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Extensive epigenetic and
‘transcriptomic variability between
_genetically identical human
ey B-lymphoblastoid cells with
et implications in pharmacogenomics
research
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. Genotyped human B-lymphoblastoid cell lines (LCLs) are widely used models in mapping quantitative

© trait loci for chromatin features, gene expression, and drug response. The extent of genotype-

. independent functional genomic variability of the LCL model, although largely overlooked, may

. inform association study design. In this study, we use flow cytometry, chromatin immunoprecipitation

sequencing and mRNA sequencing to study surface marker patterns, quantify genome-wide chromatin

. changes (H3K27ac) and transcriptome variability, respectively, among five isogenic LCLs derived from

. the same individual. Most of the studied LCLs were non-monoclonal and had mature B cell phenotypes.

: Strikingly, nearly one-fourth of active gene regulatory regions showed significantly variable H3K27ac
levels, especially enhancers, among which several were classified as clustered enhancers. Large,

. contiguous genomic regions showed signs of coordinated activity change. Regulatory differences

. were mirrored by mRNA expression changes, preferentially affecting hundreds of genes involved in

: specialized cellular processes including immune and drug response pathways. Differential expression of

DPYD, an enzyme involved in 5-fluorouracil (5-FU) catabolism, was associated with variable LCL growth

. inhibition mediated by 5-FU. The extent of genotype-independent functional genomic variability might
highlight the need to revisit study design strategies for LCLs in pharmacogenomics.

. In the past few years, the biomedical research community empowered by high-throughput technologies have
. gained a broader appreciation for the importance of intra- and inter-cell line variability and dynamics. Genetic
: diversification may be a driving force behind single-cell heterogeneity and the evolution of genetically unstable
: cancer cell lines, affecting gene regulatory pathways that play a role in the response to various external cues,
. including drug response’. At the same time, past exposure and cell line handling, as well as intrinsic gene reg-
. ulatory network state variability of single cells and local differences in cell culture conditions combine to cell
. population-level phenotypic readouts in bulk experiments*. A recent study by Hastreiter et al. has demon-
© strated the temporal dynamics of embryonic stem cell (ESC) line heterogeneity due to a switch from one culturing
. method to another. Exposing ESCs maintained in serum and leukemia inhibitory factor (LIF) to a dual inhibi-
© tion cocktail (2i; GSK3 and MEK inhibitors) stabilises Nanog expression across single cells of the ES cell culture
. by inducing Nanog expression and selecting against Nanog-low cells®. A thorough understanding of intra- and
- inter-cell line variability of widely used cell lines and their potential experimental relevance should enable rational
: experimental design and help draw appropriate conclusions.
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Various studies with diverse research aims have taken advantage of the human B-lymphoblastoid cell line
(LCL) model over the past few decades. To name a few, LCLs have been used to study the molecular mechanisms
of and immunological responses to EBV infection”"!?, carcinogen sensitivity and DNA repair'"'?, chromatin
organisation and gene expression regulation'*-7, as well as drug response'®, mostly in association with the genetic
background of the cells. Moreover, LCLs have also been found instrumental in studying non-EBV-related dis-
eases, such as amyotrophic lateral sclerosis"®, diabetic retinopathy®, and bipolar disorder?!. The main advantages
of this cell line model include easy culturing and manipulation, stable karyotype, and publicly available genotype
information for a large number of LCLs for molecular association and pharmacogenomics. Given the extensive
use of LCLs, it is of fundamental importance to unveil their limitations in order to drive well-informed decisions
regarding experimental design.

The LCL model is relatively well-characterised due to studies aimed at uncovering its limitations as B cell
surrogates. Several studies have pointed out that LCLs harbour negligible genotypic alterations in continuous
culture??~?, due in part to the episomal location of the viral genome and limited expression of viral genes®*-%%. As
LCLs are derived from primary B cells by means of in vitro transformation with the Epstein-Barr virus (EBV),
virus-triggered perturbations of molecular pathways and adaptation to culturing conditions are expected. The
number of EBV genomes do not substantially vary across cell lines, with more than 90 percent of LCLs carrying
20 to 27 copies®, although the EBV copy number has not been shown to alter viral protein expression levels®,
and only a subtle correlation has been found between viral protein expression and the host cell’s gene expres-
sion patterns®. The activation of the NF-kB pathway has been revealed to play a major role in transforming
the resting B cells*’~*. Also, Notch signaling-related RBP]Jk has been shown to interact with the viral EBNA2,
ultimately leading to growth de-repression®*. Although gene expression profiles clearly discriminate transformed
and non-transformed B cell populations, it is worth noting that inter-individual gene expression variation is
maintained after EBV transformation®**. DNA methylation studies have shown that differentially methylated
regions between LCLs and genotype-matched primary white blood cells are more likely to be hypomethylated
in LCLs, but the effects of neither short-term culturing nor freeze-thawing are profound**-*%. Based on the above
observations, many studies assume that LCLs from different individuals offer a good model for how genotypes
affect functional genomic patterns and the response to environmental cues, including various pharmaceuticals.

Genotyped LCLs have been instrumental in genomic association studies aimed at finding candidate genomic
regions affecting molecular and drug response phenotypes. Using LCLs, quantitative trait loci (QTLs) have been
identified, for instance, for transcription factor (TF) binding (tfQTLs), histone modifications (hmQTLs), DNA
methylation (mQTLs) and gene expression (eQTLs)!*16173-41 proving the model’s feasibility in molecular asso-
ciation studies. Also, LCLs provide an appealing means for pharmacogenomics as they are free of in vivo con-
founders such as age and polypharmacy, and drugs with a narrow therapeutic index can also be tested. Also, at
least half of the catalogued genes are expressed in LCLs, rendering it an appropriate model for finding associa-
tions between genetic and transcriptomic signatures versus drug response for lymphoproliferative and non-B
cell-related diseases*~ In order to reduce the number of false positives in pharmacogenomic studies, a triangle
model has been proposed*’. Assuming genotype-dependent RNA expression level changes upstream of drug
sensitivity variability, the triangle approach includes finding significant genotype-drug response associations,
subsequently validated using genotype-RNA expression (eQTL), and gene expression-drug response associations.
However, excluding common confounders such as cell culture age and culturing condition differences, there still
remains the potential confounding effect of cell line variability of non-genetic origin.

