

CIAT Research Online - Accepted Manuscript

A note on variation in grain and straw fodder quality traits in 437 cultivars of rice from the varietal groups of aromatic, hybrids, Indica, new planting types and released varieties in the Philippines.

The International Center for Tropical Agriculture (CIAT) believes that open access contributes to its mission of reducing hunger and poverty, and improving human nutrition in the tropics through research aimed at increasing the eco-efficiency of agriculture.

CIAT is committed to creating and sharing knowledge and information openly and globally. We do this through collaborative research as well as through the open sharing of our data, tools, and publications.

Citation:

Virk, Parminder S.; Xianglin, L. & Blümmel, M. (2019). A note on variation in grain and straw fodder quality traits in 437 cultivars of rice from the varietal groups of aromatic, hybrids, Indica, new planting types and released varieties in the Philippines. Field Crops Research, 233: 96-100

Publisher's DOI:

https://doi.org/10.1016/j.fcr.2018.12.007

Access through CIAT Research Online:

https://hdl.handle.net/10568/99322

Terms:

© **2019**. CIAT has provided you with this accepted manuscript in line with CIAT's open access policy and in accordance with the Publisher's policy on self-archiving.

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0</u> <u>International License</u>. You may re-use or share this manuscript as long as you acknowledge the authors by citing the version of the record listed above. You may not change this manuscript in any way or use it commercially. For more information, please contact CIAT Library at CIAT-Library@cgiar.org.

1	A note on variation in grain and straw fodder quality traits in 437 cultivars of rice from the varietal				
2	groups of aromatic, hybrids, Indica, new planting types and released varieties in the Philippines				
3					
4	P Virk ^{a*} , and L Xianglin ^b and M Blümmel ^{c,d}				
5					
6					
7 8 9	^a International Center for Tropical Agriculture (CIAT), HarvestPlus, Km 17 Recta Cali-Palmira CP 763537 Apartado Aéreo 6713, Cali, Colombia				
10	^b International Livestock Research Institute (ILRI), c/o CAAS, Beijing, China				
11	^c International Livestock Research Institute (ILRI), c/o ICRISAT, Patancheru 502324, AP, India.				
12	^d PO Box 5689 Addis Ababa, Ethiopia				
13	* Corresponding author; E-mail address p.virk@cgiar.org (P.Virk)				
14 15	Abstract				
16	Four hundred and thirty-seven different cultivars (59 Aromatics, 53 Hybrids, 172 Indica, 92 New Planting				
17	Types and 61 Varieties) were analyzed for grain yield (GY), straw nitrogen (N) content, neutral (NDF) and				
18	acid (ADF) detergent fiber, acid detergent lignin (ADL), silica, in vitro organic matter digestibility				
19	(IVOMD) and metabolizable energy (ME) and for relationships between GY and these straw fodder quality				
20	traits. Highly significant ($P < 0.0001$) differences between the groups were observed for all traits with				
21	hybrid having the highest GY and also the highest mean straw N, IVOMD and ME. With the exception of				
22	NDF and ADL in Aromatics highly significant ($P = 0.002$ to 0.0001) differences were found for all traits				
23	among the cultivars in the different groups. Variations in GY and straw fodder quality traits were greater				
24	within cultivar groups than among cultivar types. The variations in straw quality traits between cultivars				
25	were of livestock nutritional significance. For example, key straw quality traits such as IVOMD varied				
26	between cultivars by at least 6.9% units in New Planting Types and up to 12.0% units in Varieties. Cultivar				
27	differences in straw quality can be exploited without detriment to GY since inverse relationships were				
28	largely absent. Weak overall inverse associations between GY and straw fodder quality traits, that is				
29	inverse relationships between straw N, IVOMD and ME and positive relationship between NDF, AD, ADL				
30	and silica and GY, were due to two obvious outliers with very low GY.				
31	Key Words: Rice, Rice straw, Rice fodder quality				

