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A new numerical scheme for constrained total variation flows and

its convergence

Yoshikazu Giga∗ Koya Sakakibara† Kazutoshi Taguchi‡ Masaaki Uesaka§

March 22, 2019

Abstract

In this paper, we propose a new numerical scheme for a spatially discrete model of
constrained total variation flows, which are total variation flows whose values are constrained
in a Riemannian manifold. The difficulty of this problem is that the underlying function space
is not convex and it is hard to calculate the minimizer of the functional with the manifold
constraint. We overcome this difficulty by “localization technique” using the exponential
map and prove the finite-time error estimate in general situation. Finally, we show a few
numerical results for the cases that the target manifolds are S2 and SO(3).

1. Introduction

In this paper, we consider a constrained total variation flow equation (constrained TV flow
equation for short):

(TVF;u0)



∂u

∂t
= −πu

(
−∇ ·

(
∇u
|∇u|

))
in Ω × (0, T ),(

∇u
|∇u|

)
· νΩ = 0 in ∂Ω × (0, T ),

u|t=0 = u0 on Ω,

(1.1)

where Ω ⊂ Rk (k ≥ 1) is a bounded domain with a Lipschitz boundary ∂Ω, M a C2-manifold
embedded into Rℓ (ℓ ≥ 1), u : Ω × [0, T ) →M an unknown, u0 : Ω →M an initial datum, πp an
orthogonal projection from the tangent space TpRℓ(= Rℓ) to the tangent space TpM(⊂ Rℓ) at
p ∈ M , νΩ the outer normal vector of ∂Ω and T > 0. If πu is absent, (TVF;u0) is a standard
vectorial total variation flow regarded as the L2-gradient flow of an isotropic total variation of
vector-valued maps:

TV (u) :=

∫
Ω
|∇u|Rk×ℓ dx,

where |·|Rk×ℓ denotes the Euclidean norm of Rk×ℓ. The introduction of πu means that we impose
the restriction on gradient of total variation so that u always takes the values into M . We also
call it “M -valued total variation flow” or “1-harmonic map flow”
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1.1. Applications in science and engineering

The constrained total variation flows have applications in several fields. First applications of the
flow of this type appears in [33], where the authors consider the case that the target manifold
M is a two-dimensional sphere S2, for color image denoising with preserving the brightness. As
for the case that the target manifold M is the space of all three-dimensional rotations SO(3),
this system is an important prototype of the continuum model for a time-evolution of grain
boundaries in a crystal, proposed in [23, 22]. As for the case that the target manifold M is the
space of all symmetric positive definite three-dimensional matrices SPD(3), such equations are
proposed for denoising diffusion tensor MRI ([4, 28, 9, 35]).

1.2. Mathematical analysis

In spite of its applicability, the mathematical analysis to the manifold-constrained total variation
flows is still developing. Two difficulties lie in the mathematical analysis: One is the singularity
of the system where ∇u vanishes; second is the constraint with values of flows into a manifold.
On the first difficulty, many studies can be found to overcome it. In order to explain the second
difficulty, we split notion of solutions into “regular solution” and “irregular solution”.

We mean by “regular solution” a solution without jumps. In [18], the existence of a local-in-
time regular solution was proved when Ω is k-torus T k, a manifold M is an (ℓ− 1)-sphere Sℓ−1

and an initial datum u0 is sufficiently smooth and of small total variation. Recently, this work
has been improved significantly in [15]. In particular, the assumption has been weakened in the
case that the domain Ω is convex and the initial datum u0 is Lipschitz continuous. Moreover, in
[15], the existence of global-in-time regular solution and its uniqueness have been proved when
the target manifold M has non-positive curvature and initial data u0 is small.

In [17], it has been proved that rotationally symmetric solutions may break down, that
is, lose its smoothness in finite time when Ω is the two-dimensional unit disk and M = S2.
Subsequently, in [27], the optimal blowup criterion for initial datum given in [17] was found and
it was proved that so-called reverse bubbling blowup may happen.

For “irregular solution”, a solution which may have jumps, two notion of solutions are
proposed; it depends on the choice of the distance to measure jumps of the function. These
choices deduce the different notions of a solution of constrained gradient system, which may not
coincide each other.

Weak solutions derived from “extrinsic distance” or “ambient distance”, the distance of the
Euclidean space in which the manifold M is embedded, is studied in [16, 20]. According to [16],
in a space of piecewise constant functions, the existence and the uniqueness of global-in-time
weak solution have been established when M is compact, the domain Ω is an interval with
finite length, and the initial datum u0 is piecewise constant. Moreover, in [16], finite stopping
phenomena of S1-valued total variation flows was also proved. On the contrary, for S2-valued
total variation flows, an example that does not stop in finite time was constructed in [20],
which will be reproduced numerically by our new numerical scheme and used for its numerical
verification in this paper.

Weak solutions derived from “intrinsic distance”, the geodesic distance of the target manifold
M , was studied in [13, 14, 5]. In [13], the existence and the uniqueness of global-in-time weak
solution have been proved when Ω is a bounded domain with Lipschitz boundary, M = S1, and
the initial datum u0 has finite total variation and does not have jumps greater than π. This
arguments and results were extended in [5] when the target manifold M is a planer curves. As
for the higher dimensional target manifold, the existence of global-in-time weak solution was
proved in [14] when the target manifold M is a hyperoctant Sℓ−1

+ of (ℓ− 1)-sphere.
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1.3. Numerical analysis and computation

Constrained discrete total variation flows, which mean spatially discrete models of constrained
total variation flows, have been studied in [34, 16, 19, 3, 11, 32].

In [34], discrete models of S1-valued TV flows and S2-valued TV flows based on the finite
difference method were studied. More precisely, their numerical scheme were proposed and
numerical computations were performed by them.

In [3, 11], Sℓ−1-valued regularized TV flows based on the finite element methods were studied.
In their works, the existence and the uniqueness of global-in-time solution of the discrete models
were established and numerical computations were performed. We remark that convergence of
the discrete model to the original model was also studied. However, its argument has some
flaws which were pointed in [13]. In these works, the Ginzburg–Landau type penalization term
is introduced for expressing the manifold constraint and the total variation term is relaxed.

In [16, 18, 19, 32], discrete models of constrained TV flows based on finite element method
with piecewise constant functions were studied. These discrete models itself are important
models of denoising of manifold-valued digital images. In case of one-dimensional spatial domain,
solutions of the discrete models coincide with irregular solutions of the corresponding original
model derived by ambient distance but not in the case of higher dimensional domain. In one-
dimensional spatial domain, the existence and the uniqueness of global-in-time solution to the
discrete models were established in [16]. Moreover, numerical computations of S1-valued discrete
models were performed. These discrete models are formulated as ordinary differential inclusions
which means differential equation with multi-valued velocity. There are two key ideas in [16] to
solve them. First one is computation of the canonical restriction of the multi-valued velocity.
Second one is to use facet-preserving phenomenon of flows. We also emphasize that these two
key ideas do not work in higher dimension rather than one. In such case, the existence and
the uniqueness of global-in-time solution of the discrete model were established in [18, 19, 32].
Numerical computations of these discrete models, however, were not performed.

1.4. Contribution of this paper

This paper is dedicated to study of a numerical scheme for simulation of a discrete model,
which is studied in [18, 19, 32], of constrained TV flow based on the finite element method with
piecewise constant functions. In particular, we propose a new numerical scheme, and study its
theoretical properties. We also perform numerical simulations based on the proposed scheme.
We overview main three contributions below:

1.4.1. New numerical scheme

A constrained discrete TV flow is formulated as a gradient flow in a suitable manifold. Hence,
one can use the minimizing movement scheme (see [2]) to simulate it. It is summarized as
follows:

Let H := (H, ⟨·, ·⟩H) be a real Hilbert space, E be a submanifold of H, F be an extended

real-valued functional on H. Let I := [0, T ) be a time interval and τ :=
{
τ (n)

}N
n=0

be a time
partition of I, that is, τ satisfies

0 =: τ (0) < τ (1) < . . . < τ (N−1) < τ (N) = T.

Let |τ | := sup{τ (n) − τ (n−1) | n = 1, . . . , N} denote the maximal width of τ . Then, a sequence{
u
(n)
τ

}N

n=0
in E generated by a minimizing movement scheme (MMS; τ , u0) of F is defined by
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the following procedure:

Algorithm 1 ((MMS; τ , u0): Minimizing Movement Scheme).

1. If n = 0, then set u
(0)
τ := u0.

2. If n ≥ 1, then u
(n)
τ is defined as a minimizer of the optimization problem (OP; τ (n) −

τ (n−1), u
(n−1)
τ ):

Minimize Φ(u; τ (n) − τ (n−1), u
(n−1)
τ ) subject to u ∈ E,

where

Φ(u; τ, v) := τF(u) +
1

2
∥u− v∥2H , u, v ∈ E, τ > 0.

In the viewpoint of numerical computation, it is not easy to solve the optimization prob-
lems in the scheme since the optimization problems are classified as Riemannian optimization
problems which are an optimization problems with Riemanninan manifold constraint. Theory of
smooth Riemannian optimization, that is, Riemannian optimization problem whose object func-
tion is smooth, is well-studied, and we refer to [1] for its systematical presentation. On the other
hand, theory of non-smooth Riemannian optimization is still scarcely explored as a subfield of
theory of Riemannian optimization. Here, we point out that the optimization problems derived
by minimizing movement scheme of constrained discrete total variation flows are non-smooth
Riemannian optimization problems. We refer to [24, 36, 8, 37] as its references. Moreover,
theory of non-smooth Riemannian optimization is generalized to theory of non-smooth and non-
convex optimization with separable structure in [25]. Although there are several studies in this
way, it is under development as compared with the linearly constrained problem. Therefore,
in this paper, we propose a numerical scheme (MMS†; τ , u0) of F each of whose step includes
a linearly constrained optimization problem instead of the Riemanninan constraint problem

(OP; τ (n) − τ (n−1), u
(n−1)
τ ). That is as follows:

Algorithm 2 ((MMS†; τ , u0): Proposed Scheme).

