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Deciphering hierarchical features in the energy landscape
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3Graduate School of Life Science, Hokkaido University, Sapporo 001-0020, Japan

(Received 20 November 2017; accepted 5 January 2018; published online 24 January 2018)

Hierarchical features of the energy landscape of the folding/unfolding behavior of adenylate kinase,
including its dependence on denaturant concentration, are elucidated in terms of single-molecule fluo-
rescence resonance energy transfer (SmFRET) measurements in which the proteins are encapsulated in
alipid vesicle. The core in constructing the energy landscape from single-molecule time-series across
different denaturant concentrations is the application of rate-distortion theory (RDT), which naturally
considers the effects of measurement noise and sampling error, in combination with change-point
detection and the quantification of the FRET efficiency-dependent photobleaching behavior. Energy
landscapes are constructed as a function of observation time scale, revealing multiple partially folded
conformations at small time scales that are situated in a superbasin. As the time scale increases, these
denatured states merge into a single basin, demonstrating the coarse-graining of the energy landscape
as observation time increases. Because the photobleaching time scale is dependent on the conforma-
tional state of the protein, possible nonequilibrium features are discussed, and a statistical test for
violation of the detailed balance condition is developed based on the state sequences arising from the
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RDT framework. Published by AIP Publishing. https://doi.org/10.1063/1.5016487

. INTRODUCTION

How one can decipher the underlying model from
noisy, finite single-molecule time-series such as those arising
from single-molecule fluorescence resonance energy trans-
fer (smFRET) experiments? Since the inception of single-
molecule observations, characterization of underlying states
and the determination of the kinetic properties of them, such as
interconversion rates and pathways, have been at the forefront
in the analysis of single-molecule experiments. Many different
approaches' have utilized the hidden Markov model (HMM)
to enable the inference of molecular mechanisms. The HMM
has been applied to photon arrival trajectories’ and smFRET
trajectories that are binned? or acquired photon-by-photon,*
allowing for biomolecular elucidations such as the charac-
terization of folding landscape of adenylate kinase (AK) at
different concentrations of the denaturant guanidinium chlo-
ride (GdmCl).> Other HMM constructions applied to single-
molecule time-series include variational Bayes formulations®’
and the more recent infinite HMM formulations.®® Alterna-
tive approaches to infer the state-space network along time-
series include the epsilon machine of computational mechan-
ics, which groups past sequences of states in order to predict
future sequences of states, and can account for non-Markovian
behavior in the systems.!®!!

Other approaches to state characterization include those
that are data-driven, using statistics and unsupervised learn-
ing methods to allow the states to emerge from the data
rather than imposing a predetermined model, as with the

0021-9606/2018/148(12)/123325/14/$30.00

148, 123325-1

HMM. For example, the time-series can be divided into
segments of uniform length and then clustered to produce
a set of local equilibrium states'>!3 along the time-series,
from which a representation of the free energy landscape
can be constructed. Other methods identify step transitions,
or change-points, in the trajectories, and subsequently group
the intervals between them to produce states.'* Finally, a
method using the uniform segmentation approach'> and utiliz-
ing the information theoretical rate-distortion theory'> (RDT)
as an unsupervised learning method has incorporated the
quantification of empirical and finite sampling errors.'® This
allows variations in error magnitude across multiple trajecto-
ries to be considered in extracting a series of the states from
single-molecule time-series as well as in performing model
selection.!'®

Some experiments investigate a system across multiple
experimental conditions, such as those following the fold-
ing/unfolding behavior of a protein across varying tempera-
tures or denaturant concentrations. In these situations, it is
often desirable that a single, consistent model be extracted
across the multiple sets of acquired data. For example, in their
smFRET study of the AK folding landscape, Pirchi et al.’
used a combination of change-point detection and a HMM to
extract a set of states across five denaturant concentrations.
This was accomplished by extracting the states from a single
denaturant concentration and imposing them on the trajectories
acquired at other concentrations. Because the measurements
consist of the same protein (AK) presumably experiencing a
similar folding landscape across the conditions, it is a natural

Published by AIP Publishing.
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assumption that a consistent set of states should be observed
at each condition, perhaps with different residential and
transition probabilities.

From a data-driven viewpoint, the states can be allowed
to emerge from the data sets, and their consistency assessed as
a validation that the states are truly uniform across the condi-
tions. One pitfall in such an approach, however, is the variation
of the error magnitude, e.g., those arising from experimental
sources like photon counting noise as well as finite sampling
effects, across the different experiments. Because the RDT
method 6 relies heavily on the quantification of errors, this pit-
fall can be avoided and the error properties integrated directly
into the procedure. The original scheme to extract states from
smFRET time-series using RDT requires the segmentation
of the time-series with uniform time windows of length T.
Time-dependent segment distributions are calculated, becom-
ing objects to be clustered with RDT clustering.'® Because
the RDT method precisely quantifies errors, all trajectory
segments from all data sets can be clustered simultaneously
regardless of their origin, thus yielding a set of states that is
fit globally across the multiple data sets. Furthermore, this
approach provides an internal validation as to whether the
hypothesis that the same model occurs across the multiple
data sets; if the properties of the state distributions vary wildly
from condition to condition, then the single model hypothesis
is invalid.

The original construction'?!31¢ defined the extracted set
of states to be “local equilibrium states” when the time window
tis long enough to attain local equilibration. The time window
T is interpreted to be a time scale of observation such that rel-
atively small T captures microstates, intermediate T captures
the unification of the microstates into basins or states on the
energy landscape, and relatively large T captures the unifica-
tion of basins into superbasins that are comprised by multiple
states,!” thus providing a means to decipher the hierarchical
features of the energy landscape. In practice, not only is the
identification of an appropriate set of time windows still an
open question but segments constructed from uniform seg-
mentation of the time-series can contain transitions, which
may lead to nonphysical artifacts in the analysis of the set of
states.

Another issue that may arise is the influence of the pho-
tostability of the fluorophores. Specifically, if one fluorophore
is more photostable than the other in a smFRET experi-
ment, then the photobleaching rate will be dependent on the
FRET efficiency and affected by the conformational state that
the biomolecule occupies. For example, after excluding the
effects of fluorophore photodynamics, e.g., photoblinking due
to occupation of the triplet excited state, through extensive fil-
tration of trajectories containing this behavior, Pirchi ef al.’
introduced a photobleaching state into the HMM scheme in
their smFRET study of AK to account for a less photostable
donor fluorophore and faster expected photobleaching from
low efficiency states. To properly elucidate state properties,
it is thus very crucial to take into account the dependence of
photobleaching, or more generally, trajectory termination, on
individual conformational states.

