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Land-use conflicts between biodiversity conservation and 

extractive industries in the Peruvian Andes 

 

Abstract 

The exceptional endemic species richness found in the Tropical Andes is being subjected to high 

rates of environmental degradation and natural resources exploitation. While many forms of land-

cover change and other impacts on species are difficult to control through environmental 

regulations, governments usually determine how and where extractive industries can take place. 

This study examines potential conflict between the location of extractive industry activities and 

biodiversity conservation in the Peruvian Andes. Using geographic information systems, we carry 

out overlay analyses to determine the spatial congruence between mineral mining, hydrocarbon and 

logging concessions, on the one hand, and the distribution of protected areas and endemic vertebrate 

species on the other. The results show that regional protected areas extensively overlap with 

resource concessions. Furthermore, 16% of endemic species hotspots concur with current 

concessions, while the geographical distribution of 21 endemic vertebrate species overlap by more 

than 90% with concession areas. To reconcile conservation and economic development objectives 

in the future, the geographical distribution of biodiversity, and in particular of endemic species, 

needs to be considered in natural resources planning and land-use/management activities.  
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Mineral mining concessions, Timber concessions, Hydrocarbon concessions, Protected areas, 
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1. Introduction 

The continued expansion of destructive land-use systems throughout tropical regions is the 

predominant cause of species extinctions (Haddad et al. 2015; Newbold et al. 2015). Fueled by 

global demands for agricultural commodities, timber and other natural resources, the world’s 

remaining natural ecosystems are increasingly being threatened and exploited by human 

populations (Rands et al. 2010). Widespread land-cover changes resulting from unplanned 

agricultural encroachment, illegal timber harvesting and the concomitant development of informal 

roads represent an important share of the net contribution to tropical habitat degradation (Hosonuma 

et al. 2012). Many of these land management practices take place in a rapid and uncontrolled 

fashion, and are driven by a myriad of institutional, socioeconomic and cultural factors that vary in 

time and space (Lambin et al. 2001; Geist and Lambin 2002; Nelson et al. 2005). Effectively 

regulating these rampant land-use and land-cover change processes through legislation and other 

types of government intervention is often difficult (Angelsen 2010; DeFries et al. 2010). In contrast, 

the geographical expansion of authorized extractive industries usually results directly from the 

intentions of and decision making by governments (Kohl and Farthing 2012; Ferreira et al. 2014). 

Most of the world’s tropical forests and other natural assets are owned by national governments 

(FAO 2010). Yet, in the attempt to stimulate economic growth, governments are often strongly 

inclined to transfer long-term resource exploration and exploitation rights to large corporations 

through lucrative deals. Given that extractive industry regulations unambiguously favor the interests 

of private companies over the environment (Gordon and Webber 2008), the privatization of 

resource extraction rights is commonly associated with increased pollution levels, land-cover 

change, and other forms of environmental degradation (Bakker 2007; Wang and Chen 2014). 

As a megadiverse country with an agriculture and resources based economy, Peru faces the 

challenge to parallel the preservation of natural landscapes with sustained economic growth and 

prosperity. Peru’s mining and hydrocarbon sectors contributed to over 13% of the gross domestic 

product (GDP) in 2017 (INEI 2018), while the areas for metal and fossil fuel exploration continue 

to expand sharply under current levels of investment (Bebbington and Bury 2009; Cuba et al. 2014). 

Not all concessions become active mines or oil wells, however, resource exploration operations are 

equally linked to ecological deterioration. In the case of hydrocarbon exploration for example, there 

is deforestation related to the construction of the basecamp, sub-basecamps, heliports and the 

clearing of hundreds of kilometers of seismic survey lines, which concurrently opens up areas for 

agriculture, logging and hunting activities. Further disturbances are caused by exploratory drilling, 

the influx of numerous crew workers, and the detonation of thousands of seismic explosions (Finer 

and Orta-Martínez 2010; Harfoot et al. 2018). During the exploitation phase, impacts on 

biodiversity are usually more severe, causing conversion, degradation and pollution at extraction 

sites (Finer et al. 2008; Harfoot et al. 2018). Similarly, environmental degradation caused by metal 

exploration and exploitation in Peru has been related to large-scale deforestation (Asner et al. 2013), 

water pollution (Bebbington and Williams 2008), bioaccumulation of heavy metals in trophic 

chains (Bianchini et al. 2015), and socioenvironmental conflict (Bebbington and Bury 2009). In 

contrast, Peru’s timber industry contributes significantly less to the economy (approximately 1% of 

the Peruvian GDP (FAO 2009)). Yet, the extent of logging concessions has increased significantly 

as a result of forestry reforms, now covering more than 10% of Peru’s forested areas (Salo and 