1. If n = 0, then set u
(0)
τ := u0.

2. If n ≥ 1, then u
(n)
τ ∈ E is defined as follows:

(a) Take X
(n−1)
τ as a minimizer of the optimization problem (OP†; τ (n) − τ (n−1), u

(n−1)
τ ):

Minimize Φ†(X; τ (n) − τ (n−1), u
(n−1)
τ ) subject to X ∈ T

u
(n−1)
τ

E,

where TuE(⊂ H) denotes the tangent space of E at u and

Φ†(X; τ, v) := τF(v +X) +
1

2
∥X∥2H , X ∈ H, v ∈ E, τ > 0.

(b) Set u
(n)
τ = Exp

u
(n−1)
τ

(X
(n−1)
τ ) by using “exponential map” Exp in E.

In fact, each problem (OP†; τ (n)−τ (n−1), u
(n−1)
τ ) is linearly constrained optimization problem

since T
u
(n−1)
τ

E is a linear space. Moreover, each (OP†; τ (n) − τ (n−1), u
(n−1)
τ ) is convex if Φ is

convex. We remark that the idea using the exponential map appears in the optimization problem
in matrix manifolds and in numerical computation of regularizing flows like constrained heat
flows (see [1, 6, 7]).
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1.4.2. Theoretical properties

In this paper, we study the scheme in two points. Those are ”energy decay” and ”error rate”
for the proposed scheme.

Energy decay is one of the fundamental properties for gradient flows. Hence, it is desirable
that a numerical scheme of gradient flows also inherits the energy decay inequality. In this
paper, we show that the proposed scheme satisfies the energy decay inequality if the maximal
time-width |τ | is sufficient small.

Error rates are important inequalities that indicate that the scheme can properly approximate
the original problem. In this paper, we will establish an error rate between a sequence generated
by the proposed scheme and the original constrained discrete TV flow. Since the proposed
scheme is a scheme derived from minimizing movement schemes, it can be expected that the
proposed scheme has a similar error rate of minimizing movement schemes. The result of error
analysis for the minimizing movement scheme appears in [2, 10, 30]. In the classical work [10]
of the error analysis in Banach space, O(

√
|τ |)-error estimate was obtained and it is improved

to O(|τ |)-error one in [30]. The similar estimate to [10] in a general metric space is shown
in [2]. Since our scheme contains the “localization” process, we cannot apply these previous
works directly. This estimate, which will be stated in Section 3.3, states that the error of the
Rothe interpolation is O(

√
|τ |). This estimate corresponds to those in [2, 10]. In this paper,

we establish O(
√
|τ |)-error estimate for the proposed scheme, which is corresponds to those

in [2, 10]. We point out that convergence of an appropriate time-interpolation of numerical
solutions to the original flow is obtained from a simple consequence of such an error estimate.

1.4.3. Numerical simulations

The proposed scheme is not enough to simulate constrained discrete TV flow since we need

to solve (OP†; τ (n) − τ (n−1), u
(n−1)
τ ) at each step. We overcome this situation by rewriting

(OP†; τ (n) − τ (n−1), u
(n−1)
τ ) as an iteration, and adopt alternating split Bregman iteration, pro-

posed by [21] , which is effective to the optimization problem with total variation. We refer
to [26, 29] for examples of application of this iteration to calculate the crystalline mean curva-
ture flow numerically. One can find a proof of convergence of this iteration in [31].

In this paper, we numerically reproduce the three properties of constrained TV flows. First
one is non-finite stopping phenomenon of S2-valued TV flow which is constructed in [20]. Second
one is an error rate of the proposed scheme which is established in this paper. Actually, the
example in [20] can be rewritten as a very simple ordinary differential equation, and we can
use explicit scheme to simulate it. Therefore, we simulate this example by two methods and
compare them to confirm that the error rate is reproduced. Third one is numerical observation
that a facet is preserving in most of evolution. In fact, we simulate S2-valued TV flows with
one spatial dimension, which is constructed in [20] and SO(3)-valued TV flows with two spatial
dimension.

1.4.4. Advantages

The proposed scheme has five advantages:
First, this scheme does not restrict the target manifold M . In many previous studies, the

target manifold M is fixed in advance, to sphere for example. Our method, however, can be
applied for any Riemannian manifold as target manifold M .

Second, this scheme does not restrict gradient flows. In this paper, we discuss the Neumann
problem of constrained TV flow equation only. However, the proposed scheme can be executed

5



if the linearly constrained problem can be solved at each step. Hence, we can apply the proposed
scheme to other constrained gradient flows such as the Dirichlet problem of constrained TV flow
equations and the Dirichlet (Neumann) problem of harmonic map flow equations.

Third, the proposed scheme can describe facet-preserving phenomena of constrained total
variation flows. In the numerical calculation of the total variation flow, we should pay attention
to whether a numerical scheme can adequately simulate the evolution of facet of numerical solu-
tions. Many schemes that have been proposed so far do not generally describe this phenomenon,
since the energies are smoothly regularized. However, the proposed scheme can properly describe
this phenomenon since the energies in the proposed scheme are convexly modified, not smoothly
regularized.

Fourth, the proposed scheme is numerically practical. Especially, if the exponential map
and the orthogonal projection π of the target manifold M can be calculated easily, the practical
advantage of our scheme is clear. In fact, if M is in class of orthogonal Stiefel manifolds, its
orthogonal projection π and its exponential map can be written explicitly. See also [1]. In
addition, as mentioned above, our method does not use the projection into the target manifold
which is sometimes hard to calculate.

Finally, the proposed scheme is well-defined and we shall prove its error rate as well as its
convergence.

1.5. Organization of this paper

The plan of this paper is as follows:
In Section 2, we recall notions and notations for describing constrained discrete TV flows

we study in this paper. More precisely, we recall notion of manifolds and define finite element
spaces consisting of piecewise constant functions, discrete total variation, and a discrete model
of constrained TV flows based on the finite element method with piecewise constant functions.

In Section 3, we propose a new numerical scheme and its theoretical properties ”energy
decay” and ”error rate”. In Section 3.1, we explain a new numerical scheme for constrained
discrete TV flows and its derivation. More precisely, we derive the proposed scheme starting from
the minimizing movement scheme for constrained discrete total variation flows. In Section 3.2,
we state that the proposed scheme has energy decay if the maximal time-width is sufficiently
small. In Section 3.3, we state that error rate between a sequence generated by the proposed
scheme and a constrained discrete TV flow. We see that this error rate implies that the proposed
scheme converges to constrained discrete total variation flows if the maximal time-width tends
to zero.

In Section 4, we prove the theoretical properties of the proposed scheme described in Sec-
tion 3. In Section 4.1, we explain the Rothe interpolations and its properties. This interpolation
is useful to prove energy decay and convergence rate of the proposed scheme. In Section 4.1.1,
we prove an energy decay for the proposed scheme inequality. In Section 4.1.2, we establish an
error rate of the proposed scheme. The key of its proof is to establish the evolution variational
inequalities, used in [2], of the Rothe interpolation of a sequence generated by the proposed
scheme and a solution of constrained discrete TV flow equation.

In Section 5, we perform the results of the numerical experiments by the proposed scheme.
More precisely, we rewrite the scheme into a practical version with alternating split Bregman
iteration, and we use it to simulate S2-valued and SO(3)-valued discrete total variation flows,
respectively.

In Appendix A, we explain the constant CM which appear in the inequality (2.2) in Section 2
is bounded by explicit quantities in submanifolds in Euclidean space.
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2. Preliminaries

Here and henceforth, we fix the bounded domain Ω in Rk with a Lipschitz boundary ∂Ω. In
this section, we recall notion of submanifolds in Euchlidean space, finite element spaces, and
constrained discrete total variation flows.

2.1. Notion and notations of submanifolds in Euclidean space

Let M be a C2-submanifold in Rℓ(ℓ ≥ 2). For p ∈M , we denote by TpM and T⊥
p M the tangent

and the normal spaces of M at p, respectively, and write πp and π⊥p for the the orthogonal

projections from Rℓ to TpM and T⊥
p M , respectively. We denote by IIp : TpM × TpM → T⊥

p M
the second fundamental form at p in M . Moreover, we define the diameter Diam(M) and the
curvature Curv(M) of M by

Diam(M) := sup
p,q∈M

∥p− q∥Rℓ , Curv(M) := sup
p∈M

sup
X∈TpM

IIp(X,X)

∥X∥2Rℓ

,

respectively. If M is compact, then Diam(M) and Curv(M) are finite. Given a point p ∈ M
and a velocity V ∈ TpM , we consider the ordinary differential equation in Rℓ, so-called geodesic
equation in M , for γ : [0,∞) → Rℓ:

d2γ

dt2
(t) − IIγ(t)

(
dγ

dt
(t),

dγ

dt
(t)

)
= 0, γ(0) = p,

dγ

dt
(0) = V. (2.1)

If M is compact, then Hopf–Rinow theorem implies that there exists a unique curve γp,V :
[0,∞) → M satisfying (2.1). The curve γp,V is called geodesic with an initial point p and
an initial velocity V . Then the exponential map expp : TpM → M at p is defined by the

formula expp(V ) := γp,V (1). Then, it holds that γp,V (t) = expp(tV ) for t ∈ [0,∞) since

s 7→ γp,tV (s/t) satisfies the geodisc equation (2.1) and uniqueness of solution of geodesic equation
holds. Moreover, set

CM := sup
p,q∈M

∥∥π⊥p (p− q)
∥∥
Rℓ

∥p− q∥2Rℓ

. (2.2)

If M is path-connected and compact, then the constant CM is finite. Actually, the constant CM

is bounded by an explicit constant. In Appendix A, we will explain this constant in detail.