The extent to which non-genetic factors influence chromatin level modifications, gene expression, and ulti-
mately response to environmental signals in LCLs has not yet been evaluated. However, the preparation of distinct
LCL batches from the same individual provides an exceptional opportunity to highlight the extent and nature of
functional genomic variability independent of the genomic context. In our study, we used a model of five LCLs
derived from the same individual (isogenic, hence bearing identical genomic material), prepared in the same
laboratory using the same EBV strains to characterise inter-cell line variability at the epigenetic, transcriptomic,
and protein surface marker levels. Our results have implications for pharmacogenomics research, supporting a
more widespread adoption of the triangle model, which considers baseline RNA levels in LCL-based study design
in pharmacogenomics.

Results

Basic cell line characterisation. In this study, five isogenic LCLs (GM22647-GM22651, denoted as sGT_1
through sGT_5, respectively) derived from the same male individual with European ancestry (CEPH/UTAH)*
were used as a model for assessing the extent and nature of isogenic LCL variability driven by non-genetic factors
at multiple phenotype levels (Fig. 1a). These cell lines were prepared in the same laboratory, using the same EBV
strain, from different collection tubes of blood and were shown to be highly concordant at the level of SNV
and indels and no extensive mosaicism or chromosomal aberration was observed*. All cell lines were handled
together from preparation for shipment at Coriell Institute, through all culturing, biobanking and experimental
steps, that is, they were exposed to the same environment throughout the study (see Materials and Methods).
Using cell lines prepared from the same individual and excluding cell culturing-related confounders, sGT LCLs
represent a suitable model for exploring molecular phenotype variability among LCLs.

Prior to assessing molecular variability, we wanted to ensure that sGT LCLs possess the same genetic back-
ground, are free of mycoplasma infection, and show similar cell cycle progression. The same genetic background
and the presence of both types of sex chromosomes were confirmed by amplifying four autosomal polymorphic
short tandem repeat (STR) regions and the allosomal Amelogenin locus (AMELX and AMELY), respectively
(Fig. 1b); the numerical data are given in Supplementary Table 1. Mycoplasma contamination of cell cultures is
a widespread phenomenon which seriously alters cellular behavior and thereby easily invalidates research data.
Working batches of sGT LCLs were confirmed to be mycoplasma-free using a PCR-based method (see Materials
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Figure 1. Study design and basic characteristics of sGT LCLs. (a) Study design. (b) Capillary
electropherograms of PCR-amplified STR regions. (c) The fraction of cells at each cell cycle stage based on DNA
content and calculated DNA-indices (DIs).

CD19 + + + + +
CD20 + + + + +
CD22 + + + + +
CD23 + + + + +
CD45 + + + + +
HLADR | + + + + +
CD21 dim dim dim dim dim
CD43 dim dim dim dim dim
FMC7 dim dim dim dim dim
CD10 — — — — —
CD34 — — — — —
CD5 - — — — —
CD79% - - - - -
nTdT - - - - -
CD24 0.6% 1.1% 1.2% 1.9% 1%
CyIgM 1% 84% 36% 15% 10%
Lambda | 5% 59% 36% dim 13%
Kappa | 95% 36% 60% - 86%
CD81 54% 54% 58% 74% 76%
CD38 87% 87% 63% 20% 64%
cell type | Bcell Bcell B cell B cell Bcell

Table 1. Protein-level expression of selected leukocyte antigens in sGT LCLs as assessed by flow cytometry.

and Methods section) (data not shown). The fraction of cells in each cell cycle stage (G,-G,, S, and G,-M) was
similar for all cell populations, and all calculated DNA-indices (DNA content per nucleus per haploid genome
size) were below 1.1, indicating euploidy (Fig. 1¢). These results suggest that the selected cell lines are suitable for
the purposes of the present research.

Probing protein surface markers of sGT LCLs by flow cytometry reveals mature B cell immu-
nophenotype and intra-cell-line heterogeneity. As the next step, we characterised sGT LCLs with
respect to the expression of selected immune-cell-specific protein markers. Each mature human B cell expresses
a single class of immunoglobulin light chain, kappa (k) or lambda (X), as a result of allelic exclusion through
DNA rearrangement during cell maturation. Light chain restriction is regarded as an indicator of monoclonal-
ity in B cell malignancies and is commonly used in clinical practice to characterise such lymphoproliferative
disorders. Flow-cytometric analysis of sGT LCLs double-stained with fluorescently labeled anti-kappa and
anti-lambda antibodies revealed that four out of the five cell lines had not been derived from a single-cell clone
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Figure 2. sGT LCL clonality assessed based on kappa-lambda light chain exclusion. (a) The dot plots display
the fluorescence intensity of individual cells stained with Lambda-PE and Kappa-FITC, as well as the fraction of
events falling into lambda and kappa gates (defining lambda positive and kappa positive populations) for each
sGT LCL. (b) Expression of the immunoglobulin lambda (IGL@) and immunoglobulin kappa (IGK@) loci at
RNA level, based on mRNA-Seq data (N=2).

(mixed populations). However, the sGT_4 cells were shown to exclusively expose the lambda chain, at a moderate
level (evaluated as dim expression), which is suggestive of either pauciclonality or monoclonality (Fig. 2a). The
observed surface expression patterns of the kappa and lambda chains were also supported at the RNA level, by
assessing normalised RNA-Seq reads over the IGL and IGK loci (Fig. 2b).