Toivonen 2009). Although concessions are supposed to foster sustainable logging practices, in Peru 

they have been found to enable widespread illegal timber extraction (Finer et al. 2014), which could 

greatly undermine species conservation and management efforts. 
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While multiple studies on the expansion of extractive industries in Peru and beyond have examined 

their potential impact on protected areas (Finer et al. 2008), indigenous territories (Cuba et al. 2014) 

and forest cover (Elmes et al. 2014), it has been less common to link the location of exploration 

and/or extraction sites to the geographical distribution of species. Yet, there is urgency to generate 

knowledge in this regard, since the extent of resource concessions is rapidly expanding while 

biodiversity continues to degrade at alarming rates. Here, we determine the potential impacts of the 

mining, hydrocarbon and timber industries on endemic species in the Peruvian Tropical Andes, 

which is considered one of the world’s most critical regions for biodiversity conservation (Myers et 

al. 2000). We focus on endemic species, as their conservation can only be achieved within the 

Tropical Andes. Further, we focus on vertebrate species as comprehensive data on the geographical 

range distribution of plant and invertebrate species is largely unavailable. Following previous 

studies (Armendáriz-Villegas et al. 2015; Harfoot et al. 2018), we first assess the geographical 

overlap between the location of concessions and protected areas. Conversely, while protected areas 

form the single most important biodiversity conservation strategy in the Tropical Andes (Jørgensen 

et al. 2011), their location is often not in agreement with important ecological features (Rodrigues et 

al. 2004; Venter et al. 2014). Hence, we additionally determine to what extent the distribution of 

individual endemic species as well as the location of endemic species hotspots overlap with current 

concessions.  

 

2. Methods 

2.1 Study area 

The study area (Figure 1) includes Peru’s Tropical Andes biodiversity hotspot (Mittermeier et al. 

2004) and all forested areas along the eastern flank of the Tropical Andes between approximately 

500 and 3000 m.a.s.l. (Bax and Francesconi 2018), which are known to harbor many narrow ranged 

endemic species (Young et al. 2011). This area is located between coordinates 3°4′37 South, 

77°56′4 West, 18°2′54 South and 69°47′1 West, and corresponds to about 500,000 km
2
. 

2.2 Data collection and preprocessing 

Following Cuba et al. (2014), we used the distribution of legal concessions as indicator for the 

presence of extractive industry activities. Illicit resource extraction, such as the artisanal goldmining 

operations in Madre de Dios (Asner et al. 2013) were not considered in this study. Furthermore, 

other industrialized land claims such as agricultural concessions were not considered, as spatially 

explicit data were unavailable. Spatial datasets on mineral mining, hydrocarbon and logging 

concessions were collected from the responsible authorities in Peru (MINAGRI 2017; INGEMMET 

2018; PeruPetro 2018). In addition, we collected spatial data on national, regional and private 

protected areas along with their buffer areas from MINAM (2018), and Important Bird Areas 

(IBAs) from BirdLife International (2018a). 

Geographical range maps for extant vertebrate species (mammals, birds, amphibians and reptiles) in 

Peru were gathered from IUCN (2017) and BirdLife International and Handbook of the Birds of the 

World (2016). We mapped in ArcGIS version 10.1 (ESRI 2010) the geographical range of species 

present in the Tropical Andes, and selected all species whose ranges were at least 90% within the 

Tropical Andes. This yielded a dataset of 392 vertebrate species endemic or nearly endemic to 

Peru’s Tropical Andes. 
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Range maps tend to overestimate the presence of species, by covering areas that represent 

unsuitable habitat (Rodrigues 2011). Consequently, to increase our understanding of the 

geographical distribution of species, we refined the range maps based on species’ elevation and 

habitat requirements, following Ocampo-Peñuela et al. (2016) and Li and Pimm (2016). Species-

specific habitat and elevation information was obtained from the IUCN Red List (IUCN 2016) and 

BirdLife International (2018b). We buffered the original range maps by a distance of 10 km to 

reduce potential errors from digitization and georeferencing procedures (Jenkins et al. 2011). Then, 

we removed all areas beyond species’ reported elevational limits using the ASTER 30m Global 

Digital Elevation Model V2. Elevational limits were rounded to hundreds as it facilitated the 

systemization of GIS procedures (upper limits were rounded upwards and lower limits were 

rounded downwards, e.g. the elevation range 970–2130 was rounded to 900–2200 m.a.s.l.). When a 

single elevation instead of a range was reported, we buffered the elevational value by 100 m on both 

sides and rounded to the nearest hundred (e.g. the elevation value of 625 was buffered and rounded 

to a range of 500–700 m.a.s.l.). Finally, we refined the range maps based on species’ habitat 

requirements using a land cover layer produced by Peru's Ministry of the Environment (MINAM 

2015). This layer, which consists of 75 land-cover types, was produced based on Landsat 5 TM 

satellite imagery from 2011 at 30m spatial resolution, in conjunction with RapidEye and Google 

Earth imagery at approximately 5m spatial resolution. We merged the land-cover types into 7 

generalized classes (forest, grassland, shrubland, wetland, agriculture, urban areas and water bodies) 

and removed all areas that were deemed unsuitable for species’ existence according to the IUCN 

Red List (IUCN 2016) and BirdLife International (2018b).  