2.2. Finite element spaces

First, we define partitions with rectangles. A family Ω∆ := {Ωα}α∈∆ of subsets of Ω is a
rectangular partition of Ω if Ω∆ satisfies that

(1) Hk

(
Ω \

∪
α∈∆

Ωα

)
= 0;
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(2) Hk(Ωα ∩ Ωβ) = 0 for α ̸= β, (α, β) ∈ ∆ × ∆;

(3) For each α ∈ ∆, there exists a rectangle Rα in Rk such that Ωα = Rα ∩ Ω.

Given a rectangular partition Ω∆ := {Ω∆}α∈∆ of Ω, we set

v(Ω∆) := inf
α∈∆

Lk(Ωα), V (Ω∆) := sup
α∈∆

Lk(Ωα). (2.3)

Moreover, we denote by e(∆) the set of edges associated with ∆ defined as

e(∆) :=
{
γ := {α, β} ⊂ ∆

∣∣∣ Hk−1(∂Ωα ∩ ∂Ωβ) ̸= 0, α ̸= β
}
.

For γ := {α, β} ∈ e(∆), we take a bijection Signγ : γ → {±1} and set Eγ := ∂Ωα ∩ ∂Ωβ.
Moreover, we define the set EΩ∆ of interior edges in Ω associated with Ω∆ and the sign Signe(∆)

on e(∆) by
EΩ∆ := {Eγ}γ∈e(∆) , Signe(∆) := {Signγ}γ∈e(∆) ,

respectively.

Subsequently, we define function spaces associated with a rectangular partition of Ω∆. Assume
that a rectangele partition Ω∆ of Ω is given. Then, we define a space H∆ of piecewise constant
Rℓ-valued functions on Ω associated with Ω∆ by

H∆ :=
{
U ∈ L2(Ω;Rℓ)

∣∣∣ U |Ωα
is constant for each Ωα ∈ Ω∆

}
.

We regard the space H∆ as a closed linear subspace of the Hilbert space L2(Ω;Rℓ) endowed with
the inner product defined by

⟨X,Y ⟩H∆
:= ⟨X,Y ⟩L2(Ω;Rℓ).

For U ∈ H∆, we denote the facet of U in H∆ by

Facet(U) := {{α, β} ∈ e(∆) | U |Ωα = U |Ωβ
}.

Moreover, we define a space HEΩ∆
of piecewise constant Rℓ-valued maps on

∪
EΩ∆ associated

with Ω∆ by

HEΩ∆
:=
{
U ∈ L2

(∪
EΩ∆;Rℓ

) ∣∣∣ U |Eγ is constant in Rℓ for each Eγ ∈ EΩ∆

}
.

Subsequently, we define a subset M∆ of H∆ by

M∆ :=
{
u ∈ L2(Ω;M)

∣∣ u|Ωα
is constant value for each Ωα ∈ Ω∆

}
.

for u ∈M∆, we denote by TuM∆ the tangent space of M∆ at u, i.e.,

TuM∆ :=
{
X ∈ L2(Ω;Rℓ)

∣∣∣ X(x) is in Tu(x)M for all x ∈ Ω
}
.

We regard the space M∆ as a submanifold of H∆, and the space TuM∆ the tangent space at
u of M∆. Then orthogonal projections and an exponential map in M∆ are naturally induced
from ones in M as follows. For u ∈M∆, we define the orthogonal projections Pu : H∆ → TuM∆,
P⊥
u : H∆ → T⊥

u M∆ by

(PuX)(x) := πu(x)(X(x)), (P⊥
uX)(x) := π⊥u(x)(X(x)), for a.e. x ∈ Ω,

and define an exponential map Expu : TuM∆ →M∆ by

(ExpuX)(x) := expu(x)(X(x)), for a.e. x ∈ Ω,

where expp denotes the exponential map of M at p ∈M .
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2.3. Constrained discrete total variation flows

We recall the constrained discrete total variation flow proposed in [18], here. The Neumann
problem (TVF;u0) is formally regarded as the gradient system of (isotropic) total variation:

TV (u) :=

∫
Ω
|Du|

:= sup
φ∈A

ℓ∑
j=1

∫
Ω
uj(∇ · φj) dx, u := (u1, . . . , uℓ) ∈ L1(Ω;Rℓ),

where
A :=

{
φ := (φ1, . . . , φℓ) ∈ C∞

0 (Ω;Rk×ℓ)
∣∣∣ ∥φ∥Rk×ℓ ≤ 1

}
.

The spatially discrete problems we consider in this paper are just regarded as the gradient
system of discrete (isotropic) total variation. Let us begin with the definition of discrete total
variation associated with a rectangular partition of Ω.

Let Ω∆ := {Ωα}α∈∆ be a rectangular partition of Ω. Then the discrete total variation functional
TV∆ : H∆ → R associated with Ω∆ is defined as follows:

TV∆(u) :=
∑

γ∈e(∆)

∥(D∆u)γ∥Rℓ Hk−1(Eγ), (2.4)

where D∆(:= D
Signe(∆)

∆ ) : H∆ → HEΩ∆
is the discrete gradient associated with Ω∆ which is

defined by

D∆u :=
∑

{α,β}∈e(∆)

(D∆u){α,β}1E{α,β}

:=
∑

{α,β}∈e(∆)

(Sign{α,β}(α)uα + Sign{α,β}(β)uβ)1E{α,β} , u :=
∑
j∈∆

uj1Ωj .

This definition is easily deduced from the original definition of TV (u) when u is a piecewise
constant function associated with Ω∆. We remark that the functional TV∆ is convex on H∆

but not differentiable at a point u whose facet Facet(u) is not empty. The next proposition is
immediate conclusion of definition of TV∆. Hence, we state this without its proof:

Proposition 2.1. The following statements hold:

1. TV∆ is a semi-norm in H∆.

2. TV∆ is Lipschitz continuous on H∆, that is,

Lip(TV∆) := sup
u,v∈H∆

|TV∆(u) − TV∆(v)|
∥u− v∥H∆

<∞.

3. TV∆(u) is equal to TV (u) for all u ∈ H∆.

Constrained discrete total variation flow (Constrained discrete TV flow for short) is the con-
strained L2-gradient flow of spatially discrete total variation. Since the discrete total variation
TV∆ is not differentiable but convex in H∆, we define gradients of constrained discrete TV flows
by

−Pu∂TV∆(u) := {−Puζ | ζ ∈ ∂TV∆(u)} , u ∈M∆, (2.5)
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where ∂TV∆ denotes the subdifferential of TV∆ in H∆, that is,

∂TV∆(u) :=
{
ζ ∈ H∆

∣∣∣ ⟨ζ, v − u⟩H∆
+ TV∆(u) ≤ TV∆(v) for all v ∈ H∆

}
, u ∈ H∆.

Then, we define the constrained discrete total variation flow equation:

Definition 2.1 (constrained discrete TV flows). Let M be a submanifold in Rℓ. Let u0 ∈ M∆

and I := [0, T ). A map u ∈ C(I;M∆) is said to be a solution to the discrete GK-model of
(TVF;u0) if u satisfies u ∈W 1,2(I;H∆) and

(DTVFGK ;u0)


du

dt
(t) ∈ −Pu(t)∂TV∆(u(t)) for a.e. t ∈ (0, T ),

u|t=0 = u0.

(2.6)

Here, we note that the existence and the uniqueness of global-in-time solution of the discrete
GK-model have been proved in [16, 18, 32]:

Proposition 2.2 ([16, 18, 32]). Let M be a compact submanifold in Rℓ. Let u0 ∈ M∆ and
I := [0, T ) be a time interval. Then, there exits a solution u ∈ C(I;M∆) to the discrete GK-
model of (TVF;u0). Moreover, assuming that M is path-connected, then u is the unique solution
of the discrete GK-model of (TVF;u0).

3. Proposed scheme and its theoretical properties

In this section, we propose a new numerical scheme based on a minimizing movement scheme
and state properties of the proposed scheme, ”energy decay” and ”error rate”.

3.1. Proposed scheme and its derivation

We seek a suitable time-discrete model of a constrained spatial discrete total variation flow
equation. Since constrained discrete total variation flows have a structure of constrained gradient
flows, we use the minimizing movement scheme in [2] in order to obtain the space-time discrete

model. First, we introduce notions and notations. A sequence τ :=
{
τ (n)

}N
n=0

be a partition of
I := [0, T ) if τ satisfies that

0 =: τ (0) < τ (1) < . . . < τ (N−1) < τ (N) := T

Moreover, |τ | := supn∈{1,...,N} |τ (n) − τ (n−1)| denotes the maximal width of τ .

Assume that a time partition of time interval τ :=
{
τ (n)

}N
n=0

and an initial datum u0 ∈M∆

are given. Then a minimizing movement scheme for the discrete GK-model of (TVF;u0) is as
follows:

Algorithm 3 ((MMS; τ , u0): Minimizing Movement Scheme). A sequence
{
u
(n)
τ

}N

n=0
in M∆ is

defined by the following scheme:

1. For n = 0, u
(0)
τ := u0.

2. For n ≥ 1, u
(n)
τ is a minimizer of the optimization problem (OP; τ (n) − τ (n−1), u

(n−1)
τ ):

Minimize Φ(u; τ (n) − τ (n−1), u
(n−1)
τ ) subject to u ∈M∆,

10



where

Φ(u; τ, v) := τ TV∆(u) +
1

2
∥u− v∥2H∆

, u, v ∈ H∆, τ > 0.