Immunophenotyping has the ability to reveal population-level characteristics of cell lines at the surface
marker expression level. Surface marker expression patterns were found to be typical of mature human B cells
(CD19+ with low side scatter, CD20+, CD22+, CD23+, CD45+, HLADR+, dim FMC7+, dim CD21+, dim
CD43+, CD5—, CD10—, CD34—, and nTdT —). The pan B cell marker CD24 is virtually absent in all cell lines
(0.6-1.9% CD24+ cells), which is consistent with the findings of a previous study reporting the loss of CD24
upon EBV infection®. Strikingly, CD79b, encoding the Ig beta component of the B cell Receptor (BCR), is also
absent from all cell lines. Cell populations contain 54-76% CD814- cells, and the activation marker CD38 shows
a marked expression difference between the cell lines (20-87%). Additionally, the cell lines were stained positive
for cylgM, marker of the pre-B cell stage, to highly varying degrees, with the percentage of positive cells ranging
from 1% (sGT_1) to 84% (sGT_2) (Table 1). These findings indicate that the cells in the sGT LCL populations
were derived from human B cells, but for certain markers (CD81, CD38, cylgM) the percentage of cells in each
LCL population varies.

Marked differences in gene regulatory element activity among sGT LCLs. We profiled the five
sGT LCLs with H3K27ac ChIP-Seq to map active regulatory regions over the genome, in biological duplicates
(sample-wise ChIP-Seq statistics are provided in Supplementary Table 2). For each cell line, two different vials of
the same cell batch were re-cultured and harvested approx. one week apart from each other in order to exclude
most of the stochastic changes and capture reproducible differences. A consensus active regulatory region set
was derived by merging H3K27ac-enriched regions across the cell lines (excluding singletons), resulting in a set
of 42,923 regulatory elements, over which we calculated RPKM values (reads per kilobase per million mapped
reads) for each dataset. The RPKM measure enables the within-sample and between-sample comparison of
read densities over pre-defined genomic regions by normalising for region length as well as the total number
of sequencing reads. Although we found remarkably high adjusted pairwise correlation coefficients across the
whole sGT dataset (0.9-0.97), biological replicates clustered together, indicating that these cell lines, despite their
genetic homogeneity, harbour unique H3K27ac signatures. When we included LCLs from a CEPH/UTAH trio
genetically unrelated to the sGT cells in the analysis, the genetically identical cell lines were clearly separated
from trio LCLs (Fig. 3a). We then categorized the consensus set to regions with “non-variable” or “variable”
H3K27ac enrichment, and based on our inclusion criteria (RPKM fold-change >2, P < 0.05 in at least one com-
parison), 9,685 sites (22.6% of all consensus) fell into the variable category (Fig. 3b). Also, as expected, we found
a higher within-cell-line than between-cell-line correlation using the r? statistic (the fraction of total variance
explained by the linear regression model) (Supplementary Fig. 1). Of note, despite its monoclonality, the sGT_4
cell line did not show a higher within-cell-line correlation compared to the non-monoclonal sGT LCLs. This may
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Figure 3. Differential activity of genomic regulatory elements in LCLs as assessed by H3K27ac ChIP-Seq. (a)
Correlation heatmap based on H3K27ac signals at a consensus set of genomic regions in LCLs derived from
four individuals (GT1-GT4): a core CEU trio (GT1-GT3) consisting of a mother (Trio_M), a father (Trio_F)
and a male child (son; Trio_S) and GT4, and an unrelated CEU male individual from whom five cell lines were
prepared (sGT_1-sGT_5). (b) The fraction of the consensus region set showing variable H3K27ac enrichment
across the five sGT LCLs (ANOVA, P < 0.05, fold-change >2). (c) The fraction of non-variable (NV) and
variable (V) H3K27ac peaks annotated to certain genomic region category. (d) Pairwise comparison of sGT
LCLs, indicating the number of differentially enriched sites per sGT LCL pair. (e) Fraction of peaks shared by all
or predicted only in a subset of sGT LCLs. (f) Number of peaks predicted in all (5), four, three, two, and in only
one sGT LCL(s). (g) The change in the proportion of certain genomic region categories annotated to peaks with

different levels of sharedness.

indicate that the limited time (approx. one week) sGT LCL replicates - recovered from different vials of the same
freezing batch - spent in separate cultures did not allow for a more substantial chromatin-level diversification of
non-monoclonal cells than the monoclonal line (sGT_4). When comparing the genomic distribution of variable
versus non-variable regions, we found that variable sites predominantly map to intergenic regions (enhancers),
while genic regions, especially promoters, are less affected, indicating a regulatory constraint on activity changes
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at gene-proximal elements (Fig. 3¢). Pairwise comparisons revealed that the number of affected regulatory regions
range from 1,056 to 4,174 (mean = 2,530; median =2,305.5) per sGT pair (Fig. 3d). Comparing cell-line-specific
consensus regions (by merging those predicted in both replicates), 38.5% (15,160) were found to be shared by
1-4 cell lines, and 5,785 regions were unique to one cell line (Fig. 3e,f). With a decreasing level of sharedness (i.e.,
with a decreasing number of LCLs containing the given peak), the fraction of promoters also decreases (Fig. 3g).
Opverall, reproducible differences can be detected at one-fourth of the active regulatory regions in five sGT LCLs,
and most of these changes affect distal enhancers.

