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Abstract: Taste receptors were first described as sensory receptors located on the tongue, where they
are expressed in small clusters of specialized epithelial cells. However, more studies were published
in recent years pointing to an expression of these proteins not only in the oral cavity but throughout
the body and thus to a physiological role beyond the tongue. The recent observation that taste
receptors and components of the coupled taste transduction cascade are also expressed during the
different phases of spermatogenesis as well as in mature spermatozoa from mouse to humans and
the overlap between the ligand spectrum of taste receptors with compounds in the male and female
reproductive organs makes it reasonable to assume that sperm “taste” these different cues in their
natural microenvironments. This assumption is assisted by the recent observations of a reproductive
phenotype of different mouse lines carrying a targeted deletion of a taste receptor gene as well as the
finding of a significant correlation between human male infertility and some polymorphisms in taste
receptors genes. In this review, we depict recent findings on the role of taste receptors in male fertility,
especially focusing on their possible involvement in mechanisms underlying spermatogenesis and
post testicular sperm maturation. We also highlight the impact of genetic deletions of taste receptors,
as well as their polymorphisms on male reproduction.

Keywords: sperm; taste receptor; spermatogenesis; apoptosis; epididymal sperm maturation;
acrosome reaction; knockout mice; reproduction; cAMP; calcium; spontaneous activity of GPCRs; SNP

1. Taste Receptors and Signal Transduction

The name “Taste receptors” (TAS) derives from their first identification in the oral cavity [1]
and their role in the sensation of gustation. Indeed, they were first classified as sensory receptors,
whose expression was limited to small clusters of specialized epithelial cells which reside within taste
buds located on the tongue [2].

The sensation of taste can be divided into five distinct categories [3]: (i) sweet, for detection of
sugars and sweeteners; (ii) salty, for detection of sodium; (iii) umami, for detection of all L-amino
acids in rodents [4] but only of L-glutamate in humans [5], required by the body for energy balance
and building proteins; (iv) sour, which perceives acids in unripe fruit and spoiled foods and (v) bitter,
which detects a variety of alkaloid substances, many of which are toxic. However, taste receptors for
non-canonical taste stimuli have been described; among them are receptors for kokumi, a stimulus
that enhances the basic taste sensations [6] and fatty acid transporters (receptor for fat), involved
in oral detection of different fatty acids [7]. Taste sense acts as a guardian and guide for our eating
habits: The sensations of bitter and/or sour acts as deterrent ingesting toxic substances and strong
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acids, while the sensations of sweet, umami and salty lead us to prefer foods containing carbohydrates,
amino acids and sodium [8]. Consequently; it is not surprising that the capability to detect and react to
chemical stimuli is a trait possessed by the simplest forms of life [9].

Taste transduction signalling involves the interaction of molecules (i.e., tastants) with their specific
taste receptors, expressed by cells residing in the taste buds. Taste buds are the transducing endorgans of
gustation and each bud comprises 50-100 elongated cells located on the connective papillae of the tongue
and scattered throughout the epithelium of the soft palate and larynx. Taste buds are onion-shaped
structures. They extend from the basal lamina to the surface of the tongue, where their apical microvilli
encounter taste stimuli in the oral cavity, detecting and distinguish between bitter, sweet, sour, salty and
umami stimuli.

Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami
(L-glutamate) utilize G protein-coupled receptors (GPCRs) and a subsequent second-messenger signal
transduction process (Figure 1). If compared with other GPCRs, TAS are low affinity receptors, with binding
affinities in the micro- to millimolar range, typical for the concentration of most nutrients in foods [10].
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Figure 1. Transduction of L-glutamate (umami), sweet and bitter stimuli in taste receptor cells on the
tongue. Ligand-induced stimulation of the umami (Taslrl+Tas1r3), sweet (Taslr2+Tas1r3) or bitter
receptors (Tas2rs) expressed at the apical membrane of type II taste cells within a taste bud (s. drawing
in the left) activates in all cases a trimeric G protein composed of a-gustducin (Gogys) and a complex
consisting ofGB3 andGy13 (GP3/v13). The released Gpy-complex activates phospholipase C isoform (32
(PLCpB2) which then induces production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG);
the second messenger IP3, in turn, activates the IP3 receptor (IP3R), an intracellular ion channel that allows
Ca?* release from the intracellular endoplasmic reticulum (ER) store (solid lines). Increase in intracellular
Ca®* then activates the transient receptor potential melastatin 5 (TRPM5), a plasma membrane localized
sodium-selective channel which leads to depolarization and subsequent activation of voltage-gated
sodium channels (Na* channel) (dashed lines). The combined action of elevated Ca?* and membrane
depolarization opens the calcium homeostasis modulator (CALHM) channel, composed of CALHM1 and
CALHMS3 and pannexinl channels, thus resulting in the release of the neurotransmitter ATP. At the same
time, x-gustducin activates a phosphodiesterase (PDE) (solid lines), which catalyses the hydrolysis of the
second messenger cyclic-AMP (cAMP) to AMP. For the sake of simplicity, regulatory effects of cCAMP are
omitted in the model.
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Two different families of taste GPCRs have been identified: Type 1 Taste Receptors (Tasls)
and Type 2 Taste Receptors (Tas2s): Tasls encode the receptor proteins for sweet and umami taste,
while Tas2s mediate bitter taste [11,12].

Three different Tasls have been identified, which are products of the Tasls genes: TASIRI,
TASIR2 and TASIR3 [11,13]. These receptors are activated only if assembled into heterodimers:
TASIR3 heterodimerizes with TAS1R1, thereby forming the umami receptor (TAS1R1 + TAS1R3);
assembly of TASIR3 with TAS1IR2 led to the formation of a sweet receptor (TASIR2 + TAS1R3),
activated by carbohydrates, artificial sweeteners and sweet proteins [14,15]. TASIR3 may also serve
as a low-affinity sweet receptor alone, perhaps as a homodimer or homomultimer [16]. The taste 2
receptors, consisting of a large family including about 25 different isoforms in humans and about 35 in
rodents, are responsible for the sensation of bitter tastants [12,17,18].