To address these issues, we merge the original RDT soft
clustering scheme for smFRET analysis with change-point
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detection'*!3-2! using the intervals between detected change-
points as non-uniform time windows t;. Because change-
points are likely to arise from conformational transitions,
compared to the uniform time window approach, non-uniform
time intervals 7; are regarded as being inherent to the acquired
data. The benefit of implementing change-point detection is
minimizing the number of time segments containing transi-
tions. We also introduce a photobleaching state so that the
photobleaching behavior of states can be analyzed. We apply
the method to the sets of trajectories obtained in the afore-
mentioned AK folding experiments.> A minimum of four
states can be extracted globally from these data sets, and
we verify that the distributions of all the extracted states
with respect to FRET efficiency are consistent across all the
experimental conditions. Escape times from the states indi-
cate a time scale separation for transitions among unfolded
states and between unfolded and folded states, suggesting that
the unfolded states lie in a denatured superbasin consisting
of several energy minima. Assessment of the transition net-
work for the detailed balance condition reveals violations that
may arise due to the occurrence of photobleaching. Construc-
tion of approximate free energy landscapes’>?? at multiple
time scales reveals the hierarchical features of energy land-
scape of AK to follow the superbasin arrangement suggested
by the escape times, with escape kinetics from the unfolded
superbasin controlled by three smaller basins, whereas the
escape kinetics from the folded state are dominated by one
basin.

In Sec. II, we present our methods—change-point detec-
tion and global model extraction—in the framework of the
RDT method. In Sec. III, we apply it to AK folding/unfolding
smFRET data and offer conclusion and discussion in
Sec. IV.

Il. THEORY AND METHODS

A. Soft clustering combined with
change-point detection

Rate-distortion theory (RDT), based on information the-
ory,'>?* provides a soft clustering algorithm in which the con-
ditional probabilities p (S|g) of a set of n states S = {S1,. . ..S, }
given the observation of the set of N segments g = {g, ...,
gy} are returned through an iterative procedure.>>?® Schemat-
ically, soft clustering combined with change-point detection is
represented in Fig. 1. First, a smFRET time-series is decom-
posed into a series of disjoint subsequences with non-uniform
time windows 7; using a change-point detection algorithm
[Fig. 1(a)].'"® For each interval 7;, a probability mass function
gi(E) is computed. Note that change-point analysis usually
involves type I (false positive) and type II (false negative)
errors; the former is the probability to assign a change-point
although it does not occur, and the latter is the probability of not
assigning a change-point that does occur. For instance, a loca-
tion in which type I error occurs is indicated by a red arrow in
Fig. 1(a). Segment distributions g;(E) are calculated from each
of the segments g;, i.e., intervals between change-point loca-
tions, and then are used to calculate pairwise distances among
segments as the Kantorovich metric.”’ Pairwise distances in
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FIG. 1. Schematic representation of soft clustering combined change-point
detection. (a) A smFRET time series with non-uniform time windows 7;. Thin
vertical lines indicate the location of detected change points, including one of
type I error (indicated by an arrow). (b) A two-dimensional projection of a set
of segments of the observable E, g (E) = {g1 (E),.... & (E),....gn(E)},
located in a high-dimensional space (Kantorovich metric). Error bars denote
finite sampling errors and experimental errors associated with each g;(E) in
the metric space. Concentric circles indicate a set of possible clusters, where
some g;(E) can belong to several clusters simultaneously.

the high-dimensional metric space are then fed into the RDT
algorithm. Here we use the Kantorovich metric because it
offers superior performance to the other metrics such as the
relative entropy and Hellinger distance.!? Figure 1(b) illus-
trates a two-dimensional projection of segment distributions
g(E) in the high-dimensional space, where errors in measure-
ments are taken into account for each g;(E). Soft clustering
allows some of the g;(E) to belong to more than single cluster
Sk simultaneously with probability p(Slg;). This is advanta-
geous when the error magnitude is comparable to the distances
among g;(E) in comparison to conventional (hard) clustering
in which g;(E) are assigned to only one state. The conditionals
p(Sklgi) can be interpreted as the certainty to which the seg-
ment distribution is assigned to state S;. Here it should also
be noted that the observed type I error in change-point detec-
tion, i.e., extraneous change-points, is also improved in the
clustering procedure.

The RDT algorithm is the minimization of a functional F
defined by

F=1(8.8)+B(D). ey

Here I(S, g) is known as the rate, i.e., the average amount
of information needed to specify states Sy with segments g;
and vice versa. I(S, g) is computed as the average mutual
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information between the set of states S and the set of seg-
ments g. (D) is the mean distortion among segments, the
average of the pairwise distortions between all pairs of seg-
ments within the set of states S. The parameter 5 controls the
ratio between the rate and the distortion in the minimization
of F.

I(S, g) and (D) are represented as follows:

p (Sklg)

, 2
2(S0) @)

1(S:8) = Z Zp (Sklgi) p(glogy—————

k=1 i=1

(D) = Zp(sk)ZZp(gASk)p (&15) dy, 3

i=1 j=1

where p(Silg;) is the conditional probability discussed above,
p(gi) is the probability of observing segment g;, and p(Sy) is
the marginal or occupation probability of the state Si. The
distance d;; between the segment distributions g;(E) and g;(E)
is measured with the Kantorovich distance,

1 E
d,-,-:/o dE/ (i (E") — gi(EN) dE'|,

which is the area between the cumulative distribution functions
of the pair of segments. The probability mass function of the
segment g; is computed as

“

t6+‘1',‘

1
v DL SED-E), 5)

—4
I—tO

g (E') =

where 8, E (1), £, and N; denote Dirac’s delta function, FRET
efficiency time series, the initial time of the time interval 7;

and [} 2’0”’ S(E (1) -

The mlmmlzatlon of the rate I(S; g) with respect to
p(Sklg;) and the number of clusters n corresponds to compress-
ing the data set into as few clusters as possible, with p(Silg;)
distributed across clusters as evenly as possible. For exam-
ple, in the most compressed case, there exists only a single
cluster, i.e., n = 1, I(S; g) = 0. For a fixed number of clusters
n and a variable level of distortion, as is the formulation of
the information-based clustering problem,’® minimizing I(S;
g) distributes p(Silg;) across the set of n states S as evenly
as possible. See, for example, the regions of overlap between
adjacent states in Fig. 1(b), in which some segments g; may
belong to more than one state. Minimizing /(S; g) distributes
these p(Sklg;) across more than one state in S, increasing state
overlap and adjusting for error in the segment distribution
gi(E). State overlap along with error magnitude causes dif-
ficulty in uniquely identifying the information of S given g;,
which is compensated with a smaller /(S; g). Note that when
all p(Silg;) are either 1 or 0, the average mutual information
1(S; g) is at its maximum. In turn, the minimization of (D) cor-
responds to minimizing the average intra-cluster distance. The
smallest value of (D) is, in principle, zero when the number
of clusters n coincides with that of segments N, i.e., the case
in which each segment is in its own cluster (that is, the least
compressed case).

Inputs to the RDT algorithm include the number of states
n and the value of the parameter 5. We perform clustering
at several different numbers of states as well as values of

E’)dE’, respectively.
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and must subsequently select an appropriate model. Although
there exist many model selection criteria, such as the Akaike
information criterion,?® Bayesian information criterion,*® and
the minimum description length principle,’! these criteria are
based on asymptotic results as the number of samples (the
number of segments N in our case) increases, a condition that
may not be satisfied in the case of single-molecule experi-
ments. However, the essence of these model selection criteria
is the same in all cases; we seek to minimize model complex-
ity, i.e., the number of fitting parameters, while simultaneously
maximizing goodness-of-fit. In the case of RDT, the mean
distortion is a goodness-of-fit parameter in the sense that a
good fitting model will have low distortion and a poor fit-
ting model will have high distortion. Additionally, the mutual
information is a model complexity parameter in the sense
that a highly complex model needs a larger average rate of
information.