Coordinated activity change of regulatory elements over large genomic regions, including clus-
tered enhancers. In the next stage, we asked whether the activity of super-enhancers (hereon denoted as
clustered enhancers, CEs) was also prone to genotype-independent variability or, in contrast to single regulatory
elements, their activity remained largely stable across LCLs. CEs are a distinct class of regulatory regions which
occupy large — from a few and up to hundreds of kilobases long - genomic regions consisting of enhancers <12.5
Kb apart from each other, and characterised by especially high regulatory activity. As CEs largely control highly
expressed genes critical for development, not surprisingly, the loss of certain CEs have already been associated
with various diseases*. We first predicted consensus LCL CEs using pooled H3K27ac ChIP tags, resulting in a
total of 1,058 putative CE regions. In line with the literature, predicted LCL CE:s lie in the close proximity of genes
involved in B cell-specific functions and immune response, such as the TFs PAX5 and IRF2, as well as genes pre-
viously identified as EBV super-enhancers®, such as BCL2, ETSI, MIR155 and MYC, a fraction of which ensure
continuous cell proliferation (Fig. 4a). Among the predicted CEs, 518 (49%) contain one or more enhancer ele-
ments previously classified as variable, but when taking into account H3K27ac levels over the whole CE region,
only 31 (2.9%) were found to be variable (P < 0.05, fold-change >2) across the five cell lines (Fig. 4b), indicating
that the activity of individual enhancer elements of CEs may vary without seriously affecting the CE activity
per se. Upon inferring the effect of CE activity on the expression of the closest protein-coding gene, we found
a linear relationship between the fold-difference of CEs and the fold-difference of the closest gene (Fig. 4c). On
Fig. 4d, we show a representative region on chromosome 3 over which multiple gene regulatory elements show
variable H3K27ac signal. Interestingly, a switch in signal direction could be observed at one of the visualised
TAD (topologically associated domain) boundaries. In line with that, by comparing the RPKM values in sGT_1
and sGT_2 over the whole chromosome, we could identify large regions characterised by coordinated H3K27ac
signal change. Notably, despite this seemingly high level of coordinatedness, most of these regions did not overlap
with, and were not eligible for, the definition of a CE (for details of CE prediction, please refer to the Materials
and Methods section). Inferring the common features of genes associated with variable CEs, among the most
enriched biological processes were immune-related functions including leukocyte activation (5.5 * 107*) and
leukocyte cell-cell adhesion (5.6 * 10~*), while among the most enriched molecular functions were transcription
factor activity (P =1.2 * 102) and LPS binding (P=3.2 * 1072). Hence, in contrast to typical enhancers, the over-
all activity of clustered enhancers show limited variability across sGT LCLs, and the variability at the single CE
component-level rarely leads to a significant perturbation of CE activity.

Differences in H3K27ac levels are linked to transcriptomic changes affecting specialised cellular
pathways. In order to get a comprehensive overview of the correlation between regulatory activity changes
and transcriptomic variability, we performed mRNA-Seq in all five cell lines in biological duplicates. For pairwise
comparisons of replicates and cell lines, please refer to Supplementary Fig. 2. First we plotted nucleosome-free
region-centered H3K27ac tag counts at the 9,685 variable H3K27ac-enriched genomic elements together with
the z-scores of genes closest to each variable site. Prior to plotting, k-means clustering of the variable sites was
performed in order to capture the main patterns of regulatory variability, which resulted in 6 definitive clus-
ters. In order to capture the main gene expression patterns across cell lines, we calculated z-scores genewise by
subtracting mean RPKM of the given gene from the RPKM of the respective gene of each cell line, and divided
this value by the standard deviation. We found that regulatory activity changes are in general followed by gene
expression changes (Fig. 5). Figure 6 shows representative examples of each of the 6 clusters, visualising ChIP-Seq
and mRNA-Seq bedGraph tracks for selected regulatory regions and their closest genes, respectively, across the
five sGT cell lines (Fig. 6). Despite this good overall correlation between ChIP-Seq and mRNA-Seq signals, only
4.6% of genes (525) showed variable expression (denoted as differentially expressed genes; DEGs) across the
five cell lines (FDR = 0.05, FC > 2) (Fig. 7a), with 25-229 genes being significant per LCL pair (mean =119.8;
median =107.5). Considering only those genes that are expressed in both replicates of at least one cell line
(CPM > 5), 959 were present in only a subset of cell lines (Fig. 7c). Importantly, none of the genes whose expres-
sion has previously been associated with the EBV copy number (CXCL16, AGL, ADARB2) show variable expres-
sion in our dataset®, suggesting that on the EBV infection level, there is no major difference between these cell
lines. Upon performing Gene Ontology (GO) analysis on the DEG set, among the most enriched biological pro-
cesses were cell migration (P =2.8 * 107'2), intracellular signal transduction (P =9.8 * 10~°), and regulation
of apoptotic process (P =3.4 * 10~%), while the most enriched molecular functions include immune receptors
and transcription factors (Fig. 8a,b). Surprisingly, upon characterising the affected genes, we found that 121 of
the DEGs were categorised as possible pharmacogenes in the Genetic Association Database (GAD) (Fig. 8c).
Coefficient of variance (CV) values of genes are inversely proportional to the mean expression level (Fig. 8d); the
genes with the highest level of variance encode genes located at the cell surface, have receptor function and play
arole in cell motility and signal transduction, while genes with the lowest variance tend to localize inside the cell
and mediate immune and apoptotic functions as components of signal transduction pathways (Supplementary
Fig. 3). In summary, the extent of RNA-level variability among sGT LCLs is far smaller compared to regulatory
element-level variability, which is expected in light of previous studies uncovering widespread enhancer redun-
dancy?, and they affect genes that are of considerable interest for those engaged in pharmacogenomics research.
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Figure 4. H3K27 acetylation and gene expression variability at the level of clustered enhancers (CEs) and over
large genomic regions. (a) Normalized H3K27ac ChIP-Seq tag counts over typical and clustered enhancers,
ranked by increasing signal; some CE examples are highlighted based on their association with genes related
to B-cell-specific and immune functions, or induced by Epstein-Barr virus infection. (b) The fraction of CEs
showing variable H3K27ac enrichment across the five sGT LCLs (ANOVA, P < 0.05, fold-change >2). (c) The
scatter plot shows the effect of H3K27ac variability over CEs on the expression of the closest expressed gene;
z-scores calculated for CEs and their closest genes were plotted against each other, for all possible comparisons
(N=155). (d) The panel shows contact frequencies (HiC), predicted topologically associated domains (TADs)
and DNase hypersensitive sites (DHS), as well as genes over a ~4 Mb-long selected region on chromosome 3 in
the GM12878 cell line, together with H3K27ac bedGraphs and differentially enriched regions from all five sGT
LCLs (blue vertical lines). The distribution of regions differentially enriched between sGT_1 and sGT_2 over
chromosome 3, colored based on the direction of change, is shown on the bottom of the panel. Red arrows on
the bedGraphs indicate the direction of change between sGT_1 and sGT_2.