The signalling of both TASIRs and TAS2Rs is mediated by the same intracellular transduction
pathway in type Il taste bud cells [10,19,20] (Figure 1). The binding of the corresponding ligand activates a
heterotrimeric G protein, which consists in most cells of the G protein x-gustducin and 33/7v13, leading to
the release of the G 3 /7y subunits and a subsequent stimulation of phospholipase C isoform (32 (PLC[32),
which, in turn, hydrolyses the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP;) to produce
the two second messengers inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) [8,10,20]. IP3 opens
IP;3 receptor (IP3R3) type 3 ion channels on the endoplasmic reticulum membrane, thus releasing calcium
(Ca?*) into the cytosol of the activated receptor cell. As a result, increase in the intracellular Ca®* level
activates the cation channel transient receptor potential, melastatin family member 5 (TRPMS5) [21,22].
The TRPMb5-triggered influx of Na* and activation of voltage dependent sodium channels, subsequently
depolarize the cell, leading to a release of the neurotransmitter adenosine triphosphate (ATP) through
pannexin 1 and a hexameric channel composed of Calcium homeostasis modulator (CALHM) 1 and
CALHMB3 [23-25]. ATP finally transmits the signal to ionotropic purinergic receptors P2X2 and
P2X3 receptors on gustatory afferent fibres [26,27]. Simultaneously released o-gustducin activates
phosphodiesterase, thus resulting in a decrease of intracellular levels of the second messenger cyclic
adenosine monophosphate (cAMP) [28].

2. Expression of Taste Receptors in Different Tissues

Despite their name, the expression of taste receptors is not limited to taste buds in the oropharynx
tract [29]. The same is true for the coupling taste transduction cascade which elements are expressed
in many chemoresponsive epithelial cells, scattered within both the alimentary tract and the
respiratory passageways. Despite the similarities in receptor molecules and the transduction pathway,
the emerging picture is that the diverse chemoreceptive cells do not all evoke a sensation of taste but
rather serve different functions according to their location [8].

In addition, expression of taste receptors has been reported in many other tissues, both in human
and in animals, including the digestive system [16,17,30,31], respiratory system [32-34], urinary
bladder [35], pancreas [16,36,37], liver [36], brain [38] and testis [5,39-44]. In these tissues, taste receptor
function seems to be less obvious, and, in most cases has not been clarified yet.

The expression of the Tas1r2 and Tas1r3 subunits in mouse brain, along with the observation
that Tas1r2 expression patterns in mouse hypothalamic cells varied according to the glycaemic
index of the culture medium, may indicate a direct involvement of these taste receptors in brain
glucose homeostasis [38]. From the neonatal stage, human myocytes express the Tas1R3 subunit;
anyway;, its expression levels are not affected by 24 h of glucose deprivation [45].

There are numerous evidences that taste receptors are involved in the regulation of insulin release,
representing an intriguing mechanism alternative to the canonical pathway. Indeed, in addition to the
expression of TASIR2 and TAS1R3 and their coupled G protein « subunit gustducin in the plasma
membrane of human {3 cells, it has been reported that fructose or artificial sweeteners can induce
an increase in insulin release more rapidly if compared with the response expected for a metabolic
pathway and that this increase is completely abolished by Tas1r3 inhibitors [46—48].
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As regard to the Tas1r2 and Tas1r3 expression in the bladder urothelium, it has been suggested that
they might be involved in bladder contraction induced by artificial sweeteners, such as acesulfame-K or
saccharin [35].

A possible involvement of taste receptors in osteogenesis and in bone marrow adipogenesis has
been recently proposed [49]: Tas1r2 knockout mice display a significant decrease in the number of
adipocytes in bone marrow together with an increase in bone density. A role for sweet taste receptor
in immunity has been hypothesized based on the expression of Tas1r3 in the kidney, in lymphocytes
and in thymus [39,50]. Also, bitter receptors are involved in the innate immunity; the rapid response
of the epithelial barrier in avoiding infection at the early stage, for example by increasing ciliary
beat frequency in order to accelerate mucociliary clearance. It has been reported that human ciliated
airway cells express TAS2R4, TAS2R43 and TAS2R46 and ciliary beat frequency is increased by the
transduction cascade elicited by TAS2Rs, culminating with a rise in the intracellular levels of Ca?* [32].
Tas2Rs seems to be involved in smooth muscles contraction, too; Tas2r agonists cause the relaxation of
pre-contracted airway smooth muscle ex vivo and decrease airway resistance in vivo in mice [51].

From this extensive list it clearly emerges that tasting is only a part of the responsibility of these
receptors, which do not mediate “taste” per se as they are not linked to neuronal perceptive pathways.
Nonetheless, taste receptors seem to have a chemosensory role in many tissues, which, together with
the observation that many medications in clinical use taste bitter and thus are aversive to children [52],
opens the way to new therapeutic strategies based on the use of taste receptors as potential therapeutic
mediators of drug effects.

3. Taste Receptors and Spermatogenesis

3.1. Spermatogenesis

Spermatogenesis is a complex and precisely controlled cellular transformation process that ensures
the production of millions of sperm daily [53]. This massive sperm production takes place in the tightly
packed seminiferous tubules of the two testes where each tubular unit contains distinct concentric
layers of germ cells of different stages of maturation (Figure 2): Diploid spermatogonia, the stem cells
of the testis, are localized in the basal cell layer of the seminiferous tubules. Upon mitotic divisions
that provide the necessary cell number essential for a high sperm output, developing spermatocytes
move to the more luminal part of the seminiferous tubule where they undergo meiosis resulting in
the generation of haploid spermatids. The round spermatids subsequently run through a cellular
transformation process called spermiogenesis in which they differentiate into spermatozoa finally
localized into the luminal region of the tubular unit [54].