Based on the refined species-specific range maps, we mapped endemic species richness at 5 km
2
 

resolution using the Hawths Tools ArcGIS extension version 3.27 (Beyer 2004). This resulted in a 

layer displaying the location of endemic species hotspots in the Peruvian Tropical Andes. 

2.3 Data analysis 

We carried out three overlay analyses to determine the spatial congruence between extractive 

industries (mineral mining, hydrocarbon and logging), and the distribution of protected areas, 

endemic species hotspots and individual endemic species. First, to examine potential conflicts 

between the location and extent of extractive industry activities, and areas assigned for 

conservation, we overlaid the protected area layer with the industry concessions layer, and 

calculated the degree of overlap in ArcGIS. Second, we overlaid the industry concessions layer with 

the endemic species hotspots layer to determine to what extent extractive industry activities 

coincide with areas of high endemism. Third, we overlaid the industry concessions layer with the 

refined species-specific geographical range maps to examine the distribution of individual species 

within concession areas. Species were categorized according to their IUCN Red List status, and 

binned into 10 categories, ranging from 0% distributional overlap to >90% overlap with 

concessions. 
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3. Results 

Species geographical range maps were refined based on their altitudinal and habitat requirements as 

reported by IUCN and BirdLife International. Of the 394 endemic or nearly endemic species 

considered in this study, the geographical range of two species (Colostethus poecilonotus and 

Dipsas schunkii) were beyond reported elevation boundaries, while six species (Erythrolamprus 

problematicus, Hyloxalus leucophaeus, Pristimantis pardalinus, Pristimantis sternothylax, 

Psychrophrynella usurpator and Telmatobius hockingi) occured beyond reported elevation 

boundaries in conjuntion with habitat requirements, reducing the final dataset to 386 species. 

 
Fig 1. a) Distribution of mineral mining concessions, timber concessions and hydrocarbon concessions. b) Distribution of 

conservation areas. c) Endemic species richness.  
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The total extent of mineral mining concessions, timber concessions and hydrocarbon concessions 

within the Peruvian Tropical Andes corresponds to 19%, 2% and 6% of the area respectively, with 

an aggregated overlap coverage of 26% (Figure 1a). Out of the five conservation area types 

considered (Figure 1b), the presence of concessions is most extensive within regional protected 

areas (34% of the total area), followed by buffer zones (25%) (Figure 2). National protected areas 

are least overlapped by concessions (6%). 

 
Fig 2. Overlap between mining, hydrocarbon and logging concessions and different types of conservation areas within 

Peru’s Tropical Andes. Numbers in parenthesis correspond to the total coverage of each conservation area type. A matrix 

of the overlaps (in km2 and %) between different types of concessions and conservation areas is provided in appendix A. 

 

The richest areas in terms of endemic species correspond to cloud forest ecosystems at elevations 

between 1600-3600 m.a.s.l. (Figure 1c). Sixteen percent of areas containing a high number of 

endemic species (41–54 per 5km
2
), overlap with concessions (Figure 3). Overlaps with mining 

concessions are most prominent, which agrees with their higher overall extent compared to the 

other types of concessions, as reflected in figure 1a. 

 
Fig 3. Overlap between mining, hydrocarbon and logging concessions, and endemic species richness within Peru’s 

Tropical Andes. A matrix of the overlaps (in km2 and %) between different types of concessions and endemic species 

richness is provided in appendix A. 
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At the individual species level, the geographical distribution of 47 endemic species, which 

corresponds to 12% of all species considered, overlaps by more than 50% with concessions (Figure 

4). Out of these, 21 species (or 5% of all species) have a distribution range that overlaps by more 

than 90% with concessions (Figure 4; Table 1). Most of these species occur within the departments 

of San Martín, Amazonas and Cajamarca located in the north of Peru, have little remaining habitat 

that is suitable for their existence (<100 km
2
), and are classified by the IUCN Red List as “data 

deficient”. Furthermore, four species are currently listed as threatened (corresponding to the 

“endangered” and “critically endangered” categories), while another four species are listed as non-

threatened (corresponding to the “least concern” and “near threatened” categories). 

 
Fig 4. Number of species whose distributions coincide with mining, hydrocarbon and logging concessions in Peru’s 

Tropical Andes, according to IUCN Red List status: DD = data deficient, LC = least concern, NT = near threatened, VU = 

vulnerable, EN = endangered, CR = critically endangered. A matrix of the overlaps (in km2 and %) between different 

types of concessions and individual endemic species is provided in appendix A. 

 

 

Table 1. Species with >90% of their distribution within current mining, hydrocarbon and logging concessions. 