We determine u
(n)
τ by the optimization problem (OP; τ (n) − τ (n−1), u

(n−1)
τ ) when we use

the minimizing movements scheme. However, it is not easy to solve the problem (OP; τ (n) −
τ (n−1), u

(n−1)
τ ) generally since each the problem (OP; τ (n) − τ (n−1), u

(n−1)
τ ) is classified as non-

smooth Riemanian constraint optimization problem. This difficulty motivates us to replace

(OP; τ (n) − τ (n−1), u
(n−1)
τ ) with an optimization problem easier to handle. Our strategy is

to determine u
(n)
τ from tangent vector X ∈ T

u
(n−1)
τ

M∆ which is the optimizer of non-smooth

(convex) optimization problem (OP†; τ (n)− τ (n−1), u
(n−1)
τ ) with constraint into the tangent space

T
u
(n−1)
τ

M∆ by using the exponential map Exp
u
(n−1)
τ

: T
u
(n−1)
τ

M∆ →M∆.

Let us explain more explicitly. First, we rewrite the optimization problem (OP; τ (n) −
τ (n−1), u

(n−1)
τ ) to obtain the one with a constraint into the tangent space X ∈ T

u
(n−1)
τ

M∆.

Each u ∈M∆, thanks to the exponential map in M , can be rewritten as the pair of u
(n−1)
τ and

X ∈ T
u
(n−1)
τ

M∆ such that u = Exp
u
(n−1)
τ

(X), where Exp
u
(n−1)
τ

: T
u
(n−1)
τ

M∆ →M∆ is defined by

X(x) 7→ exp
u
(n−1)
τ (x)

(X(x)), for a.e. x ∈ Ω.

Since Exp
u
(n−1)
τ

(X) = u
(n−1)
τ + X + o(X), we ignore the term o(X) and insert u = u

(n−1)
τ + X

into Φ(u; τ (n) − τ (n−1), u
(n−1)
τ ) in (OP; τ (n) − τ (n−1), u

(n−1)
τ ) to obtain

Φ(u
(n−1)
τ +X; τ (n) − τ (n−1), u

(n−1)
τ ) := (τ (n) − τ (n−1))TV∆(u

(n−1)
τ +X) +

1

2
∥X∥2H∆

.

Now, we define the localized energy Φ†(·; τ, v) : H∆ → R, τ > 0, v ∈M∆ by the formula:

Φ†(X; τ, v) = τ TV∆(v +X) +
1

2
∥X∥2H∆

.

Here, we emphasize that Φ†(·; τ (n)− τ (n−1), u
(n−1)
τ ) is convex in H∆ since TV∆ is convex in H∆.

Subsequently, we consider the optimization problem (OP†; τ (n) − τ (n−1), u
(n−1)
τ ):

Minimize Φ†(X; τ (n) − τ (n−1), u
(n−1)
τ ) subject to X ∈ T

u
(n−1)
τ

M∆.

The problem (OP†; τ (n)−τ (n−1), u
(n−1)
τ ) is strictly convex because of strict convexity of Φ†(·; τ (n)−

τ (n−1), u
(n−1)
τ ) in the Hilbert space H∆ and linearity of the space T

u
(n−1)
τ

M∆. Hence, we can find

a unique minimizer X
(n−1)
τ of (OP†; τ (n) − τ (n−1), u

(n−1)
τ ). Finally, we associate X

(n−1)
τ with an

element of M∆ by the formula: u
(n)
τ := Exp

u
(n−1)
τ

(X
(n−1)
τ ). Summarizing the above arguments,

we have the following modified minimizing movement scheme (MMS†; τ , u0):

Algorithm 4 ((MMS†; τ , u0): Proposed Scheme). A sequence
{
u
(n)
τ

}N

n=0
in M∆ is defined by

the following procedure:

1. For n = 0: u
(0)
τ := u0.

2. For n ≥ 1: u
(n)
τ is defined by the following steps:
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(a) Find the minimizer X
(n−1)
τ of the optimization problem (OP†; τ (n) − τ (n−1), u

(n−1)
τ ):

Minimize Φ†(X; τ (n) − τ (n−1), u
(n−1)
τ ) subject to X ∈ T

u
(n−1)
τ

M∆,

where Φ†(X; τ, v) : H∆ → R1, τ > 0, v ∈M∆ is defined by

Φ†(·; τ, v) := τ TV∆(v +X) +
1

2
∥X∥2H∆

.

(b) Set u
(n)
τ := Exp

u
(n−1)
τ

(X
(n−1)
τ ).

The proposed scheme is always well-defined since the minimizer is unique. Here is the statement:

Proposition 3.1 (Well-definedness of the proposed scheme). Let M be a path-connected and

compact submanifold of Rℓ. Let τ :=
{
τ (n)

}N
n=0

be a time partition of I and u0 ∈ M∆ be an

initial datum. Then sequences
{
u
(n)
τ

}N

n=0
,
{
X

(n)
τ

}N−1

n=0
in the proposed scheme (MMS†; τ ;u0)

are well-defined, and satisfy

1. X
(n−1)
τ ∈ −(τ (n) − τ (n−1))P

u
(n−1)
τ

∂TV∆(u
(n−1)
τ +X

(n−1)
τ ),

2.
∥∥∥X(n−1)

τ

∥∥∥
H∆

≤ (τ (n) − τ (n−1)) Lip(TV∆)

for all n ∈ {1, . . . , N}.

Remark 3.1 (Why the proposed scheme describe facet-preserving phenomena). In the numer-
ical calculation of (constrained) total variation flows, we should pay attention to whether the
scheme can adequately simulate the evolution of facet of numerical solutions. We would like to
briefly explain why this scheme can describe facet-preserving phenomena: Given u ∈ M∆ and
X ∈ TuM∆, the total variation of u+X is decomposed into

TV∆(u+X) =
∑

∂∆\Facet(u)

∥(D∆(u+X))γ∥Rℓ Hk−1(Eγ)

+
∑

γ∈Facet(u)

∥(D∆X)γ∥Rℓ Hk−1(Eγ).

Hence, the minimizer X∗ ∈ TuM∆ of the optimization problem

Minimize τ TV∆(u+X) +
1

2
∥X∥2H∆

subject to X ∈ TuM∆,

tends to have the same facet of u, that is, Facet(u) = Facet(X∗). Therefore, Expu(X∗) also
tends to have same facet of u.

3.2. Energy decay

Total variation decays along corresponding constrained TV flows. Hence, it is desirable that
the proposed scheme also has this property. In fact, the proposed scheme has this property if
maximal width is small enough.
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Proposition 3.2 (Energy Decay). Let M be a path-connected and compact submanifold of Rℓ.

Let τ :=
{
τ (n)

}N
n=0

be a time partition of I and u0 ∈ M∆ be an initial datum. Let
{
u
(n)
τ

}N

n=0

be a sequence generated by the proposed scheme (MMS†; τ , u0). If

|τ | Curv(M) · Lip(TV∆) ≤ 1,

then
TV∆(u

(n+1)
τ ) ≤ TV∆(u

(n)
τ )

for all n = 0, . . . , N − 1.

3.3. Error rate

Here, we state an error rate between sequence generated by (MMS†; τ , u0) and solutions to the
discrete GK-model of (TVF;u0) when an initial datum u0 ∈M∆ is given.

Theorem 3.1 (Error Rate). Let M be a path-connected and compact submanifold in Rℓ. Let

I := [0, T ) be a time interval and τ :=
{
τ (n)

}N
n=0

be a time partition of I. Fix two initial
data u10, u

2
0 ∈ M∆. Let u ∈ C(I;M∆) be a solution of the discrete GK-model of (TVF;u10) and{

u
(n)
τ

}N

n=0
be a sequence generated by the proposed scheme (MMS†; τ , u20). Then,

∥∥∥u(n)τ − u(τ (n))
∥∥∥2
H∆

≤ eC0τ (n) ∥∥u10 − u20
∥∥2
H∆

+ τ (n)eC0τ (n)
(C1|τ | + C2|τ |2) (3.1)

for all n ∈ {0, 1, . . . , N}, where

C0 := 2 CM v(Ω∆)−1 Lip(TV∆), (3.2)

C1 :=

(
2 +

Diam(M∆) Curv(M)

2
+ 2CM Diam(M∆) v(Ω∆)−1

)
Lip(TV∆)2, (3.3)

C2 :=

(
3

2
Curv(M) + CM v(Ω∆)−1

)
Lip(TV∆)3. (3.4)

Remark 3.2. In this theorem, we cannot remove the exponentially growth term eCτ (n)
from the

right hand side of (3.1), because the functional TV∆ defined by (2.4) is generally semi-convex
functional and not convex under manifold constraint.

4. Proof of theoretical properties of the proposed scheme

In this section, we prove Proposition 3.2 and Theorem 3.1.

4.1. Rothe interpolation

We consider the Rothe interpolation of a sequences generated by the proposed scheme. This
interpolation is useful to prove energy decay in Proposition 3.2 and convergence rate in Theo-
rem 3.1.
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Let I := [0, T ) be a time interval, τ :=
{
τ (n)

}N
n=0

be a partition of I, and |τ | be the maximal

width of τ . Then we define the time interpolation functions
{
ℓ
(n)
τ

}N−1

n=0
: I → [0, 1) of τ by

ℓ
(n)
τ (t) :=

t− τ (n)

τ (n+1) − τ (n)
1[τ (n),τ (n+1))(t), t ∈ I, n ∈ {0, 1, . . . , N − 1}. (4.1)

Let u0 ∈ M∆ be a an initial datum. Let
{
u
(n)
τ

}N

n=0
be a sequence generated by the proposed

scheme (MMS†; τ , u0). Then, we define the Rothe interpolation uτ : I → M∆ of
{
u
(n)
τ

}N

n=0
as

follows:

uτ (t) :=
N−1∑
n=0

(
Exp

u
(n)
τ

(ℓ
(n)
τ (t)X

(n)
τ )

)
1[τ (n),τ (n+1))(t), t ∈ I.

