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Abstract   12 

Drought is a key maize (Zea mays L.)  production constraint in sub-Saharan Africa (SSA). Fourteen, 13 

15 and 25 extra-early maturing maize cultivars, with varying Striga resistance, drought and low soil 14 

nitrogen tolerance, were developed from 1995 to 2000 (Period 1), 2001 to 2006 (Period 2) and 2007 to 15 

2012 (Period 3), respectively.  The objectives of this study were to examine yield gains in the cultivars, 16 

investigate inter-trait relationships and yield stability under six drought and 17 rain-fed conditions in 17 

West Africa, 2013-2016.  Annual rate of yield increase across cultivars was 0.034 Mg ha
–1 

(3.28 %) 18 

and 0.068 Mg ha
–1

 (2.25 %)
 
while yield gains per period were 0.17 and 0.38 Mg ha

-1 
under drought and 19 

rain-fed environments, respectively. Yield gains under drought and rain-fed environments were related 20 

to prolonged flowering period, increased plant and ear heights, improved stalk lodging, ear and plant 21 

aspects, whereas delayed leaf senescence and increased number of ears per plant (EPP) accompanied 22 

yield improvement under drought only. Ear aspect and EPP were primary contributors to yield and 23 

could be used as selection criteria for yield enhancement under drought and rain-fed conditions. High 24 

yielding and stable cultivars across all environments based on additive main effects and multiplicative 25 
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interaction (AMMI) biplot included 2004 TZEE-Y Pop STR C4, and TZEE-W Pop STR BC2 C0 of 26 

Period 2 and 2009 TZEE-W STR, TZEE-Y STR 106, TZEE-W STR 107, and TZEE-W DT C0 STR C5 27 

of Period 3.  These cultivars could be commercialized to improve food self-sufficiency in SSA. 28 

 29 

Abbreviations: AMMI, additive main effects and multiplicative interaction; EASP, ear aspect; EPP, 30 

number of ears per plant; G, cultivar; GGE, genotype main effect plus genotype × environment 31 

interaction; E, environment; IITA, International Institute of Tropical Agriculture; IPCA1, interaction 32 

principal component axes 1; SSA, sub-Saharan Africa; WAP, weeks after planting; WCA, West and 33 

central Africa. 34 

 35 

MAIZE IS A MAJOR STAPLE CROP in West and Central Africa (WCA). The development and 36 

commercialization of extra-early maize that matures in 80-85 days have made it possible for maize to 37 

spread into the savannas of WCA. This has resulted in the expansion of the crop and rapid replacement 38 

of the traditional crops, including the indigenous sorghum (Sorghum bicolor) and millet (Pennisetum 39 

glaucum), particularly in the savannas of WCA. This is attributable to the fact that extra-early maize 40 

cultivars respond better to application of fertilizer, have a shorter growing cycle, and are ready for 41 

harvest much earlier than the indigenous sorghum and millet crops. In addition, as a result of the dry 42 

spell usually experienced from November of each year to March of the following year, the early and 43 

extra-early crops are preferred to reduce the hunger gap in July of each year because of the shorter 44 

maturity period of the crop. An important factor constraining maize production in the savanna 45 

agroecology is drought, which accounts for huge yield losses annually in sub-Saharan Africa (SSA). 46 

Global warming, which is usually associated with irregular rainfall patterns, calls for an urgent and 47 

effective genetic intervention to increase grain yield and tolerance to drought stress (Badu-Apraku and 48 

Fakorede, 2017).  49 

Page 2 of 39Crop Sci. Accepted Paper, posted 07/14/2018. doi:10.2135/cropsci2018.03.0168



3 

 

Drought stress and poor soil fertility of tropical soils, especially N, compounds the effects of 50 

Striga hermonthica on maize because of enhanced secretion of strigolactones, plant hormones that 51 

stimulate the germination of Striga seeds (Cechin and Press 1993; Mumera and Below 1993; Kim and 52 

Adetimirin 1995). Therefore, it is of critical importance to introgress genes for drought tolerance into 53 

Striga-resistant cultivars in the Guinea and Sudan savannas, which frequently experience intermittent 54 

drought stress and low soil fertility. It is therefore not surprising that farmers, who cultivate maize in 55 

