Title	Magnetoplumbite and W-type barium ferrites as magnetic mixture with hematite
Author(s)	MASUBUCHI, Yuji; SAITO, Ryoji; KIKKAWA, Shinichi
Citation	Journal of the Ceramic Society of Japan, 117(1361), 82-84 https://doi.org/10.2109/jcersj2.117.82
Issue Date	2009-01-01
Doc URL	http://hdl.handle.net/2115/73092
Rights(URL)	https://creativecommons.org/licenses/by-nd/4.0/deed.ja
Туре	article
File Information	JCS117.82-84.pdf

Magnetoplumbite and W-type barium ferrites as magnetic mixture with hematite

Yuji MASUBUCHI,† Ryoji SAITO and Shinichi KIKKAWA

Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628

Magnetic properties were studied on polycrystalline composite mixtures of magnetoplumbite-type $BaFe_{12}O_{19}$ and W-type $BaCo_2Fe_{16}O_{27}$ ferrites with α -Fe₂O₃. The respective ferrite mixtures were prepared with hematite in 0 to 70 mol% using solid state reaction. X-ray diffraction (XRD) analysis and magnetic measurement suggested the products were simple mixtures of the ferromagnetic $BaFe_{12}O_{19}$ or $BaCo_2Fe_{16}O_{27}$ with α -Fe₂O₃ even after sintering at 1250°C. Their magnetization decreased with the increasing contents of α -Fe₂O₃. Their electrical resistivities of higher than 10^2 Ωm were too large to observe their magnetic field dependence, magnetoresistance (MR) effect. Electrical resistivity decreased to 0.36 Ωm by the post annealing of the as prepared $BaCo_2Fe_{16}O_{27}$ with a small amount of α -Fe₂O₃ in Ar at 1000°C for 5 h. The improved electrical conductivity in 4 orders of magnitude showed the MR effect of 0.86% on the post annealed $BaCo_2Fe_{16}O_{27}$ product.

©2009 The Ceramic Society of Japan. All rights reserved.

Key-words: Magnetoresistance, BaFe $_{12}O_{19}$, BaCo $_2$ Fe $_{16}O_{27}$, α -Fe $_2O_3$, Polycrystalline composite, Solid state reaction

[Received September 2, 2008; Accepted October 16, 2008]

1. Introduction

Tunneling magnetoresistance (MR) has attracted much attention because of its application in magnetic storage devices and sensors.1) Large tunneling MR effect has been observed in the multilayered tunneling junction. Ferromagnetic (FM) materials sandwich an insulating layer (I) in nanometer thickness to form FM/I/FM stacking in the junction. The MR effect can also be observed in granular type composites. FM grains are dispersed in an insulating matrix to be surrounded by insulating grain boundary. This type of MR has been reported in polycrystalline films²⁾⁻⁵⁾ and also in sintered compacts. 6,7) Most of their combinations were ferromagnetic metals with nonmagnetic oxide insulator. There is a big advantage in oxide combinations to reduce their interface reaction in their preparation and also in their operation. Some examples can be found on La_{2/3}Ca_{1/3}MnO₃/Al₂O₃,⁸⁾ Fe_3O_4/α - $Fe_2O_3^{9)}$ and $La_{0.8}Sr_{0.2}MnO_3/ZrO_2$. The MR effect was recently found out on sintered compacts of spinel ferrite mixtures with α -Fe₂O₃.¹¹⁾

Barium hexaferrite; BaFe₁₂O₁₉ (hereafter denoted as BaM) is one of the most famous ferromagnetic materials. It has magnetoplumbite-type structure with space group of P6₃/mmc (a = 0.589 nm and c = 2.32 nm).¹²⁾ The structure is described as an alternative stacking of spinel block consisting of iron oxide and a barium layer in rock salt type structure.¹²⁾ It has been widely used as permanent magnet since the 1950s.^{13),14)} There are several kinds of its analogues named as ferroxplana-type hexagonal ferrites such as W, Y, Z, X and U-types. Their way of stacking is different between the spinel and the rock salt blocks. They have been investigated in their crystal structure, especially in their spin orientation,¹⁵⁾ and magnetic resonance in the high frequency range.¹⁶⁾ Their general formula is $m(Ba, Me^{2+}) \cdot nFe_2O_3$ (Me = Mn, Fe, Co, Ni, Cu, Mg and Zn). W-type barium cobalt ferrite with a chemical composition of BaCo₂Fe₁₆O₂₇ (hereafter

denoted as Co_2W) has a hexagonal lattice (a=0.590 nm and c=3.291 nm),¹⁵⁾ which is closely related to the magnetoplumbite structure. Its barium layer is interleaved by every two-spinel blocks containing iron and cobalt oxide, although every one-spinel block alternatively stacks with barium layer in BaM. It is ferromagnetic with a relatively low coercive force of about 12 kA/m.¹⁷⁾ This value is 35 times smaller than that of the BaM magnet ($\approx 430 \text{ kA/m}$).¹³⁾ Their reported saturation magnetization values are 72 Am²kg⁻¹ for BaM and 76 Am²kg⁻¹ for Co₂W.¹⁷⁾ They are comparable to the largest value for the manganese ferrite among the spinel ferrites. The relatively large magnetization may contribute to enhance the MR ratio.