Proposition 4.1 (Properties of Rothe interpolation). Let M be a path-connected and compact

submanifold in Rℓ. Let τ :=
{
τ (n)

}N
n=0

be a time partition of a time interval I and u0 ∈M∆ be an

initial datum. Let
{
u
(n)
τ

}N

n=0
,
{
X

(n)
τ

}N−1

n=0
be sequences in the proposed scheme (MMS†; τ , u0).

Let uτ be the Rothe interpolation of
{
u
(n)
τ

}N

n=0
. Then, for each n = 0, . . . , N − 1,

1. the curve uτ |[τ (n),τ (n+1)) is C
2-smooth,

2. the velocity of uτ |[τ (n),τ (n+1)) satisfies

∥∥∥∥∥ duτ |[τ (n),τ (n+1))

dt

∥∥∥∥∥
H∆

=

∥∥∥X(n)
τ

∥∥∥
H∆

τ (n+1) − τ (n)
, (4.2)

3. the acceleration of uτ |[τ (n),τ (n+1)) satisfies that

∥∥∥∥∥ d2uτ |[τ (n),τ (n+1))

dt2

∥∥∥∥∥
H∆

≤
Curv(M) ·

∥∥∥X(n)
τ

∥∥∥2
H∆

(τ (n+1) − τ (n))2
. (4.3)

Proof. Fix n ∈ {1, . . . , N − 1}.

(1): Since uτ |[τ (n),τ (n+1)) = exp
u
(n)
τ

(ℓ
(n)
τ X

(n)
τ ), uτ is C2-smooth.

(2): Since a speed of geodesic is constant, we have

∥∥∥∥∥ duτ |[τ (n),τ (n+1))

dt

∥∥∥∥∥
H∆

=

∥∥∥∥ duτ
dt

(τ (n))

∥∥∥∥
H∆

=

∥∥∥X(n)
τ

∥∥∥
H∆

τ (n+1) − τ (n)
.

(3): Since u
(n)
τ and u

(n+1)
τ is joined by exponential map, uτ |[τ (n),τ (n+1)) satisfies the geodesic

equation (2.1), that is,

d2uτ |[τ (n),τ (n+1))

dt2
− IIuτ |[τ(n),τ(n+1))

(
duτ |[τ (n),τ (n+1))

dt
,

duτ
dt

|[τ (n),τ (n+1))

)
= 0,
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uτ |[τ (n),τ (n+1))(τ
(n)) = u

(n)
τ ,

duτ |[τ (n),τ (n+1))

dt
(τ (n)) =

X
(n)
τ

τ (n+1) − τ (n)
.

Hence, we have∥∥∥∥∥ d2uτ |[τ (n),τ (n+1))

dt2

∥∥∥∥∥
H∆

=

∥∥∥∥∥IIuτ |[τ(n),τ(n+1))

(
duτ |[τ (n),τ (n+1))

dt
,

duτ |[τ (n),τ (n+1))

dt

)∥∥∥∥∥
H∆

.

The definition of curvature of M implies that∥∥∥∥∥ d2uτ |[τ (n),τ (n+1))

dt2

∥∥∥∥∥
H∆

≤ Curv(M)

∥∥∥∥∥ duτ |[τ (n),τ (n+1))

dt

∥∥∥∥∥
2

H∆

.

The equality (4.2) implies that∥∥∥∥∥ d2uτ |[τ (n),τ (n+1))

dt2
(t)

∥∥∥∥∥
H∆

≤
Curv(M)

∥∥∥X(n)
τ

∥∥∥2
H∆

(τ (n+1) − τ (n))2
.

4.1.1. Proof of energy decay

We prove Proposition 3.2, here.

Proof. Fix n ∈ {0, . . . , N − 1}. Then expanding u
(n+1)
τ = Exp

u
(n)
τ

(X
(n)
τ ) in Taylor series implies

that

u
(n+1)
τ = u

(n)
τ +X

(n)
τ +

∫ τ (n+1)

τ (n)

(τ (n+1) − s)
d2uτ
dt2

(s) ds.

The above formula and the triangle inequality imply

TV∆(u
(n+1)
τ ) ≤ TV∆(u

(n)
τ +X

(n)
τ ) + TV∆

(∫ τ (n+1)

τ (n)

(τ (n+1) − s)
d2uτ
dt2

(s) ds

)
.

Since X
(n)
τ is the minimizer of (OP†; τ (n+1) − τ (n), u

(n)
τ ), we have

TV∆(u
(n+1)
τ ) ≤ TV∆(u

(n)
τ ) − 1

2

∥∥∥X(n)
τ

∥∥∥2
H∆

τ (n+1) − τ (n)
+ TV∆

(∫ τ (n+1)

τ (n)

(τ (n+1) − s)
d2uτ
dt2

(s) ds

)
.

By applying Lipschitz continuity of TV∆ and the Minkowski inequality for integrals, we have

TV∆(u
(n+1)
τ ) ≤ TV∆(u

(n)
τ )

− 1

2

∥∥∥X(n)
τ

∥∥∥2
H∆

τ (n+1) − τ (n)
+ Lip(TV∆)

∫ τ (n+1)

τ (n)

(τ (n+1) − s)

∥∥∥∥ d2uτ
dt2

(s)

∥∥∥∥
H∆

ds.

Proposition 4.1 implies that

TV∆(u
(n+1)
τ ) ≤ TV∆(u

(n)
τ )

− 1

2

∥∥∥X(n)
τ

∥∥∥2
H∆

τ (n+1) − τ (n)
+

1

2
Lip(TV∆) Curv(M)

∥∥∥X(n)
τ

∥∥∥2
H∆

.

Since |τ | Curv(M) Lip(TV∆) ≤ 1, we have TV∆(u
(n+1)
τ ) ≤ TV∆(u

(n)
τ ).
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4.1.2. Proof of error rate

We prove Theorem 3.1, here. We immediately see that it suffices to prove the following lemma
on the error estimate between the Rothe interpolation uτ and u to prove Theorem 3.1:

Lemma 4.1 (Error rate of Rothe interpolation). Let M be a path-connected and compact sub-

manifold in Rℓ. Let I := [0, T ) be a time interval and τ :=
{
τ (n)

}N
n=0

be a time partition of I.
Fix two initial data u10, u

2
0 ∈ M∆. Let u ∈ C(I;M∆) be a solution of the discrete GK-model of

(TVF;u10) and uτ ∈ C(I;M∆) be the Rothe interpolation of the sequence
{
u
(n)
τ

}N

n=0
generated

by the proposed scheme (MMS†; τ , u20). Then u and uτ satisfy that

∥uτ (t) − u(t)∥2H∆
≤ eC0t

∥∥u10 − u20
∥∥2
H∆

+ teC0t(C1|τ | + C2|τ |2), (4.4)

for all t ∈ I, where the constants C0, C1, C2 are the same as Theorem 3.1.

Especially in this theorem, setting u10 = u20 in (4.4), we have a convergence rate

sup
t∈I

∥uτ (t) − u(t)∥H∆
≤
√
TeC0T (C1|τ | + C2|τ |2).

In particular, we obtain that uτ converges to u in C(I;M∆) as |τ | tends to 0.

The key estimates to prove Theorem 4.1 are the evolution variational inequalities for uτ and
u. First, we state an evolution variational inequality for uτ :

Proposition 4.2 (EVI for Rothe interpolation). Let M be a path-connected and compact sub-

manifold in Rℓ. Let I := [0, T ) be a time interval and τ :=
{
τ (n)

}N
n=0

be a time partition of I.

Let u0 ∈ M∆. Let uτ : I → M∆ be the Rothe interpolation of a sequence
{
u
(n)
τ

}N

n=0
generated

by the proposed scheme (MMS†; τ , u0) Then for each v ∈M∆, uτ satisfies that

1

2

d

dt
∥uτ − v∥2H∆

≤ TV∆(v) − TV∆(uτ ) +
C0

2
∥uτ − v∥2H∆

+ C1|τ | + C2|τ |2 (4.5)

for all t ∈ I \ τ , where C0, C1, C2 are the same constant in Theorem 3.1.

Proof. Let v ∈ M∆. Assume that t ∈
[
τ (n), τ (n+1)

)
for some n = 0, . . . , N − 1. In the rest,

we argue for fixed time t ∈
[
τ (n), τ (n+1)

)
and we do not specify the dependence on time for

simplicity of notation.

We will compute
1

2

d

dt
∥uτ − v∥2H∆

by splitting it into a semi-monotone term and an error

term. Expanding duτ/ dt in Taylor series implies that

duτ
dt

=
X

(n)
τ

τ (n+1) − τ (n)
+

∫ t

τ (n)

d2uτ
dt2

(s) ds,

and inserting this into
1

2

d

dt
∥uτ − v∥2H∆

=

⟨
duτ
dt

, uτ − v

⟩
H∆

,

then

1

2

d

dt
∥uτ − v∥2H∆

=

⟨
X

(n)
τ

τ (n+1) − τ (n)
, uτ − v

⟩
H∆

+

∫ t

τ (n)

⟨
d2uτ
dt2

(s), uτ − v

⟩
H∆

ds

=: I + II.

(4.6)
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Moreover, we split the term I into a monotone term and a non-monotone term. Proposition 3.1
implies that

I =
⟨
−P

u
(n)
τ
∂TV∆(u

(n)
τ +X

(n)
τ ), uτ − v

⟩
H∆

.