Striga-endemic agro-ecologies of WCA, prefer cultivars with combined Striga resistance and drought 56 

tolerance. The WCA farmers are reluctant to accept maize cultivars that are susceptible to both drought 57 

stress and Striga infestation (Badu-Apraku and Fakorede, 2013). 58 

To facilitate the development of drought-tolerant cultivars and improved technologies targeted 59 

at the different agro-climatic conditions in SSA, particularly drought stress, a program was designed 60 

specifically to capitalize on the inherent mechanisms for drought escape and drought tolerance in 61 

maize and the prevailing production conditions in WCA. The cultivars possessing drought-escape 62 

mechanisms usually complete critical physiological processes of the life cycle before the onset of 63 

drought. This is highly desirable in cultivars developed for farmers in agro-ecologies prone to terminal 64 

drought stress in WCA. On the other hand, drought tolerance is a physiological mechanism in plants, 65 

which is genetically controlled and can enable plants to minimize or withstand the adverse effects of 66 

drought. Drought-tolerant cultivars are especially invaluable in environments where the occurrence of 67 

drought is unpredictable during crop growth and development in WCA.  Two approaches have been 68 

adopted since 1995 for developing extra-early maize cultivars with enhanced drought tolerance for 69 

drought-prone agro-ecologies of WCA. The first one involves the development of extra-early cultivars 70 

that mature before the onset of severe drought. The second strategy involves the development of 71 

drought-tolerant cultivars under induced drought stress. Breeding for extra-early-maturing cultivars 72 

has been carried out in the savanna agro-ecologies and many cultivars have been developed, released, 73 

and commercialized following extensive testing in the diverse agro-climatic conditions of WCA. Since 74 
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2007, an important strategy of the International Institute of Tropical Agriculture (IITA) maize program 75 

has been to evaluate extra-early maize inbred lines from diverse sources for drought tolerance. 76 

Selected outstanding drought-tolerant inbred lines are also screened for Striga resistance under 77 

artificial infestation. The outstanding inbred lines possessing both drought tolerance and Striga 78 

resistance are used to develop hybrids that are then evaluated for adaptation to drought-prone and 79 

Striga-endemic locations. The selected lines have served as invaluable sources of drought-tolerance 80 

alleles for genetic enhancement of two source populations of extra-early maturity that are being 81 

improved using the S1 family recurrent selection scheme. Genetic enhancement of the extra-early 82 

source populations under managed-drought stress using  the S1 recurrent selection method has 83 

generated new productive cultivars possessing alleles for both drought-tolerance and Striga-resistance.  84 

The selection for enhanced resistance to Striga and improved grain yield carried out under low N has 85 

resulted in extra-early maize with increased tolerance to low N ( Badu-Apraku et al., 2009). 86 

 Studies conducted in temperate countries have been used to document breeding progress by 87 

comparing the performance of released cultivars developed during different eras in environments 88 

similar to those of the tropical regions (Russell, 1984; Voldeng et al., 1997; Specht et al., 199). For 89 

example, Russell (1984) documented genetic gain in grain yield of 0.68% yr
−1

 for cultivars developed 90 

in the USA between 1930s and 1980s. Much higher yield gains of 1.7% yr
−1

 were reported by 91 

Tollenaar (1989) for outstanding maize hybrids developed between the late 1950s and late 1980s and 92 

evaluated under drought conditions in Canada. However, only a few reports are available on yield 93 

gains for tropical maize evaluated under drought stress. For example, Masuka et al. (2017a) 94 

demonstrated annual gains in grain yield of 0.029, 0.085, 0.11, and 0.193 Mg ha
−1

 for early-maturing 95 

open-pollinated varieties (OPVs) under natural drought, low N, optimal conditions, and infestation of 96 

the maize streak virus (MSV), respectively, in Eastern and Southern Africa (ESA). Genetic gains 97 

under random drought, low N, rain-fed conditions, and MSV for the intermediate-late maturing 98 

cultivars were reported to be 0.042, 0.053, 0.079, and 0.109 Mg ha
−1

 year
−1

, respectively (Masuka et 99 
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al., 2017a). However, the authors did not observe any significant gains in grain yield of both early-100 

maturing and late-intermediate-maturing cultivars under managed-drought conditions. Annual genetic 101 

gains for grain yield of maize hybrids developed by CIMMYT in ESA during the 2000 - 2010 period 102 

and evaluated under managed-drought stress, random drought, low N, optimal conditions, and MSV 103 

infestation were estimated to be 0.325, 0.227, 0.209, 0.109, and 0.141 Mg ha
−1

, respectively (Masuka 104 

et al., 2017b). In contrast, studies on genetic gains have been conducted for only OPVs in WCA. For 105 

example, Kamara et al. (2004) conducted a study to examine genetic gains from selection of maize 106 

cultivars of late-maturity, released between 1970 and 1999, in the savannas of Nigeria; and reported an 107 

annual genetic gain in grain yield of 0.41%. The increase was attributed to higher total biomass 108 

production and kernel weight, accompanied by reduction in days to flowering and plant height. Bello 109 

et al. (2014) conducted a comparative study on the response of six maize hybrids, two each from the 110 