In this study, both BaM/α -Fe₂O₃ and Co_2W/α -Fe₂O₃ composites were prepared by changing the mixing ratio and firing condition in a conventional solid state sintering method. Their magnetic behavior and magnetoresistance property was discussed in relation to their electrical resistivity.

2. Experimental procedure

BaM/α-Fe₂O₃ and Co₂W/α-Fe₂O₃ composites were prepared in two steps. First, the pure BaM and Co₂W were prepared in solid state reactions between α -Fe₂O₃ (99.9%, Kanto Chemical Co., Inc.), BaCO₃ (99.9%, Wako Pure Chemical Ind., Ltd.) and Co₃O₄ (99.9%, Kanto Chemical Co., Inc.). Their stoichiometric amounts were well mixed in an agate mortar in the presence of acetone. The mixtures were calcinated at 1250°C for 5 h in air. After grinding, they were uni-axially pressed in 25 MPa to discs, and then sintered at 1250°C for 12 h in air. Some of them were annealed at 1000°C for 5 h in Ar flow to reduce their electrical resistivity. The pure products were mixed again with α -Fe₂O₃ in the amounts of (1–x)BaM (or Co₂W)/(x) α -Fe₂O₃ (x = 0 to 70 mol%). Their sintered bodies were obtained in a similar procedure to the above. Their sintering conditions were at 1250°C for 5 h.

Powder X-ray diffraction (XRD) patterns were recorded with a diffractometer with monochromatized Cu K α radiation (PANalytical, X'pert-MPD). Magnetic hysteresis was studied in a field of up to \pm 1193 kA/m at room temperature using a vibrat-

[†] Corresponding author: Y. Masubuchi; E-mail: yuji-mas@eng. hokudai.ac.ip

ing sample magnetometer (Riken Denshi Co., Ltd., BHV–50). Electrical resistivity (ρ) in a magnetic field of up to \pm 398 kA/m was measured by the van der Pauw method (Toyo Corp., Resistest8300). The MR ratio was defined by the following formula: MR = [ρ (0 kA/m) – ρ (398 kA/m)]/ ρ (0 kA/m). Copper lead wires were ultrasonically soldered to the sample tablets 10 mm in diameter using a SUNBONDER (ASAHI Glass Co., USM-III).

3. Results and discussion

3.1. Magnetoplumbite-type BaFe₁₂O₁₉ and its α Fe₂O₃ mixture

Figure 1(a) shows a diffraction pattern calculated using the structural data estimated from BaFe₁₂O₁₉ single crystal. ¹²⁾ Single phase of BaM was obtained after firing at 1250°C for 12 h in air as shown in Fig. 1(b). The fired mixture of BaM/ α -Fe₂O₃ with x = 44 mol% was also their mixture as represented in Fig. 1(c). There was no trace of other crystalline phase derived from a decomposition or a reaction of BaM and α-Fe₂O₃ in a whole compositional range of 0 < x < 70 mol%. The XRD analysis suggested that the sintered bodies were simple mixtures of BaM and α -Fe₂O₃. Magnetic measurements showed ferromagnetic hysteresis behavior in both pure BaM and its composite in the magnetic field of ± 1193 kA/m. Their magnetization was almost saturated above the magnetic field of ±600 kA/m. BaM sintered compact had the value of 63.0 Am²/kg at 1193 kA/m and its coercive force of 118 kA/m. The magnetization decreased with increasing the content of the antiferromagnetic α -Fe₂O₃ in the composites as shown in Fig. 2. The ferrimagnetism of BaM was diluted by antiferromagnetic α -Fe₂O₃ with T_N = 950 K. Their electrical resistivity gradually increased from $10^2 \Omega m$ for pure BaM to $10^4 \Omega m$ for the composite of x = 70 mol%. There was no systematical change in the electrical resistivity against the applied magnetic field. The MR effect was not observed in the all BaM/α-Fe₂O₃ composites. Their electrical resistivity was probably so high that the conduction electron could not migrate through a ferromagnetic grain and spin polarization could not tunnel between the neighboring grains. After annealing in Ar flow, their electrical conductivity did not change significantly.

