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Hierarchy of equations for the energy functional of the density-functional theory
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A hierarchy of equations has been derived for the energy functionals of the density-functional theory
using the virial theorem and the Levy-Perdew relation. In the local-density approximation, the solution
of the equations of hierarchy for the kinetic and exchange energies provides the well-known Thomas-
Fermi expression for the kinetic energy and the Slater-Gaspar-Kohn-Sham expression for the exchange.
The truncation of the hierarchies of the kinetic and exchange energies results in rigorous lower bounds
to the kinetic energy and upper bounds to the exchange energy in the plane-wave approximation.

PACS number{s): 31.20.Sy, 71.10.+x, 05.30.Fk

I. INTRODUCTION

Recently Kugler [l] has derived an exact hierarchy of
coupled equations for the kinetic-energy functional of an
inhomogeneous system of noninteracting fermions. The
purpose of this paper is to obtain a hierarchy of equations
for the energy functions of the exact density-functional
theory.

The main results of this paper are as follows: the 6rst,

F'(r)+T'(r)= —r VF'(r)
—fdr, n(r, )r, V,F"(r,r, )dr, ,

the second,

F"(r,r, )+T"(r,r, )= —(r V+r, V, )F"(r,r, )

f «2n(r2)r2'V2F"'(r r~ r2) (2)

and higher-order equations of the total-energy hierarchy;
the 6rst,

v„,(r)+ T,'(r) = —r Vu, (r)
—fdr, n(r, )r, .V, v„', (r, r, ),

the second,

u„', (r, r, )+T,"(r,r, )= —(r V+r, V, )u„', (r, r, )

—f dr2n(r2)r2 V2u„",(r, r„r2), (4)

and higher-order equations of the exchange-correlation-
energy hierarchy; and forms of the virial equations,

F f n(r)F'(r)—dr+ —,
' fn(r)n(r, )F"(r,r&)dr dr, —

T f n(r)T'(r)d—r+ ,' f n(r—)n(r,)T"(r,r, )dr dr, —

and

E,—f n(r)u„, (r)dr+ —,f n(r)n(r&)v„', (r, r, )drdr, —

T, —f n(r)T,'(r)dr+ ,' f n(r)n(r&)T,"—(r,r, )drdr, —.. .

The prime in these equations denotes the functional
derivative with respect to the density n. F contains the
kinetic-energy functional T plus the total electron-
electron potential energy V„. U, and E, are the
exchange-correlation potential and energy, respectively.
T, = T—T, is the di6'erence of the interacting and nonin-
teracting kinetic-energy functionals.

The hierarchy of equations for the noninteracting ki-
netic and the exchange energies and derived and solved in
the local-density approximation. The truncation of these
hierarchies provides bounds to the kinetic and exchange
energies.

II. HIERARCHY OF EQUATIONS
FOR THE TOTAL ENERGY FUNCTIONAL,

THE HARDNESS KERNEL,
AND THE LOCAL HARDNESS

Let us consider a system of N interacting electrons
moving in an external field u(r). The ground-state energy
1s

E=fdrn(r)u(r)+F[n]
= fdrn(r)u(r)+T[n]+ V„,
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where the Lagrange multiplier p is the chemical potential
and is determined by the condition that

fdrn(r)=X (10)

is the number of electrons. The functional equation (9)
can be written as

F'(r; n ) =p —u(r) = —u (r),
where

where the kinetic energy T and the electron-electron en-

ergy are unique functionals of the electron density n. In-
troducing the quantity Q defined as

Q.=E pX—=F [n]+f dr n(r)[U (r) —p],
the minimization of A leads to the Euler-Lagrange equa-
tion

The hardness kernel [3]

q(r, r, ; n) =F"(r, r„n) = 5F'(r;n)
5n(r, )

5 F[n] 5u(r;n)
5n(r)5n(r, ) 5n(r, )

(16)

g is positive definite because Q takes a minimum at the
density n (r) determined by the Euler-Lagrange equation
(9). Functional differentiation with respect to n (r) of Eq.
(15) provides

g(r, r, ;n)+ T"(r, r„n)
= —(r V+r, .V, )g(r, r, ;n)

is the second functional derivate of F[n] which can
equivalently be given by

5Q
5n (r)5n (r, )

5F[n]
5n(r)

Vu (r) = VF'(r; —n ) . (13)

The functional differentiation with respect to n(r) of the
universal virial relation of Levy and Perdew [2],

F[n]+ T [n] = —f dr n(r)r VF'(r;n), (14)