Continuous sperm production in adult males depends on endocrine and testicular
paracrine/autocrine factors which together coordinate proliferation and germ cell differentiation [55,56].
The endocrine stimulation of spermatogenesis involves the two gonadotropins follicle stimulating
hormone (FSH) and luteinizing hormone (LH). Their secretion by the anterior pituitary gland is
controlled through the hypothalamic-pituitary portal system with gonadotropin-releasing hormone
(GnRH) secreted by the hypothalamus [55] (Figure 2A). Subsequent action of the two glycoproteins LH
and FSH requires cell to cell communication within the testis which is predominantly mediated by the
two somatic cell types within the testis, the Leydig and Sertoli cells. Leydig cells, that reside between
the seminiferous tubules of the testis, produce testosterone upon LH stimulation [57]. Sertoli cells,
which form cytoplasmic bridges with the developing germ cells within the seminiferous tubules,
are the ‘nurse’ cell of the testes [58] and play a more comprehensive role: Sertoli cells create the
adequate ionic environment for germ cell development, have a nurturing role for differentiating
sperm, phagocytose residual bodies after spermiogenesis and assist in the final migration of mature
spermatozoa into the lumen of the seminiferous tubule [59]. In addition, since the germ cells do
not possess receptors for FSH and testosterone, Sertoli cells represent the major cellular targets
for hormonal signalling so that the effect of hormones on germ cell development is indirect [60].
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The hypothalamic-pituitary-gonadal (HPG) axis is a self-regulating system with two negative feedback
loops (Figure 2A): on one hand high testosterone concentrations in the peripheral blood provides a
negative feedback route to suppress hypothalamic discharge of GnRH and consequently LH release
from the anterior pituitary [61]. The second loop is the release of inhibin-B by Sertoli cells. Inhibin-B has
a negative feedback effect on the pituitary gland, thereby suppressing FSH secretion [62] (Figure 2A).
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Figure 2. Regulation of sperm production. (A) Hormonal control of spermatogenesis in the testis.
Spermatogenesis in the testis is under endocrine and paracrine control, which is regulated by the
hypothalamus and the pituitary gland also known as hypothalamic-pituitary-gonadal (HPG) axis.
The hypothalamus regulates the hormonal activity of the anterior pituitary gland by secreting the
tropic gonadotropin-releasing hormone (GnRH). Upon binding of GnRH to the anterior pituitary gland
production of luteinizing hormone (LH) and follicle stimulating hormone (FSH) is elevated which upon
blood stream transport stimulate testosterone secretion by intestinal Leydig cells and activation of Sertoli
cells by FSH. Sertoli cells as cellular part of the tubular unit provide the optimal environment for the
developing germ cells. A negative feedback of GnRH production in the hypothalamic neurons and
LH/FSH secretion by the pituitary gland is exerted by high testosterone levels in the blood and secretion
of the proteohormone inhibin-B by Sertoli cells. Arrow: positive (green) and negative (red) feedback.
(B) Schematic drawing of a single seminiferous tubule with different stages of developing germ cells
during spermatogenesis. The cross section shows that germ cells of a distinct developmental stage
are organized in concentric layers within the tubule: In the most basal cell layer of the tubular unit,
the immature spermatogonial stem cells are located, followed by spermatocytes, round spermatids and
finally the most mature elongated spermatids which are concentrated in the lumen of the seminiferous
tubule. The regulation of spermatogenesis is mainly mediated by surrounding interstitial Leydig cells
which produce testosterone. The Sertoli cells within the seminiferous tubules have a nurturing role for the
developing germ cell and transduce the action of FSH to the closely associated germ cells. (C) Schematic
drawing showing a sagittal section through a whole testis and the overlying epididymis. The testis
contains the tightly packed seminiferous tubules where spermatogenesis takes place. The elongated duct
presenting the epididymis at the posterior margin of the testis is subdivided into three discrete segments
(caput, corpus, cauda), where the luminal fluid of each region is characterized by a unique composition of
different constituents, essential for post-testicular sperm maturation.

3.2. Apoptosis

However, success of germ cell proliferation and differentiation is also ensured by a dynamic
balance between germ cell development and a carefully controlled process of programmed cell death,
thereby ensuring a selective elimination of an overrun of produced germ cells and in addition a
deletion of abnormal and defective sperm [63]. Removal of an excess of germ cells taking place during
spermatogenesis in the testis and ensuring an optimal ratio of supporting Sertoli cells to germ cells
during at all stages of development leads to a degeneration of about 75% of spermatogonia before
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reaching maturity [64,65]. In maturated and ejaculated sperm where apoptosis also occurs [66] the
process of programmed cell death is responsible to eliminate damaged cells [64]. Any imbalance in
the apoptotic process has dramatic implications for male infertility: whereas a decrease in the selective
elimination of defective developing and mature sperm causes poor sperm quality, an increase in apoptosis
could potentially lead to a reduced sperm count and thus sub-fertility [67,68]. Thus, identification of
“death triggering signals” [69] as well as corresponding receptor proteins that elicit activation of the
apoptotic machinery is of critical importance for the fertilization potential of males. Although not
fully understood [64], onset of apoptosis in germ cells can not only be induced by the lack of
hormones, like gonadotropins and testosterone [56] but also by a broad range of non-hormonal and
also non-physiological stimuli, such as heat stress, industrial and therapeutic agents as well as a variety
of naturally occurring toxicants [70,71]. In this context one has to consider that receptors belonging to
the taste 2 family are specialized to detect bitter compounds including extremely toxic alkaloids [72,73].
Since genes for all 35 bitter receptors have been identified in mouse testis [74] bitter receptors might
present promising candidates to detect testicular toxicants. Moreover, genetic deletion of the Tas1r1
receptor, the dimerization partner of the Tas1r3 which in taste buds on the tongue forms the functional
receptor for L-glutamate (umami), leads to a significant increase in the number of apoptotic cells during
spermatogenesis [42], an observation that already indicates that taste receptors indeed play a functional
role for controlling apoptosis in the male reproductive tissue.

