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Abstract Constructions of numerical schemes for solving the radiative transfer
equation (RTE) are crucial to evaluate light propagation inside photocatalytic
systems. We develop accurate and efficient schemes of the three-dimensional and
time-dependent RTE for numerical phantoms modeling aqueous titanium diox-
ide suspensions, in which the anisotropy of the forward-directed scattering varies
and the strength of absorption is comparable to that of scattering. To improve
the accuracy and efficiency of the numerical solutions, the forward-directed phase
function is renormalized in the zeroth or first order with a small number of dis-
crete angular directions. Then, we investigate the influences of the forward-directed
scattering on the numerical solutions by comparing with the analytical solutions.
The investigation shows that with the anisotropy factor less than approximately
0.7 corresponding to the moderate forward-directed scattering, the numerical so-
lutions of the RTE using the both of the zeroth and first order renormalization
approaches are accurate due to the reductions of the numerical errors of the phase
function. With the anisotropy factor more than approximately 0.7 corresponding
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to the highly forward-directed scattering, the first order renormalization approach
still provides the accurate results, while the zeroth order approach does not due
to the large errors of the phase function. These results suggest that the developed
scheme using the first order renormalization can provide accurate and efficient
calculations of light propagation in photocatalytic systems.

Keywords Light propagation in photocatalytic systems - radiative transfer
equation - renormalization approach of the forward-directed phase function

Mathematics Subject Classification (2000) 78A40 - 92E20 - 65D30 - 74E10

1 Introduction

Evaluation of light propagation inside the photocatalytic reactors is crucial for
a reactor design, kinetic modeling in the reactors [1, 2], and photocatalytic per-
formance evaluation. The radiative transfer equation (RTE) or linear Boltzmann
equation can accurately describe light propagation inside turbid media such as
photocatalytic systems [3, 4, 5]. For calculations of the RTE, one needs the op-
tical properties (absorption and scattering coefficients; and anisotropy factor) as
parameters. Absorption and scattering coefficients represent the strengths of light
absorption and scattering, respectively. The anisotropy factor ranging from -1 to
1 characterizes the anisotropy of light scattering. The zero value of the factor cor-
responds to isotropic scattering, the value of -1 to purely backward-directed scat-
tering, and the value of 1 to purely forward-directed scattering. Excellent studies
have determined the optical properties of the photocatalytic systems [6, 3, 7] by us-
ing the RTE. The researches show that most of photocatalytic systems are highly
forward-directed scattering media, e.g. the anisotropy factor of silica supported
titanium dioxide suspensions is in a range from 0.75 to 0.88 [3].

Usually, the RTE is solved numerically because the photocatalytic reactors
are heterogeneous media, for which it is quite difficult to derive the analytical
solutions of the RTE. For angular discretization of the RTE, the discrete ordinates
methods (DOM) have been widely used with a quadrature set [8, 9]. The highly
forward-directed scattering such as photocatalytic systems requires a large number
of discrete angular directions to obtain accurate solutions of the RTE. This fact
leads to high computational costs. For example, the previous studies [3, 4, 5] for
the systems have chosen the number of the discrete angular directions as 288,
which is the second largest in the quadrature set. Hence, the efficient numerical
scheme of the RTE is still necessary as well as the accuracy of calculation of light
propagation inside the heterogeneous reactors.