Non-genetic gene expression changes might affect LCL drug response phenotypes. Uncovering
the level of gene expression variability of sGT LCLs, the question arises whether it has relevance for biomed-
ical research. Dihydropyrimidine dehydrogenase (DPYD), which catalyses the initial and rate-limiting step
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Figure 5. Read distribution heatmap of k-means clustered variable H3K27ac sites (9 685) and z-scores of
genes closest to the given H3K27ac region (heatmap). Z-scores were also calculated for the two replicates
independently; dots represent mean z-scores for each replicate in each cluster (dot: repl, square: rep2), while
black vertical lines represent means of the two replicates in the corresponding cluster. NFR = nucleosome-free
region.

of pyrimidine catabolism, has been shown to be involved in the degradation of fluoropyrimidine chemother-
apeutic agents, including 5-fluorouracil (5-FU) and its prodrugs, Capecitabine and Tegafur. Inherited DPYD
deficiency has been linked to severe 5-FU toxicity*®. Upon inspecting the genomic environment of the DPYD
gene, three H3K27ac-marked regulatory elements show differential H3K27ac enrichment, which is linked to
a significantly different DPYD expression between the sGT_1 and sGT_2 cell lines at the RNA level based on
mRNA-Seq (sGT_2 > sGT_1, fold-change = 8.5) (Fig. 9a). The differential expression could also be validated
by RT-qPCR from total RNA samples isolated from cells harvested independently from those used for RNA-Seq
(Fig. 9b). To test whether DPYD expression might lead to 5-FU response difference in these cell lines, we treated
sGT_1 and sGT_2 cells with different concentrations of 5-FU and assessed cell viability as a measure of cytotox-
icity. We found that at each concentration the viability was significantly higher in sGT_2, leading to an almost
twofold increase in the ICs, value (ICsy g1 ; = 0.63 pM, ICs) o1 » = 1.21 pM) (Fig. 9¢). These results suggest that
genotype-independent gene expression variability among LCLs contributes to the cellular response to drugs and
may be present as a confounder in LCL-based pharmacogenomic screenings.

Discussion

The scientific community has made considerable efforts to thoroughly characterise commonly used cell-line
models, thus providing invaluable insights into their advantages and limitations, which serves as a foundation
for rational experimental design. In parallel with the emergence and maturation of high-throughput sequenc-
ing technologies, EBV-transformed human B-lymphoblastoid cell lines have become one of the primary mod-
els for identifying QTLs affecting chromatin and transcriptomic features. Moreover, their widely acknowledged
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Figure 6. Integrative Genomic Viewer (IGV) snapshot of pooled BedGraph tracks at genomic regions
representative of each of the six ChIP clusters (variable H3K27ac regions), and the genes closest to each variable
ChIP region. The black rectangles over ChIP-Seq tracks represent the dimensions of each variable region.
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Figure 7. Gene expression variability across sGT LCLs as assessed by mRNA-Seq. (a) The fraction of genes
showing variable expression levels across the five sGT LCLs (ANOVA, FDR = 0.05, fold-change >2). (b)
Pairwise comparison of sGT LCLs, indicating the number of differentially expressed genes (DEGs) per sGT LCL
pair. (¢) The number of genes expressed in a certain number of sGT LCLs (CPM >5 in both replicates).

SCIENTIFICREPORTS| (2019) 9:4889 | https://doi.org/10.1038/s41598-019-40897-9 9


https://doi.org/10.1038/s41598-019-40897-9

www.nature.com/scientificreports/

a Biological process (level 5) b Molecular function (level 5)
-log10 P value -log10 P value
c b & & ®» 5 B E S rONURS FANNCRE MRS AR
Cell migration PK binding T
IC signal transduction Cytokine receptor activity
Reg. of signal transduction Actin filament binding
Reg. of apoptotic process Death receptor activity
Reg. of prog. cell death TNF-activated receptor activity
Leukocyte migration C-C chemokine binding
Lymphocyte activation Glutathione perox. activity
Cell surface rec. sign. pathway L-ascorbic acid binding
Reg. of IC signal transduction RNA pol. II act. TF binding
Reg. of leukocyte activation PK inhibitor activity
Tes888g8s s %z 38R 88
Gene count Gene count
¢ GAD disease class d
-log10 P value 8192
L L Lt
Chemdependency s 512
Cardiovascular E 128
32
Immune =
3 8
. )
s
Cancer
T T T 1 0,5
B N ] o = w 0,125
S = = DEGs
Gene count

Figure 8. Coeflicient of Variance (CV) and Gene Ontology (GO) annotation of DEGs. (a) -log 10 P values and
gene numbers of the most highly enriched biological processes, (b) molecular functions, and (c) GAD disease
classes among DEGs. (d) Mean RPKM of DEGs across all sGT LCLs and their corresponding CV values. The
yellow line is the linear fit of CV values.

advantages have rendered LCLs a reasonable choice for pharmacogenomic studies. Isogenic LCLs prepared from
the same healthy individual (sGT LCLs) provide a useful model for uncovering the extent and nature of LCL
variability unexplainable by differences in the genetic background or culturing conditions. Our results suggest
that LCLs retain an immunophenotype characteristic to B cells and harbour substantial genotype-independent
epigenetic and gene expression variability despite strict and consistent cell culturing practice and high genetic
stability. Hence, the indiscriminate use of LCLs by being unaware of the extent of molecular phenotype variability
unrelated to the genetic makeup of the cells might confound finding relevant genetic associations. Molecular sig-
natures represented by reproducible H3K27ac enrichment and gene expression differences clearly discriminate
the cell lines. Despite the good correlation between H3K27ac signatures and the expression of nearby genes, the
extensive variability of H3K27ac-marked regions, including components of clustered enhancers, are coupled to
a relatively modest change in the level of poly(A)+ RNAs. Among the variably expressed genes are numerous
disease-associated and pharmacogenes, as well as components of cellular signaling, genes involved in immune
response and lymphocyte-specific activities. At the same time, we showed that selected sGT LCLs with differ-
ent DPYD mRNA levels show 5-FU sensitivity, providing an additional level of evidence that the current and
widely adopted model of pharmacogenomic study design needs to be revisited. Our results also suggest that
low-passage sGT LCLs represent a mixture of cells derived from multiple successfully transformed parental B
cells. Immunophenotyping shed light on the presence of LCL sub-populations with a markedly different surface
expression of several probed antigens.