1980, 1990, and 2000 eras to under three nitrogen levels (0, 30 and 90 kg N ha
-1

); the N levels were 111 

used as main plots and the six hybrids as sub-plots. Results revealed that mean grain yield increased by 112 

48.4 and 62.4 %, as N increased from 0 to 30 kg ha
-1 

and from 30 to 90 kg ha
-1

, respectively (Bello et 113 

al., 2014). The genetic gains in grain yield of 42% (between 1980 and 2000) and of 9% (between 1990 114 

and 2000) were obtained under optimal-N fertilization (90 kg of N ha
-1

). The two hybrids of the 2000 115 

era were outstanding in all the agronomic traits and leaf chlorophyll concentration at all N levels. It 116 

was concluded that improving traits associated with fertilizer N response could accelerate rate of 117 

genetic gains in maize hybrid yields. In another study conducted by Badu-Apraku et al. (2017a), 118 

genetic gains in grain yield of 56 extra-early open-pollinated maize cultivars developed during three 119 

breeding eras (1995–2000, 2001–2006, and 2007–2012) were estimated under low N and high soil 120 

nitrogen (high N) in Nigeria in 2013 and 2014. They reported genetic gains in grain yield of 0.314 Mg 121 

ha
−1

 era
-1

 (13.29%) under low N and 0.493 Mg ha
−1

 era
-1

 (16.84%) under high N. In a similar study 122 

conducted between 1988 and 2010 under induced drought stress and optimal (stress-free) growing 123 

conditions, Badu-Apraku et al. (2013a) showed that the annual yield gains for early-maturing OPVs 124 
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were 0.040 and 0.014 Mg ha
−1

 under optimal conditions and induced drought, respectively.  Genetic 125 

gains in yield of the cultivars tested under drought conditions were accompanied by improved plant 126 

aspect and husk cover, whereas under optimal conditions, yield gains were associated with improved 127 

plant aspect and ear aspect, increased number of ears per plant, increase in plant and ear heights and 128 

improved husk cover. Badu-Apraku et al. (2015a) also evaluated maize cultivars of early maturity 129 

under low N conditions in WCA and reported an increase in grain yield of 0.165 Mg ha
−1

 era
−1

, and a
 

130 

yield range of 2.28 to 2.61 Mg ha
−1

 for the first era (1955-2000) to the third era (2007-2012) cultivars, 131 

respectively. Despite the results of  these studies, there is complete lack of information on yield gains 132 

and changes in other agronomic traits of extra-early-maturing cultivars of the three breeding periods 133 

under drought stress and optimal growing conditions. Furthermore, information on trait association 134 

during the different breeding periods is crucial for identifying valuable traits and on different breeding 135 

strategies for enhancing progress in improving extra-early maize for stress tolerance (Badu-Apraku et 136 

al., 2015b). The current study was therefore conducted to: (a) assess yield gains in extra-early maize 137 

cultivars of the three breeding periods (1995-2000 = Period 1; 2001-2006 = Period 2; and 2007-2012 = 138 

Period 3) under drought and rain-fed environments; (b) investigate trait associations during the three 139 

breeding periods, and (c) assess the performance of the cultivars relative to grain yield and stability 140 

across target research environments. 141 

 142 

MATERIALS AND METHODS 143 

Development of extra-early cultivars possessing mechanisms for drought-escape and tolerance to 144 

drought, Striga, and maize streak virus  145 

The extra-early populations used for the extraction of inbred lines and cultivars were derived from 146 

crosses involving superior accessions, including introduced germplasm selected after extensive testing 147 

in WCA (Badu-Apraku and Fakorede 2001; Badu-Apraku et al. 2007). For about two decades, the S1 148 

family selection scheme, artificial S. hermonthica field infestation, and screening under managed and 149 
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random drought have been used by the IITA maize scientists to develop one each of white (TZEE-W 150 