On the other hand, in the research field of biomedical optics, the RTE has been
employed as a forward model of the image reconstruction [10, 11]. Because bio-
logical tissue volumes are highly forward-directed scattering media [12], the same
difficulty in the numerical calculation of the RTE arises as in the field of photo-
catalytic reactions. To overcome the difficulty, the renormalization approaches of
the phase function have been developed to satisfy the normalization conditions
of the phase function [13, 14, 15]. It has been reported that the renormalization
approaches improve the accuracy of the numerical calculation even when using a
small number of the discrete angular directions. Hence, the renormalization ap-
proaches developed in the field of biomedical optics are expected to be applicable
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for the numerical calculation in the photocatalytic systems. Nevertheless, the ap-
plication to the photocatalytic systems is not straightforward because the optical
properties of the photocatalytic systems in a ultraviolet wavelength range from
290 to 410 nm are quite different from those of biological tissue volumes in a near
infrared wavelength range from 700 to 1100 nm. The anisotropy factor of the aque-
ous titanium dioxide suspensions strongly depends on the wavelength and in the
case of Aldrich, it varies from 0.37 to 0.83 approximately [6], while biological tissue
volumes and silica-supported titanium dioxide suspensions are less dependent on
the wavelength [3, 16]. Additionally, in the photocatalytic systems, the scatter-
ing coefficient is comparable with the absorption coefficient in a short wavelength
range around 290 nm. In biological tissue volumes, the volumetric scattering coef-
ficient ranging from about 100 ecm ™' to 1000 cm ™' is much (about two orders of
magnitude) larger than the absorption coefficient [17], and the anisotropy factor
ranges from about 0.8 to 0.95 showing highly forward-directed scattering. Due to
the very large scattering coefficient, the mean free path is very small less than
0.01 cm, and resultantly the highly forward-directed scattering can be approxi-
mated to isotropic scattering after many scattering events in the biological tissue
volume with the thickness more than 1 cm. Then, several approximations such
as the diffusion approximation have been widely employed [18]. However, in the
aqueous suspensions of titanium dioxide (Aldrich) with the volumetric scattering
coefficient ranging from about 20 cm™! to 40 cm ™!, the mean free path is in the
order of 0.05 cm and the diffusion approximation is not applicable to the system
with the thickness less than about 5 cm. Therefore, full calculations of the RTE are
necessary without the approximations. These differences in the optical properties
suggest the necessity of constructing the accurate and efficient numerical scheme
for solving the RTE when the anisotropy of the forward-directed scattering varies
and the strength of absorbing is comparable with that of scattering, encountered
in photocatalytic systems.

In this paper, we develop numerical schemes for solving the RTE using the
renormalization approaches of the phase function with a wide range of anisotropy
factor from 0.45 to 0.8 and investigate the influences of forward-directed scat-
tering on the numerical calculation of the RTE. The following section mentions
the light propagation model and numerical scheme for solving the RTE using the
renormalization approaches. Section 3 provides the numerical results for the nor-
malization conditions of the phase function and numerical solutions of the RTE.
Finally, conclusions are mentioned.

2 Light propagation model
2.1 Radiative transfer equation (RTE)

The RTE for three dimensional media is given [8] in the following formula at low
temperatures where light emission can be neglected:

)
[vT’)t + 02V + pa (1) + psa(r) | In(r, £2,)

= /Ls,k(r) /S2 d‘Q, p(n, ‘Q/)Ik (Tv ‘le t) + q(’l", Qv t)' (1)



4 Hiroyuki Fujii et al.

Here, Ix(r,£2,t) in Wem ™2 sr™ ! represents the light intensity as a function of
spatial location r = (z,y, ) € R? in cm, angular direction 2 = (2, 2y, 2.) € §*
in sr, time ¢ in ps, and A wavelength in nm. pq x(r) and ps x(r) in cm ™! are the
volumetric absorption and scattering coefficients, respectively; v is the speed of
light in the medium; p(£2, £2') in st~ * is the phase function with 2’ and £2 denoting
the incident and scattered directions, respectively; and ¢(r, £2,t) in W cm 2 srt
is a source function.

In the research field of photocatalytic reactions, the steady-state RTE has been
mostly employed at each individual wavelength because the local volumetric rate
of photon absorption (LVRPA) inside the reactor is a fundamental measurement
property, defined as

LVRPA) = 3 pan(@) [ 4RI, @) = 3 parmar). ()

A< Ang S A< by

Here, A\pg represents a wavelength corresponding to the band gap energy and
&(r) the fluence rate. Because the LVRPA is calculated by a summation over
the wavelength, steady-state or frequency-domain measurement of light intensity
is useful for receiving light with a wide range of wavelengths. Meanwhile, in the
time-resolved measurements of light, it is not easy to reveive light with a broad
wavelength range. However, for the determination of the optical properties, time-
resolved measurements have the advantage over the steady-state measurement; the
time-resolved measurements allow to determine p4, 5 and p,» separately, while the
CW measurements cannot [19]. From the discussion above, this study employs the
time-dependent RTE. In the following, the subscript, A, is omitted for simplicity.