Self adjointness of P
u
(n)
τ

and the formula P
u
(n)
τ
w = w − P⊥

u
(n)
τ

w,w ∈ H∆ imply that

I =
⟨
∂TV∆(u

(n)
τ +X

(n)
τ ), v − uτ

⟩
H∆

+
⟨
∂TV∆(uτ +X

(n)
τ ),P⊥

u
(n)
τ

(uτ − v)
⟩
H∆

=: I1 + I2.

(4.7)

We plug equality (4.6) and (4.7) to obtain

1

2

d

dt
∥uτ − v∥2H∆

= I1 + I2 + II. (4.8)

We shall estimate I1, I2 and II, respectively. We claim that

I1 ≤ TV∆(v) − TV∆(uτ ) + 2 Lip(TV∆)2|τ | + Curv(M) Lip(TV∆)3|τ |2, (4.9)

I2 ≤ CM v(Ω∆)−1 Lip(TV∆) ∥v − uτ∥2H∆

+ 2 CM v(Ω∆)−1 Diam(M∆) Lip(TV∆)2 |τ | (4.10)

+

(
Curv(M)

2
+ CM v(Ω∆)−1

)
Lip(TV∆)3|τ |2,

II ≤ Curv(M) Diam(M∆) Lip(TV∆)2 |τ |. (4.11)

First, we estimate the term I1. Since v − uτ = (v − uτ + u
(n)
τ + X

(n)
τ ) − (u

(n)
τ + X

(n)
τ ), we

have
I1 =

⟨
∂TV∆(u

(n)
τ +X

(n)
τ ), (v − uτ + u

(n)
τ +X

(n)
τ ) − (u

(n)
τ +X

(n)
τ )

⟩
H∆

.

Since ∂TV∆(u
(n)
τ +X

(n)
τ ) is a subgradient of TV∆ at u

(n)
τ +X

(n)
τ , we have

I1 ≤ TV∆(v − uτ + u
(n)
τ +X

(n)
τ ) − TV∆(u

(n)
τ +X

(n)
τ ).

Since uτ = u
(n)
τ + t−τ (n)

τ (n+1)−τ(n)X
(n)
τ +

∫ t
τ (n)(t− s) d2uτ

dt2
(s) ds, we have

I1 ≤ TV∆

(
v +

(
1 − t− τ (n)

τ (n+1) − τ (n)

)
X

(n)
τ −

∫ t

τ (n)

(t− s)
d2uτ
dt2

(s) ds

)

− TV∆

(
uτ −

(
1 − t− τ (n)

τ (n+1) − τ (n)

)
X

(n)
τ −

∫ t

τ (n)

(t− s)
d2uτ
dt2

(s) ds

)
.

Here, we applies the reverse triangle inequality, TV∆ (x− y) ≥ |TV∆ (x) − TV∆ (y) | for x, y ∈
H∆, to the underlined part in the above inequality to obtain

I1 ≤ TV∆

(
v +

(
1 − t− τ (n)

τ (n+1) − τ (n)

)
X

(n)
τ −

∫ t

τ (n)

(t− s)
d2uτ
dt2

(s) ds

)

− TV∆(uτ ) + TV∆

((
1 − t− τ (n)

τ (n+1) − τ (n)

)
X

(n)
τ +

∫ t

τ (n)

(t− s)
d2uτ
dt2

(s) ds

)
.

17



The triangle inequality for TV∆ implies that

I1 ≤ TV∆(v) − TV∆(uτ )

+ 2 TV∆

((
1 − t− τ (n)

τ (n+1) − τ (n)

)
X

(n)
τ

)

+ 2 TV∆

(∫ t

τ (n)

(t− s)
d2uτ
dt2

(s) ds

)
.

Proposition 2.1 implies that

I1 ≤ TV∆(v) − TV∆(uτ )

+ 2 Lip(TV∆)

∥∥∥∥∥
(

1 − t− τ (n)

τ (n+1) − τ (n)

)
X

(n)
τ

∥∥∥∥∥
H∆

+ 2 Lip(TV∆)

∫ t

τ (n)

(t− s)

∥∥∥∥ d2uτ
dt2

(s)

∥∥∥∥
H∆

ds.

Proposition 4.1 implies that

I1 ≤ TV∆(v) − TV∆(uτ )

+ 2 Lip(TV∆)2 |τ | + Curv(M) Lip(TV∆)3 |τ |2.
(4.12)

This is the inequality (4.9).

Next, we estimate the term I2. The Cauchy–Schwarz inequality and Proposition 2.1 imply
that

I2 ≤ Lip(TV∆) ·
∥∥∥P⊥

u
(n)
τ

(v − uτ )
∥∥∥
H∆

. (4.13)

Since uτ = u
(n)
τ + t−τ (n)

(τ (n+1)−τ (n))
X

(n)
τ +

∫ t
τ (n)(t− s) d2uτ

dt2
(s) ds, we have

I2 ≤ Lip(TV∆) ·

∥∥∥∥∥P⊥
u
(n)
τ

(
(v − u

(n)
τ ) − t− τ (n)

(τ (n+1) − τ (n))
X

(n)
τ −

∫ t

τ (n)

(t− s)
d2uτ
dt2

(s) ds

)∥∥∥∥∥
H∆

.

Linearity of P⊥
u
(n)
τ

and X
(n)
τ ∈ T

u
(n)
τ
M∆ imply that

I2 ≤ Lip(TV∆) ·
∥∥∥∥P⊥

u
(n)
τ

(v − u
(n)
τ ) −

∫ t

τ (n)

(t− s)P⊥
u
(n)
τ

d2uτ
dt2

(s) ds

∥∥∥∥
H∆

.

The triangle inequality for the norm of H∆, and the Minkowski inequality for integrals imply
that

I2 ≤ Lip(TV∆) ·

(∥∥∥P⊥
u
(n)
τ

(v − u
(n)
τ )
∥∥∥
H∆

+

∫ t

τ (n)

(t− s)

∥∥∥∥P⊥
u
(n)
τ

d2uτ
dt2

(s)

∥∥∥∥
H∆

ds

)
. (4.14)

Here, we split to estimate. First, we focus on the term
∥∥∥P⊥

u
(n)
τ

(v − u
(n)
τ )
∥∥∥
H∆

in (4.14). The

inequality (2.2) implies that∥∥∥P⊥
u
(n)
τ

(v − u
(n)
τ )
∥∥∥
H∆

≤ CM

∥∥∥v − u
(n)
τ

∥∥∥2
L4(Ω;Rℓ)

, (4.15)

18



where CM is a constant which appears in (2.2). Moreover, monotonicity of the norms Lp, 1 ≤
p ≤ ∞ implies that ∥∥∥P⊥

u
(n)
τ

(v − u
(n)
τ )
∥∥∥
H∆

≤ CMv(Ω∆)−1
∥∥∥v − u

(n)
τ

∥∥∥2
H∆

, (4.16)

where v(Ω∆) is defined as (2.3). We split v − u
(n)
τ = v − uτ + uτ − u

(n)
τ and use bilineality of

the inner product of H∆ to obtain∥∥∥P⊥
u
(n)
τ

(v − u
(n)
τ )
∥∥∥
H∆

≤ CMv(Ω∆)−1(∥v − uτ∥2H∆

− 2
⟨
v − uτ , uτ − u

(n)
τ

⟩
H∆

+
∥∥∥uτ − u

(n)
τ

∥∥∥2
H∆

).

The Cauchy–Schwarz inequality and the definition of the diameter of submanifolds imply that∥∥∥P⊥
u
(n)
τ

(v − u
(n)
τ )
∥∥∥
H∆

≤ CMv(Ω∆)−1(∥v − uτ∥2H∆

+ 2 Diam(M∆)
∥∥∥uτ − u

(n)
τ

∥∥∥
H∆

+
∥∥∥uτ − u

(n)
τ

∥∥∥2
H∆

).

Since uτ = u
(n)
τ +

∫ t
τ (n)

duτ
ds ds, we have∥∥∥P⊥

u
(n)
τ

(v − u
(n)
τ )
∥∥∥
H∆

≤ CMv(Ω∆)−1(∥v − uτ∥2H∆

+ 2 Diam(M∆)

∥∥∥∥∫ t

τ (n)

duτ
dt

ds

∥∥∥∥
H∆

+

∥∥∥∥∫ t

τ (n)

duτ
dt

ds

∥∥∥∥2
H∆

).

The Minkowski inequality for integrals, Proposition 4.1 and Proposition 3.1 imply that∥∥∥P⊥
u
(n)
τ

(v − u
(n)
τ )
∥∥∥
H∆

≤ CMv(Ω∆)−1(∥v − uτ∥2H∆

+ 2 |τ | Lip(TV∆) Diam(M∆) |τ |2 Lip(TV∆)2).
(4.17)

Next, we focus on the term

∫ t

τ (n)

(t−s)
∥∥∥∥P⊥

u
(n)
τ

d2uτ
dt2

(s)

∥∥∥∥
H∆

ds in (4.14). Since the operator norm

in H∆ of P⊥
u
(n)
τ

is bounded by 1, we have∫ t

τ (n)

(t− s)

∥∥∥∥P⊥
u
(n)
τ

d2uτ
dt2

(s)

∥∥∥∥
H∆

ds ≤
∫ t

τ (n)

(t− s)

∥∥∥∥ d2uτ
dt2

(s)

∥∥∥∥
H∆

ds.

Proposition 4.1 and Proposition 3.1 imply that∫ t

τ (n)

(t− s)

∥∥∥∥P⊥
u
(n)
τ

d2uτ
dt2

(s)

∥∥∥∥
H∆

ds ≤ Curv(M) · Lip(TV∆)2

2
|τ |2. (4.18)

We plug the inequalities (4.13), (4.17) and (4.18) to obtain the inequality (4.10).