In our calculation, we define a “distortion cutoff” by cal-
culating the distortion arising in the best fitting model. In this
model, each segment resides in its own cluster, i.e., n = N, and
any nonzero distortion arises from the presence of errors. For
noisy, finite time series acquired in SmFRET measurements,
we must consider the contributions of errors; errors arise from
various sources, e.g., instrumental shot-noise, photophysical
sources, and finite sampling error in the construction of the seg-
ment distributions. Briefly, the distortion cutoff was evaluated
by incorporating both finite sampling error using bootstrap
sampling®? and experimental errors, incorporated in this work
by randomly sampling the efficiency at time ¢, E(f), from
the normal distribution N(E(¢),AE(¢t)), where the empirical
error AE(t) is derived from the observed numbers of acceptor,
donor, and background photon counts using a normal error
approximation.'® Models having distortion below this cutoff
satisfy the goodness-of-fit criterion because the distortion aris-
ing from the model is in the range of distortion arising solely
from errors.

To assess model complexity, we note that the rate 1(S; g)
provides the average amount of information needed to specify
a segment g; within the set of states S. As such it provides a
natural way to measure model complexity in that a more com-
plex model will have a larger rate of information. We isolate
the subset of models satisfying distortion criterion and com-
pare them via their values of the mutual information /(S; g).
The model having the smallest mutual information while still
satisfying the distortion criterion is selected to be the model for
further analysis.'® See Fig. S2 of the supplementary material
for an illustration of the procedure.

1. Global modeling across different conditions

As discussed above, a set of conformational states
arising from smFRET experiments observing protein fold-
ing/unfolding is expected to be consistent across each con-
dition (e.g., denaturant concentrations). In such a case, seg-
ments originating from a particular state should be similar
across all the conditions, although the error magnitudes of
segments from one trajectory or condition may differ from
those originating from a different trajectory or condition.
Because the RDT method quantifies and incorporates the
error directly into the clustering procedure, the extraction of
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a global set of states across multiple trajectories and condi-
tions can be achieved by compiling the set of all trajectory
segments from all different conditions into a single set of seg-
ments to be clustered by the RDT algorithm. In this manner,
all segments from all conditions are considered simultane-
ously by the clustering algorithm, allowing for a consistent
set of states to be extracted across different conditions with-
out the imposition of any additional parameters or restric-
tions. After the conditional probabilities of each state given
each trajectory segment are returned by the RDT cluster-
ing algorithm, the trajectory segments are reorganized into
their respective positions within each set of trajectories at
each different condition. Conformational state distributions,
occupation probabilities, numbers of transitions, and transi-
tion probabilities can then be calculated within each denaturant
concentration.

B. Realizations of state sequences
and the “termination” state

For a given time-series, how can one generate the under-
lying state sequences and their kinetic quantities? The soft
clustering method provides us with the conditional probabil-
ities p(Slg;) for each segment g; from which the underlying
states can easily be selected at each segment by sampling
from the set of states proportionally to p(Slg;). Kinetic quan-
tities such as transition probabilities will be affected because
the segment lengths 7; are not uniform with the use of change-
point detection, so we construct the underlying state sequences
for each trajectory with a uniform time interval that is equiv-
alent to the time step of the measurement (e.g., 50 ms) and
assign a state to each uniform time step with probability pro-
portional to the conditional probabilities p(Slg;) for the seg-
ment g; occurring at the time step. Construction of a state
sequence for each trajectory in the data set allows for a statis-
tically accurate calculation of the kinetic properties of states,
such as transition probabilities and escape times. For exam-
ple, the most probable state sequences are constructed as
follows:

SO (), SV t1),....8Y @), ..., ©6)

where
SO = 5O (;) = argmax p (Slg (1)) . 7
N

Here g(t;) denotes the corresponding segment distribution
whose change-point interval [#;yiriar,tfina] includes the time ¢;,
i.e., [finitial>- - ->tise - -tfinall-

We are not limited to the most probable state sequences,
however, as the state sequences can be randomly sampled pro-
portionally to the conditional probabilities p(Slg(t;)). Repeat-
ing such a state assignment procedure many times will result
in slightly different state sequences owing to the softness of
RDT clustering, thereby increasing state sampling statistics
and providing errors associated with each of the calculations as
well. For this work, we generated 1000 independently sampled
sets of state sequences, from which the transition probabilities,
occupation probabilities, etc., were estimated as the median
values of the calculated quantities. Errors are reported as the
95% confidence interval of the distribution of each quantity as
generated from the 1000 sets of state sequences.
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Because of the nature of the fluorophore photophysics in
the AK experiments, the photobleaching kinetics of a partic-
ular state was found to be dependent on its FRET efficiency,
possibly yielding a misinterpretation of state properties such as
occupation and transition probabilities.’> To account for these
state-dependent photobleaching kinetics, a modified HMM in
which photobleaching was modeled by artificial attachment of
a segment to the end of each trajectory having a hypothetical
FRET efficiency was constructed. These artificial segments
constituted a “photobleaching” state from which there is no
escape, which is known as an absorbing state in the absorbing
Markov chain (AMC) theory.33

So that these kinetics may be analyzed from the results
returned by the RDT clustering algorithm as well, we further
modify the generated state sequences by adding a termination
or “photobleaching” state S, at time step #,,1 just after each
state sequence ending at ¢,

SO0), SV11),...,8P @), ..., 5",
— §O10), SV 1), . ... 8P W), . . ., 8™ (1), Spp(ts)-
®)

Here S denotes a state the system visits at time #;. The ter-
mination probabilities arising from any state can be calculated
by counting the number of transitions from S to § »b- Mod-
ification of the state sequences in this manner allows for the
analysis of each state’s transitions into this absorbing or “pho-
tobleaching” state in a natural way, without modification of
the classification algorithm, as was the case with the modified
HMM.>

C. Probability flow test for detailed balance

Here we develop a hypothesis test to determine whether
or not the detailed balance condition is violated for a pair of
states. For any pair of states S; and S; at equilibrium conditions,
the flow of probability between them, J;;, must be zero. We can
express this probability flow as the difference between the rate
from state S; to state S;, p(S;,S;) = 7;p;;, and that from §; to
Si, p(S;,S;) = mjpj; where, for example, n; and p;; denote the
stationary probability of state S; and conditional probability of
transition from state S; to state S;, respectively. We may also
express this probability flow in terms of the observed numbers
of transitions by using frequentist approximations for the rates,
e.g., p(ij) = Nj/N and p(j,i) = N;/N, where N;; (Nj;) is the
number of S; to S; (S; to S;) transitions, and N is the total
number of observed time steps,

Jij=p (Si»Sj) -p (Sj,Si) = mipij —mpji = (N —N;))/N. (9)