2.2 Henyey-Greenstein phase function and anisotropy factor

For the formulation of p(§2, §2), the Henyey-Greenstein (HG) phase function [20]
is widely employed,
_ 1 1-g

AT (14 g2 — 2902 - 2/)3/2

p(£2- 1) 3)

The HG phase function assumes that the scattering probability depends on §2- £’
or the polar scattering angle, ¢ = cos ™' £2 - 2. Also, g €]-1, 1] is the anisotropy
factor, defined by
_fSZd‘Q/ p(Q.Q’)QQ’ (4)
g = fs2 de p(ﬂ . Q/) .

The g-values of silica-supported titanium dioxide and biological tissue volumes are
typically larger than 0.8 [3, 12], meaning the highly forward-directed scattering.
Meanwhile, the g-value of powder titanium dioxide varies from 0.37 to 0.83 [6].
Figure 1 shows the HG phase function (Eq. (3)) as a function of ¢ for the cases
of g = 0.0, 0.35, and 0.85, in logarithmic scale. For isotropic scattering with g =
0.0, the phase function has a circular shape, i.e., its values are constant over the
whole region of . For forward-directed scattering with g = 0.35, the shape of the
phase function deviates from the circular shape, and the values decrease in the
backscattering region (cos¢ < 0) and increase in the forward-scattering region
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2

3r/2

Fig. 1 Henyey-Greenstein phase function, p, as a function of the polar scattering angle ¢ in
polar coordinates and semi logarithmic scale for isotropic scattering (g = 0.0, solid curve),
moderately forward-directed scattering (g = 0.35, dotted curve), and highly forward-directed
scattering (g = 0.85, chain curve). Values of ¢ are denoted outside the frame, and values of
log,o p are represented by closed contour lines.

(cosp > 0). When the g-value increases, the deviation of the shape from the circle
becomes enhanced and the values of the phase function increase exponentially
around the forward-scattering region.

Theoretically, the HG phase function satisfies the zeroth and first order nor-
malization conditions at any nonzero values of g as follows:

/ a2’p(2-02') =1, (5)
SZ

g_l/ d2'p(2- 22 -2 = 1. (6)
52

3 Numerical schemes for the RTE

In this study, the RTE is numerically solved based on the DOM for angular direc-
tion and on the finite-difference method for space and time.

3.1 Discrete ordinates method (DOM)

The DOM approximates the scattering integral in Eq. (1) to a quadrature sum:

Ng

ps(r)/ 42 p(2- Q)10 2 1) ~ o) S wopw I (r, 20,1, (7)
SZ

I'=1

where wy is a weight for numerical integration, §2;: is the I’-th discrete angular
direction, and Ny, is a total number of the discrete angular directions. In the DOM,
a quadrature set of (wy, £2;) needs to be chosen properly because the quadrature
set influences the accuracy of the numerical results of the RTE. Among the various
kinds of the quadrature sets [21, 22, 23] developed so far, the most common choice
is the level symmetric even (LSE) quadrature set [21] due to its features such as
the invariance with respect to 90-degree axis rotation and line reflection. Also,



6 Hiroyuki Fujii et al.

0275 0.28
027 0.26
1 0.265 0.24
0.22
Nos 0.26
G -1 G 0.2
0.255
0.18
_01 0 0.25
0 0.16
0 1t

Fig. 2 Discrete angular directions and weights, §2; and wy, in the half-sphere z > 0 for (a)
the LSE set with N = 48 and (b) Lebedev set with N = 50.

the Lebedev quadrature set [24, 25] has been reevaluated because the set is as
accurate as the LSE set [26, 27, 14]. Figure 2 shows examples of the distributions
of (wy, £2;) for the LSE set with Ny, = 48 and for the Lebedev set with Ng = 50,
respectively, in the half-sphere z > 0. Here, the arrow and grayscale color of circle
denote £2; and w;, respectively; and the values are calculated by referring to the
original papers [21, 24, 25]. As shown in Fig. 2, the distribution of (w;, £2;) for the
LSE set is different from that of the Lebedev set even though the values of N,
are almost the same to each other.