4. Taste Receptors in Epididymal Maturation and Sperm Function

4.1. Epididymal Sperm Maturation

After spermatids have completed the last developmental stage of spermatogenesis in the testis
which in humans takes 65 days [75], the morphologically complete but still immature germ cells
travel to the epididymis. The epididymis represents an elongated but structurally segmented duct
connecting the testis and the vas deferens (Figure 2C) where the most distal caudal region is responsible
to store fully mature spermatozoa until ejaculation occurs [76]. Importantly, acquisition of motility of
sperm and their ability to penetrate and fertilize the female gamete only occurs during their entire
transit through the three anatomical segments of the epididymis (caput, corpus and cauda part of the
epididymis) (Figure 2C), a process called epididymal sperm maturation [77,78].

Remarkably, from the proximal to the distal end of the long epididymal tubule luminal fluid
microenvironment surrounding the spermatozoa progressively changes [79]: this includes a decline
in sodium and a rise in potassium ion concentrations, a shift in pH from the acidic range at the caput
to the alkaline at the cauda part of the epididymis [80] and a decrease in bicarbonate (HCO5™) [81].
Moreover, a progressive decline in the free Ca?* concentrations in the distal part of the epididymal duct
has been registered where luminal Ca?* is absorbed by the Ca?* selective channel transient receptor
potential vanilloid (TRPV6) [82].

Interestingly, during this transit through the epididymis, sperm are exposed to various molecules
of the seminal plasma that, by adhering to the sperm membrane, prevent untimed acrosome reaction
until they are removed in the female genital tract [83,84]. To this regard, particular attention deserves
the role of cholesterol, a very important component of higher eukaryotic cell membranes, and,
especially for sperm. In male gametes cholesterol is fundamental in the membrane dynamics and
functionality, where it is known to regulate GPCRs through direct or indirect interactions [85,86]. Most of
the GPCRs present a cholesterol recognition/interaction amino acid consensus (CRAC) motif as a
molecular determinant required for interaction with cholesterol [87]. Even if several aspects have
to be clarified, the presence of a CRAC motif in Tas2Rs argues for cholesterol dependent signalling
functions of Tas2Rs, through stabilization of these receptors in the membrane and/or modulation of
their function [87,88]. This evidence supports a possible involvement of taste receptors in the process of
epididymal sperm maturation.
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4.2. Sperm Function: Capacitation, Motility, Chemotaxis, Acrosome Reaction

In recent years it has become obvious that ejaculated sperm cannot reach the oocyte just by chance.
In fact, even if in humans hundreds of millions of sperm enter the female tract upon ejaculation,
only a small fraction (about 10%) enters the oviduct [89]. This drastic depletion, due in part to the
many obstacles encountered by sperm during its journey but also to its small size relative to the
female genital tract that must be traversed, makes the random encounter of sperm and oocyte unlikely
to occur. To explain this phenomenon other than by “luck,” three different mechanisms of sperm
guidance have been suggested: (i) thermotaxis or swimming up a temperature gradient, (ii) rheotaxis,
that is swimming against a fluid flow and (iii) chemotaxis (Figure 3) [89-93]

A
A
< 1
rheotaxis
isthmus ampulla
oA
angaseasiussssusissssarssassete J‘,\,a S g
g - - "“’M oocyte
H Mo N«a
. . fertilisation
i por O S thermotaxis — chemotaxis —~
/
capacitation
motility
capacitation navigation ertilisation
B tat Cc t D fertilisat
i binding of
= epithelium thermotaxis - zona pellucida M i
g \ 24
" g
r\}\fo acrosqme W.
reaction o0 3
chemotaxis GOy >
hemoattractiv o
1 . & penetration of <}
tyrosine phosphorylation FE zona pellucida r\J\ra
cholesterol depletion ,(J
— hyperpolarisation $
— hyperactivation sperm membrane fusion

Figure 3. Schematic drawing showing the most critical steps during the sperm’s transit through
the female genital tract before fertilizing the egg. The gamete interactions are a critical step on
reproduction. Mammalian fertilization comprises: (i) sperm migration through the female reproductive
tract (theotaxis, thermotaxis and chemotaxis), (ii) biochemical and morphological changes to sperm
(capacitation) and (iii) sperm-egg interaction in the oviduct (fertilization) (A). In the female reproductive
tract, specifically in the isthmus of the uterus, the mammalian sperm must undergo a series of important
modifications, such as tyrosine phosphorylation, cholesterol depletion, hyperpolarisation and finally
hyperactivation. These complex priming processes, by which sperm become competent to fertilize an
egg, are all together termed “capacitation” (B). Chemotaxis permit sperm to move into the ampulla and
locate the egg, organized in a cell complex (C). The ovulated oocyte is covered by a multicellular cumulus
oophorous. The fertilization takes place after specific steps: (i) binding of zona pellucida, (ii) acrosome
reaction, (iii) penetration of zona pellucida and (iv) final membrane fusion (D).