Limitations of continuous cell line models, such as genomic instability and phenotypic drift, have long been
acknowledged. However, studies using non-cancerous cell lines are generally based on the assumption that meas-
ured cell line characteristics, including genetic makeup, remain largely comparable over time and across laborato-
ries; hence, genetic differences between source individuals might dominate both baseline and triggered molecular
phenotype differences. LCLs derived from non-cancerous resting B cells are expected to be genetically and kar-
yotypically more stable than cancer cell lines, as they are less prone to accelerated genetic evolution due to, for
instance, deregulated repair mechanisms. Indeed, studies have found that the genomes of most LCLs, including
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Figure 9. Response of sGT_1 and sGT_2 cell lines to 5-FU. (a) IGV snapshot of the genomic region
sorrounding the DPYD gene (~1 Mb), showing H3K27ac BedGraph tracks pooled from the two replicates for
sGT_1 and sGT_2 (with the two tracks on the same scale). DPYD mRNA expression values (RPKM (4-SD),

N =2) are also indicated. (b) Validation of differential DPYD gene expression between sGT_1 and sGT_2 with
RT-qPCR (N =2, normalized to ACTB). (c) Dose-response curves representing the decrease of cell viability
upon 72-hour treatment with increasing concentrations of 5-FU for sGT_1 and sGT_2 cell lines, using the MTT
assay. The half-maximal inhibitory concentration (ICs,) was calculated using the non-linear regression curve fit
using the least-squares method (R%gy ; =0.97, R%gr ,=0.95). ***P < 0.001, **P < 0.01.

those used in this study, faithfully reflect those of the parental cells at low passage numbers (<20)?-2>444%50 Tt
should be noted that the cumulative number of passages (N = 14) performed on sGT LCLs used in this study,
including subculturing and seed stock preparations, was well below this empirical cutoff. Several studies have
been conducted to uncover the level of epigenomic and transcriptomic perturbations in LCLs owing to fac-
tors like EBV transformation, culturing, and freeze-thawing. DNA methylation profiles were shown to change
between LCLs and parental surrogates, presenting predominantly as hypomethylation at random loci***7>1%2,
Of note, probably due to experimental considerations, LCLs were mostly compared to matched peripheral blood
mononuclear cells (PBMCs) or peripheral blood lymphocytes (PBLs) as a surrogate for parental B cells. EBV
transformation leads to the perturbation of molecular pathways to an extent that based on principal compo-
nent analysis of gene expression profiles LCLs become more similar to each other than to their parental B cells.
However, gene-level expression differences between B cells of different individuals are retained in their derived
LCLs*-%, which is probably due to a marked change of a relatively limited set of genes driven by EBV proteins
with transcription factor activity>>>3,

Numerous studies used LCLs to uncover the main features and genetic background of inter-individual differ-
ences at the chromatin level. These studies identified specific features of transcription factor binding- and histone
modification-level variability, such as coordinated changes related to the 3D organisation of the genome and
evolutionary implications, in relation to genotypic differences'®!7>*>>. However, due to study design constraints,
genotype-independent differences could not be discriminated from genotype-dependent changes inaccessible for
QTL analysis. Moreover, non-stable changes may also be spotted due to the usage of no replicates for ChIP-Seq
studies, which may lead to spurious associations. In contrast, the model system we used is unique in that the con-
founding factors such as differences in LCL generation practice, sex, age, passage number and culture conditions
can largely be excluded; therefore, it has the potential to investigate molecular phenotype differences independent
from both direct and indirect genetic effects. Moreover, we found that there is a considerable difference between
the H3K27ac signals of biological replicates, highlighting the importance of using biological replicates to exclude
random fluctuations in association studies, which might otherwise lead to spurious associations.

The foundations of cellular heterogeneity in a single tissue, the extent of which has become recognised with
the emergence of single-cell studies, are laid during cellular development’®. It has been hypothesised that a
higher level of heterogeneity in immune cells provide evolutionary advantage, contributing to robustness against
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unpredictable external perturbations. Functional genomic assays using a bulk of cells are generally not able to
resolve cellular features at the single cell level. Instead, signals originating from individual cells add up to the
total measured signal intensity at any detected entity (e.g. ChIP-Seq peaks), even in clonally-selected cell lines'.
Moreover, the changing cellular environment in isogenic ES cells may trigger distinctive cellular mechanisms in
cells with different network states, such as Nanog expression induction or premature death of Nanog-low cells
in 2i-treated ESC lines, leading to a perception of an overall induction of Nanog?. It has been suggested that the
diversity of LCLs rapidly decrease and may reach monoclonality within two months of culture®’, and that a large
proportion of publicly available LCLs may be mono- or pauciclonal®®*, although the level of clonality is generally
not considered during the selection of LCLs to study. Two of the LCLs used in this study showed a ratio of kappa
(k) and lambda (\) chains expected of polyclonal cell populations (0.4-0.6; sGT_2 and sGT_3). The other three
cell lines are probably oligoclonal (sGT_1 and sGT_5) or monoclonal (sGT_4) (Fig. 2a,b, Table 1). Variable clon-
ality across the tested cell lines, despite identical handling, might have emerged as a result of random subsampling
of CD21 + B cells during the initiation of cultures, and subsequent variation in growth rates of their descend-
ant lineages. Therefore, the features of one or a few parental B cells will predominantly be represented in bulk
sequencing studies, leading to chromatin and gene expression differences. Transcriptional regulation pathways
might also be selectively triggered by various secreted lymphokines.