The previous studies focusing on light propagation in photocatalytic reactors
have chosen the LSE set with N, = 288 to obtain the accurate results of the
RTE [3, 4, 5]. However, the value of N, = 288 leads to high computational costs.
To reduce the computational costs, hence, we choose the LSE set with N, = 48
and the Lebedev set with N = 50. In general, the matrix size in the numerical
calculations is proportional to (NQ)Q, so that the case of N = 50 reduces the
matrix size to approximately 3 % of that in the case of Ny, = 288. In addition, for
improvement of the accuracy, we employ the renormalization approaches of the
phase function, explained in the next subsection.

3.2 Renormalization approaches of the phase function

In highly forward-directed scattering, the numerical calculations of the RTE re-
quire a large value of N, to obtain accurate results. As shown in Fig. 1, the val-
ues of the phase function are strongly dependent on ¢ in highly forward-directed
scattering, and the yp-dependence results in unsatisfaction of the normalization
conditions (Egs. (5) and (6)) in the numerical calculations based on the DOM at
small value of Ng,.

To obtain the accurate results of the RTE at a small value of N, we employ
the renormalization approaches in the zeroth and first orders. Among the zeroth
order renormalization approaches, we employ the Liu and co-worker’s formula [13]
in this paper because of its simple form. In their approach, the phase function is
renormalized to satisfy the zeroth order normalization condition (Eq. (5)):

No -1
b = fipw, fi= {Z wl'pw] ; (8)

I'=1
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where p;;r denotes the renormalized phase function in the discrete form and f; a
renormalizing factor. It has been reported that the zeroth order renormalization
approach provides accurate results of the RTE at a small value of Ny comparing
with the results without the renormalization approach.

We have recently proposed the first order renormalization approach of the
phase function to satisfy the zeroth and first order normalization conditions (Egs. (5)
and (6)) [15]. In the proposed approach, pj is given as

No -1
pw = iWuwpw, fi= {Z wl'Wll’pll’:| ; (9)

I'=1

where Wj;r denotes a renormalizing matrix calculated by the double exponential
formula [28, 29]. The details are referred to [15].

We have confirmed that the first order renormalization approach can improve
the accuracy of the numerical results of the RTE comparing with the zeroth order
renormalization approach, but only in the case of the optical properties: g = 0.9,
ps = 140 cm ™!, and pq = 0.38 cm ™!, Hence, in this paper, the verification of the
proposed approach is tested in a wide range of g-values and low values of us com-
parable with those of p,. Although the verification tests of the proposed approach
for various kinds of quadrature sets and a wide range of Ny, are significant, the
tests will be discussed elsewhere.

3.3 Finite difference method

We employ the 3rd order weighted essentially non oscillatory scheme [30, 31] for
spatial discretization and the 3rd order total variation diminishing-Runge-Kutta
method [32] for temporal discretization, respectively. For the details, refer to [33].
In the finite difference method, z, y, 2z, and t are discretized as z; = 1Az (i €
{07 Tty NI})7 Y = JAy (J € {07 Tty Ny})a 2z = kAz (k € {07 Tt NZ}):
and ty, = mAt (m € {0, ---, N¢}) with the constant step sizes of Az, Ay, Az,
and At, respectively, and the numbers of the grid nodes and timesteps of Ny,
Ny, N., and N¢, respectively. At the boundary of a medium, the refractive-index
mismatched boundary condition is employed.

The source code for the numerical calculation was written in the C program-
ming language, and all the matrices were compressed to vectors as the compressed
row storage format. Also, parallel CPU programming was implemented with 48
thread computers (Intel Xeon E5-2690v3@ 2GHz) by using the OpenMP, which is
a portable and shared-memory programming scheme.