Chemotaxis, the most intriguing and studied guidance mechanism, is defined as the ability
of sperm to swim towards a gradient of chemical factors, also named chemoattractants, whose
chemical nature, as well as their cognate receptors, are still not fully understood. Chemotaxis can
be affected by two physiological processes that sperm undergo in the female genital tract, namely
capacitation and hyperactivation [94-96]. Capacitation is a maturation process making sperm able to
penetrate cumulus cells, to bind to the sperm receptor of the zona pellucida and to undergo acrosome
reaction [97], even if some authors suggest that acrosome reaction in sperm able to fertilize the oocyte
begins during cumulus cell penetration [98]. Membrane remodelling, a prerequisite for acrosome
reaction, is induced by cholesterol efflux, that alters lipid raft stability and distribution, favours specific
protein-protein interactions by concentrating certain proteins in specific microdomains while excluding
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others. The physiological cholesterol efflux seems to play a regulatory role on taste receptors through
the CRAC motif, influencing TasRs signalling efficacy, as reported in human airway cells [99].

In addition, capacitation process is mandatory for the acquisition of shortrange chemotactic
responsiveness [95,100]. During capacitation sperm undergo a change in the motility pattern called
hyperactivation, characterized by vigorous, whip-like flagellar movement, that allow sperm release
from the oviductal reservoir and the penetration of the layers surrounding the oocyte [101-104].
Twenty-five years after the demonstration that human follicular fluid contains substances causing
sperm chemotaxis in vitro [105], the role of progesterone as chemoattractant, controlling sperm
navigation and fertilization has been demonstrated [106,107]. Progesterone activates CatSper ion
channel causing a Ca?* influx [92,102,103]. Anyway, many aspects of this complex mechanism possibly
involving taste receptors still need to be clarified.

The analysis of the signal transduction cascade elicited during chemotactic activation, along with
the chemical nature of chemoattractantsand the reported expression of taste receptors in sperm,
leads to hypothesize about an involvement of these highly specialized receptors in this process.
In fact, analogously to what previously stated for taste receptors, it has been demonstrated that
signal transduction in chemotaxis involves modulation of adenylate cyclase or phospholipase C by
appropriate GPCRs [108]. Increasing amounts of cAMP induce sperm oxygen consumption and
motility. At the same time, a rise in concentration IP3 causes the release of Ca?* from the acrosome
and from stores in the midpiece, that, in turn, modulates sperm motility by inducing flagellar beat
asymmetry, probably mediating the mammalian chemotactic response [109,110]. By means of this
complex transduction pathway, sperm seem to use different chemical prompts to spot the oocyte.
Interestingly, signalling in sensory neurons and sperm involves analogous substances, with the
signalling occurring in the “cilium,” that in sperm is indicated as flagellum. Like neurons, sperm
express on their equatorial segment membrane GABA A receptor [111,112], through which they
interact with GABA, shown to be present in rat oviduct and human seminal plasma, which causes
hyperactivated motility [112,113].

Moreover, insights from the airway showing a strong expression of taste receptors on motile cilia
confirms that these can also play a role in cell chemosensation [114]. As a consequence, the flagellum
seems to be fundamental in guiding sperm through the microenvironment rich in chemical and
physical stimuli that they encounter.

Sperm-activating odorous substances have been identified in human follicular fluid [115] and,
analogously to taste receptors, also odorant receptors (OR) have been identified in tail and midpiece
regions of ejaculated sperm [116,117]. The human testicular odorant receptor hOR17-4 induces in
sperm a significant increase in calcium intracellular level, when stimulated by different ligands,
suggesting a key role for OR in guiding sperm toward oocyte [118].

Unpublished results from our lab disclose an expression of members of the Tas1R as well as Tas2R
receptor family in ejaculated human sperm. Importantly, after an in vitro capacitation, a change in
the subcellular expression pattern was detectable in immunocytochemistry, both at the head and tail
sperm level. This reorganization may be related to a preceding activation of taste receptor proteins and
a subsequent membrane remodelling, a process well known to be associated with sperm capacitation.
In addition, we disclose that in vitro capacitation is associated with the presence of different isoforms
of GCPRs, as demonstrated by western blot analysis.

Data from the literature demonstrate that the metabotropic glutamate receptor taste-mGluR5,
belonging to the GPCR family, is expressed not only in the membranes of the taste cells of the taste
buds but also in testis and in mature sperm, where it was localised in the mid-piece and in the
tail [119] together with beta -arrestin, a protein involved in the homologous desensitisation and
internalisation of GCPRs [120]. Interestingly, it has been reported that the glutamate concentration
increased in follicular fluid when compared with plasma [121] making this compound eligible as a
chemoattractant molecule. These data, together with the previously described evidences from neurons
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and airway, one may hypothesize a role for these receptors in guiding sperm during their journey
toward the oocyte.

The ability of sperm to fertilize the egg is acquired during capacitation and this includes the
capability to undergo the acrosome reaction, which is a regulated exocytotic process leading to an
extensive fusion between the outer acrosomal and the plasma membranes of sperm, enabling the
male gamete to penetrate the zona pellucida and fuse with the oocyte. Capacitation is a HCO3 ™~ and
Ca?*-dependent process. Ca®* triggering is fully mediated by the increase of cAMP [122]. The second
messenger cAMP is able to activate the protein kinase A (PKA) which in turn phosphorylates certain
proteins on tyrosine; other cAMP-binding proteins, such as Rap guanine-nucleotide-exchange factor
(Epac) and the cyclic-nucleotide-gated ion channels, are also responsive to cAMP [123]. It has been
demonstrated the presence of EPAC in human sperm, crucial in the pathway of exocytosis downstream
of Ca?* [123]. The balance between PDEs and adenylyl cyclases (ACs) controls cAMP levels, by
degrading or producing the molecule, respectively. A soluble AC (sAC) now named atypical adenylyl
cyclase (SACY) and a transmembrane AC (tmAC) have been detected in mammalian sperm: HCO3~
as well as Ca?* stimulate the SACY thereby enhancing cAMP concentrations [124]. The function of
specific tmACs in sperm is not fully understood. It has been suggested that tmACs may have a role in
the acrosome reaction due to the presence of different G-protein « subunits in the sperm acrosome,
since tmACs are regulated by G proteins [41,125]. Moreover, G proteins a-subtypes gustducin and
transducin have been detected in the acrosome of mammalian sperm, including human [126,127]
(unpublished data from our group); in addition some G protein a-subtypes are expected to be able
to activate a phosphodiesterase, decreasing the intracellular level of cAMP [10], as reported for the
visual system. Therefore, some authors [42,128] suggested that both «-gustducin and «-transducin
may modulate cAMP levels in sperm, thus contributing to regulate the acrosome reaction process and
avoiding a precocious acrosome lost during the journey on the female genital tract, where umami,
bitter and sugar stimuli may active taste transduction signals. This last hypothesis was affirmed by
Meyer and colleagues [42]: using a Tas1lrl/mCherry reporter mouse line; they demonstrated that
Tas1rl null-mutant sperm have an increased degree of spontaneous acrosome reaction as well as higher
intracellular Ca?* and cAMP levels.