Taking the gradient of the Euler-Lagrange equation (11)
we arrive at

—f dr2n(r2)r2 V2g'(r, r„r2', n),

where

5n(r, r&, n)
g'(r, r„r2, n)= =F'"(r, r„rz, n)

5n(r2)

5'F [n]
5n (r)5n (r& )5n (r2)

(18)

(19)

gives

F'(r;n)+ T'(r;n) = rVF'(—r;n)
—fdr, n(r, )r, . Vg(r, r„n) . (15)

Equations (14), (15), and (18) constitute the zeroth, first,
and second equations of the hierarchy, respectively. Fur-
ther differentiations will lead to higher-order equations.

The virial expression (14) can be rewritten with the aid
of the hierarchy (15)—(18),

F [n]—f n (r)F'(r;n)dr+dr ,' f n(r)n(r&)g(r, r&', n)—drdr&—

T[n] —f n(r)T'(r;n)dr+ —,
' f n(r)n(r, )T"(r,r„n)dr dr, (20)

as an alternating series. Introducing the local hardness [4] g(r) as

1g(r)= —f g(r, r, ;n)n(r, )dr, , (21)

Eq. (20) takes the form

F [n] —f n(r)F'(r;n)dr+ —f n(r)q(r)dr—

T[n] —f n(r)T'(r;n)dr+ —,
' f n(r)n(r, )T"(r,r„n)drdr'— (22)

Using the definition of the local hardness [Eq. (21)], Eq. (15) can be also written as

F'(r;n)+ T'(r;n) = —r VF'(r; n)+3cVq(r)+ f dr, rj(r, r„n)r, .V, n(r&) .

This last equation is especially interesting as it contains explicitly the local hardness g(r).

(23)
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III. HIERARCHY OF EQUATIONS
FOR THE NONINTERACTING KINETIC-

ENERGY FUNCTIONAL

T,"(r,r„'n)= —
—,'(r V+r, V, )T,"(r,r, ;n)

—
—,
' f dr2n(r2)rq V2T,"'(r, ri, r2', n) . (31)

T, [n]= ,' f—drn(r)r VuKs, (24)

where the potential ups denotes the common Kohn-Sham
potential field in which the noninteracting electrons
move. The Euler-Lagrange equation (9) can be rewritten
as

Kugler [1] derived hierarchy of equations for the kinet-
ic energy of noninteracting electrons. Now, we review
the most important results relevant here. The starting
point is the virial relation

Equations (29), (30), and (31) constitute the zeroth, first,
and second equations of the hierarchy of the noninteract-
ing kinetic energy. Obviously, higher-order equations
can similarly be derived, too.

Following Kugler [1] we can rewrite the virial theorem
(24) with the aid of the hierarchy (30) and (31) as

T, [n]= fdr n(r)T,'(r;n)

—
—,
' fdrdr, n(r)n(r, )T,"(r,r„n)+ .

5T, [n]
Ks I (25) The alternating series (32) contains only the variational

derivatives of the noninteracting kinetic energy.

if the functional F [n] is partitioned into

E [n] = T, [n]+ U, [n]+E„,[n], (26)

where the electron-electron Coulomb energy has the usu-
al form

n (r)n(r, )
U, [n]=—,

' f
~ ~

drdr
r —

r&
(27)

while the exchange-correlation energy contains a kinetic-
energy contribution,

T, [n]=T[n]—T, [n], (28)

corresponding to the difference in the kinetic energies of
the interacting and noninteracting electrons. Combining
Eqs. (24) and (25) we arrive at the zeroth equation of the
hierarchy of the kinetic energy,

IV. HIERARCHY OF EQUATIONS
FOR THE EXCHANGE-CORREI. ATION

ENERGY FUNCTIONAL

E„[n]+T, [n] = —f dr n(r)r Vv, (r; n),

where

oE„,[n]
u, (r;n)=

(33)

(34)

is the exchange-correlation potential. Again, by func-
tional differentiation, we get the first equation of the
hierarchy of the exchange-correlation energy,

Combining the virial relations (14) and (24) the Levy-
Perdew relation for the exchange-correlation energy can
be obtained,

T, [n]= ,' fdrn(—r)—r VT,'(r;n) . (29) v, (r;n)+ T,'(r;n) = —r Vu„, (r;n)

T,'(r;n) = ,'r. VT,'(r;n)——
—

—,
' f dr, n(r, )r, .V, T,"(r,r, ;n) . (30)

Functional differentiation with respect to n(r) of Eq. (29)
leads to

—fdr, n(r)r, .V, u„', (r, r„n) .