We note that in order to satisfy the detailed balance condition
in which J;; = 0, the number of transitions in one direction
must be equivalent to the number of transitions in the reverse
direction, i.e., N;; = Nj;. Because the smFRET trajectories are
finite in time, fluctuation in the observed numbers of transitions
will occur, thus leading to the situation that N;; and Nj; are not
equivalent due to this fluctuation. The problem then becomes
one of verifying that N; and N;; are drawn from the same
distribution.
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Though there are methods that test such hypotheses, such
as binomial tests,!?!3 we wish to take into consideration that
counting the number of transitions in a stochastic system over
a fixed and finite length of time, as we have done for the
smFRET system of AK folding, can be viewed as a Poisson
process with the numbers of observed transitions thus obeying
the Poisson distribution. We note that the quantity A;; = J;N
is the difference of the two Poisson variables N;; and N;; and
that the number of time steps N remains constant for each trial.
Thus, the difference of the two numbers of transitions, A;;, will
follow what is known as a Skellam distribution.>* The prob-
ability that A;; = A, where A is the integer-valued difference
between the numbers of transitions, thus takes the following
form:

A
L= A) = (&)2 —(Ny+Nji) ( IN:: )
p(A;=A) = e In [24/NjiNji ). 10)
Niji
Here, IA(x) is a modified Bessel function of the first kind.

Having obtained the probability distribution of the dif-
ference in the numbers of transitions between a pair of states
in the network, we may now test the null hypothesis that the
transition obeys equilibrium properties, i.e., Ho:A;; = 0. This
is achieved by constructing the Skellam distribution assum-
ing that N;j = Nj; = (Nj; + N;;)/2 thus having zero mean and
variance N + Nj;, i.e.,

p(AlHo) = e (N1, (Ny + Ny). (11)

The probability p(A;lHg) is then obtained by evaluating
Eq. (11) at Aj;. Because this is a two-tailed hypothesis test,
we may reject Hy ifp(IAI > |Aij||H0) < a, where « is a
confidence interval, e.g., 5%. Rejection of the null hypothesis
indicates the transition is not at equilibrium.

D. Change-point detection

Change-point detection has been applied in many time-
series analyses and in many variations.>!*!821 Here we
employ a distribution-free method that involves identification
of the extrema of the cumulative sum of a modified time-
series.'® After these extrema are identified, a hypothesis test
is then performed to determine whether or not the difference
between them is large enough to be classified as a change point.

The first step in the procedure is the subtraction of the
mean E of the original m-step time-series E(f) [Fig. 2(a)],
E = % o E (1), generating the modified time-series as
shown in Fig. 2(b). The cumulative sum time-series E’(f),
shown in Fig. 2(c), is then calculated from this modified time
series. In general, for any time step ¢, the cumulative sum time
series E’(t) is generated as follows:

t

E'(t) = Z (E (") -E). (12)

=0

The extremum of the cumulative sum time-series indicates
the most probable location of a change-point. As such, we
calculate a test statistic A and perform a hypothesis test to
determine whether or not the time-series contains a change-
point,
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FIG. 2. Tllustration of the change-point detection algorithm. (a) The orig-
inal time-series. (b) The mean-subtracted time-series. (¢) The cumulative
sum time-series showing the test statistic, Agu,. (d) Random permutation
of the mean-subtracted time-series. (¢) Cumulative sum time-series of the
permutation showing a test statistic under the null hypothesis, A,,,,;;.

A=mtaxE'(t)—mtinE’ (). (13)

The null hypothesis H is then assigned to be that the time-
series contains no change point, and we must now obtain the
sampling distribution for our test statistic under assumption
thatnull hypothesisis true, e.g., P (A|Hp). Because H( assumes
that there is no change point in the time-series, random permu-
tation of the time series E(?), generating E,(t), will have little
effect on the value of the test statistic A if H is true. As such,
we construct the sampling distribution we desire, P (A|Hy),
through repeated random permutations of the time series E(¢)
and subsequent calculations of the test statistic A from the per-
muted time-series. This procedure is illustrated in Figs. 2(d)
and 2(e). To ensure convergence of P (A|H)), the permutation
is repeated until all points in a discretely binned distribution
do not change within a specified tolerance. In practice, for the
smFRET data we analyzed, convergence is typically achieved
in approximately 1000 permutations.

A p-value for the test statistic from the original time-
series, which we term Ay, is then calculated, i.e., p = P(A >
AdaralHo). The resulting p-value is then compared to the input
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type I error rate a, e.g., 5%. Then, if p < a, the null hypoth-
esis is rejected, and a change-point is assigned in the original
time series at the extremum of the cumulative sum time-series
E’'(2).

Type 1I error, i.e., the probability of missing an existing
change-point, cannot be explicitly controlled. To prevent miss-
ing alarge number of change-points, the choice of an extremely
small value of @ should be avoided. This increases the detec-
tion of false change-points (type I error), but many of these
falsely detected change-points can be removed by the soft
clustering procedure discussed above.

To test for more than one change-point occurring within a
single trajectory, a procedure called binary segmentation® is
used. The original time series is divided into two disjoint time-
series at the first identified change-point, and the procedure
outlined above is repeated on the two resulting time-series
individually. This procedure is then repeated until no further
change-points are found within any of the resulting segments
of the time-series.

Once the change-points within a trajectory have been
acquired, the error in the location of a change-point between
two segments is calculated as follows: Under the assumption
that any segment between two change-points arises from the
same distribution, each of the two adjacent segments are boot-
strapped, i.e., randomly sampled with replacement, to gen-
erate a bootstrapped pair of segments. Next, each data point
within the bootstrapped segments is randomly sampled from
its empirical error distribution, producing realizations of the
pair of segments that may arise in the uncertainty of finite sam-
pling and empirical errors. Although the error distributions in
this work are treated as normal, errors that are not normally dis-
tributed are easily incorporated as long as the error distribution
is known. After the two segments have been bootstrapped and
randomly sampled, the change-point is again identified, most
likely resulting in a slightly different location. This entire pro-
cedure is then repeated many times (e.g., ~1000) to obtain
the distribution of change-point locations between the two
segments in question, from which the error in the location
is inferred.?!

lll. RESULTS AND DISCUSSION

A. State distributions, occupation probabilities,
and state assignments along smFRET trajectories
of AK unfolding

The state distributions arising from the four-state model
acquired by the method presented in Sec. II are shown in
Fig. 3, where the set of states is extracted across the GdmCl
concentrations by compiling the set of all trajectory seg-
ments from all denaturant concentrations into a single set
of segments to be clustered by the RDT algorithm. We note
that although the selected model contains fewer than the six
states extracted by the previous HMM analysis,> because our
model selection procedure returns a minimal model that is
based on quantifying errors in the measurement there may
indeed be more states underlying the data, but errors incurred
during the experimental measurement obstruct their obser-
vation. Figures 3(a)-3(e) contain the conformational state
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FIG. 3. Globally extracted state distributions and occupation probabilities for
all denaturant concentrations. State distributions are shown for (a) [GdmCI]
=0.5M, (b) [GdmCI] = 0.65M, (c) [GdmCl] = 0.75M, (d) [GdmCI] = 0.85M,
(e) [GdmCI] = 1M. Dotted lines in (a)—(e) denote experimental distributions.
(f) Occupation probabilities 7r; of each state vs. GdmCI concentration. States
are represented with open circle, triangle, square, and closed circle markers,
respectively, in order of descending efficiency.