1. Introduction

34	Rice cultivation is the major activity and source of income for more than 100 millions of households in
35	Asia and Africa, and 80% of those are small-scale farmers in low-income countries (FAO, 2004). The straw
36	of rice is an important fodder resource for livestock, providing for example more than 30% of all the fodder
37	from crop residues in India and constituting the bulk of livestock fodder in the rainfed parts of the Indo-
38	Gangetic-Plain and in Southern India (NIANP, 2003). The fodder quality of rice straw is often low but
39	technologies for improving the fodder quality by physical, chemical or biological treatments have not been
40	widely adopted (Van Soest, 2006). The more recent research paradigm holds that improvement of the
41	fodder quality of crop residues through plant breeding and selection is more promising (Blümmel et al.,
42	2006). Here, the fodder value (quantity and quality) of the crop residue becomes an integral part of plant
43	breeding and selection. However, some conditions need to be met. The genetic variation in fodder value of
44	the crop residue needs to be significant from a livestock nutritional point of view. Second, fodder value of
45	the crop residue should not, or at least not seriously, conflict with primary traits, notably grain yield. The
46	work presented is a preliminary investigation of these conditions in a wide range of rice cultivars from the
47	International Rice Research Institute (IRRI).
48	
49	2. Materials and methods
49 50	2. Materials and methods
49 50 51	 Materials and methods 2.1 Rice cultivars and origin of straws
49 50 51 52	2. Materials and methods 2.1 Rice cultivars and origin of straws
49 50 51 52 53	 2. Materials and methods 2.1 Rice cultivars and origin of straws The cultivars were field-evaluated at the IRRI Experimental Station in Los Banos during the 2005 dry
 49 50 51 52 53 54 	2. Materials and methods 2.1 Rice cultivars and origin of straws The cultivars were field-evaluated at the IRRI Experimental Station in Los Banos during the 2005 dry season. A straw sample was collected from 5 randomly chosen hills from each of the harvested plots from
 49 50 51 52 53 54 55 	2. Materials and methods 2.1 Rice cultivars and origin of straws The cultivars were field-evaluated at the IRRI Experimental Station in Los Banos during the 2005 dry season. A straw sample was collected from 5 randomly chosen hills from each of the harvested plots from either replicated or observational yield trials. For the replicated yield trials, a randomized complete block
 49 50 51 52 53 54 55 56 	2. Materials and methods 2.1 Rice cultivars and origin of straws The cultivars were field-evaluated at the IRRI Experimental Station in Los Banos during the 2005 dry season. A straw sample was collected from 5 randomly chosen hills from each of the harvested plots from either replicated or observational yield trials. For the replicated yield trials, a randomized complete block design with 3 replications and 6m ² plots were used while the observational trial consisted of 6 rows of 5m
 49 50 51 52 53 54 55 56 57 	2. Materials and methods 2.1 Rice cultivars and origin of straws The cultivars were field-evaluated at the IRRI Experimental Station in Los Banos during the 2005 dry season. A straw sample was collected from 5 randomly chosen hills from each of the harvested plots from either replicated or observational yield trials. For the replicated yield trials, a randomized complete block design with 3 replications and 6m ² plots were used while the observational trial consisted of 6 rows of 5 m long plots. Standard cultural practices were followed. Fertilizer application of 90-30-30 NPK per hectare
 49 50 51 52 53 54 55 56 57 58 	2. Materials and methods 2.1 Rice cultivars and origin of straws The cultivars were field-evaluated at the IRRI Experimental Station in Los Banos during the 2005 dry season. A straw sample was collected from 5 randomly chosen hills from each of the harvested plots from either replicated or observational yield trials. For the replicated yield trials, a randomized complete block design with 3 replications and 6m ² plots were used while the observational trial consisted of 6 rows of 5m long plots. Standard cultural practices were followed. Fertilizer application of 90-30-30 NPK per hectare was practiced. Each sample was placed in #25 double-ply paper bags and dried in an oven at 70 °C for at
 49 50 51 52 53 54 55 56 57 58 59 	2. Materials and methods 2.1 Rice cultivars and origin of straws The cultivars were field-evaluated at the IRRI Experimental Station in Los Banos during the 2005 dry season. A straw sample was collected from 5 randomly chosen hills from each of the harvested plots from either replicated or observational yield trials. For the replicated yield trials, a randomized complete block design with 3 replications and 6m ² plots were used while the observational trial consisted of 6 rows of 5 m long plots. Standard cultural practices were followed. Fertilizer application of 90-30-30 NPK per hectare was practiced. Each sample was placed in #25 double-ply paper bags and dried in an oven at 70 °C for at least 5 days. Representative straw samples (about 25 g) were randomly taken, cut into small pieces and
 49 50 51 52 53 54 55 56 57 58 59 60 	2. Materials and methods 2.1 Rice cultivars and origin of straws The cultivars were field-evaluated at the IRRI Experimental Station in Los Banos during the 2005 dry season. A straw sample was collected from 5 randomly chosen hills from each of the harvested plots from either replicated or observational yield trials. For the replicated yield trials, a randomized complete block design with 3 replications and 6m ² plots were used while the observational trial consisted of 6 rows of 5m long plots. Standard cultural practices were followed. Fertilizer application of 90-30-30 NPK per hectare was practiced. Each sample was placed in #25 double-ply paper bags and dried in an oven at 70 °C for at least 5 days. Representative straw samples (about 25 g) were randomly taken, cut into small pieces and ground to pass through a 1 mm mesh using Foss Cyclotec ™ 1093. A total of 437 rice cultivars were
 49 50 51 52 53 54 55 56 57 58 59 60 61 	2. Materials and methods 2.1 Rice cultivars and origin of straws The cultivars were field-evaluated at the IRRI Experimental Station in Los Banos during the 2005 dry season. A straw sample was collected from 5 randomly chosen hills from each of the harvested plots from either replicated or observational yield trials. For the replicated yield trials, a randomized complete block design with 3 replications and 6m ² plots were used while the observational trial consisted of 6 rows of 5m long plots. Standard cultural practices were followed. Fertilizer application of 90-30-30 NPK per hectare was practiced. Each sample was placed in #25 double-ply paper bags and dried in an oven at 70 °C for at least 5 days. Representative straw samples (about 25 g) were randomly taken, cut into small pieces and ground to pass through a 1 mm mesh using Foss Cyclotec ™ 1093. A total of 437 rice cultivars were collected and shipped to the laboratory of the International Livestock Research Institute in India for straw