The second equation of the hierarchy can be given by

u„', (r, r, ;n)+ T,"(r,r„n)
= —(r.V+r, V, )u„', (r, r, ;n)

dr2n(r2)r~ V~u", (r, r„r~;n) .

(35)

(36)

Equation (30) has also been derived recently by Ou-Yang
and Levy [8]. Again, functionally differentiating Eq. (30)
we obtain

Further functional differentiation leads to successively
higher-order equations. The Levy-Perdew relation [2]
(33) can be rewritten with the aid of Eqs. (35) and (36),

E„,[n] —f n (r)u, (r;n)dr+ —,f n (r)n(r, )v', (r, ri, n)dr dri—

T, [n] —f n(r)T,'(r;n)dr+ —,
' f n(r)n(r, )T,"(r,r, ;n)rdr' —. (37)

V. HIERARCHY OF EQUATIONS
FOR THE EXCHANGE-ENERGY FUNCTIONAL

Unfortunately, the hierarchy of equations for the
exchange-correlation energy contains the unknown

kinetic-energy contribution T, . As T, = —E„where E,
is the correlation energy, it cannot generally be neglected.
However, in an exchange-only approximation it is
enough using the hierarchy of equations for the ex-
change. Starting out from the Levy-Perdew relation [2],
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E [n]= —fdrn(r)r Vu„(r;n), (38)

and the second equation,

v,'(r, r, ;n)= —(r V+r, V, )u„'(r, r„n)'
—f dr~n(r2)r2 V~u„"(r, r„r~;n) . (40)

Expression (39) has been recently obtained by Ou-Yang
and Levy [8]. Using Eqs. (39) and (40) the Levy-Perdew
relation [2] (38) can be also been written as

E„[n]=f n(r)u„(r;n)dr

—
—,f n(r)n(r, )u'(r, r, ;n)drdr, + (41)

which is the zeroth equation of the hierarchy, we get the
first equation,

u„(r;n)= —r Vu„(r;n}—f dr, n(ri)r, V, u,'(r, r„'n),

(39)

i.e., the well-known Thomas-Fermi expression.
The exchange potential and its functional derivate are

de„
vx=

dn
(51)

and

d e
v„'(r, ri)= 5(r, r, ),

dn
(52)

dex
V

ex
Vn,

dn
(54)

Eq. (53) gives

respectively. The substitution of Eqs. (51) and (52) into
the first equation of the hierarchy of the exchange energy
(39) leads to the equation

de de d e„= —r.V + V(nr) . (53)
dn dn dn

With the identity

VI. APPLICATION: THE LOCAL-DENSITY
APPROXIMATION

As an application the local-density approximation is
studied. In this approximation the kinetic-energy density

de d ex=3n
dn dn~

The solution of this differential equation,

(55)

t(r)=t(n(r)) (42) e =an

and the exchange or exchange-correlation energy

e„(r)=e (n(r)),

e„,(r) =e„,{n(r)}

(43)

(44)

are functions of the density n. The first and second func-
tional derivatives of the kinetic energy are

T=d'
dn

v =4an'"
X 3 ) (57)

gives the exchange potential proposed by Slater [5],
Gaspar [6], and Kohn and Sham [7]. So, in the local-
density approximation the solutions of the equations of
hierarchy for the kinetic and exchange energies provide
the well-known Thomas-Fermi expression for the kinetic
energy and the Slater-Gaspar-Kohn-Sham expression for
the exchange.

d t
T,"(r,r, )= 5(r, r, ),

dn
(46)

VII. TRUNCATION OF THE HIERARCHY
OF THE EQUATIONS FOR THE KINETIC-

AND EXCHANGE-ENERGY FUNCTIONALS

dt 1 dt 1 d2t—= ——r V + — V(rn) .
dn 2 dn 2 dn 2

(47)

respectively. Substituting Eqs. (45) and (46) into the first
equation of the hierarchy of the noninteracting kinetic
energy (30) we arrive at

It is possible to introduce approximations truncating
the hierarchy of equations for the energy functionals at a
given order. Considering first the exchange and truncat-
ing the hierarchy with assuming

Applying Eq. (42),

Vn,
dn dn 2

(48)

v„'(r, r, ;n) =0,
Eq. (39) has the form

v = —r.VvX X

(58)

(59}

which leads to the differential equation for the kinetic-
energy density,

Using the identity [8]

dt 3 dt
dn 2 dn2

The solution is

t =cn'",

(49)