Pop STR) and yellow (TZEE-Y Pop STR) source populations of extra-early maturity. Following 151 

genetic enhancement of these populations, a large number of cultivars and inbred lines of extra-early 152 

maturity, combining drought tolerance and resistance to S. hermonthica and MSV, were extracted from 153 

each population. Several extra-early inbred lines in the IITA Maize Program possessed drought-escape 154 

mechanism(s) and drought-tolerance genes. It was therefore expected that the inbred lines would 155 

withstand the drought stress occurring during flowering and grain filling in the savannas of WCA, as 156 

had been observed in cultivars of other maturity groups. Thus, a tremendous opportunity existed for 157 

improvement of the performance of the cultivars in the program by introgressing genes for improved 158 

tolerance to drought and Striga resistance. We recognized at the very early stages of the IITA extra-159 

early maize improvement program that several genes governed the expression of drought tolerance in 160 

maize. Therefore, a major strategy of the program was to adopt various methods to identify maize 161 

inbred lines with tolerance to drought from diverse germplasm sources.  Since 2007, various strategies 162 

have been employed in the program for the genetic enhancement of the populations for drought 163 

tolerance at various testing sites in Nigeria. The focal point of the IITA extra-early-maturing maize 164 

program for improving adaptation to drought has been to screen maize inbred lines from diverse 165 

genetic backgrounds for tolerance to drought under managed moisture stress at Ikenne (Supplementary 166 

Table 1).  The soil at the Ikenne experiment station is classified as eutric nitrosol (Soil survey staff, 167 

1999) and the research fields are flat and uniform and characterized by high water-holding capacity.  A 168 

sprinkler irrigation system was used to apply 17 mm of water weekly to the maize crop during the first 169 

three weeks of growth in the dry season. The maize plants therefore depended on stored water in the 170 

soil for growth and development. This strategy ensured that flowering and grain-filling periods 171 

coincided with occurrence of induced drought stress. Under the optimal conditions at Ikenne, the 172 

plants were irrigated throughout the growing period using the sprinkler irrigation system, as described 173 

by Badu-Apraku et al. (2013a; 2017b). The trials were also evaluated under optimal conditions at 174 
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Mokwa and Zaria (high-yield environments) in Nigeria to assess the yield of the cultivars. At Bagauda 175 

(characterized by terminal drought), the cultivars were exposed to drought stress that occurred from 176 

flowering till physiological maturity. 177 

Badu-Apraku and Fakorede (2017) have described in detail the strategies adopted to enhance 178 

cultivar resistance to Striga and tolerance to low N.  Briefly, promising drought-tolerant, extra-early 179 

inbred lines selected for the development of the cultivars evaluated in the present genetic gain study 180 

were also screened for Striga resistance under artificial Striga infestation at Mokwa and Abuja. 181 

Drought-tolerant and Striga-resistant inbred lines also possessed tolerance to low N, even though they 182 

had not been specifically selected for tolerance to low N (at 30-40 kg N ha
-1

).   183 

By 2007, extra-early inbreds and hybrids that possessed genes for tolerance to drought during 184 

flowering and grain-filling periods, and which were also capable of escaping drought (characteristic of 185 

extra-early maturing cultivars) and had low-N tolerance genes, had been identified (Badu-Apraku and 186 

Fakorede, 2017). A program was therefore commenced in 2011 to generate extra-early cultivars 187 

possessing genes for tolerance to drought. Towards this end, tolerance to drought and low N in the 188 

extra-early white (TZEE-W Pop STR C5) and the extra-early yellow (TZEE-Y Pop STR C5) Striga-189 

resistant source populations was improved by introgressing drought and low-N tolerance genes from 190 

19 white and 20 yellow extra-early inbred lines with elevated levels of tolerance to drought and/or low 191 

N (Badu-Apraku and Fakorede, 2017). Two-hundred testcrosses generated from crosses, which 192 

involved each population and outstanding inbreds with enhanced drought tolerance, were evaluated at 193 

Ikenne under induced drought stress during the 2011/2012 dry season. The top-performing 25% 194 

testcrosses from each source population were selected and recombined to reconstitute each population. 195 

This was followed by recombination of the top 10 testcrosses of each population to form experimental 196 

cultivars that were designated as 2012 TZEE-W DT STR C5 and 2012 TZEE-Y DT STR C5.  A total of 197 

56 extra-early-maturity maize cultivars from the three breeding periods (1995-2000, 2001-2006, and 198 
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2007-2012), possessing enhanced drought tolerance and Striga resistance, were used for the present 199 

study (Supplementary Table 2).  200 

 201 

Field evaluation and data collection 202 

The extra-early cultivars were evaluated under six induced or terminal-drought environments in 203 