5. Genetic Deletion of Taste Receptors in Mouse and its Impact on Male Reproduction

During spermatogenesis and sperm’s journey through the epididymis and the female genital
tract sperm are exposed to a vast variety of chemical compounds in the surrounding milieu, such
as hormones, changes in pH, amino acids, proteins, sugar gradients but also potential toxicants.
The recent observations that taste receptors and elements of the coupling signal cascade are expressed
in developing germ cells but also in mature spermatozoa ranging from mouse to humans (Section 2) as
well as the striking overlap of the ligand spectrum of taste receptors with compounds in the natural
surroundings of germ cells now makes it conceivable that sperm recognize these different cues in their
natural microenvironments.

To clarify whether taste receptor proteins indeed represent molecular “sensors” in the male
reproductive system the powerful gene targeting strategy to produce taste receptor deficient mouse lines
has been used. Such mouse lines allow to directly evaluate the physiological impact of taste receptors for
successful reproduction by combining systematic breeding experiments with morphometric analyses of
the testis, epididymis and male germ cells, quantitative determinations of reproductive-related hormones
and second messengers (CAMP, Ca?*) as well as functional sperm tests (Figure 4).

To date, two studies have been published describing the reproductive phenotype of mouse
lines carrying a genetic deletion of taste receptor proteins: A reporter mouse strain in which the
open reading frame of the umami receptor gene, the Tas1r1, was replaced by a fluorescent protein
(mcherry) [42]. Such a genetic labelling of a target null mouse model additionally enables visualizing
ectopic expression at a single cell resolution [43]. Moreover, a double knockout mouse line carrying a
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simultaneous genetic deletion of the dimerization partner of the umami as well as sweet taste receptor
protein, the Tas1r3, together with the G protein x-subunit gustducin was engineered [129].

Importantly, produced Tas1rl/gustducin double knockout mouse strain was also used to generate
a humanized chimeric (hm) Tas1r3 form, thus allowing a specific inhibition of the taste receptor protein
by the lipid-lowering agent clofibrate, an antagonist for the human but not the mouse Tas1r3 [130-132].
The recently published manuscript of the sweet taste receptor Taslr2 knock-in mouse strain was
only used imaging extragustatory sweet receptor expression (Section 2); a reproductive phenotype
of this mouse line has not been described yet [50]. The same is true for an engineered Tas2r5 bitter
receptor knockout mouse line where testicular expression was optically displayed by the death of
Tas2r5 expressing cells induced by the diphtheria toxin A [5].

Comparing the results of these two taste receptor knockout mouse lines, the striking observation
was made that taste receptors apparently play a key functional role in different steps of the
sequential process of fertilization ranging from the production of spermatozoa, the induction of
apoptosis in the testis to epididymal sperm maturation; moreover, functional implications have
been collected indicating that taste receptors are also important to increase the number of highly
fertilization-competent sperm cells within the female genital tract.

To first have a look on the reproductive phenotype of the umami receptor deficient mouse strain
it was observed that animals lacking the Tas1rl receptor exhibit no apparent abnormalities and display
no severe reproductive phenotype concerning litter size or the number and morphology of epididymal
sperm [42]. However, histopathological evaluations of the testis of Taslrl gene-knockout males
revealed some spermatogenic abnormalities: relative to wild-type males, in mutant testis immature
spermatocytes were also visible within the luminal region of the seminiferous tubules instead of being
restricted to the more basal cell layer of the testicular unit (Figure 2C). Moreover, an increase in the
number of multinucleated giant cells, a histological change characteristic for cells undergoing necrosis
or apoptosis was visible in single mutant seminiferous tubules [42,133,134].

An even more pronounced spermatogenic but also post-gonadal impairment was detected for
males carrying the concurrent genetic deletion of the Taslr3 together with a-gustducin. Although
Tas1r3/gustducin null males appeared healthy with no changes in the size of their reproductive
organs, Mosinger and his colleagues made the unexpected observation that males but not females were
unable to produce pubs. Comprehensive histological analyses then uncovered exfoliated germinal
epithelium in the luminal part of the testicular tubules; in addition an increase in the number of
giant cells with condensed chromatin was detected in the spermatid cell layer of the seminiferous
tubules. A comparable severe pathology was visible for the epididymis of Tas1r3/gustducin null males
which was found to store mainly immature germ cells and cellular debris within their luminal region.
Moreover, a pronounced oligospermia with more than 75% of the remaining sperm being immotile
was registered; residual Tasrl/gustducin double knockout sperm were additionally characterized by
multiple anatomical abnormalities, such as detached or amorphous heads, tails flipped over heads and
multiple kinks and loops in the sperm tails [129]. Importantly, male mice expressing the humanized
hmTas1r3 chimera were found to be fertile; however, after a 3 weeks diet supplementing the food with
the drug clofibrate the males became sterile due to abnormalities in spermatogenesis, accompanied by
malformed and fewer sperm as observed for Tas1r3/gustducin deficient males whereas switching to
normal diet males regain fertility within 2 weeks [129].