Scientific name Taxa Red List 

status* 

Location Refined 

distribution (km2) 

Distribution in 

concessions (%) 

Allobates ornatus Amphibian DD San Martín 50 99 

Anomalepis aspinosus Retile DD Amazonas / Cajamarca 1513 91 

Cochranella croceopodes Amphibian DD San Martín 282 99 

Enyalioides rudolfarndti Retile LC Huánuco 6 99 

Espadarana fernandoi Amphibian EN San Martín 46 98 

Hyloxalus eleutherodactylus Amphibian DD San Martín 16 100 

Hyloxalus spilotogaster Amphibian DD Amazonas 14 90 

Incaspiza watkinsi Bird NT Amazonas / Cajamarca 795 100 

Melanopareia maranonica Bird NT Amazonas / Cajamarca 903 99 

Nymphargus chancas Amphibian DD San Martín 73 99 

Pristimantis avicuporum Amphibian DD Amazonas 51 91 

Pristimantis chimu Amphibian DD Cajamarca <1 100 

Pristimantis karcharias Amphibian DD Amazonas <1 100 

Pristimantis pinguis Amphibian DD Cajamarca 443 94 

Pristimantis simonsii Amphibian CR Cajamarca 1 90 
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Pseudogonatodes barbouri Retile NT Cajamarca 62 99 

Psychrophrynella boettgeri Amphibian EN Puno <1 93 

Rhinella vellardi Amphibian DD Amazonas / Cajamarca 137 92 

Riama laudahnae Retile DD Ucayali <1 100 

Rulyrana saxiscandens Amphibian EN San Martin 189 100 

Rulyrana tangarana Amphibian DD San Martin 212 99 

* Based on Red List assessments published before 2018 

 

4. Discussion 

The Tropical Andes region is a widely recognized priority for conservation efforts, given that its 

exceptional endemic plant and vertebrate species diversity is confronted by high rates of 

anthropogenic disturbance (Myers et al. 2000; Brooks et al. 2006). Massive species extinctions in 

the Tropical Andes are projected under current climate change and habitat conversion scenarios 

(Brooks et al. 2002; Malcolm et al. 2006). While many of these pressures on biodiversity have 

proven to be very difficult to mitigate (Jordan et al. 2015), planning and management of industry 

driven extractive activities is a rather top-down process which takes place under government 

approval and supervision. This allows for more control over the spatial and temporal allocation of 

exploration and extraction operations. Nonetheless, ecological considerations may not be properly 

addressed or have the same weight as potential financial gains from natural resource extraction, 

which often results in land appropriation for human enterprise irrespective of the spatial distribution 

of biodiversity across Tropical Andean landscapes.  

This study shows that more than a quarter of Peru’s Tropical Andes has been leased to mineral 

mining, timber and hydrocarbon companies. Some of these concessions pose a direct threat to 

biodiversity, as they are spatially congruent with high endemic species richness and areas reserved 

for conservation. Regional protected areas show the most extensive overlap; for instance the 

Cordillera Escalera reserve located in the northeast is almost entirely overlaid with a hydrocarbon 

concession. Also the buffer zones located around protected areas, which are of great importance for 

sustained ecological health (Laurance et al. 2012), show considerable overlap with concessions. The 

problem not only lays in the fact that concessions are being granted in areas that are supposed to be 

protected, but extractive industries have often been found to drive habitat change far beyond 

operational lease boundaries. Sonter et al. (2017) show that mining related deforestation takes place 

up to 70 km from concession areas, at a rate 12 times greater than within mining concessions alone. 

Likewise, Finer et al. (2014) show that Peru’s timber concession system facilitates illicit logging 

both within and outside authorized areas. This suggests that impacts on biodiversity induced by 

resource extraction are not restricted to permitted locations, but potentially extend further into 

conservation areas and epicenters of species endemism. 

In their assessment, Bax and Francesconi (2019) exposed severe conservation gaps in Peru’s 

Tropical Andes protected area system, showing that less than 2% of all endemic mammal, bird, 

amphibian and reptile species are adequately contained within existing reserves. Alarmingly, the 

present analysis demonstrates that 5% of all endemic species have geographical distributions that 

overlap by more than 90% with concession areas. Meanwhile, some of these species display narrow 

and severely fragmented distributions across suitable habitat areas. This reflects additional threats to 

their survival, as both species’ geographical distribution and fragmentation are recognized as prime 

correlates of extinction risk (Di Marco et al. 2014; Crooks et al. 2017).  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

9 

 

The outcomes of this study bring forward two recommendations for improved biodiversity 

management in relation to extractive industry expansion. First, from a conservation planning point 

of view, it is argued that species subjected to high levels of anthropogenic disturbance, but currently 

not assessed as threatened based on their Red List status, may require proactive conservation 

actions to prevent them from becoming threatened or extinct in the future (Baruch-Mordo et al. 

2013; Peters et al. 2015). This is particularly true for small-ranged endemic species, which are by 

definition more susceptible to habitat disturbance and degradation (Myers 2003). Our results show 

that thirteen endemic species listed as data deficient, and four species listed as non-threatened 

overlap by more than 90% with concession areas. Although this poses a substantial threat to their 

long-term survival, they are less likely to be supported through conservation actions. Spatially 

explicit data regarding the presence of extractive industry activities provides practical information 

for identifying potential pressures on species, which could be used to enhance extinction risk 

assessment and the development of precautionary conservation strategies. 