Nigeria and Ghana, and 17 optimal environments in Ghana, Republic of Benin, and Nigeria, from 204 

2013 to 2016 (Supplementary Table 3). The drought trials at Ikenne were planted during the dry 205 

season and 17 mm of water was supplied to the plots weekly using the sprinkler irrigation system. To 206 

create induced drought stress at this location, the drought trials were irrigated for only the first 21 days 207 

after planting, causing the maize plants to rely on residual moisture in the soil for growth and 208 

development. In contrast, terminal drought was achieved by delaying the planting of the trials such that 209 

the occurrence of drought stress coincided with 1-2 weeks before flowering. Optimal environments 210 

used in the present study refer to environments where water and nitrogen were adequate for plant 211 

growth and development. An 8 × 7 lattice design, with three replications, was adopted for the trial. 212 

Each experimental unit comprised two 4 m long rows, with inter-row spacing of 75 cm and a spacing 213 

of 40 cm between plants within rows. Initially, three seeds were planted per hill and two weeks after 214 

planting (2 WAP), thinning was done to two seedlings per hill to obtain a final population density of 215 

66, 666 plants ha
-1

. Basal fertilizer (60 kg each of N, P and K ha
-1

) was applied to the managed 216 

drought-stress experiments during planting, whereas 60 kg ha
-1

 N was top-dressed at 2 WAP. 217 

However, for terminal drought and rain-fed environments, basal fertilizer application rates were 60 kg 218 

ha
-1

 each of N, P and K at 2 WAP and 60 kg of N ha
-1

 at 4 WAP. Crop management practices were 219 

similar for both drought-stress and rain-fed experiments. Weeds were controlled manually as well as 220 

through the use of herbicides, as needed.  221 
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 Data were recorded on the measured traits as described in detail by Badu-Apraku et al. 222 

(2015b). Briefly, in the drought-stressed and rain-fed plots, days to 50% anthesis (DA) and days to 223 

50% silking (DS) were recorded as the number of days from planting to when 50 % of plants per plot 224 

had started shedding pollen or extruding silks, respectively. Anthesis-silking interval (ASI) was 225 

computed as the difference between DS and DA. Plant height (PHT) and ear height (EHT) were 226 

measured as the length from the base of the plant to the first tassel branch and the upper ear node, 227 

respectively.  Root lodging (RL) was estimated as the percentage of plants leaning more than 30° from 228 

the vertical while stalk lodging (SL) was computed as percentage of plants with broken stalks at or 229 

below the highest ear node. Plant aspect (PASP) was rated on a scale of 1 to 9 based on plant type, 230 

where 1 = excellent and 9 = poor. Ear aspect (EASP) was scored on a scale of 1 to 9, where 1 = clean, 231 

uniform, large, and well-filled ears and 9 = ears with undesirable features. Husk cover (HUSK) was 232 

rated on a scale of 1 to 5, where 1 = husks tightly arranged and extended beyond the ear tip and 5 = ear 233 

tips exposed. The number of ears per plant (EPP) was determined by dividing the total number of ears 234 

harvested by the number of plants in the plot at harvest.  In addition, stay green characteristic (STGR) 235 

was scored for the drought-stressed plots at 70 days after planting (DAP) on a scale of 1–9, where 1 236 

represented plants with almost all leaves green and 9 indicated plants with virtually all leaves dead. . 237 

Grain yield for drought trials was adjusted to 150 g kg
-1 

moisture and estimated from the shelled grain 238 

weight. In the rain-fed experiments, grain yield was determined from ear weight using 80% shelling 239 

percentage, adjusted to moisture content of 150 g kg
-1

.  240 

Statistical analyses 241 

Observations recorded on plot means for grain yield and other agronomic traits were subjected to 242 

analysis of variance (ANOVA) for drought stress and optimal environments separately using PROC 243 

GLM statement of Statistical Analysis Systems (SAS) 9.3 (SAS Institute, 2011). The environments 244 

were regarded as the location-year combinations in the combined ANOVA. The environments, 245 
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replicates-within environment, and blocks-within-replicates of each experiment were treated as random 246 

effects, whereas the entries were considered fixed effects. Means of the 56 cultivars for each variable 247 

were regressed on the year when the cultivar was developed to estimate gain year
-1

 for the respective 248 

traits. The means of grain yield and other traits of the maize cultivars were used as dependent 249 

variables, and regressed on the year of breeding, as the independent variable to obtain the linear 250 

regression coefficient (b-value) under drought stress and rain-fed environments. The relative genetic 251 

gain per year was estimated as the b-value divided by the intercept and multiplied by 100 (Badu-252 