Due to the pronounced malformation of mature Tas1r3/gustducin null sperm it was redundant
to evaluate semen quality, usually captured by quantifying hyperactivated motility, stimulus-induced
capacitation and acrosomal secretion (Figure 4). However, for normal-shaped Taslrl deficient
sperm a significant increase in an “accidental” spontaneous loss of the acrosomal vesicle was
registered compared to wild-type littermates whereas sperm motility was not affected [42].
Importantly, taste cells on the tongue of gustducin null mice have previously been found to exhibit
elevated stimulus-independent basal concentrations of the second messenger cAMP which seems to be
due to a constant lack of x-gustducin triggered activation of a PDE [28]. A comparable basal increase
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in cAMP was also detected for Tas1r1 deficient epididymal sperm cells, which was also caused by a
lack of PDE-dependent cAMP degradation [42].

Remarkably, cAMP but also calcium, likewise elevated in Tas1rl null sperm [42], are responsible
to prepare sperm to reach and bind to the eggs coat, the zona pellucida and to finally cross the egg’s
protective glycoprotein matrix by releasing hydrolysing enzymes during the process of acrosome reaction
(for review see [135-137]. Since early and unintended acrosomal exocytosis renders sperm infertile [122]
it could be possible that Taslrl and its coupled downstream signalling effectors in mammalian sperm
are constantly activated by the multitude of environmental cues during the sperm’s transit through the
female genital tract. This would go along with a persistent suppression of cAMP and calcium triggered
events and hence a depression of a loss of the one and only acrosomal vesicle [138]. At the fallopian
tube where the mature egg is waiting for fertilization, other cAMP dependent maturation processes,
such as bicarbonate triggered activation of sAC (for review see [122]) then may override Tas1rl receptor
signalling, hence ensuring successful fertilization. Although the umami receptor dimer of mouse
was found to be a more broadly tuned L-amino-acid receptor activated by most L-amino acids [4],
monosodium glutamate, one of the natural ligands of the Tas1rl/Tas1r3 on the tongue, was not capable
to elicit calcium signals in capacitated spermatozoa [42], thus suggesting that the Tas1r1 in germ cells
probably detects different stimuli than its homologue in taste buds on the tongue. However, a constitutive
activation of taste receptors has also been described [139,140]. In this context it is important to note that
clofibric acid, the active metabolite of clofibrate [141] acts as an inverse agonist on the human TAS1R3
receptor [129,130]. Due to the pronounced reproductive phenotype of clofibrate treated males expressing
the humanized hmTas1r3 on a gustducin null background [129], one might suggest that taste receptors
show a high frequency of spontaneous activation [142] and that such a constitutive activity of taste
receptors in the male reproductive system is sufficient to fulfil their physiological function.

However, in this context it is additionally important to mention that loss of Tas1r1 also led to a
significantly higher level of apoptotic events during spermatogenesis [42]. Although the pathology
of the Tas1r3/gustducin deficient double knockout males was found to be very similar but only
much more pronounced than the one of the umami receptor null males, an increase in the number of
apoptotic cells was not registered for testicular tissue of males expressing the humanized hmTas1r3
on the null gustducin background and clofibrate diet [129]. However, one has to keep in mind that
clofibrate treatment only lasted 1 month whereas genetic deletion of Taslrl occurred entirely from
birth; moreover, males carrying a genetic deletion of Tas1r3 together with gustducin have not yet been
examined for apoptosis [129]. However, males carrying a genetic deletion of Tas1r3/gustducin as well
as humanized hmTas1r3/gustducin knockout males on clofibrate both show a reduction in the level
of various genes known to be regulated by the transcriptional activator cAMP responsive element
modulator (CREM). Remarkably, knockout males for CREM are characterized by the completely
absence of late spermatids and a significant increase in apoptotic cells which thus also led to sterility
of the animals [143]. Due to the similarity of the histological phenotype of Tas1r3/gustducin and
CREM null males as well as the observation that CREM is highly expressed in postmeiotic cells of
the testis [144,145] one might suggest that CREM, via a taste receptor controlled cAMP pathway;, is
responsible in ensuring exactness of germ cell development. Although it has to be scrutinized whether
cAMP levels are indeed increased in testicular tissue of taste receptor deficient males such a cAMP
dependent mechanism may also shed new light on the extragustatory function of mammalian taste
receptors. Moreover, since bitter taste receptor share the same signal transduction cascade than Tas1Rs
(Figure 1) it will be exiting to prove whether deletion of bitter receptors, also expressed in the male
reproductive system (see above), results in the same reproductive phenotype as the one observed for
Tas1r knockouts.
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Figure 4. Experimental strategy to determine the impact of taste receptors for male reproduction.
To gain a complete picture about a possible role of taste receptors for regulating male reproduction
standard reproductive parameters (e.g., litter size, time to litter, sex ratio of pubs) were determined for
breeding pairs of wild-type [WT] and taste receptor deficient animals [KO]. To evaluate whether
genetic deletion of taste receptors affect spermatogenesis results of breeding experiments were
supplemented by histopathological examinations of reproductive organs and isolated epididymal
sperm cells; furthermore, reproductive-related hormones such as testosterone, LH, FSH and GnRH
were quantified. To evaluate whether a loss of taste receptors modifies physiological sperm function,
CASA (computer-assisted motility analysis) -based motility analyses were combined with experiments
assessing the ability of sperm to respond to capacitation and acrosomal exocytosis stimuli.