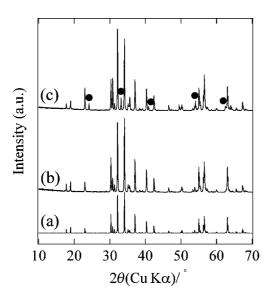


Fig. 1. XRD patterns for BaFe₁₂O₁₉ itself (b) and the (1-x)BaFe₁₂O₁₉/ $(x)\alpha$ -Fe₂O₃ mixture with x=44 mol% (c). The simulated pattern (a) was calculated using the crystal structural data for BaFe₁₂O₁₉ reported in Ref. 12. Symbol of \bullet denotes diffractions for α -Fe₂O₃.

The broadening on their diffraction peak was observed in the annealed samples; therefore they might be slightly decomposed by the annealing.

3.2. W-type BaCo₂Fe₁₆O₂₇ and its α -Fe₂O₃ mixture

W-type barium cobalt ferrite crystallized with a small amount of α -Fe₂O₃ impurity after the firing of the stoichiometric starting mixture at 1250°C for 12 h in air as represented in **Fig. 3**(b). The relative diffraction intensity for α -Fe₂O₃ increased in the composite product of Co₂W/ α -Fe₂O₃ (x = 60 mol%) as shown in Fig. 3(c). There was no extra diffraction except for those of Co₂W and α -Fe₂O₃. The samples of Co₂W and Co₂W/ α -Fe₂O₃ (x = 60 mol%) composite showed ferromagnetic hysteresis curves with coercive force of about 14 kA/m as shown in **Fig. 4**. Their magnetizations were easily saturated. Their values at the magnetic field of 1193 kA/m decreased with an increase in the content of α -Fe₂O₃ and were diluted from 65 Am²/kg for the Co₂W to 45 Am²/kg for the Co₂W/ α -Fe₂O₃ (x = 60 mol%). The magnetic behavior of Co₂W was comparable to that reported in ref. 17. Their electrical resistivity also gradually increased from 10³ Ω m

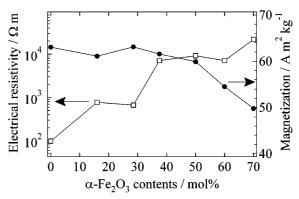


Fig. 2. Magnetization and electrical resistivity against the α -Fe₂O₃ contents in (1-x)BaFe₁₂O₁₉/ $(x)\alpha$ -Fe₂O₃ composites.

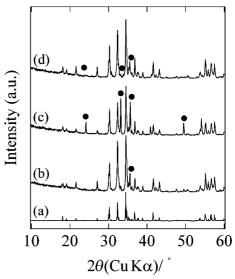


Fig. 3. XRD patterns for the $(1-x)BaCo_2Fe_{16}O_{27}/(x)\alpha$ -Fe₂O₃ composite mixtures with x = 0 (b) and 60 mol% (c). Figures (a) and (d) are a simulated pattern calculated using the crystal structural data of $BaCo_2Fe_{16}O_{27}^{15}$ and that for the post annealed product of $BaCo_2Fe_{16}O_{27}$ at $1000^{\circ}C$ for 5 h in Ar, respectively. Symbol of \bullet denotes diffractions for α -Fe₂O₃.

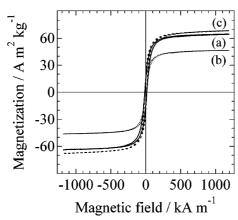


Fig. 4. Field dependences of magnetization in $BaCo_2Fe_{16}O_{27}$ (a), $BaCo_2Fe_{16}O_{27}/\alpha$ -Fe₂O₃ composite with x = 60 mol% (b) and the post annealed $BaCo_2Fe_{16}O_{27}$ at $1000^{\circ}C$ for 5 h in Ar (c).

(x = 0 mol%) to $10^4 \Omega \text{m}$ (60 mol%), similar to the BaM/ α -Fe₂O₃ composites. Its electrical resistivity was again too high to change against the applied magnetic field.

Electrical conduction has been reported on the W-type hexagonal barium ferrite BaFe²⁺₂Fe³⁺₁₆O₂₇. It was assumed as a conduction induced by the mixed valency between Fe2+ and Fe3+, because the Fe2+ substitution with Co2+ enhanced the conductivity. 18) All iron ions are trivalent in BaCo₂Fe₁₆O₂₇. Reduction of its electrical resistivity can be expected by a partial reduction of its Fe3+ to Fe2+. The as prepared Co2W with a small amount of α-Fe₂O₃ impurity was post annealed in Ar flow at 1000°C for 5 h. XRD patterns were almost the same before and after the annealing as shown in Fig. 3(d). The amount of α -Fe₂O₃ slightly increased. There were no trace amounts of FeCo alloy and Fe₃O₄ reported to be present after the annealing of Co₂W and Fe₂O₃ in hydrogen atmosphere. 8),19) The field dependence of magnetization did not change so much as shown in Fig. 4. The electrical resistivity drastically decreased from $10^3 \Omega m$ to $0.36 \Omega m$ by the post annealing. It changed with the applied magnetic field as shown in Fig. 5. Its MR ratio can be calculated to be 0.83%. The reduction of electrical resistivity in the barium ferrite composite was very important to observe the MR effect. This is the first report on the MR effect of Co₂W/α-Fe₂O₃ polycrystalline composite. Polycrystalline composites with another kind of ferroxplana-type ferrite may improve the MR effect.