Apraku et al., 2009). Similarly, the yield gain per period was computed by regressing mean grain yield 253 

of cultivars on the respective periods of development. Annual yield gains for cultivars of each of the 254 

breeding period were also computed following a similar procedure. The Excel software in the 255 

Microsoft Office suite 2007 was used for the regression analysis as well as for the estimation of the 256 

parameters and the graphical display of the regression lines.  Correlation coefficients between grain 257 

yield and other measured traits of maize cultivars were computed for drought stress and rain-fed 258 

growing conditions using SAS version 9.3 (SAS Institute, 2011). To facilitate the estimation of 259 

variance components, cultivars were treated as a random factor in this context. Variance components 260 

were computed using the restricted maximum likelihood (REML) option in PROC MIXED command 261 

(SAS institute, 2011). The estimates of broad-sense heritability (H
2
) for grain yield were computed for 262 

each environment, and all the environments included in the present study revealed an H
2
 value of ≥ 263 

0.30 (Supplementary Table 2). The H
2
 of grain yield and other traits were estimated as follows: 264 

 265 

 266 

 267 

  268 
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where σg
2
 is the variance attributable to genotypic effects, σ

2
e is experimental error variance; and r = 269 

the number of replicates within each environment (Fehr, 1991). 270 

 271 

Repeatability estimates of the traits (Falconer and Mackay, 1996) across environments were calculated 272 

on a cultivar-mean basis as follows: 273 

 274 

  275 

 276 

where e is the number of environments; σ
2

ge is the component of variance attributable to cultivar × 277 

environment interaction; and σ
2
 is the error variance.   278 

Step-wise regression analysis and sequential path diagrams were employed to show the cause 279 

and effect relationships among traits in the present study.  The Statistical Package for Social Sciences 280 

(SPSS Inc, 2007) was used for the step-wise regression analyses to obtain information on the path 281 

coefficients and the causal relationships required for the path diagrams. Following the method 282 

proposed by Mohammadi et al. (2003), the predictor traits were organized into first, second, and third 283 

order, based on their contributions to the total variation in grain yield, with minimized multicolinearity 284 

(Badu-Apraku et al., 2014; Talabi et al., 2017). To perform the step-wise regression analysis, grain 285 

yield was regressed on measured traits to identify traits with significant contributions to the total 286 

variation in grain yield at P ≤ 0.05, which were categorized as first order traits. The first-order traits 287 

thereafter were each regressed on other traits that were not in the first order category, to identify traits 288 

with significant contributions to grain yield through the first-order traits. These traits were classified as 289 

second order traits. The same procedure was repeated to identify third order trait(s) and so on. The 290 

path coefficients were obtained from the standardized b values of the stepwise regression analysis 291 

(Badu-Apraku et al., 2014; Talabi et al., 2017). The significance of the path coefficients was tested 292 
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using the standard errors at 0.05 probability level, with only traits having significant path coefficients 293 

retained in each order. 294 

A selection index for drought tolerance, which incorporated grain yield of the cultivars under 295 

drought, along with the expression of traits such as ASI, PASP, EASP, STGR and EPP, was used to 296 

characterize the extra-early maize cultivars as drought tolerant and drought sensitive (Oyekunle and 297 

Badu-Apraku, 2012). The effect of different scales was minimized by standardizing each parameter 298 

using a mean and standard deviation of zero and one, respectively. Thus, a cultivar characterized by a 299 

positive value was considered drought tolerant, whereas the drought sensitive cultivars were those with 300 

negative values. The selection index was calculated as follows:  301 

Selection index = [(2 × Yield) + EPP – ASI – PASP – EASP – STGR]. 302 

 Based on the characterization, 35 cultivars (top 25, middle five and worst five genotypes) were 303 

selected for stability analysis. The additive main effects and multiplicative interaction (AMMI) 304 

analysis was adopted to investigate the relationships among cultivars (G), environments (E), and G × E 305 

interaction (GEI) components of the yield of the selected 35 extra-early cultivars. The AMMI model 306 

partitioned G × E into several interaction principal component axes (IPCAs) through principal 307 

component analysis (Zobel et al., 1988; Gauch and Zobel, 1988; Crossa, 1990). The AMMI analysis 308 

was performed using the genotype main effect plus G by E interaction (GGE) biplot (Yan, 2001a, 309 