(50}

r.V=r
Br '

the first equation of the hierarchy is given by

Bv
vx= r

dr

(60)

(61)
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The solution of Eq. (61) is

Ux r

and it leads to the exchange energy

E„=Bf n dr—,
1

r

(62)

(63)

E g (
—(I/k) )k (64)

where

(
—

( I/k) ) —f —
( I/k)

( )d (65)

where B is constant. This result can be generalized.
Truncating the hierarchy at the kth order, i.e., neglecting
the (k + 1)th functional derivate of the exchange energy,
the exchange energy has the form

al expressions. The equations presented here may prove
useful comparing and testing various forms of approxi-
mating functionals.

The hierarchies of equations obtained resemble the
Bogoliubov-Born-Green-Kirkwood- Yvon hierarchy. In
Sec. VII the possibility of truncation is studied in the
kinetic- and exchange-energy hierarchies. The truncation
leads to lower bounds to the kinetic and upper bounds to
the exchange energies.

Equation (23) contains the local hardness and the hard-
ness kernel. The hardness has proved to be an important
concept in chemistry. It is dificult to calculate the hard-
ness and the hardness kernel as the exact form of the
functional F is not known. Equation (23) may be a useful
starting point for some new approximations for the local
hardness or the hardness kernel.

From Eqs. (16), (26), and (27) we get for the hardness
kernel

T C (
—(2/k))k (66)

and Bk is constant.
A similar procedure can be applied to the kinetic-

energy hierarchy. Truncating the hierarchy at the kth
order, after some algebra, one can arrive at the kinetic-
energy expression

g(r, r, ;n)= T,"(r,r„n)+u„', (r, r, ;n)+ U,"(r,r„n),
where

5 U, [n]
5n(r)5n(r, ) ir —r, i

(69)

(70)

where Ck is constant.
Recently Dehesa, Cxalvez, and Porras [9) derived

rigorous bounds to the kinetic and exchange energies.
They found several expressions for lower bounds to the
kinetic and upper bounds to the exchange energies in the
plane-wave approximation. Their Eqs. (12a) and (13a)
with appropriate choice of the parameters lead to the ine-
qualities

T & C (
—(2/k))k (67)

(
—(1/k) ) k (68)

VIII. DISCUSSION

The hierarchies of equations derived for the energy
functionals can be used to obtain more accurate function-

where Ck and Bk depend only on the number of elec-
trons, i.e., are constant for a given system. Choosing
Bk =Bk and Ck =Ck we arrive at the very interesting re-
sults that the truncation of the hierarchies of the kinetic
and exchange energies leads to expressions that can be
used to rigorously bound the kinetic and exchange ener-
gies in the plane-wave approximations.

As it can be seen from the derivation and the results
above the hierarchy of equations links the nth functional
derivatives to the (n +1)th functional derivate and the
electron density. In the case of the noninteracting
kinetic-energy (or the exchange-energy) functional, the
hierarchy of equations are "self-contained" in the sense
that they contain only the kinetic- (or the exchange-) en-
ergy functional and its functional derivatives. It is the
consequence of the fact that both the noninteracting ki-
netic energy and the exchange-energy functional scale
homogeneously as it has been shown by Ou-Yang and
Levy [8].

On the other hand, the equations of hierarchy for the
total energy and the exchange-correlation energy func-
tionals are much more complicated because they are cou-
pled in the sense that they contain more than one func-
tional and its functional derivatives.

ACKNOWLEDGMENTS

The author is grateful to Professor Robert G. Parr for
warm hospitality, many valuable discussions, encourage-
ment and suggestions. This publication is based on work
sponsored by the Hungarian —U.S. Science and Technolo-
gy Joint Fund in cooperation with National Science
Foundation and Hungarian Academy of Sciences under
Project 146/91.

[1]A. A. Kugler, Phys. Rev. A 41, 3489 (1990).
[2] M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
[3] M. Berkowitz and R. G. Parr, J. Chem. Phys. 88, 2553

(1988).
[4] S. K. Ghosh and M. Berkowitz, J. Chem. Phys. 83, 2976

(1985).

[5] J. C. Slater, Phys. Rev. 81, 385 (1951).
[6] R. CJaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954).
[7] W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
[8] H. Ou-Yang and M. Levy, Phys. Rev. A 44, 54 (1991).
[9]J. S. Dehesa, F. J. Galvez, and I. Porras, Phys. Rev. A 40,

35 (1989).