Second, as per ecosystem management and natural resource planning from a government 

perspective, it is recommended to explicitly consider the range distribution of endemic species 

along with their remaining habitat in resource concession designation processes. While 

environmental impact assessment (EIA) authorization is legally required for the approval of new 

projects and expansion of existing projects, it typically fails to thoroughly assess long-term and 

cumulative impacts on biodiversity associated with resource exploration and extraction operations 

(Finer et al. 2008). In addition, the hydrocarbon, logging and mining companies contract the firms 

to carry out the EIA, which generates an evident conflict of interests (Finer et al. 2008; Delgado and 

Romero 2016).  

Likewise, within the context of Peru’s Ecological and Economic Zoning (EEZ) activities, in which 

regional governments have been designated to define suitable areas for economic activities and 

conservation, the incorporation of sustainable and efficient resource concession areas should be an 

integral part of land-use planning. Conversely, in some cases EEZ has been reported to be 

inadequate for balancing and mediating competing interests in relation to territorial development 

and conservation of natural resources. Bebbington and Bury (2009) report that concessions have 

been granted in places irrespective of ecological zoning plans, which evidently undermines 

effective biodiversity conservation. Furthermore, Jeronimo et al. (2015) show that within gold 

mining areas in the Cajamarca region in the north of Peru, the EEZ process failed to accommodate 

the range of economic and ecological values attached to potential mining sites. Instead, EEZ was 

employed as a strategy to influence the expansion of mining areas (Gustafsson 2017), leading to 

controversies and extensive conflict between an anti-mining coalition lead by the regional 

government of Cajamarca, and a pro-mining coalition lead by the central government. This touches 

upon some of the limitations of current land-use policies and related institutions in Peru (Gustafsson 

and Scurrah, In press), and emphasizes the need for the development of improved planning 

strategies and environmental impact assessments that are unbiased toward any given sector. 

In addition to spatial planning methods such as EEZ, the temporal scale and significance of 

extractive industry related impacts on species needs to be considered in land-use planning processes 

(Papadimitriou and Mairota 1996). This involves a better alignment of the land change trends and 

processes associated with different types of concession areas (see Scullion et al. 2014), and the time 

scales in which they operate, to prevent irreversible damages. For instance, current hydrocarbon 
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concessions are subjected to exploration and exploitation activities for at least 30 years (in the case 

of natural gas) or 40 years (in the case of oil) (Finer and Orta-Martínez 2010). Impacts on 

biodiversity as a result of these activities are likely to occur within shorter periods, implying that 

current time scales used in land-use planning are not adjusted to the ecological systems in which 

they are applied.  

Consequently, to reduce conflict between ecological and economic development objectives in 

coupled human-environment systems, enhanced spatial-temporal planning of resource concessions 

is needed. Specific attention is required for the potential impacts on endemic species. In this regard, 

subnational planning authorities and environmental agencies have a key role to play, but they have 

been found to lack the political power, resources and strategic abilities to enforce sound land-use 

planning strategies (Gustafsson and Scurrah, In press). By contrast, planning agencies such as the 

Ministry of Energy and Mines (MINEM) and the Ministry of Economy and Finance (MEF) are 

more powerful in the sense of having greater access to resources, political influence and technical 

capacities, but it has been observed they are more likely to prioritize economic interests rather than 

environmental conservation objectives (Jeronimo et al. 2015). Given these institutional constraints, 

adequately enforcing sustainable land-use planning to address the current species loss crisis in the 

Peruvian Andes will be one of Peru’s most pressing natural resources and territorial governance 

challenges in the coming decades. 
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Land-use conflicts between biodiversity conservation and 

extractive industries in the Peruvian Andes 

 

APPENDIX A 

 

Table A1. Overlap between mining, hydrocarbon and logging concessions and different types of conservation areas in the 

Peruvian Tropical Andes. 
Conservation area type Total area 

(km2) 

Overlap with 

mineral mining 

concessions in 

km2 (%) 

Overlap with 

hydrocarbon 

concessions in 

km2 (%) 

Overlap with 

timber 

concessions in 

km2 (%) 

Total 

overlap 

(km2)* 

Total 

overlap 

(%)* 

National PAs 65382 607 (0.9) 3106 (4.8) 10 (0.0) 3694 5.7 

Regional PAs 4240 88 (2.1) 1363 (32.1) 0 (0.0) 1450 34.2 

Private PAs 2701 221 (8.2) 48 (1.8) 0 (0.0) 269 10 

Buffer zones 58012 4260 (7.3) 6693 (11.5) 4099 (7.1) 14741 25.4 

IBAs 95876 4139 (4.3) 7369 (7.7) 576 (0.6) 11630 12.1 

* overlap between concessions is aggregated 

 

Table A2. Overlap between mining, hydrocarbon and logging concessions, and endemic species richness in the Peruvian 

Tropical Andes. 
Number of species Total area 

(km2) 

Overlap with 

mineral mining 

concessions in 

km2 (%) 

Overlap with 

hydrocarbon 

concessions in 

km2 (%) 

Overlap with 

timber 

concessions in 

km2 (%) 