distributions resulting at the denaturant concentrations 0.5,
0.65, 0.75, 0.85, and 1M, respectively, while Fig. 3(f) follows
changes in the state occupation probabilities as a function of
GdmCl concentration. To obtain error bars for the occupation
probabilities, each 50 ms time step in each trajectory at each
denaturant concentration was assigned to a state according to
the p(Sklg;) at the corresponding segment. Occupation prob-
abilities p(Sx) = Ny/N were then calculated, with N being
the number of time steps assigned to S, and N being the total
number of time steps at a particular denaturant concentration.
This process was repeated 1000 times to obtain a distribution
for each of the p(Sy), from which we obtain the error bars as
the 95% confidence interval of the distribution. Error bars in
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Fig. 3(f) are on the order of 1 X 1073 and are contained within
the markers for each state at each concentration.

If the hypothesis that a similar set of states underlies the
acquired data at all conditions is valid, then the state distribu-
tions must also be similar across the denaturant concentrations.
If any of the states show inconsistent distributions across the
conditions, then the hypothesis is shown invalid. To check
whether this condition is satisfied, we measure the Kantorovich
distance d (Gk (E,c); Gy (E )) of each of the state distributions
at each concentration,

N

Gy (E;[GAmCl]) = ) p(gilSk)gi(E), (14)
i=1

from the mean distribution of each state across all denaturant

concentrations,

_ 1<
G (E)= & ) G (Eze), (15)
c=1

where C is the number of different GdmCl concentrations.
To obtain a relative distance, each of the d (Gk (E,c); Gy (E))

is normalized by the average distance d among all G (E).
We refer to this quantity in Fig. 4 as “relative state distance.”
Figure 4 indicates the maximum deviation to be approximately
7.5% relative to the average distance between states, thereby
validating that all state distributions are consistent across all
denaturant concentrations.

Examination of the state distributions shown in
Figs. 3(a)-3(e) visually confirms this consistency across all
denaturant concentrations, as all state distributions are visu-
ally similar to their counterpart distributions at the other
conditions. Furthermore, as shown in Fig. 3(f), the confor-
mational occupation is consistent with the expectation that
increased concentrations of denaturant serve to destabilize the
folded conformations of the protein. The occupation prob-
ability m; of the most compact form of the protein, hav-
ing the highest FRET efficiency (shown in blue in Fig. 3),
is seen to decrease consistently as the concentration of
the denaturant increases. Conversely, the occupation prob-
abilities of the less compact, lower FRET efficiency states
(shown in purple) consistently rise with the denaturant con-
centration, demonstrating the increased occupation of less

0.08

0.06

0.04

0.02

Relative State Distance

0.5 0.65 0.75 0.85 1
[GdmCI] (M)

FIG. 4. Kantorovich distances of each state’s distribution at each denatu-
rant concentration from its mean distribution relative to the average distance
between states. States are again represented with open circle, triangle, square,
and closed circle markers in order of descending efficiency.
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compact conformational states at increased [GdmCl]. Interest-
ingly, the conformational state shown with green triangles in
Fig. 3, occupying the intermediate FRET efficiencies, displays
a slight increase in occupation at smaller GdmCI concentra-
tions that is followed by a slight decrease at higher concentra-
tions. This behavior is well outside the 95% error bounds for
each occupation probability, suggesting that it is an intermedi-
ate conformation along the unfolding pathway, in agreement
with similar states found in Ref. 5 using a HMM approach. In
general, these results are consistent with the expected confor-
mational behavior of the protein as a function of denaturant
concentrations; at low [GdmCl], the most compact forms of
the protein are favored and are progressively destabilized as
the denaturant concentration increases.

Trajectories shown in Fig. 5 include a representative for
each of the five denaturant concentrations. Upper panels of
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FIG. 5. Representative trajectories and relative state assignments for: (a)
[GdmCI] =0.5 M, (b) [GdmCI] =0.65 M, (c) [GdmCI] = 0.75 M, (d) [GdmCI]
=0.85M, (e) [GdmCI] = IM.
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Figs. 5(a)-5(e) show FRET efficiency vs. time, and each point
in the trajectory is colored according to its most probable state
S@(t;). Lower panels illustrate the conditional probabilities
for each state given each segment, p(S¢lg;), which are returned
by the RDT clustering algorithm. Each segment returned from
change-point detection is assigned a vertical bar along the time
course, and the heights of each colored bar correspond to the
magnitude of the conditional probability p(Sklg;) for each state
S and each segment g;. The colors representing each state are
the same as those used in Figs. 3 and 4.

The most compact form of the protein is represented in
blue color in Fig. 5 and is characterized by relatively long resi-
dence times and high certainties in state assignment, as shown
by the large magnitudes of p(Slg;) at segments in which this
state is favored. As GAmCIl concentration increases, the relative
decrease in occupation probability of this state is reflected by
its absence in the representative trajectories. The trajectories at
lower GdmCI concentrations are also shorter in comparison to
those at higher concentrations, which is in agreement with the
expectation® that termination probability is higher for lower
efficiency states.

B. State uncertainties, residence times,
and termination probabilities

Figure 6 displays various properties of the states as a func-
tion of the GdmCI concentration. Figures 6(a) and 6(b) show
the quantification of uncertainty in state assignments at differ-
ent GdmCI concentrations. For example, as seen in Fig. 5(a)
at [GdmCl] = 0.5 M, the highest efficiency state S| (indicated
with closed blue circles) is most favored at segments occur-
ring on the interval 0 < t <~ 635, i.e., S*)(¢) = §; according to
Eq. (7), with a high degree of certainty, i.e., p(S1lg;) — 1. Atall
but one segment occurring after ~6s, the lower efficiency states
S3 and S4 (orange squares and closed red circles, respectively)
are the favored states, having maximum values of p(Silg;) at
those segments. However, as indicated by the lower panel of
Fig. 5(a), the magnitudes of the p(Silg;) at these segments are
smaller than those of p(Slg;) on the time interval 0 <t < ~6s,
implying relative uncertainty in their state assignments. To
quantify this uncertainty, we calculate the mean of p(Silg;)
when the most favored state at segment g; is Sy, that is,

Simop (S V1g 1) 5 (S - 5y
Zt,-:() Py (S/(i) _ Sk) .