3.4 Numerical phantoms modeling the aqueous titanium dioxide suspensions for
Aldrich powder and numerical conditions

In this paper, we consider numerical phantoms modeling the aqueous titanium
dioxide suspensions for Aldrich powder by referring to [6]. In the reference, values
of the specific absorption and scattering coefficients, p and p}, in cm? g=1; and
g are determined in the ultraviolet wavelength range. From the results, we obtain
the values of uy, us, and g at a step of 0.5 of the g-values in a range of the g-values



8 Hiroyuki Fujii et al.

Table 1 Optical properties of the aqueous suspensions of titanium dioxide (Aldrich) [6]. Vol-
umetric absorption and scattering coefficients, j1q and ps, are given by Cp el and Crp’ with
the catalyst concentration of Cy, = 1073[g cm™3]; and the specific absorption and scattering
coefficients, p} and p}, respectively. Conditions for the numerical calculations of the RTE:
spatial step size, Ax, and source-detector distance, p.

gl pilem® g7 pilem® g7 pafem™] psfem™? Azfcm] plem]
0.80 1.79x10% 1.91x10% 1.79%x 10 1.91x10 2.50x10~2  1.50
0.75 1.67x10% 2.12x10% 1.67x10 2.12x10 2.50x10~2  1.50
0.70 1.50% 104 2.35x10% 1.50x10 2.35%x10 1.60x1072  1.20
0.65 1.30x10% 2.60x10% 1.30x10 2.60x10 1.50x1072  0.99
0.60 1.08x10% 2.87x10% 1.08%10 2.87x10 1.25%1072  0.90
0.55 8.19x103 3.17x10% 8.19 3.17x10 1.25x1072  0.85
0.50 5.30x103 3.49%10% 5.30 3.49%10 1.25x1072  0.75
0.45 2.68x103 3.79%10% 2.68 3.79%10 1.25x1072  0.70

from 0.45 to 0.8 as listed in Table 1. Then, by setting the catalyst concentration of
Crm as 1073 g cm ™2, and by using the relations of g = Crpls and prs = Copil, we
obtain the values of p, and us. Table 1 shows that at g = 0.8, the values of uq and
s are in the same order, while as the g-value decreases, the po-value decreases
and the ps-value increases. These tendencies are different from those of biological
tissue volumes.

We consider a homogeneous cubic medium with a side of 3.1 cm as a first step
toward the numerical calculations of the RTE in heterogeneous media, because
the analytical solutions of the RTE in infinite homogeneous media are applicable
for the verification tests of the numerical calculations. Extensions of the developed
numerical schemes into the heterogeneous media are straightforward. The source
and detector are located inside the medium at rs = (1.55 c¢cm, 1.55 cm, 0.93 cm)
and rq = rs + pé. with the source-detector distance of p and the unit vector of
z-axis of é, to suppress the boundary effects because we employ the analytical
solution of the RTE for infinite media.

Table 1 also lists the values of Az and p at each value of g, where we set
Ax = Ay = Az. The appropriate values of Az depend on the optical properties;
as the values of puq + ps are larger, the values of Ax are smaller. The step sizes
are properly determined so that the numerical results of the RTE are unchanged
even as the step sizes are finer than the determined values. Because the numerical
calculation of the RTE treats multiple scattering events, we set the values of p so
that the values of pus are constant at approximately 27.

3.5 Analytical solution of the RTE

In this paper, we employ the analytical solution of the RTE for the time-domain
fluence rate, ¢(r, t), in homogeneous infinite media to evaluate the numerical errors
of the RTE calculations using the developed schemes here. Recently, the analytical
solution of the RTE with anisotropy scattering (g # 0) in time domain has been
derived using a single-sided Laplace transformation of the spherical harmonics
expansions [34]. In the reference, the analytical form of the fluence rate, @gna(r,t),
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is given as
1 oo
DPana(r,t) = Sl 3:1 klo(t) sin(Ewor), (10)

where r = |r|, R represents the radius of a large sphere, x discrete wavenumber,
I;0(t) the time-dependent mode of the intensity, £.0 the positive root of the equa-
tion of jo(£x0R) = 0 with jo being the zeroth order spherical Bessel function of the
first kind. Independent study [19] has verified the analytical solution (Eq. (10)) by
comparing with Monte Carlo simulations and experimental data. Because Eq. (10)
forms the summation over x, numerical calculation is partially necessary. Hence,
we employ an open source MATLAB code [34] for the calculation of Eq. (10).