63	and 69 varieties released in the Philippines). A set of 61 aromatic were bred from Indica x Basmati crosses.					
64	On the other hand, 92 New Plant Type (NPT) cultivars were derived from Indica x Tropical-Japonica					
65	crosses.					
66						
67	2.2 Straw quality analyses					
68						
69	All samples were scanned with Near Infrared Reflectance Spectroscopy (NIRS) instrument FOSS Forage					
70	Analyzer 5000 installed with software package WinISI II. Predicted were straw nitrogen content (N),					
71	neutral (NDF) and acid (ADF) detergent fiber, acid detergent lignin (ADL), silica, in vitro organic matter					
72	digestibility (IVOMD) and metabolizable energy (ME). Relationships between blind-predicted and					
73	measured variables were tested by R ² and standard error of prediction (SEP) and standard error of					
74	calibration (SEC) and good-of-fitness parameters were reported by Blümmel et al. (2007).					
75						
76	2.3 Statistical analysis					
77						
78	SAS (2012) was used to analyze effects of cultivar types by the linear model: Yi= μ + α i+ei where μ is the					
79	grand mean, α_i is the main effect of the i th cultivar type and ei is the random error, assumed to be a normal					
80	distribution (with mean zero and variance σ^2_{e}). The general linear model (GLM) analysis was carried out by					
81	SAS (PROC GLM) procedure. The comparison of means between cultivar types were carried out using					
82	Fisher's least significance difference (LSD) test at 5% level of significance. All graphical representations					
83	were carried out by using GraphPad Prism.					
84						
85	3. Results and discussion					
86						
87	3.1 Differences in GY and rice straw fodder quality traits					
88						
89	Ranges in grain yield (GY), straw nitrogen content (N), neutral (NDF) and acid (ADF) detergent fiber, acid					
90	detergent lignin (ADL), silica, in vitro organic matter digestibility (IVOMD) and metabolizable energy					
91	(ME) in different cultivars types are reported in Table 1. With the exception of NDF and ADL in					

92	Aromatics, highly significant ($P = 0.002$ to 0.0001) cultivar differences were found for all traits among the				
93	cultivars in the different groups.				
94					
95	Table 1 about here				
96					
97	The cultivar-dependent ranges in straw quality traits were substantial. For example, lack of N is common in				
98	cereal straws with rumen microbes requiring at minimum of 1 to 1.2% of N in the feed for efficient feed				
99	digestions (Van Soest, 1994). While all rice straws fell short of providing minimum N some came close to				
100	it (Table 1) and some moderate N supplementation from other feedstuffs would close the N gap. However,				
101	there is substantial evidence from ex-ante assessments (Kristjanson and Zerbini, 1990), on station (Sharma				
102	et al., 2010) and fodder market work (Blümmel and Rao, 2006; Teufel et al., 2010) that straw fodder quality				
103	traits relating to the available energy in the straw, notably IVOMD and ME, provide the most meaningful				
104	about straw quality. Kristjanson and Zerbini (1999) calculated that a one-percentage unit increase in				
105	digestibility in sorghum and pearl millet stover would increase milk, meat and draught power outputs				
106	ranging from 6 to 8%. Blümmel and Rao (2006) surveyed six major sorghum stover traders in Hyderabad				
107	in India monthly from 2004 to 2005 and observed that a difference in IVOMD of 5% units was associated				
108	with price premiums of 25%. Protein content was not related to stover prices but IVOMD accounted for				
109	75% of the price variation. In rice straw trading differences in IVOMD as low as 2 to 3% units could be				
110	associated with similar price premiums (Teufel et al., 2010). The variations in straw IVOMD observed in				
111	the present work, for example at least 6.9 % units in New Planting Types but up to 12.0% units in				
112	Varieties, must therefore considered to be highly relevant for livestock nutrition. Choice of cultivar, rather				
113	than choice of cultivar type, will be of higher importance for livestock productivity, since difference in rice				
114	straw quality between cultivar types, though statistically highly significant, were comparatively small				
115	(Table 2).				
116					
117	Table 2 about here				
118					
119	3.3 Relationships between GY and rice straw quality traits				
120					

