fig. 1. Upper panel: Partial timings of the CUDA 

implementation: case 𝑁 = 𝐾. Lower panel: Speedup of 

the CUDA implementation against the OpenMP one. 

Red line: case 𝑁 = 𝐾. Blue line: case 𝑁 = 𝐾2. 

 
We now show a test case of electromagnetic interest. 

As already mentioned, aggregation and disaggregation  

in the FMM [14, 15] can be effectively performed by a 

NUFFT-3 [6]. We consider a 2D Electric Field Integral 

Equation (EFIE) applied to the scattering of a perfectly 

conducting circular cylinder of radius a=2.5 under TM 

(Transverse Magnetic) plane wave illumination. The 

cylinder’s surface has been discretized in 1536 segments, 

grouped in 32 clusters [6]. More in detail, we compare 

the cases when aggregation and disaggregation are 

evaluated in an exact way and by a NUFFT-3. The good 

accuracy of the NUFFT-based version is witnessed by 

the very low relative root mean square error between the 

two compared cases and equal to 8.78 · 10−11. 

 

V. CONCLUSIONS AND FUTURE 

DEVELOPMENTS 
We have discussed the parallel implementation  

on GPUs of a NUFFT-3. State-of-art implementation  

of NUFFT-3 are only sequential CPU ones. Here, the 

performance of the GPU approach has been compared  

to that of a purposely developed parallel CPU one using 

OpenMP directives. The provided parallelizations amount 

at a proper organization of the computations, but they  

do not alter the accuracy of the parallelized NUFFT-3 

algorithm. 

We now plan to extend the approach to the use of 

more efficient interpolating window functions. 
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