4 Numerical results
4.1 First order normalization condition of the phase function

In this subsection, we investigate numerical errors of the normalization conditions
of the phase function (Egs. (5) and (6)) in a wide range of the g-values from
0.35 to 0.95. At each value of g, the numerical errors are calculated for the five
combinations of the quadrature set and renormalization approaches: (i) the LSE
set with N, = 48 using the zeroth order approach (Eq. (8)); (ii) the Lebedev set
with Ny = 50 using the zeroth order approach; (iii) the LSE set with N, = 48
using the first order approach (Eq. (9)); (iv) the Lebedev set with N = 50 using
the first order approach; and (v) the LSE set with N = 288 using the zeroth
order approach.

We have confirmed that the numerical errors of the zeroth order normalization
condition (Eq. (5)) are zero in all the cases of g-values for the five combinations, so
that we discuss here the numerical errors of the first order normalization condition
(Eq. (6)). We consider numerical integration, S :

Nqo
Si=g"" > wipn - 2, 1=1,2,--,Ng. (11)
I'=1

The ideal value of S! is unity. From the calculated values of S}, we evaluate the
mean absolute percentage error, e:

Ng
e1=Ng' > |81 — 1] x 100. (12)
=1

Figure 3 shows the numerical errors, e1, for the five combinations at different g-
values from 0.35 to 0.95. In Combinations (i) and (ii), the errors tend to increase
up to 10 % as the g-value increases. This is because as the g-value increases, the
phase function has a sharper peak and the ¢-dependence of the phase function
is enhanced, but the zeroth order approach renormalizes the phase function by a
constant value independent of ¢. Meanwhile, the errors in Combinations (iii) and
(iv) are smaller less than 1 % in a whole region of the g-values. This is attributed
to the fact that the first order approach renormalizes the phase function by the
weight matrix, Wy, dependent of ¢. The results for Combinations (i) to (iv)
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Fig. 3 Mean absolute percentage errors, e1, of Sﬁ (Eq. (12)) as a function of the g-values for
the five combinations of the quadrature sets and renormalization approaches. Open and solid
symbols represent the results using the zeroth order and first order renormalization approaches,
respectively. Squares represent those for the LSE set with Ny, = 48; triangles those for the
Lebedev set N, = 50; and circles those for the LSE set with N = 288.

suggest that the first order renormalization approach plays a significant role of the
error reductions especially at the large g-values more than 0.6.

The numerical errors for Combination (v) corresponding to the large value of
Ny, are compared with those at the small values of Ng; in Fig. 3. Here, it is noted
that the previous researches for the photocatalytic reactors [3, 4, 5] adopted the
same value of Ny, = 288 as Combination (v), but did not employed the renormal-
ization approach. Focusing on the results for the zeroth order approach, the errors
for Combination (v) are smaller than those for Combinations (i) and (ii) at the
small values of g less than 0.6, but increase up to 4 % as the g-value reaches at
0.95. Also, the results for Combinations (iii) to (v) show that at the large g-values
more than 0.8, the errors in the case of the first order approach are smaller than
those of the zeroth order approach, even though the use of Ny = 288 results in
high computational costs compared with that of N = 48.

Our previous paper [15] has suggested that the values of e; are positively
correlated to the numerical errors of the RTE at g = 0.9. Also, the paper has
found out that an acceptable value of e; is approximately 1 %, below which the
numerical results of the RTE are little changed and accurately agree with the
analytical solutions of the RTE. As shown in Fig. 3, the values of e; in the case of
the first order approach are less than approximately 1 % in the whole range of the
g-values, so that the results indicate that the numerical results of the RTE using
the first order approach would be accurate in the range of the g-values.

4.2 Fluence rate

In this subsection, we investigate the numerical errors of the RTE calculations
using the developed schemes for the numerical phantoms modeling the titanium
dioxide suspensions as listed in Table 1. We calculated the temporal profiles of the
fluence rate, &(r,t) = fsg df2I(r, £2,t), for the numerical phantoms and compared
them with the analytical solution of the RTE (Eq. (10)) for infinite homogeneous
media. As examples, Fig. 4 shows the numerical results of @(r,t) at ¢ = 0.45
and 0.8 for Combinations (i) and (iii); and the analytical solution. As shown in
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Fig. 4 Temporal profiles of the fluence rate, @, in the numerical phantoms modeling the
titanium dioxide suspensions as listed at Table 1: (a) g = 0.45 and (b) g = 0.80, respectively.
Open and solid squares represent the numerical solutions (NS) of the RTE for Combinations
(i) and (iii), respectively; and solid lines the analytical solutions (AS) of the RTE (Eq. (10)).