2001b) and the AMMI model equation used was that reported by Sadeghi et al. (2011). The AMMI 310 

biplot provided information on the performance and stability of the selected cultivars across drought 311 

and rain-fed environments.  312 

 313 

RESULTS  314 

Analysis of variance for grain yield and other traits and yield gains  315 

Results of combined ANOVA for grain yield and other measured traits under contrasting drought and 316 

rain-fed environments (Table 1) revealed significant environment (E), period, cultivar (period), 317 
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cultivar (period) × E interaction, and period × E interaction mean squares for all measured traits, 318 

except period mean square for ASI, and E × period mean square for DS, EHT, RL, and EPP under 319 

drought conditions. Grain yield varied from 1.19 to 1.54 Mg ha
–1 

for cultivars of Period 1 and Mg 320 

Period 3, respectively under drought, which corresponded with an overall annual yield gain of 3.28 % 321 

(Tables 2 and 3). Annual yield gains of 0.0480, 0.0500 and 0.0002 Mg ha
-1

 were obtained under 322 

drought for cultivars developed during Periods 1, 2 and 3, respectively, whereas the gain in grain yield 323 

per period across the 56 cultivars was 0.17 Mg ha
-1

. Grain yield of cultivars ranged from 3.30 Mg ha
–1

 324 

for Period 1 cultivars to 4.06 Mg ha
–1

 for Period 3 cultivars under rain-fed conditions, which translated 325 

to an annual genetic gain of 2.25%. Under rain-fed environments, cultivars of Period 1 showed an 326 

annual yield gain of 0.12 Mg ha
-1

, whereas the gains in grain yield obtained for Period 2 and Period 3 327 

cultivars were 0.022 and 0.014 Mg ha
-1

, respectively. The yield gain per period of the 56 cultivars was 328 

0.38 Mg ha
-1

 across rain-fed environments. The realized annual increase in grain yield was 0.034 and 329 

0.068 Mg ha
–1 

under drought stress and rain-fed environments, respectively. The significant yield 330 

increase from Period 1 to Period 3 under drought stress and rain-fed environments was associated with 331 

prolonged flowering period, increase in EHT and PHT, and improvement in SL resistance, EASP, and 332 

PASP. Other characters that accompanied the significant yield improvement under drought conditions 333 

included prolonged STGR and increased EPP (Table 3).  334 

Under drought stress, positive and significant b-values (gain per year) were obtained for grain 335 

yield, DA, DS, PHT, EHT, and EPP, whereas significant negative b-values were observed for SL, 336 

PASP, EASP, and STGR. The same set of traits showed similar trends under rain-fed environments, 337 

except EPP, for which no significant gain was obtained; STGR was not measured under rain-fed 338 

environments (Table 3). 339 

Regression of mean grain yield of the extra-early maize cultivars tested under drought conditions on 340 

mean grain yield under rain-fed environments, and vice versa, clearly separated the maize cultivars 341 

into three distinct breeding periods (Figs. 1a and 1b). However, some cultivars from Period 2 produced 342 
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yields comparable to those of Period 3 extra-early cultivars, whereas one Period 2 cultivar (TZEE-Y 343 

SR BC1 × 9450 STR S6 F2) produced yield lower than those of Period 1 cultivars. The extra-early 344 

Period 3 cultivars exhibited the most outstanding performance under both drought stress and rain-fed 345 

environments. The grain yield of the cultivars under drought stress adequately predicted the yield 346 

performance of the cultivars under rain-fed environments and vice versa (R
2
 = 58%; Figs.1a and 1b). 347 

 348 

Interrelationships among traits 349 

Under drought environments, the step-wise regression analysis identified EPP, EASP, RL, and EHT as 350 

first order traits; these traits explained about 80 % of the variability in grain yield (Fig. 2). Number of 351 

ears per plant had the largest path coefficient, whereas RL had the smallest path coefficient. The 352 

second order traits identified under drought included PASP, DS, HUSK, STGR, SL, DA, and PHT; 353 

each contributed to the variation in grain yield through one or two first order traits. The highest 354 

indirect effect (0.82) was observed for DA through EHT, whereas the lowest indirect effect (-0.15) was 355 

obtained for HUSK through EHT. Five out of the seven second order traits made significant 356 

contributions to grain yield through EPP, four through EHT, and one each through EASP and RL. 357 