Total 

overlap 

(km2)* 

Total 

overlap 

(%)* 

0 - 3 203949 44609 (21.9) 5511 (2.7) 1685 (0.8) 50127 24.6 

4 - 8 107953 23997 (22.2) 7854 (7.3) 3581 (3.3) 35089 32.5 

9 - 15 50770 7533 (14.8) 5456 (10.7) 1395 (2.7) 13889 27.4 

16 - 22 20454 1137 (5.6) 1040 (5.1) 700 (3.4) 2783 13.6 

23 - 28 14946 717 (4.8) 458 (3.1) 268 (1.8) 1434 9.6 

29 - 34 13115 962 (7.3) 94 (0.7) 243 (1.9) 1301 9.9 

35 - 40 7448 622 (8.3) 127 (1.7) 40 (0.5) 790 10.6 

41 - 54 2659 344 (12.9) 101 (3.8) 0 (0.0) 427 16.0 

Anthropogenically disturbed 

areas 
82355 13270 (16.1) 9652 (11.7) 1736 (2.1) 22740 27.6 

Total 503647 93189 (18.5) 30292 (6.0) 9648 (1.9) 130480 25.9 

* overlap between concessions is aggregated  

Appendix1
Click here to download Table: 7Appendix1_Extraxtive_R.docx

http://ees.elsevier.com/jema/download.aspx?id=1231008&guid=c8d8771a-32fa-4aa5-b0bb-a106912c7ad6&scheme=1


Table A3. Overlap between mining, hydrocarbon and logging concessions, and individual endemic species in the 

Peruvian Tropical Andes. 
Scientific name Refined 

geographic 

range 

(km2) 

Overlap with 

mineral mining 

concessions in 

km2 (%) 

Overlap with 

hydrocarbon 

concessions in 

km2 (%) 

Overlap with 

timber 

concessions in 

km2 (%) 

Total 

overlap 

(km2)* 

Total 

overlap 

(%)* 

Aglaeactis aliciae 274.13 192.47 (70.2) 0.00 (0.0) 0.00 (0.0) 192.47 70.2 

Allobates alessandroi 1523.75 532.50 (34.9) 0.00 (0.0) 47.96 (3.1) 540.75 35.5 

Allobates ornatus 50.48 0.00 (0.0) 49.79 (98.6) 0.00 (0.0) 49.79 98.6 

Ameerega bassleri 5718.09 10.36 (0.2) 2169.37 (37.9) 170.52 (3.0) 2321.9 40.6 

Ameerega planipaleae 2.11 0.00 (0.0) 0.65 (30.7) 0.00 (0.0) 0.65 30.7 

Amphisbaena polygrammica 8380.21 738.65 (8.8) 3218.55 (38.4) 183.15 (2.2) 3932.71 46.9 

Anomalepis aspinosus 1512.51 124.98 (8.3) 1380.89 (91.3) 0.00 (0.0) 1380.89 91.3 

Arremon nigriceps 481.14 75.77 (15.7) 151.86 (31.6) 0.00 (0.0) 198.88 41.3 

Asthenes usheri 2985.71 1141.38 (38.2) 0.00 (0.0) 0.00 (0.0) 1141.38 38.2 

Atelopus dimorphus 53.35 0.00 (0.0) 8.52 (16) 29.33 (55) 30.74 57.6 

Atelopus erythropus 169.42 89.86 (53) 0.00 (0.0) 0.00 (0.0) 89.86 53.0 

Atelopus reticulatus 60.98 0.00 (0.0) 33 (54.1) 23.22 (38.1) 42.01 68.9 

Bachia barbouri 2474.08 168.64 (6.8) 2009.50 (81.2) 0.00 (0.0) 2010.51 81.3 

Bachia intermedia 2052.82 147.42 (7.2) 1820.73 (88.7) 0.00 (0.0) 1820.73 88.7 

Callicebus oenanthe 3406.21 4.64 (0.1) 681.16 (20) 579.02 (17) 1263.1 37.1 

Cochranella croceopodes 281.96 0.00 (0.0) 278.21 (98.7) 0.00 (0.0) 278.21 98.7 

Enyalioides rudolfarndti 5.86 0.04 (0.7) 5.76 (98.3) 0.00 (0.0) 5.81 99.0 

Espadarana fernandoi 46.35 0.00 (0.0) 45.61 (98.4) 0.00 (0.0) 45.61 98.4 

Eubucco glaucogularis 13360.68 423.87 (3.2) 4087.03 (30.6) 523.92 (3.9) 4719.8 35.3 