P (Sk) = (16)

Here ¢ indicates the Kronecker delta function. Larger values of
D (Sk), plotted vs. [GdmCI] in Fig. 6(a), imply a higher degree
of certainty in state assignment while lower values imply
the opposite. Figure 6(b) shows the 95% confidence interval
Ap(Sy) on the distribution of the p(Silg;) when S is the most
favored state. From Fig. 6(a), we can see that p (Sy) of the lower
efficiency states are fairly constant with changing [GdmCl], as
is the 95% confidence interval Ap(Sk). Conversely, p(Sk) for the
most compact form decreases with increasing [GdmCI] while
the fluctuation in them, Ap(Sy), increases. This is most likely
due to decreased residence time in state Sy, thereby increas-
ing the sampling error in the calculation of the probability
distributions of segments.
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FIG. 6. State properties vs. GdmCI concentration. (a) The mean conditional
probabilities calculated from segments in which the state in question is favored.
(b) The 95% confidence interval of the conditional probability as calculated
from segments in which the state in question is favored. (c) The mean escape
time of each state as a function of denaturant concentration. (d) The termi-
nation probability of each state as a function of GdmCI concentration. States
are represented with open circle, triangle, square, and closed circle markers
in order of descending efficiency in all panels (a)—(d).

Figure 6(c) confirms a decrease in the residence time of
the most compact conformational state (shown with open blue
circles), as it is reduced by a factor of 4.6 from 1.6 s to 0.35
s as the denaturant concentration increases. Interestingly, the
less compact forms of the protein do not exhibit the same
behavior, with their residence times remaining fast and rea-
sonably constant for all denaturant concentrations. This result
suggests that these three less compact states of the protein
occupy an unfolded/partially folded “superbasin” in which
escape kinetics are dominated by fast internal transitions rather
than transitions to the folded state and are relatively unaffected
by GdmCl concentration.

Finally, we examine the termination probabilities of each
state in Fig. 6(d). In Ref. 5, the authors added a photobleaching
state to their HMM formalism to account for the expectation
that the photobleaching times of states having lower FRET
efficiencies would be faster owing to the donor fluorophore
being less photostable than the acceptor fluorophore. In short,
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because Forster energy transfer generally occurs on a faster
time scale than fluorescence, the donor spends less time in an
excited state and thus is less likely to be photobleached in a
high efficiency, more compact, conformational state than in
a lower efficiency, less compact state. The results shown in
Fig. 6(d) indicate that this is the case, as the lower efficiency
states, S» (green triangles), S3, and Sy typically have a larger
termination probability than the high efficiency state, S;. The
behavior shown in Fig. 6(d) is not so simple, however, in that
the termination probabilities depend on GdmCl concentration.
This is particularly evident for state S| at higher [GdmCl], at
which the termination probability increases beyond what is
explained by the increased size of the error bar that arises
from decreased sampling of state S.

We note that although trajectory termination has been
modeled here as a transition to a single photobleaching state,
termination in a SmFRET experiment can occur via multiple
mechanisms having distinct rates of transition. For example,
photobleaching of the donor fluorophore may be faster on aver-
age than photobleaching of the acceptor fluorophore. Another
source of trajectory termination may be the premature trunca-
tion prior to any photobleaching events due to large shifts in
the total fluorescence intensity.” To investigate the effects of
multiple termination pathways, we use the experimental pho-
ton trajectories to identify whether the events occurring at the
end of each trajectory are donor photobleaching, acceptor pho-
tobleaching, or other termination events, such as the intensity
fluctuations described above. See Sec. S5 of the supplementary
material for full details of event assignment.

Figure S3 of the supplementary material displays the
results of the computation. Figure S3(a) shows the state-
dependent fraction of acceptor photobleaching events as a
function of [GdmCl], Fig. S3(b) shows that of donor photo-
bleaching, and Fig. S3(c) displays that of other termination
events. As shown in Fig. S3 of the supplementary material,
while the lower efficiency states show consistent behavior,
with acceptor photobleaching events increasing, donor pho-
tobleaching events decreasing, and other termination events
remaining fairly constant as [GdmCl] increases, the behavior
of the highest efficiency state deviates from the others. The
fraction of acceptor photobleaching decreases while those of
donor photobleaching and other termination events increase.
While the present discussion suggests possible reconciliation
of the probabilities of photobleaching arising from these vari-
ous termination events, such reconciliation is nontrivial and is
beyond the scope of the present work.

C. Probability flow tests reveal violations
of detailed balance

To this point, RDT analysis of experimental smFRET
trajectories of the folding and unfolding behavior of adeny-
late kinase suggests a transition network consisting of at least
four conformational states, one state being a compact, folded
form of the protein and the other three states being various
partially folded and/or unfolded conformations. The escape
times of the four states also suggest that the most compact
form exhibits relatively slow transitions and high occupation
probabilities at low concentrations of the denaturant while the
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other three states occupy an unfolded/partially folded super-
basin that exhibits fast internal transitions with residence times
remaining relatively constant at all GdmCl concentrations. A
natural way to visualize such behavior is through the construc-
tion of transition disconnectivity graphs (TRDGs),?>** which
is a projection of the multidimensional free energy landscape
onto a 1-D observable coordinate (e.g., smFRET).!® The con-
struction of a TRDG requires detailed balance to hold for the
equilibrium system, so we must verify that the state networks
returned have equilibrium properties. We thus examine the
numbers of transitions and the probability flow between pairs
of states. Figure 7 contains the numbers of single-time step
transitions obtained for each of the five GdmCl concentra-
tions. Each entry in the transition matrices contains the median
number of transitions N;; between an initial state S;, along the
rows, and a final state S;, along the columns, which were esti-
mated from 1000 sets of randomly sampled state sequences.
Diagonal entries in each transition matrix contain the occupa-
tion probabilities m; = N;/N for each state, with N; being the
number of visits to §; and N being the total number of time
steps, and each is outlined with color corresponding to those
used in Figs. 3-5 for each state. Rows and columns of each
matrix are arranged in order of descending efficiency from top
to bottom and from left to right, respectively. The fifth col-
umn of each transition matrix, outlined in black, contains the
median number of transitions from each state to the termina-
tion state. See Figs. S4 and S5 of the supplementary material
for the transition matrices corresponding to the most prob-
able state sequences and the transition probability matrices,
respectively.

The flow of probability among states has been called a
principal characteristic in the study of nonequilibrium sys-
tems> and has been proposed as a measure of the degree of
nonequilibrium behavior.’® Here we use the probability flow
between each pair of states S; and S, J;; = m;p; — 7;pji, to
assess whether or not equilibrium properties are maintained
between pairs of states. Here p;; = N;;j/N; represents the transi-
tion probability from state S; to state S;. The probability flow
Jj;j derives from the detailed balance condition, which states
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that the net probability flow in an equilibrium system should
approach zero. We develop a hypothesis test, described in
Sec. II C, to accept or reject the null hypothesis that the prob-
ability flow between each pair of states is indeed within error
of zero.

We calculate J;; for each pair of states and from each
of the 1000 sets of randomly sampled state sequences and
then test for violation of the detailed balance condition. Each
off-diagonal entry in Fig. 7 is colored according to the color
scale shown to the right of the figure, which indicates the frac-
tion of the 1000 randomly sampled sets of state sequences
that violate detailed balance for each transition in each net-
work. Transitions that are red-colored are transitions in which
detailed balance is violated in most of the randomly sampled
state sequences, while those that are white-colored indicate
transitions for which equilibrium properties hold for most sets
of sequences.