121	Livestock contribute significantly to livelihoods of rural and urban poor in developing countries, and the					
122	forecasted increase in demand for livestock products will further strengthen the role of livestock as a					
123	pathway out of poverty (Delgado et al., 1999). However, fodder shortages already present a serious					
124	constraint to benefits from livestock, and shrinking common property resources and the increasing scarcity					
125	of arable land and water will further restrict fodder production. The breeding and selection of rice cultivars					
126	with good straw fodder traits is therefore of strategic importance. Better quality rice straw will benefit the					
127	mixed crop-livestock farmer who uses rice straw for feeding his animals. Farmers without animals can					
128	trade better quality rice straw on the fodder market while landless livestock keepers can buy this rice straw					
129	as fodder. Improved rice straw fodder traits will also increase the likelihood of adoption of new varieties					
130	and hybrids with better grain yields (see also below). The potential impact of improved dual-purpose rice					
131	cultivars is therefore considerable. However, genotypic variation in straw quality should not be exploited at					
132	the expense of grain yield. It is therefore encouraging to note that rice straw fodder quality traits and GY					
133	were largely unrelated (Figures 1 to 7). Where inverse relationship existed between GY and straw quality					
134	two outliers with very low GY were responsible, see Figures 6 and 7. Thus Hybrids had highest average					
135	GY (with the Indica group see Table 2) but also highest IVOMD (Table 2). Interestingly average Silica					
136	content was also highest in Hybrids, rejecting the assumption of a close consistent inverse relationship					
137	between Silica content and IVOMD.					
138						
139	Figures 1 to 7 about here					
140						
141	4. Conclusions					
142						
143	Rice cultivars differ substantially in straw fodder quality traits. Fodder quality traits seem to be largely					
144	independent from grain yields, which suggest that high grain yield and high straw fodder quality traits are					
145	essentially compatible traits. Crop improvement and new rice cultivars releasing agents should include					
146	information about straw fodder quality traits when promoting new cultivars in areas where rice straw					
147	contributes significantly to livestock feeding.					
148						
149	References					
150						

151	Blümmel, M. and Rao P., P.2006. Value of sorghum stover, and stover price to quality relationships in
152	stover trading for urban and peri-urban dairy production. International Sorghum and Millet
153	Newsletter 47: 97-100.
154	Blümmel, M., Hanson, J., Herrero, M., Fernandez-Rivera, S., Hansen, H. and Bezkorowajnyj, P. 2006.
155	ILRI Strategy on Feed Resources. International Livestock Research Institute, Nairobi, Kenya, 20
156	р.
157	Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S., and Courbois, C. (1999). Livestock to 2020: The next
158	food revolution. International Food Policy Research Institute, Food and Agriculture Organization
159	of the United Nations, and International Livestock Research Institute. IFPRI Food, Agriculture
160	and the Environment Discussion paper 28, Washington, D. C., 72 pp.
161	FAO (2004) International Year of Rice. www.fao.org/rice2004/en/rice-us.htm
162	GraphPad Prism. 2013. Release 6.03 Version, GraphPad software, San Diego, CA, USA.
163	Kristjanson, P.M. and Zerbini, E. (1999). Genetic enhancement of sorghum and millet residues fed to
164	ruminants. ILRI Impact Assessment Series 3, ILRI Nairobi.
165	SAS (Statistical Analysis System). 2012. Release 9.4 Edition, SAS Institute Inc., Cary NC, USA.
166	Sharma K., Pattanaik A. K., Anadan S. and Blümmel, M. (2010). Food-Feed Crop Research: A synthesis.
167	Animal Nutrition and Feed Technology, 10S: 1-10
168	Teufel N, A. Samaddar, Blömmel M and O. Erenstein (2010): Quality characteristics of wheat and rice
169	straw traded in Indian urban centres. Presentation at Tropentag 2010 "World food system - A
170	contribution from Europe", 14-16/09/2010, Zurich, Switzerland.
171	Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant, 2 nd edn Cornell University Press, Ithaca, New
172	York.
173	Van Soest PJ. 2006). Rice straw, the role of silica and treatments to improve quality. Animal Feed Science
174	and Technology Vol: 130: Issue 3 – 3, 137-171