Next, we estimate the term II. The Cauchy–Schwarz inequality and the Minkowski inequal-
ity for integrals imply that

II ≤ Diam(M∆)

∫ t

τ (n)

∥∥∥∥ d2uτ
dt2

(s)

∥∥∥∥
H∆

ds.
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Proposition 4.1 and Proposition 3.1 imply that

II ≤ Curv(M) Diam(M∆) Lip(TV∆)2 |τ |.

This is the inequality (4.11).

Finally, we combine inequalities (4.8), (4.9), (4.10) and (4.11) to obtain

1

2

d

dt
∥uτ − v∥2H∆

≤ TV∆(v) − TV∆(uτ ) +
C0

2
∥uτ − v∥2H∆

+ C1|τ | + C2|τ |2,

where C0, C1 and C2 are given in (3.2), (3.3) and (3.4), respectively, which completes the
proof.

Next, we state a evolution variational inequality for solution u to the discrete GK-model of
(TVF;u0):

Proposition 4.3 (EVI for solutions). Let M be a path-connected and compact submanifold in
Rℓ. Let I := [0, T ) be a time interval. Let u0 ∈M∆. For each v ∈M∆, a solution u ∈ C(I;M∆)
of the discrete GK-model of (TVF;u0) satisfies

1

2

d

dt
∥u− v∥2H∆

≤ TV∆(v) − TV∆(u) +
C0

2
∥u− v∥2H∆

(4.19)

for a.e. t ∈ (0, T ), where C0 is the same constant in Proposition 4.2.

We omit a proof of Proposition 4.3 since it is proved by a simple argument of proof of Propo-
sition 4.2. Now, we will finish the proof of Lemma 4.1.

Proof of Lemma 4.1: Fix t ∈ (0, T ). By substituting v = uτ (t) into (4.19) and v = u(t) into
(4.5) and adding these two inequality, we obtain

d

dt
∥u(t) − uτ (t)∥2H∆

≤ C0 ∥u(t) − uτ (t)∥2H∆
+ C1|τ | + C2|τ |2,

where C1 and C2 are given in (3.3) and (3.4), respectively. By the Gronwall’s inequality, we
have

∥uτ (t) − u(t)∥2H∆
≤ etC0(∥uτ (0) − u(0)∥2H∆

+ t(C1|τ | + C2|τ |2))

for all t ∈ [0, T ), which proves Lemma 4.1.

5. Numerical results

In this section, we show the numerical results by the proposed scheme.

5.1. The proposed scheme with alternating split Bregman iteration

In order to perform the proposed scheme, we need to solve the minimization problem in each
iteration. We rewrite the proposed scheme to the one with alternating split Bregman iteration
which includes the simpler optimization problems. Let us recall the proposed scheme.

Let τ :=
{
τ (n)

}N
n=0

be a partiation of a time interval I := [0, T ) and u0 ∈M∆.
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Algorithm 5 ((MMS†; τ , u0): Proposed Scheme). A sequence
{
u
(n)
τ

}N

n=0
in M∆ is defined by

the following procedure:

1. For n = 0: u
(0)
τ := u0.

2. For n ≥ 1: u
(n)
τ is defined by the following steps:

(a) Find the minimizer X
(n−1)
τ ∈ T

u
(n−1)
τ

M∆ of the optimization problem (OP†; τ (n) −

τ (n−1), u
(n−1)
τ ):

Minimize Φ†(X; τ (n) − τ (n−1), u
(n−1)
τ ) subject to X ∈ T

u
(n−1)
τ

M∆,

where Φ†(X; τ, v) := τ TV∆(v +X) + 1
2 ∥X∥2H∆

.

(b) Set u
(n)
τ = Exp

u
(n−1)
τ

(X
(n−1)
τ ).

We replace the optimization problem (OP†; τ (n)−τ (n−1), u
(n−1)
τ ) to one with alternating split

Bregman iteration which is proposed in [21] to solve the L1 regularization problem efficiently.

First, we apply a splitting method to (OP†; τ (n) − τ (n−1), u
(n−1)
τ ), and we obtain the split

formulation (OP‡; τ (n) − τ (n−1), u
(n−1)
τ ):

min
X∈H0,Z∈H1

Φ‡(X,Z; τ (n) − τ (n−1), u
(n−1)
τ ) subject to Z = W(X) + Y (u

(n−1)
τ ),

where Φ‡(·, ·; τ, v) : H0 ×H1 → R ∪ {∞}, τ > 0, v ∈M∆ is defined by

Φ‡(X,Z; τ, v) := τ
(
∥Z0∥L1(∪EΩ∆;Rℓ) + ITvM∆

(Z1)
)

+
1

2
∥X∥2H∆

,

ITvM∆
(X) :=

{
0, if X ∈ TvM∆,
∞, otherwise,

W(X) :=

(
D∆X
X

)
, Y (v) :=

(
D∆v

0

)
, Z =

(
Z0

Z1

)
,

in which H0 := H∆ and H1 := HEΩ∆
× H∆. Subsequently, we apply Bregman iteration with

alternating minimization method to (OP‡; τ (n) − τ (n−1), u
(n−1)
τ ), and we obtain the following

alternating split Bregman iteration of (OP†; τ (n) − τ (n−1), u
(n−1)
τ ):

Algorithm 6 ((OP‡; τ (n) − τ (n−1), u
(n−1)
τ ): Optimization with Alternating Split Bregman It-

eration). Set X
(n−1)
τ := lim

k→∞
X(k), where the sequence

{
X(k)

}∞
k=0

is defined by the following

procedure:

1. For k = 0: Set X(0) ∈ H0, Z
(0) ∈ H1, B

(0) ∈ H1 and ρ > 0.

2. For k ≥ 1:

(a) X(k) := arg min
X∈H0

Φ‡
ρ

(
X,Z(k−1), B(k−1); τ (n) − τ (n−1), u

(n−1)
τ

)
,

(b) Z(k) := arg min
Z∈H1

Φ‡
ρ

(
X(k), Z,B(k−1); τ (n) − τ (n−1), u

(n−1)
τ

)
,
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(c) B(k) := B(k−1) + W(X(k)) + Y (u
(n−1)
τ ) − Z(k).

Here, Φ‡
ρ(·, ·, ·; τ, v) : H0 ×H1 ×H1 → R ∪ {∞} τ > 0, v ∈M∆ is defined by

Φ‡
ρ (X,Z,B; τ, v) := Φ‡ (X,Z; τ, v) +

ρ

2
∥Z −W(X) − Y (v) −B∥2H1

.

Here, we note that

• both X(k) and Z(k) in the above iterations are solved explicitly when the orthogonal pro-
jections and the exponential map in M have explicit formulae. The orthogonal projection
and the exponential map of an orthogonal Stiefel manifold are written explicitly. S2 and
SO(3) are in class of orthogonal Stiefel manifolds.

• X(k) converges to the minimizer of (OP†; τ (n) − τ (n−1), u
(n−1)
τ ) in H0 thanks to Corollary

2.4.10 in [31].

Finally, we state the proposed scheme with alternating split Bregman iteration:

Algorithm 7 ((MMS‡; τ , u0): Proposed Scheme with Alternating Split Bregman iteration). A

sequence
{
u
(n)
τ

}N

n=0
in M∆ is defined by the following procedure:

1. For n = 0: u
(0)
τ := u0.

2. For n ≥ 1: u
(n)
τ is defined by the following steps:

(a) Set X
(n−1)
τ := lim

k→∞
X(k) ∈ T

u
(n−1)
τ

M∆, where the sequence
{
X(k)

}∞
k=0

is defined by

the following procedure:

i. For k = 0: Set X(0) ∈ H0, Z
(0) ∈ H1 and B(0) ∈ H1.

ii. For k ≥ 1: Set ρ > 0.

A. X(k) := arg min
X∈H0

Φ‡
ρ

(
X,Z(k−1), B(k−1); τ (n) − τ (n−1), u

(n−1)
τ

)
,

B. Z(k) := arg min
Z∈H1

Φ‡
ρ

(
X(k), Z,B(k−1); τ (n) − τ (n−1), u

(n−1)
τ

)
,

C. B(k) := B(k−1) + W(X(k)) + Y (u
(n−1)
τ ) − Z(k).

(b) Set u
(n)
τ = Exp

u
(n−1)
τ

(X
(n−1)
τ ).

5.2. Numerical example (1): M = S2

5.2.1. The tangent spaces, orthogonal projections and exponential maps of S2

We regard the 2-sphere as S2 := {(x1, x2, x3) ∈ R3 | x21 +x22 +x23 = 1}. Then the tangent spaces,
their orthogonal projections and exponential maps in S2 are given by the following explicit
formulae:

TxS
2 = {v ∈ R3 | ⟨x, v⟩R3 = 0},

πx(v) = (IR3 − x⊗ x)v,

expx(v) = exp(v ⊗ x− x⊗ v)x,

where IR3 denotes the identity matrix in R3 and exp denotes the matrix exponential.
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5.2.2. Euler angles

A vector on S2 has three components. However, since the dimension of S2 is two, it should be
represented by two parameter. Euler angle representation is very useful to describe vectors on
S2. Given γ := (x, y, z) ∈ S2, its Euler angle representation is given as follows:

(x, y, z) := (sin θ cosϕ, sin θ sinϕ, cos θ),

where (θ, ϕ) ∈ [0, π) × [0, 2π) are the Euler angles of γ which are given by the formula

(θ, ϕ) :=

(
arccos(z), sign(y) arccos

(
x√

x2 + y2

))
. (5.1)

5.2.3. Counterexample of finite stopping phenomena

In [20], the example of constrained TV flow which does not reach the stationary point in finite
time is shown. Here is the statement.