Compared to the corresponding Fig. S4 of the supple-
mentary material, constructed using the most probable state
sequences according to Eq. (7), in which many pairs of states
violate the probability flow test, Fig. 7 shows that the increase
in statistical sampling arising from the use of randomly sam-
pled state sequences results in transition networks that are
much closer to satisfying the detailed balance condition.
Figure 7 still shows, however, that all five denaturant con-
centrations have transitions that violate the detailed balance
condition to some extent, and the lower the denaturant con-
centration [GdmCl], the more the number of the pairs of states
that violate the test increases. While these violations mostly
involve infrequent transitions, such as the highest efficiency
state transitioning to the lowest efficiency state, there are others
that involve large numbers of transitions, namely, the transi-
tion involving the two lowest efficiency states at the 0.85M
GdmCl concentration. Because the conformational motion of
the protein is expected to be at equilibrium,’ the extracted
conformational state network is expected maintain equilib-
rium properties. As such, the source of these equilibrium
violations will be the primary focus of the remainder of this
work.

FIG. 7. Median numbers of state-to-
state transitions observed in the ran-
domly sampled sequences. 95% con-
fidence intervals for each number of
transitions are indicated in parentheses
below each entry. The diagonal entries
of each matrix contain each state’s occu-
pation probability, and each is outlined
with the color used in Figs. 3-6 for
each state. States are arranged in order
of descending mean efficiency from top
to bottom and from left to right. Each
of the off-diagonal entries is colored
according to the color scale to the right.
Off-diagonal entries that are white cor-
respond to transitions in which detailed
balance holds while those that are red
show significant violations of detailed
balance. Numbers of transitions of each
state to the absorbing, or photobleaching
state, are denoted by black outlines.
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D. Unbalanced termination rates induce apparent
nonequilibrium behavior

Perhaps the most intuitive reason that the system would
display nonequilibrium behavior is because the transition
probabilities are still changing with time because too few
transitions have been observed. However, Fig. S6 of the sup-
plementary material shows that this is not the case. Figure
S6 tracks changes in each of the transition probabilities after
each time step in the randomly sampled state sequences and
shows that while there is fluctuation in the early time steps,
the median values of all the transition probabilities have con-
verged to constant values. Because the transition probabilities
have been calculated from 1000 sets of state sequences that are
randomly generated proportionally to p(Silg;) and because the
number of time steps observed in the SmFRET trajectories is
large, even the median probabilities having very few numbers
of transitions have converged.

Having confirmed that the probabilities of transition are
sufficiently converged, we posit that another reason for equilib-
rium violation is trajectory termination. Assuming the behav-
ior of the underlying protein dynamics is Markovian, the
termination state constitutes an absorbing state, and a state
sequence resulting from state assignment along a sSmFRET tra-
jectory is an absorbing Markov chain (AMC).* As discussed
in Sec. S7 of the supplementary material, AMCs are Markov
chains that contain at least one absorbing, or inescapable state,
along with another (set of) non-absorbing state(s), which is
often called the transient set. As implied, the probability of
observing a transient state goes to zero in the long-time limit,
thus destroying positive-recurrence and violating equilibrium
properties.

The smFRET measurement can thus be interpreted as
nonequilibrium owing to the destruction of the positive-
recurrence of the set of conformational states. This does not
necessarily imply that the underlying system is not at equi-
librium; rather it implies that the method of observation may
induce nonequilibrium behavior. In effect, the smFRET mea-
surement is two interacting systems, the photophysical system
being a window through which the underlying biological sys-
tem is observed. Changes in the biological system may alter
the behavior of the photophysical system in the form of differ-
ent termination rates originating from different conformational
states, as we observe above in Fig. 6(d). It is thus of interest
to investigate the effects of termination on the equilibrium
properties of a smFRET system.

We present this investigation in Sec. S8 of the supplemen-
tary material. Section S8 presents two Markov chain Monte
Carlo (MCMC) simulations. The first is an AMC simulation
in which termination is modeled as an absorbing state, and
the second is a coupled Markov chain in which termination
is modeled as an external, coupled window consisting of an
on state and an off state. A two-state equilibrium system is
observed while the on/off system occupies the on state, and
observation ceases when the system transitions to the off state.
Figure S7 of the supplementary material displays the results
of these simulations. Figure S7(a) shows that a 2-state AMC
having equivalent termination probabilities maintains prop-
erties expected of equilibrium systems, returning equivalent
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numbers of transitions and input occupation and transition
probabilities. The properties of the system shown in Fig. S7(b),
in which the termination probabilities are unbalanced, are quite
different. The numbers of transitions are reduced and are no
longer equivalent, but most notably the occupation probabili-
ties are not equivalent to the inputs, favoring the state with the
smaller termination probability. Finally, the coupled MCMC
shown in Fig. S7(c) indicates that even if the underlying system
is at equilibrium, its behavior may appear to be nonequilib-
rium when coupled to the external on/off window model of
termination.

The behavior of the absorbing and coupled systems
observed in Fig. S7 of the supplementary material is consis-
tent with the behavior observed in the experimental smFRET
systems of the AK folding landscape presented above. From
Fig. 6(d), the largest difference in photobleaching probabili-
ties occurs at the lowest GAmCI concentration, at which the
observed termination probability of the highest efficiency state
is approximately 2.5 times smaller than those of the lower
efficiency states. It is at this GdmCI concentration that we
also observe the most significant deviations from equilibrium
behavior, as indicated by the observed numbers of transitions
and the results of the probability flow tests in Fig. 7. As the
GdmCl concentration increases, the termination probability
of the highest efficiency state also increases such that at the
highest denaturant concentration, all termination probabilities
from all conformational states are similar. It is at this highest
GdmCl concentration that we observe the transition network
that most resembles equilibrium behavior. These results sug-
gest that it is the response of the fluorophores used in the
smFRET measurement to conformational motion in the bio-
logical system, rather than the conformational motion itself,
that leads to the observation of nonequilibrium behavior. At
low GdmCl concentrations, large differences in observed ter-
mination probabilities contribute to deviation from equilib-
rium behavior, while at higher GdmCI concentrations, smaller
differences in observed termination probabilities contribute to
less significant deviations from equilibrium behavior.