Table 1: Ranges in grain yield (GY), straw nitrogen content (N), neutral (NDF) and acid (ADF) detergent fiber, acid detergent lignin (ADL), silica, *in vitro* organic matter digestibility (IVOMD) and metabolizable energy (ME) in different cultivars types of rice grown at the International Rice Research Institute

Trait	Aromatics (59)	Hybrids (53)	Indica (172)	NPT (92)	Varieties (61)				
	Range								
GY	4.9 - 7.5 (<0.0001)	0.9 - 8.3 (<0.0001)	4.5 - 8.1 (<0.0001)	5.2 - 7.8 (0.002)	2.0 - 8.4				
Ν	0.49 - 0.78 (0.0001)	0.51 - 0.90 (<0.0001)	0.47 - 0.75 (<0.0001)	0.41 - 0.75 (<0.0001)	0.34 - 0.82 (<0.0001)				
NDF	61.8 - 66.9 (0.19)	61.2 - 67.2 (0.0002)	62.1 - 68.5 (<0.0001)	62.0 - 69.1 (<0.0001)	57.4-69.7 (<0.0001)				
ADF	51.5 - 57.2 (<0.0001)	47.9 - 57.1 (<0.0001)	51.7 - 57.2 (<0.0001)	51.2 - 56.4 (<0.0001)	47.4 - 57.7 (<0.0001)				
ADL	2.8 - 3.6 (0.21)	3.0 - 3.8 (<0.0001)	2.7 - 3.9 (<0.0001)	2.6-3.6 (<0.0001)	2.4 - 3.6 (0.001)				
Silica	13.2 - 19.2 (<0.0001)	12.2 - 18.3 (<0.0001)	13.4 - 18.7 (<0.0001)	12.6 - 17.1 (<0.0001)	13.3 - 18.0 (<0.0001)				
IVOMD	34.8 - 45.2 (<0.0001)	40.2 - 49.8 (<0.0001)	36.6 - 45.8 (<0.0001)	38.6-45.5 (<0.0001)	37.9 - 49.9 (<0.0001)				
ME	4.41 - 6.17 (<0.0001)	5.35 - 6.96 (<0.0001)	4.72 - 6.27 (<0.0001)	5.14 - 6.23 (<0.0001)	5.07 - 7.03 (<0.0001)				

Table 2: Means of grain yield (GY), straw nitrogen content (N), neutral (NDF) and acid (ADF) detergent fiber, acid detergent lignin (ADL), silica, *in vitro* organic matter digestibility (IVOMD) and metabolizable energy (ME) in across different groups of rice grown at the International Rice Research Institute

Cultivar Type	GY	Ν	NDF	ADF	ADL	Silica	IVOMD	ME
	(t/ha)	(%)	(%)	(%)	(%)	(%)	(%)	(MJ/Kg)
Aromatics (59)	6.2	0.61	65.1	54.3	3.2	15.4	41.4	5.6
Hybrids (53)	6.7	0.67	64.3	54.9	3.4	16.1	43.5	5.9
Indica (172)	6.7	0.60	65.3	54.7	3.3	15.6	41.3	5.6
NPT (92)	6.4	0.59	66.3	54.1	3.2	14.9	41.4	5.6
Varieties (61)	4.8	0.56	64.8	54.1	3.1	14.9	42.5	5.8
P < F	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
LSD	0.25	0.025	0.48	0.44	0.06	0.33	0.58	0.09

Figure 1: Relation between straw nitrogen content and grain yield in 437 cultivars of rice from IRRI

Figure 2: Relation between straw neutral detergent fiber content and grain yield in 437 cultivars of rice from IRRI

Figure 3: Relation between straw acid detergent fiber content and grain yield in 437 cultivars of rice from IRRI

Figure 4: Relation between straw acid detergent lignin content and grain yield in 437 cultivars of rice from IRRI

Figure 5: Relation between straw silica content and grain yield in 437 cultivars of rice from IRRI

Figure 6: Relation between straw *in vitro* organic matter digestibility and grain yield in 437 cultivar of rice from IRRI

Figure 7: Relation between straw metabolizable energy content and grain yield in 437 cultivars of rice from IRRI