6. Polymorphisms in Taste Receptor Genesand Male Infertility

Taste receptors genes are highly polymorphic and some SNPs have been correlated with an
altered gene expression. Among others, three SNPs in the TAS2R38 gene, responsible of the ability
to taste the bitter compounds phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP), can
completely alter the individual ability of tasting the substance [146]. In fact, these three SNPs (rs714598,
rs1726866 and rs10246939) determine three amino acid substitutions at positions 49 (Proline- Alanine),
262 (Alanine Valine) and 296 (Valine-Isoleucine) that define the taster PAV (Proline, Alanine, Valine)
and “non-taster” (Alanine, Valine, Isoleucine) haplotypes. “taster” and “non-taster” individuals
show a different intake of several vegetables [147] and sweet food [148]. The missense variant
Arg299Cys of the TAS2R19 gene (rs10772420) is instead associated with a differential taste of quinine
and grapefruit juice [149].

Therefore, SNPs in taste receptors influence several human traits and complex diseases, such as
drinking behaviour, nicotine dependence, food and beverage choices, body mass index, susceptibility
to cancer and human aging [147,148,150-153].

Recently, the possible link between SNPs in taste receptors and male infertility has been
investigated. Four GWAS [154-157] and a big association study with 172 polymorphisms [158]
have been published. In these studies, thirty-nine marginally (p-value < 0.05) significant associations
were identified in the Caucasians population and six significant (nominal p-value <5 x 1078) in the
Chinese population. Interestingly, Aston and colleagues found that the TAS2R38-rs10246939 SNP
was associated with risk of being azoospermic but this datum was not replicated in two following
studies [159,160] and it one must keep in mind that this gene does not seem to be expressed in
the human testis and in spermatozoa. Alongside the GWAS many association studies have been
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carried out and, to date, in the literature, approximately 269 risk variants have been proposed [161].
However, despite the identification of an increasing number of environmental and genetic risk factors
the aetiology remains unknown in almost half of the cases [162].

In the last years, SNPs in taste receptors seem to have a significant role in male infertility.
Some authors [160] have found some SNPs in taste and odorant receptor genes, which may play
a role in spermatogenesis alterations observed in Persian idiopathic infertile male. The associations
reported in this study are promising but much larger studies will be necessary to confidently validate
these SNPs and identify novel SNPs associated with male infertility. Recently, a study from our
research group demonstrated that the homozygous carriers of the (G) allele of the TAS2R14-rs3741843
polymorphism showed a decreased sperm motility compared to heterozygotes and (A) homozygotes
and that the homozygous carriers of the (T) allele of the TAS2R3-rs11763979 SNP showed fewer normal
acrosome compared with the heterozygous and the homozygous carriers of the (G) allele [163]. In
addition, by in silico analyses, we demonstrated a functional effect of the two SNPs: TAS2R14-rs3741843
in regulating TAS2R43 expression. Since this latter is known to be expressed in the human airway
epithelia where it is involved in the regulation of ciliary movements to eliminate toxic substances [32],
we suggested that it could participate in sperm motility. The proven infertility due to abnormally
structured flagella in man suffering from some genetic diseases characterized by a ciliary dysfunction
seems to support this hypothesis [164,165].

Moreover, in this study [163] we highlighted that the WEE2 antisense RNA one gene (WEE2-AST)
expression is increased by the (T) allele of TAS2R3-rs11763979. Since WEE2 gene is expressed in the
testes, where presumably it has the role of down regulating meiotic cell division, it is conceivable
to assume that an increased expression of WEE2-AS1 may inhibit WEE2, which in turn can alter the
natural timing of sperm maturation increasing the number of abnormal sperm cells. To our knowledge,
this is the largest study so far reported in the Caucasian population focused on male infertility and
genetic variability in taste receptor genes.

7. Conclusions

Although the precise molecular mechanism of taste receptor action for reproduction is only poorly
understood fertility impairment of mice carrying a genetic deletion of Tas1Rs imply that taste receptor
are functionally operative in controlling successful sperm production as well as increasing the chance of a
single sperm of the roughly 100 to 300 million in an ejaculate to fuse with a mature egg. Moreover, a role
of the genetic variability of taste receptors in human male infertility has been demonstrated, even if these
results are not validated by in vitro or in vivo experiments.

Therefore, a better understanding of the precise role of taste receptors in human male fertility
is needed which especially concerns the natural ligands for taste receptors in the male and female
reproductive organs as well as our knowledge about a spontaneous activity of taste receptor proteins.
This information in the future may not only uncover new ways to address idiopathic male and
female sterility but may also pave the way to develop novel therapeutic strategies or new methods
of contraception.
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Abbreviations

ATP Adenosine triphosphate

cAMP Cyclic adenosine monophosphate
HCO3- Bicarbonate

Ca%* Calcium

CALHM  Calcium homeostasis modulator
CASA Computer-assisted motility analysis
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CatSper Cation channel of sperm

CRAC Cholesterol recognition/interaction amino acid
consensus

CREM cAMP responsive element modulator

DAG Diacylglycerol

ER Endoplasmic reticulum

FSH Follicle stimulating hormone

GABA Gamma-aminobutyric acid

GnRH Gonadotropin-releasing hormone

GPCRs G-protein-coupled receptors

HPG Hypothalamic-pituitary-gonadal axis

P53 Inositol 1,4,5-triphosphate

IP3R Inositol 1,4,5-trisphosphate receptor

KO Knock-out

LH Leutinizing hormone

Na* Sodium

OR Odorant receptor

PDE Phosphodiesterase

PIP, Phosphatidylinositol 4,5-bisphosphate

PLCR2 Phospholipase C 32
P2X2/3 Purinergic receptor

PROP 6-n-propylthiouracil

PTC Phenylthiocarbamide

SNP Single-nucleotide polymorphism

TAS Taste Receptor

TAS1s Type 1 taste receptors

TAS2s Type 2 taste receptors

TRPMS Transient receptor potential, melastatin family

member 5

TRPV6 Transient receptor potential vanilloid 6

WEE2-AS1 WEE2 antisense RNA one gene

WT Wild-type
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