Theorem 5.1 ([20]). Let a, b ∈ S2 be two points represented by a = (a1, a2, 0) and b =
(a1,−a2, 0) for some a1, a2 ∈ [−1, 1] with a21 + a22 = 1 and a1 > 0. Take arbitrary h0 ∈
S2 ∩ {x2 = 0} whose x3-coordinate does not vanish. Then for any L > 0 and 0 < ℓ1 < ℓ2 < L,
the constrained TV flow u : [0,∞) → L2((0, L);S2) starting from the initial value

u0 = a1(0,ℓ1) + h01(ℓ1,ℓ2) + b1(ℓ2,L)

can be represented as
u(t) = a1(0,ℓ1) + h(t)1(ℓ1,ℓ2) + b1(ℓ2,L) (5.2)

and h(t) converges to (1, 0, 0) as t→ ∞ but does not reach it in finite time.

In this theorem, h(t) = (h1(t), 0, h3(t)) satisfies the following differential equations:

d

dt
(h1, h3) = −

√
2a1

c
√

1 − a1h1

(
h21 − 1, h1h3

)
, (5.3)

and then this can be calculated numerically. Therefore we use it as a benchmark of the validation
of our calculation.

Remark 5.1 (Dirichlet problem). So far, in this paper, we have considered the Neumann
problem of constrained TV flows. This example is a solution to the Dirichlet problem. Therefore,
we can not apply the proposed scheme directly. However, we can lead the Dirichlet problem
version of the proposed scheme with a little change. Actually, in the scheme, it is enough to
replace T

u
(n)
τ
M∆ with

V (u
(n)
τ ) :=

{
X ∈ T

u
(n)
τ
M∆

∣∣∣ X|Ωα = 0 for α ∈ ∂∆
}
,

where
∂∆ :=

{
α ∈ ∆

∣∣∣ Hk−1(∂Ωα ∩ ∂Ω) ̸= 0
}
.

For a formulation of the Dirichlet problem and its result, see [16, 18, 20]. We emphasize that
Proposition 3.2 and Theorem 3.1 hold in the case of the Dirichlet problem.
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5.2.4. Setting

We use the following initial data u with the Euler angles θ, ϕ : (0, 1) × (0, 1) → R.

θ :=
2∑

i=0

θi1Ii , ϕ :=
2∑

i=0

ϕi1Ii , (5.4)

where

θ =
(π

2
,
π

4
,
π

2

)
, ϕ =

(
π

4
,
π

2
,

3

4
π

)
,

and

I0 =

(
0,

2

5

)
, I1 =

(
2

5
,

3

5

)
, I2 =

(
3

5
, 1

)
.

We define the initial value a, b, h as

a =

(
1√
2
,

1√
2
, 0

)
, b =

(
− 1√

2
,

1√
2
, 0

)
, h0 =

(
0,

1√
2
,

1√
2

)
and compare the results of our scheme with the one calculated from (5.2) and (5.3) when
|τ | = 10−1, 10−2, 10−3, 10−4. We set the number of divisions in [0, 1] as 100 and used the
explicit Euler method to solve the ordinary differential equation (5.3) with time width 10−6.

As we can see from Figure 1, the behavior of the approximate solution computed by our
proposed scheme and the one of the solution for (5.3) look similar. Figure 2 depicts the log |τ |-
log ∥uτ (t) − u(t)∥H∆

graph at time t = 1.0. We can see from this graph that the L2 error

decreases with the order O(|τ |) as |τ | tends to 0 and it is faster than the O(
√
|τ |)-error estimate

in Theorem 3.1, which suggests to us that our error estimate has the room for improvement.

5.3. Numerical example (2): M = SO(3)

5.3.1. The tangent spaces, orthogonal projections and exponential maps of SO(3)

Let M(3) denotes the linear space of all three-by-three matrices, which is a nine-dimensional
Hilbert space. Let

SO(3) :=
{
x ∈M(3)

∣∣∣ x⊤x = xx⊤ = IR3

}
,

where IR3 denotes the identity matrix. Then SO(3) is regarded as a matrix Lie group in M(3).
The corresponding Lie algebra to SO(3) is given by the all three-dimensional skew symmetric
matrices:

so(3) :=
{
X ∈M(3)

∣∣∣ X⊤ = −X
}
.

According to the general theory of Lie group, so(3) can be regarded as the tangent space
TIR3 (SO(3)) at the identity and that

sox(3) := Tx(SO(3)) = {xX | X ∈ so(3)} .

Hence the exponential map can be given in the following simple form:

expx(X) := x exp(x⊤X), X ∈ sox(3),

where exp denotes the matrix exponential. For arbitrarily fixed x ∈ SO(3), the orthogonal
projection πx : M(3) → sox(3) is given by

πx(X) :=
X − xX⊤x

2
, X ∈ SO(3). (5.5)
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Figure 1: Comparison of flows at t = 0.0, 0.1, 0.5, 0.75, 1.0: The vertical axis represents
the Euler angle θ of the flow. The left side is computed by our scheme, and the right side is
computed by using explicit form in [20].

Figure 2: The L2-error between our numerical scheme and the result in [20] at t = 1.0 with
respect to the time width |τ |.
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5.3.2. Euler angle

A rotation matrix in R3 have nine components. However, since the dimension of SO(3) is three,
it should be represented by three parameters. The Euler angle (or Euler axis) representations
are very useful to describe each rotation matrix. Given R := (Ri,j)

3
i,j=1 ∈ SO(3), its Euler angle

(or Euler axis) representation is given by Rodrigues’ rotation formula

R = cos θIR3 + (1 − cos θ)e⊗ e+ sin θ[e]x, (5.6)

where θ ∈ [0, 2π) and e := (e1, e2, e3) ∈ S2 denote the Euler axis of R, respectively, and [e]x is
the crossed product matrix of e. They are given by the formulae:

θ = arccos

(
R1,1 +R2,2 +R3,3 − 1

2

)
, (5.7)

(e1, e2, e3) :=

(
R3,2 −R2,3

2 sin θ
,

R1,3 −R3,1

2 sin θ
,

R2,1 −R1,3

2 sin θ

)
, (5.8)

and

[e]x =

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 .

Since the Euler axis e is in S2, e is represented as the spherical Euler angles (ϕ, ψ) ∈ [0, π) ×
[0, 2π). Therefore, R is represented as three parameters (θ, ψ, ϕ) ∈ [0, 2π) × [0, π) × [0, 2π).

5.3.3. Setting

We use the following initial data u with the Euler angles θ, ϕ, ψ : (0, 1) × (0, 1) → R:

θ :=
2∑

i,j=0

θi,j1Ii×Jj , ϕ :=
2∑

i,j=0

ϕi,j1Ii×Jj , ψ :=
2∑

i,j=0

ψi,j1Ii×Jj , (5.9)

where

θ =

 0.35π 0.2π 0.55π
0.81π 0.64π 0.4π
0.1π 0.7π 0.3π

 , ϕ =

 0.4π 0.5π 0.7π
0.5π 0.3π 0.4π
0.6π 0.3π 0.4π

 ,

ψ =

 0.2π 0.25π 0.3π
0.25π 0.225π 0.2π
0.3π 0.2π 0.35π

 ,

and

I0 =

(
0,

2

5

)
, I1 =

(
2

5
,

3

5

)
, I2 =

(
3

5
, 1

)
,

J0 =

(
0,

1

5

)
, J1 =

(
1

5
,

4

5

)
, J2 =

(
4

5
, 1

)
.

Figures 3, 4, 5 and 6 depict the results of numerical experiments under the above set-
ting at time t = 0.0, 0.05, 0.1, 0.15, t = 0.2, 0.25, 0.35, 0.45, t = 0.5, 0.55, 0.6, 0.65, and t =
0.7, 0.8, 0.85, 1.0, respectively. Although there does not exist any benchmark test for SO(3)-
valued TV flow, we can see that our proposed numerical scheme works well since the facet-
preserving phenomenon is observed and the numerical solution finally reaches the constant
solution.
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A. The constant CM

In this section, we explain a bound of the constant CM which appears in (2.2). We recall several
notations developed in the computational geometry. A point x ∈ Rℓ is said to have the unique
nearest point if there exists a unique point p(x) ∈ M such that p(x) ∈ arg min

p∈M
∥x− p∥Rℓ . Let

S0(M) denote the set of all points in Rℓ which do not have the unique nearest point. The
closure S(M) of S0(M) is called the medial axis of M . The local feature size LFS(M) of M is
the quantity defined by

LFS(M) := inf
p∈M

inf
q∈S0(M)

∥p− q∥Rℓ .

Now, we assume that M is a compact. Then, LFS(M) is positive since M is C2 so that M has
positive reach ([12]). We use the quantity LFS(M) to obtain that

∥p− q∥Rℓ ≤ DistM (p, q) ≤ 2 max

{
1,

Diam(M)

LFS(M)

}
∥p− q∥Rℓ (A.1)

for each point p and q in M . Here, DistM (p, q) denotes the geodesic distance between p and q.
On the other hand, assuming that M is path-connected, we have∥∥∥π⊥p (p− q)

∥∥∥
Rℓ

≤ 1

2
Curv(M) DistM (p, q)2 (A.2)

for all p, q ∈M . Therefore, if M is a path-connected and a compact submanifold of Rℓ, then we
plug the inequalities (A.2) and (A.1) to obtain∥∥∥π⊥p (p− q)

∥∥∥
Rℓ

≤ 2 Curv(M) max

{
1,

Diam(M)

LFS(M)

}2

∥p− q∥2Rℓ (A.3)

for all p, q ∈M . Hence, we have

CM ≤ 2 Curv(M) max

{
1,

Diam(M)

LFS(M)

}2

. (A.4)

Finally, we remark that the proofs of (A.1) and (A.2) are found in [32].
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