E. Transition disconnectivity graphs at different time
scales illustrate the free energy landscape
of AK folding/unfolding

To examine approximations of the free energy landscapes
of AK folding/unfolding on multiple time scales, we dis-
play transition disconnectivity graphs at different [GdmCl]
and observation time scales. Time-dependent aspects of free
energy landscapes were discussed in the traveling salesman
problem,?’ Ising spin models,*® computer simulation of a
model protein,'>3°*! and also pointed out in single-molecule
experiments,*>*3 but there exists no systematic elucidation
in terms of smFRET time series. To generate the time scale-
dependent TRDGs, the photon-by-photon smFRET trajecto-
ries were first binned to uniform time steps of 50, 200, and 400
ms. Change-points were then detected in each data set, gener-
ating sets of segments to be clustered with RDT as described in
Sec. IT A. After segments were clustered, model selection was
performed, and state sequences were constructed as described
in Sec. II B.
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FIG. 8. Freeenergy landscape approximations of the AK
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\ trations. Each TRDG was constructed as described in
s, Sec. S4 of the supplementary material. Each TRDG is
positioned horizontally according to [GdmCIl] and ver-
tically according to sampling time. The vertical scale is
normalized such that minimum free energy of zero cor-
responds to the most occupied state in each TRDG, and
the maximum is the free energy of the set of all barrier
energies relative to their corresponding minimum free
energy state. The color gradient in each TRDG is scaled
according to the maximum of the set of all relative barrier
energies in units of kg T. The position of each state corre-
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Figure 8 presents TRDGs representing approximate free
energy landscapes of AK folding/unfolding on observation
time scales of 50, 200, and 400 ms at each of the five GAmCl
concentrations. The graphs for each condition are plotted hori-
zontally vs. [GdmCIl] and vertically vs. observation time scale.
Free energies at the transition barriers and for each node (i.e.,
conformational state) were calculated as described in detail in
Sec. S4 of the supplementary material. Each node is plotted
at the mean efficiency of the corresponding state, and the free
energy at each node is normalized such that the most occu-
pied state in each system has zero free energy. Each barrier is
represented as a curve, with the relative energy at the barrier
being positioned at the apex of each curve. We note that curved
barriers are used for visual clarity only and do not represent
changes in free energy. Each line in the TRDGs is colored
according to free energy in units of kg7, with black color rep-
resenting those near zero and lighter gray colors representing
larger values. All free energies are normalized to the same
color scale. Calculated barriers that do not satisfy the detailed
balance condition according to the probability flow test across
the barrier, as described in Sec. II C, are indicated with dashed
lines.

TRDGs are often calculated with methods designed
to reduce computational complexity, such as the Ford-
Fulkerson method** or the Gomory-Hu algorithm.*> Because
our networks only have four states, we instead use a brute
force approach, directly calculate the numbers of transitions
between every possible pair of subsets in the networks, and
then arrange them in descending order to construct the TRDGs.
This brute force approach returns barriers that represent ener-
gies required to transition from a single state to any of the other
states, rather than barriers between pairs of states as in the
Ford-Fulkerson approach. This is advantageous in that avoids
the assumption that transitions between pairs of states hav-
ing low barrier heights are fast enough to be at equilibrium
in comparison to slower transitions with larger barrier ener-
gies. See Sec. S4 of the supplementary material for complete
details.

First we note the hierarchical nature of the states as obser-
vation time scale increases; moving from the 50 ms time scale
to 200 ms reduces the observed number of states from four

02 04 06

ability flow test described in Sec. II C appear as dashed
lines.

to three, with the two lowest efficiency states (S3,54) merging
to become a single state. With another increase in observa-
tion time scale to 400 ms, the intermediate efficiency state
(§2) merges with the already-combined lower efficiency states,
producing a free energy landscape with two basins; one basin
containing the more folded forms of the protein (S;) and
another containing the more unfolded forms ($7,53,54).

The reduced occupation probability and relative destabi-
lization of the folded form of the protein (S) is reflected as
a function of [GdmCI] at all observation times; as [GdmCl]
increases, the relative free energy of the highest efficiency S
increases and that of S, S3, and S4 decreases. Also reflecting
this destabilization are the relative barrier heights from S; to
the unfolded states. Atlow [GdmCl], the barrier height from S
to the open states is relatively large but decreases as [GdmCl]
increases, which is indicative of the decrease in its escape time
as shown in Fig. 6(c). Furthermore, at the 50 ms observation
time, the barrier heights from each of the unfolded forms do
not change significantly as a function of [GdmCl], indicating
that this is the reason for the escape times from S», S3, and Sy4
remain relatively constant. Note that at the 400 ms time scale,
in which the three energy basins of the unfolded states are uni-
fied, the free energy barrier from the unfolded state increases
as an increase of [GdmCl].

Because termination rates differ from state to state and
across [GdmCl], some state-to-state transitions do not sat-
isfy the detailed balance condition. For example, in Fig. 7,
at 1M [GdmCI], most state-to-state transitions do not vio-
late the detailed balance condition but, at 0.5 M, state-to-state
transitions between S and {S3, S4} do. Thus, we should
emphasize that the TRDG representation is an approximation
of the underlying free energy landscape of AK.

IV. CONCLUSIONS

Rate-distortion theory is a data-driven, information the-
oretical method in which state models emerge from the data
through segmentation and subsequent clustering of the seg-
ments.'® Soft clustering allows segments to belong to multiple
states, a natural treatment in the presence of the photon count-
ing and finite sampling errors of smFRET measurements.
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Errors may cause uncertain state assignments, expressed as
conditional probabilities of states given segments. Uncertain-
ties are exploited to extract a minimal state model and to con-
struct state sequences that allow the effects of errors to prop-
agate through to any calculated quantities. Because uniform-
length segments may contain transitions, we use change-point
detection'® to minimize the number of segments containing
transitions.

The method was applied to smFRET trajectories follow-
ing (un)folding behavior of AK versus denaturant concentra-
tion [GdmCI].> After change-points were detected, all seg-
ments, i.e., regions between change-points, across all [GdmCl]
were clustered simultaneously, producing a set of states that is
fit globally across multiple data sets. The selected model con-
tained four consistent states in which the most compact form
of the protein declined in occupation, while the three less com-
pact forms increased in occupation with increased [GdmCl].
The escape times of the less compact states were relatively
independent of [GdmCI] compared to that of the most com-
pact state, suggesting the three less compact states occupy a
collective superbasin in which escape times are dominated by
fastinternal transitions rather than transition to the folded state.
Less compact states were expected to have faster termination
rates than the higher efficiency states;> through the addition
of an artificial photobleaching state, we found that in general
this is a true assumption, but the existence of multiple routes
to trajectory termination plays a major role in the observed
termination rate.

We also devised a hypothesis test for the detailed bal-
ance condition to assess equilibrium characteristics and found
that the degree of violation of detailed balance is not inde-
pendent of [GAmCI]. Through simulation we showed that an
equilibrium system may appear to be an absorbing Markov
chain®® when viewed through an external, coupled window
with a finite observation time. Simulation results also indicate
that this type of absorbing Markov chain may be modeled as
a coupled Markov chain, suggesting that methodologies such
as the coupled hidden Markov model*® may be of use in these
situations.

Finally, we applied transition disconnectivity graph
methodology?>?3 to construct approximate free energy land-
scapes of AK folding at multiple time scales. We found merg-
ing of the more unfolded states of the protein into an unfolded
state superbasin as observation time scale increases. Also
we observed the general characteristics of the destabilization
of the folded form of the protein as denaturant concentra-
tion increases in the forms of increased free energy of the
state and decreased barrier heights for transition from the
state.

SUPPLEMENTARY MATERIAL

See supplementary material for details involving model
selection, construction of TRDGs, a discussion of trajectory
termination events, the transition matrices of the most proba-
ble sequences, the transition probability matrices, a discussion
on the convergence of the transition probabilities, and a dis-
cussion and accompanying simulation of absorbing Markov
chains.
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