Fig. 4(a), the temporal profiles have relatively broad peaks (at FWHM of about 50
ps) due to the condition of the scattering dominance over the absorption as listed
in Table 1. The numerical results using the both renormalization approaches nicely
agree with the analytical solution at the small g-value of 0.45. These results are
probably because the values of e; are sufficiently small at ¢ = 0.45 as shown in
Fig. 3. As shown in Fig. 4(b), the temporal profiles at g = 0.8 have sharper peaks
(at FWHM of about 10 ps) than those at ¢ = 0.45 due to the conditions of the
scattering comparable with the absorption in addition to the large value of g.
Generally, such a condition requires a small value of Ax and large value of Ny, to
attain the accurate results of the numerical calculations, resulting in much higher
computational costs. Despite the use of the small value of N, the numerical result
of @(r,t) using the first order approach agrees with the analytical solution due to
the small value of e;. Meanwhile, the result using the zeroth order approach largely
deviates from the analytical solution because of the large value of e;.

Next, we investigate the difference in the shape of the temporal profiles of the
fluence rate normalized by their peak values, 43, between the numerical and analyt-
ical solutions of the RTE, without discussion of their magnitudes. The difference
in & between the numerical and analytical solutions of the RTE was evaluated by
the mean absolute percentage error, eg:

M; | = P
1 Qsm - qsana (tm)
ep = — - —emalm| w100, (13)
M — M m;h Bana(tm)

where ™ and anm(tm) represent the numerical and analytical solutions for &
at the m-th time step, t,,, respectively; and the summation with respect to m
is over the time period from the time of ¢ps, when ®Puna reaches the peak, to
the time of ¢57, when Pana falls to 1071° « 0.032 after the peak. Here, the time
period earlier than ¢, is excluded from the calculation of e because the analytical
solution (Eq. (10)) oscillates in the early time period due to the spherical harmonics
expansion, and because in the numerical solution the rise of the temporal profile
from zero is less sharp than in the analytical solution.

At each value of g, we calculate eg for the four combinations of the quadrature
set and renormalization approaches: Combinations (i) to (iv) defined in the previ-
ous subsection. The reasons to exclude Combination (v) are that the accuracy of
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Fig. 5 The difference in &, ep, between the numerical and analytical solutions of the RTE
with different g-values for Combinations (i) to (iv). Other details are the same as in Fig. 3.

the numerical results of the RTE using this combination has been already shown in
the previous studies (e.g. [35]); and that one of our purposes is to develop efficient
and accurate numerical schemes of the RTE with the small values of Ng,.

Figure 5 shows the errors of @, eg as a function of the g-values for the four com-
binations. At the small g-values less than 0.7, the both renormalization approaches
provide almost the same results for eg, while at the large g-values larger than 0.7,
the first order approach can reduce the numerical errors comparing with the zeroth
order approach. The results suggest that the positive correlation between e; and
e would hold for the different g-values. The positive correlation probably comes
from the error accumulation of the phase function to the numerical results of the
RTE during multiple scattering events.

5 Conclusions

We developed the numerical schemes of the DOM-based RTE for numerical phan-
toms modeling aqueous titanium dioxide suspensions, in which the anisotropy of
the forward-directed scattering varies and the strength of absorption is compa-
rable to that of scattering. Then, we employ the quadrature sets with the small
values of N, for improvement of the efficiency of the numerical calculation, and
the two kinds of renormalization approaches for improvement of the accuracy of
the numerical calculation. We found out that at the small g-values less than ap-
proximately 0.7, the both approaches can provide the accurate results of the RTE
due to the reduction of the errors of the phase function. At the large g-values
more than 0.7, the first order approach still provides the accurate results, while
the zeroth order approach does not due to the large errors of the phase function.
Hence, the numerical scheme of the RTE with the small value of N using the
first order approach has a possibility of the accurate and efficient calculations of
light propagation inside the photocatalytic reactors.
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