Various confounding factors have been proposed that may significantly affect LCL drug response, including
EBV copy number, baseline ATP levels and growth rate, with conflicting evidence on the heritability of and
genetic predisposition to the above traits?*¢*¢!. Not surprisingly, chemotherapeutic-induced cytotoxicity, given
the mode of action of such agents, is especially dependent on cellular growth rate. At this point, we cannot exclude
the possibility that 5-FU response differences between two of our cell lines are influenced by unmeasured poten-
tial confounders. An additional limitation of the study is our limited ability to extrapolate our findings to estimate
the level of functional genomic variation due to non-genetic factors in large panels of LCLs due to the availability
of only a handful of cell lines for such studies. Ultimately, our results expand our knowledge on the LCL model
system in terms of feasibility and limitations, providing insights into the chromatin- and gene expression-level
variability of isogenic LCL cells. Our study aligns with the recent investigations on pharmacogenomic implica-
tions of clonal variability of another model cell line, namely MCEF-7 cells'. These studies raise the importance of
the phenotypic variability of isogenic cells from a pharmacogenomic point of view. LCLs will probably remain
a powerful tool in finding associations between genomic variants, molecular phenotypes, drug response and
diseases, given the revealed limitations are carefully considered during experimental design. Taking into con-
sideration the findings of our study, as well as other studies relevant to the topic, we can give recommendations
regarding the selection criteria and experimental handling of LCLs for drug screenings. In general, potential
confounding variables such as cell line preparation, culturing condition and passage number differences should
be avoided. Also, it is recommended to use LCLs prepared from individuals with the same gender, with similar
age, and belonging to the same population (e.g. CEPH/UTAH). It is also advised to use biological replicates for
all performed assays in order to exclude random phenotypic fluctuations. Our study suggests that including base-
line RNA levels in pharmacogenomics studies would lead to more robust findings, as has been proposed in an
earlier study, calling this approach the , triangle study model”*. A model could also be implemented where gene
expression-drug response associations are uncovered first, followed by validations in an independent cohort of
cell lines harbouring genotypes potentially affecting the expression or post-transcriptional regulation of selected
RNAs. Clonality may also be used as a selection criterion prior to association studies.

Materials and Methods

Cell culture. Human B-lymphoblastoid cell lines derived from five different tubes of anticoagulated periph-
eral blood, drawn from the same 26-year-old CEPH/UTAH male (GM22647, GM22648, GM22649, GM22650
and GM22651; denoted as sGT_1 to sGT_5 throughout the manuscript, respectively), were obtained from Coriell
Cell Repositories. Cells were cultured in RPMI-1640 (Sigma-Aldrich, cat. R0883) supplemented with 15v/v%
heat-inactivated FCS (Thermo Fisher Scientific, cat. 10270-106), 2 mM L-glutamine (Sigma-Aldrich, cat. G7513)
and 1v/v% penicillin-streptomycin (Sigma-Aldrich, cat. P4333). To ensure a continuous source of cells for exper-
iments, a three-tiered biobank was generated (see Supplementary Methods). Cell numbers were set to 8 * 10° per
ml culturing medium twelve hours prior to experiments. In all cases, all cell lines were handled in parallel using
the exact same reagents and equipment, and experiments were initiated at the same time-point of the day.

Basic cell line characterisation. Cell supernatants were tested for mycoplasma using the PCR Mycoplasma
Test Kit I/C from PromoKine (cat. PK-CA91-1096). Genomic DNA was isolated using High Pure PCR Template
Preparation Kit (Roche Life Science, cat. 11796828001), and five STR regions were amplified with fluorescently
labeled primers (PowerPlex S5 System, Promega, cat. TMD021) (Table 1); the ABI PRISM 3100-Avant Genetic
Analyzer and the GeneMapper ID software (v4.1) were used for detecting amplification products and analysis,
respectively (Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen).

Flow cytometry. Cell suspensions were analysed by eight-colour labeling. Saturating concentrations of
directly conjugated antibody combinations were added to cell suspensions (1 * 10°) and incubated for 15 min in
the dark at RT. Samples were washed in PBS and fixed with 1% paraformaldehyde/PBS (PFA). For intracellular
staining, the procedure described for Intrastain (Dako Glostrup, Denmark) was strictly followed. Surface staining
was executed before permeabilisation and intracellular staining. One hundred thousand events were acquired
with the help of FACS Canto II flow cytometer (Becton Dickinson, San Jose, CA). Data were analysed by FACS
Diva (Becton Dickinson Biosciences, San Jose, CA) and Kaluza Software version 1.2 (Beckman Coulter, Brea,
CA). For antibodies, clones and and vendor information please refer to Supplementary Methods.
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For cell cycle analysis and DNA-index calculation, cells were washed twice with PBS at RT, fixed with 70 v/v%
ethanol at 4°C and centrifuged at RT. Cell pellets were resuspended with RNase (0.5 ml of 2 mg/ml RNase in
PBS) and Propidium-iodide/Triton-X-100/EDTA (0.5 ml working solution of 100 ug/ml Propidium-iodide, 1%
Triton-X-100, 12.7uM EDTA in PBS). Samples were incubated for 30 min in the dark at RT. 20,000 events were
acquired with the help of FACS Calibur flow cytometer (Becton Dickinson, San Jose, CA). Data were analyzed
with ModFit LT for Mac 2.0 (Becton Dickinson, San Jose, CA).

Chromatin immunoprecipitation and ChIP-Seq library preparation.  All ChIP experiments were
initiated from the same freezing batch of cells. Biological duplicates were prepared from different outgrowths
(freezing vials) of cells on different days. Crosslinked chromatin was immunoprecipitated with anti-histone
H3 (acetyl K27) antibody (Abcam, cat. ab4729) or isotype control antibody (Santa Cruz Biotechnology, cat.
sc-2027X). Library preparation was performed by the Genomic Medicine and Bioinformatics Core Facility at
the University of Debrecen, Debrecen, Hungary from 10 ng of ChIP material based on the “TruSeq ChIP Sample
Preparation Guide 15023092 B” with minor modifications. Cluster generation, sequencing (50-bp, single-end)
and demultiplexing (bcl2fastq Conversion Software) were performed either at the Genomic Medicine and
Bioinformatic Core Facility at the University of Debrecen or at the EMBL Genomics Core Facility, Heidelberg,
Germany. For detailed information about the in-house ChIP buffers and the experimental protocol, please refer
to Supplementary Table 3 and Supplementary Methods, respectively.