Euspondylus caideni 43.58 16.17 (37.1) 0.00 (0.0) 0.00 (0.0) 16.17 37.1 

Euspondylus josyi 12.23 4.82 (39.4) 0.00 (0.0) 0.00 (0.0) 4.82 39.4 

Euspondylus oreades 21.11 9.67 (45.8) 0.00 (0.0) 0.00 (0.0) 9.67 45.8 

Gastrotheca atympana 6.38 2.10 (32.8) 0.00 (0.0) 0.00 (0.0) 2.1 32.8 

Gastrotheca griswoldi 3942.89 1365.99 (34.6) 0.00 (0.0) 0.00 (0.0) 1365.99 34.6 

Gastrotheca peruana 17194.68 8598.50 (50) 0.00 (0.0) 0.00 (0.0) 8598.5 50.0 

Geositta saxicolina 32712.02 11829.46 (36.2) 0.00 (0.0) 0.00 (0.0) 11829.46 36.2 

Gonatodes atricucullaris 438.67 14.31 (3.3) 347.97 (79.3) 0.00 (0.0) 347.97 79.3 

Grallaria andicolus 60096.61 18175.13 (30.2) 2.04 (0.0) 8.56 (0.0) 18175.13 30.2 

Grallaria capitalis 4578.60 215.67 (4.7) 1029.55 (22.5) 266.29 (5.8) 1384.2 30.2 

Hyloxalus eleutherodactylus 16.05 0.02 (0.1) 16.05 (100.0) 0.00 (0.0) 16.05 100.0 

Hyloxalus spilotogaster 14.43 0.00 (0.0) 13.03 (90.3) 0.00 (0.0) 13.03 90.3 

Incaspiza watkinsi 794.78 68.25 (8.6) 794.53 (100.0) 0.00 (0.0) 794.53 100 

Liolaemus ortizii 36.84 12.69 (34.4) 0.00 (0.0) 0.00 (0.0) 12.69 34.4 

Liolaemus pachacutec 5062.40 1930.57 (38.1) 0.00 (0.0) 0.00 (0.0) 1930.57 38.1 

Liolaemus polystictus 947.35 288.10 (30.4) 0.00 (0.0) 0.00 (0.0) 288.1 30.4 

Liolaemus robustus 2868.52 1097.65 (38.3) 0.00 (0.0) 0.00 (0.0) 1097.65 38.3 

Liolaemus thomasi 444.21 299.81 (67.5) 0.00 (0.0) 0.00 (0.0) 299.81 67.5 

Liolaemus walkeri 4147.04 1427.49 (34.4) 0.00 (0.0) 0.00 (0.0) 1427.49 34.4 



Marmosops juninensis 2678.47 182.03 (6.8) 655.35 (24.5) 69.78 (2.6) 846.49 31.6 

Melanopareia maranonica 902.98 124.57 (13.8) 895.61 (99.2) 0.00 (0.0) 896.38 99.3 

Microlophus stolzmanni 5858.25 691.50 (11.8) 1578.68 (26.9) 0.00 (0.0) 2116.06 36.1 

Nannophryne cophotis 6481.19 3190.91 (49.2) 0.00 (0.0) 0.00 (0.0) 3190.91 49.2 

Nannophryne corynetes 275.99 116.48 (42.2) 0.00 (0.0) 0.00 (0.0) 116.48 42.2 

Nymphargus chancas 73.47 0.00 (0.0) 72.73 (99) 0.00 (0.0) 72.73 99.0 

Oreobates saxatilis 175.38 0.22 (0.1) 140.32 (80) 6.98 (4.0) 145.28 82.8 

Oreotrochilus stolzmanni 17938.52 6282.75 (35) 0.00 (0.0) 0.05 (0.0) 6282.75 35.0 

Osteocephalus leoniae 7215.32 19.80 (0.3) 1023.97 (14.2) 1769.23 (24.5) 2590.18 35.9 

Oxyrhopus erdisii 33413.06 108.46 (0.3) 9461.85 (28.3) 1269.75 (3.8) 10138.56 30.3 

Oxyrhopus marcapatae 1764.62 423.38 (24) 0.00 (0.0) 143.36 (8.1) 544.88 30.9 

Petracola labioocularis 0.04 0.00 (0.0) 0.01 (34.5) 0.00 (0.0) 0.01 34.5 

Phacellodomus dorsalis 2713.26 1013.04 (37.3) 0.00 (0.0) 0.00 (0.0) 1013.04 37.3 

Phrynopus bufoides 158.70 79.68 (50.2) 0.00 (0.0) 0.00 (0.0) 79.68 50.2 

Phrynopus pesantesi 97.95 62.33 (63.6) 0.00 (0.0) 0.00 (0.0) 62.33 63.6 

Polychrus peruvianus 2899.41 204.84 (7.1) 1421.94 (49) 0.00 (0.0) 1481.52 51.1 

Pristimantis ardalonychus 2173.59 4.84 (0.2) 1090.10 (50.2) 0.10 (0.0) 1094.95 50.4 

Pristimantis avicuporum 50.60 0.00 (0.0) 45.93 (90.8) 0.00 (0.0) 45.93 90.8 

Pristimantis chimu 0.31 0.31 (100.0) 0.00 (0.0) 0.00 (0.0) 0.31 100 

Pristimantis cruciocularis 638.44 90.27 (14.1) 88.54 (13.9) 66.17 (10.4) 244.46 38.3 