4. Conclusion

Polycrystalline samples of magnetoplumbite-type $BaFe_{12}O_{19}$ and W-type $BaCo_2Fe_{16}O_{27}$ ferrites were prepared by using the solid state reaction. Even after sintering of their mixture with α - Fe_2O_3 at $1250^{\circ}C$ for 5 h, the products were simple mixtures of either ferromagnetic $BaFe_{12}O_{19}$ or $BaCo_2Fe_{16}O_{27}$ with an insulating α - Fe_2O_3 . Their magnetizations were decreased with an increase in the amount of α - Fe_2O_3 . Their electrical resistivity was too high to show their change against the applied magnetic field. Post annealing at $1000^{\circ}C$ for 5 h in Ar flow reduced the electrical resistivity of the $BaCo_2Fe_{16}O_{27}$ composite mixture with a small amount of α - Fe_2O_3 impurity from 10^3 to 0.36 Ω m. The

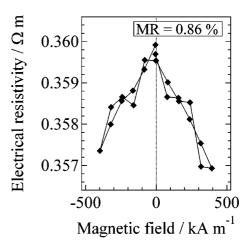


Fig. 5. Magnetic field dependence of electrical resistivity in the post annealed BaCo₂Fe₁₆O₂₇ at 1000°C for 5 h in Ar. The MR ratio was defined by the following formula: MR = $[\rho(0 \text{ kA/m}) - \rho(398 \text{ kA/m})]/\rho(0 \text{ kA/m})$.

reduced composite showed the field dependence of its electrical resistivity corresponding to the MR effect of 0.86%.

References

- R. L. Comstock, J. Mater. Sci., Mater. Electron., 13, 509–523 (2002).
- C. Wang, X. Xiao, Y. Rong and T. Y. Hsu, J. Mater. Sci., 41, 3873–3879 (2006).
- 3) Y. Kawaai, A. Yamada, T. Takeda and S. Kikkawa, *Jpn. J. Appl. Phys.*, 43, 5671–5672 (2004).
- S. Kikkawa, K. Sakon, Y. Kawaai and T. Takeda, Adv. Sci. Technol., 52, 70–74 (2006).
- D. Tripathy, A. O. Adeyeye and C. B. Boothroyd, *J. Appl. Phys.*, 99, 08J105 (2006).
- C. S. Xiong, Q. P. Huang, Y. H. Xiong, Z. M. Ren, L. G. Wei, Y. D. Zhu, X. S. Li and C. L. Sun, *Mater. Res. Bull.*, 43, 2048– 2054 (2008).
- 7) P. Chen, D. Y. Xing, Y. W. Du, J. M. Zhu and D. Feng, *Phys. Rev. Lett.*, **87**, 107202 (2001).
- 8) L. E. Hueso, J. Rivas, F. Rivadulla and M. A. Lopez-Quintela, J. Non-Crystal. Solids, 287, 324–328 (2001).
- A. C. Sun, P. C. Kuo, C. Y. Chou, S. C. Chen, C. T. Lie, M. H. Lin, J. W. Chen and H. L. Huang, *J. Magn. Magn. Mater.*, 272–276, 1776–1777 (2004).
- W. J. Lu, Y. P. Sun, X. B. Zhu, W. H. Song and J. J. Du, *Mater. Lett.*, 60, 3207–3211 (2006).
- 11) Y. Masubuchi, M. Minoya, T. Takeda and S. Kikkawa, *J. Am. Ceram. Soc.*, in preparation.
- 12) X. Obradors, A. Collomb, M. Pernet, D. Samaras and J. C. Joubert, *J. Solid State Chem.*, 56, 171–181 (1985).
- 13) F. E. Luborsky, J. Appl. Phys., 37, 1091–1094 (1966).
- 4) A. Cochardt, J. Appl. Phys., 37, 1112-1115 (1966).
- A. Collomb, P. Wolfers and X. Obradors, J. Magn. Magn. Mater., 62, 57–67 (1986).
- C. Surig, K. A. Hempel, R. Muller and P. Gornert, J. Magn. Magn. Mater., 150, 270–276 (1995).
- 17) R. Muller, J. Magn. Magn. Mater., 120, 61-63 (1993).
- Z. Simsa, A. V. Zalesskij and K. Zaveta, *Phys. Stat. Sol.*, 14, 485–490 (1966).
- C. Sudakar and T. R. N. Kutty, J. Electron. Mater., 33, 1280– 1288 (2004).