ChIP-Seq read alignment and data analysis. BWA 0.7.10 was used to align ChIP-Seq reads to the
hg19 (GRCh37) genomic build. HOMER 4.9.1. was used to predict genomic regions with H3K27ac enrichment,
and bedtools was used to remove sites overlapping ENCODE’s ‘blacklisted’ genomic regions. We used two-way
ANOVA followed by Tukey’s post hoc test with functions aov() and TukeyHSD() from MASS package to iden-
tify significantly differentially enriched regions (P < 0.05, fold-change >2). For clustered enhancer prediction,
all ChIP-Seq alignment (bam) files were merged using SAMtools (resulting in a total of ~200 million reads), a
tag directory was created using HOMER’s makeTagDirectory program and clustered enhancers were predicted
(HOMERS findPeaks, options: -style super -L 0, -superSlope -1000, otherwise default parameters were used). We
used the R package DiffBind (Bioconductor) to define a consensus set of predicted enhancers, calculate RPKM
values, cluster the samples and create a correlation matrix. The correlation heatmap was created using plotly
3.0.0. (Python). We used the R package pheatmap to clusterize (k-means) differentially enriched regions based on
fold-change to the first sample. The read distribution heatmap was generated by HOMER’s annotatePeaks (-hist
function), centering to the nucleosome-free region (predicted from pooled bam files using HOMER’ getPeakTags
with -nfr function) closest to the midpoint of each predicted region, and visualised using Java TreeView. The clos-
est expressed genes were assigned to promoters, typical enhancers, and clustered enhancers using bedtools. We
used the Integrative Genomics Viewer (IGV, Broad Institute) to visualise bedgraphs (created from merged bam
files per sample), at selected genomic regions. We used the 3D Genome Browser from Yue Lab (http://promoter.
bx.psu.edu/hi-c/index.html) to visualise HiC-based chromatin contacts in the GM12878 cell line with 40 Kb
resolution and PhenoGram® to visualise differentially enriched H3K27ac regions across chromosome 3 between
sGT_1 and sGT_2.

Total RNA isolation and mRNA-Seq library preparation. Total RNA was extracted from two million
cells with TRIzolate reagent in biological duplicates (originating from two different growths of cells from the
same tier of the biobank). For details, see Supplementary Methods. RNA concentration and sample purity were
determined using a NanoDrop 1000 instrument (Thermo Fisher Scientific, Waltham, MA, USA). For the anal-
ysis of fragment distribution and calculation of RIN values (calculated being at least 9.4; mean: 9.8), RNA sam-
ples were loaded to Agilent RNA 6000 Nano microchips (Agilent, Santa Clara, CA, USA). Sequencing libraries
were prepared following Illuminas TruSeq RNA Sample Preparation v2 Guide with poly(A) selection using 1 pg
total RNA as the starting material. Indexed libraries were pooled and subjected to single-end sequencing on a
NextSeq500 sequencer (Illumina, San Diego, CA, USA) with 50-bp read length. Library preparation, cluster gen-
eration, sequencing and base calling were performed at the Genomic Medicine and Bioinformatic Core Facility
at the University of Debrecen, Hungary. Demultiplexing was performed using the bcl2fastq Conversion Software
(Illumina).

RNA-Seq read alignment and data analysis. RNA-Seq reads were aligned to the hgl9 (GRCh37)
genomic build using TopHat v2.0.7 (-max-multihits option set to 1). Transcript abundances were calculated and
batch effect was accounted for using edgeR and UCSC gene annotation track (hg19, downloaded from Illumina’s
iGenomes database in 07/17/2015), and are expressed as RPKM values. Genes with CPM values (read counts per
million mapped reads) below 5 across all samples were considered unexpressed and were discarded. We used
edgeR to find genes that were differentially expressed between at least two cell lines (FDR =0.05, FC > 2). The
DAVID Bioinformatics Resources 6.8 tool was used for the functional annotation of differentially expressed genes
(https://david.ncifcrf.gov/)*>4,

RT-qPCR. Total RNA samples were treated with RQ1 DNase as per the manufacturer’s reccommendations
(Promega, cat. M6101), and were reversely transcribed using the SuperScript II system (Thermo Fisher Scientific,
cat. 18064014). RT reactions were diluted and were subjected to qPCR using the LightCycler 480 SYBR Green
I Master (Roche Applied Science, cat. 04887352001). QPCR measurements were carried out in triplicates.
Expression levels were quantified using the ACp method and were normalized to ACTB expression. For addi-
tional details, see Supplementary Methods.
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5-FU treatment. Cells in log-growth phase (2 * 10°) were treated in 96 U-well plates with two-fold serial dilu-
tions of 5-FU (TEVA Pharmaceutical Industries, OGYI-T-4272/07) in indicator-free RPMI (Sigma-Aldrich, cat.
R7509) supplemented with 15v/v% heat-inactivated FCS, 2 mM L-glutamine and 1v/v% penicillin-streptomycin.
Cells were incubated at 37°C (5% CO,) for 72 hours, resuspended with MTT stock solution (Sigma-Aldrich, cat.
M5655), and incubated in the dark at 37 °C for 6 hours. Cell pellets were resuspended in 100 pl Lysis Solution
and incubated for 1 hour. Absorbances at 595 nm were then measured. For additional details, see Supplementary
Methods.

Data visualisation. Data visualisations throughout the paper were performed using either Microsoft Excel
(Microsoft Office Professional Plus 2013) or GraphPad Prism version 7.04 for Windows (GraphPad Software, La
Jolla California, USA); www.graphpad.com.

Data Availability
The ChIP-Seq and RNA-Seq data have been deposited in the GEO database under accession GSE121926.
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