Pristimantis cuneirostris 31.98 0.00 (0.0) 23.68 (74.1) 0.00 (0.0) 23.68 74.1 

Pristimantis karcharias 0.50 0.37 (73.6) 0.26 (51.3) 0.00 (0.0) 0.5 100.0 

Pristimantis lirellus 493.80 1.40 (0.3) 435.50 (88.2) 0.00 (0.0) 436.9 88.5 

Pristimantis petrobardus 199.43 83.03 (41.6) 0.00 (0.0) 0.00 (0.0) 83.03 41.6 

Pristimantis phalaroinguinis 150.86 47.11 (31.2) 0.00 (0.0) 0.00 (0.0) 47.11 31.2 

Pristimantis pinguis 443.27 415.27 (93.7) 0.00 (0.0) 0.00 (0.0) 415.27 93.7 

Pristimantis seorsus 0.24 0.00 (0.0) 0.21 (86.4) 0.02 (9.7) 0.21 86.4 

Pristimantis simonsii 1.19 1.08 (90) 0.00 (0.0) 0.00 (0.0) 1.08 90.0 

Pristimantis tanyrhynchus 0.44 0.00 (0.0) 0.34 (78.5) 0.13 (30.7) 0.35 80.6 

Pristimantis vilcabambae 0.32 0.00 (0.0) 0.27 (83.9) 0.01 (2.2) 0.27 83.9 

Pseudogonatodes barbouri 61.69 8.01 (13) 60.85 (98.6) 0.00 (0.0) 60.85 98.6 

Psychrophrynella boettgeri 0.30 0.28 (93.1) 0.00 (0.0) 0.00 (0.0) 0.28 93.1 

Punomys kofordi 643.98 239.07 (37.1) 0.00 (0.0) 0.00 (0.0) 239.07 37.1 

Ramphocelus melanogaster 30141.99 195.56 (0.6) 5419.17 (18) 4737.56 (15.7) 9857.1 32.7 

Rhinella iserni 2616.98 0.95 (0.0) 1806.96 (69) 93.19 (3.6) 1836.08 70.2 

Rhinella vellardi 137.36 19.11 (13.9) 125.96 (91.7) 0.00 (0.0) 126.03 91.8 

Rhipidomys modicus 30555.90 179.66 (0.6) 5410.30 (17.7) 4469.75 (14.6) 9577.46 31.3 

Rhipidomys ochrogaster 237.11 87.31 (36.8) 0.00 (0.0) 0.00 (0.0) 87.31 36.8 

Riama laudahnae 0.43 0.00 (0.0) 0.43 (100.0) 0.43 (100.0) 0.43 100.0 

Rulyrana saxiscandens 189.25 0.00 (0.0) 189.25 (100.0) 0.00 (0.0) 189.25 100.0 

Rulyrana tangarana 212.37 0.16 (0.1) 209.40 (98.6) 0.00 (0.0) 209.56 98.7 

Scytalopus affinis 6821.94 3677.78 (53.9) 0.00 (0.0) 0.00 (0.0) 3677.78 53.9 

Scytalopus unicolor 1572.67 667.73 (42.5) 0.00 (0.0) 0.00 (0.0) 667.73 42.5 



Stenocercus huancabambae 922.27 77.01 (8.4) 279.15 (30.3) 0.00 (0.0) 326.98 35.5 

Stenocercus melanopygus 3449.87 1461.86 (42.4) 0.00 (0.0) 0.00 (0.0) 1461.86 42.4 

Stenocercus orientalis 805.29 187.42 (23.3) 118.29 (14.7) 0.00 (0.0) 304.24 37.8 

Stenocercus torquatus 987.67 40.25 (4.1) 539.34 (54.6) 40.24 (4.1) 594.97 60.2 

Taphrolesbia griseiventris 5194.36 1756.50 (33.8) 0.00 (0.0) 0.00 (0.0) 1756.5 33.8 

Telmatobius brevipes 5531.58 2767.49 (50) 0.00 (0.0) 0.00 (0.0) 2767.49 50.0 

Telmatobius carrillae 4565.75 2069.41 (45.3) 0.00 (0.0) 0.00 (0.0) 2069.41 45.3 

Telmatobius colanensis 29.83 0.00 (0.0) 13.34 (44.7) 0.00 (0.0) 13.34 44.7 

Telmatobius macrostomus 7275.33 2188.08 (30.1) 0.00 (0.0) 0.20 (0.0) 2188.08 30.1 

Telmatobius thompsoni 6.93 5.91 (85.2) 0.00 (0.0) 0.00 (0.0) 5.91 85.2 

Thamnophilus shumbae 4620.49 242 (5.2) 1454.51 (31.5) 0.00 (0.0) 1543.43 33.4 

Thlypopsis inornata 2173.34 141.87 (6.5) 1138.84 (52.4) 0.00 (0.0) 1165.23 53.6 

Truebella skoptes 17.07 10.76 (63.1) 0.00 (0.0) 0.00 (0.0) 10.76 63.1 

Turdus maranonicus 7630.23 829.79 (10.9) 1664.51 (21.8) 0.00 (0.0) 2335.56 30.6 

* overlap between concessions is aggregated 