Anthesis-silking interval was the only third-order trait identified under drought conditions in this 358 

study, which made significant contributions to grain yield through DA.  359 

 Under rain-fed environments, step-wise regression analysis classified seven traits (EPP, EASP, 360 

PASP, RL, SL, PHT, and DA) as the first-order traits (Fig. 3). These traits together contributed about 361 

93% to the total variation in grain yield. Five of the traits contributing directly to grain yield showed 362 

negative effect, whereas two of the traits had positive effects. The largest direct contribution to grain 363 

yield was that of PHT (0.44), whereas the smallest contribution was that of EPP (0.09). Second-order 364 

traits identified under rain-fed environments were ASI, EHT, and DS. While EHT made significant 365 

contributions to grain yield through six first-order traits, ASI and DS each contributed through only 366 

one of the first-order traits. 367 
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 368 

Performance and stability of extra-early maize cultivars 369 

The AMMI biplot for grain yield clearly depicted the performance of the selected 35 extra-early-370 

maturing maize cultivars of the three breeding periods and stability across drought and rain-fed 371 

environments (Fig. 4). The grand mean of grain yield was represented by the vertical dotted line, 372 

whereas the interaction principal component axis 1 (IPCA1) value of zero was represented by the 373 

horizontal dotted line (y ordinate). The stable cultivars were those placed close to the horizontal line, 374 

with little interactions with the environments, whereas the less stable cultivars were those farther from 375 

the horizontal line. The high-yielding cultivars were placed to the right of the grand mean line and the 376 

farther such cultivars were from the grand mean, the greater their grain yield. Across drought and rain-377 

fed environments, the percentage contributions of E (environment), G (cultivar), and the IPCA1 to the 378 

total variation in grain yield sum of squares were 80.78, 9.22, and 2.8, respectively. The 84.6% of the 379 

grain yield sum of squares captured by AMMI analysis was a clear indication that the biplot was 380 

effective in decomposing the G × E interaction across drought stress and rain-fed environments (Fig. 381 

4). Cultivars 2004 TZEE-Y Pop STR C4, and TZEE-W Pop STR BC2 C0 of Period 2 and 2009 TZEE-382 

W STR, TZEE-Y STR 106, TZEE-W STR 107, and TZEE-W DT C0 STR C5 of Period 3 were the 383 

most productive ones and stable relative to grain yield across drought and rain-fed environments. 384 

Cultivar 2009 TZEE-OR1 STR yielded more than the mean grain yield but was adapted to high-yield 385 

environments. A large number of cultivars, among which TZEE-W STR 108 was outstanding, were 386 

high-yielding, with adaptation to low-yield environments.  387 

DISCUSSION 388 

The significant cultivar means squares for all traits measured under drought and rain-fed environments 389 

suggested that the cultivars were genetically distinct in the expression of these traits, which should 390 

facilitate the identification and selection of superior cultivars under the research conditions, i.e., 391 

drought and rain-fed environments. Similarly, significant mean squares for environments for all 392 
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measured traits under drought and optimal environments were an indication that the environments 393 

were unique in their ability to discriminate among the cultivars under drought and optimal 394 

environments. These findings corroborate results reported by Badu-Apraku et al. (2013a), who 395 

compared 50 early-maturing maize cultivars developed during three breeding eras under drought stress 396 

and optimal environments in WA. The significant cultivar × environment interactions detected for all 397 

the measured traits under drought and optimal conditions suggested that the environments influenced 398 

the performance of the cultivars differentially and that multi-environment testing was desirable. 399 

However, this is inconsistent with the results of Badu-Apraku et al. (2013a), who observed lack of 400 

significant E × era and E × cultivar (era) effects for all the measured traits of early-maturing genotypes 401 

evaluated under drought conditions. The observed differences between the findings of Badu-Apraku et 402 

al. (2013a) and the results of the present study might have resulted from the fewer drought testing sites 403 

used in the former study. 404 

  An important objective of the present study was to investigate yield gains of 56 extra-early-405 

maturing cultivars developed during three breeding periods under drought and rain-fed environments. 406 

The extra-early cultivars showed an annual genetic gain of 3.28%, with a realized yield increase of 407 

0.034 Mg ha
–1

 yr
-1 

under drought conditions, and 2.25% annual yield gain corresponding to an annual 408 

increase of 0.068 Mg ha
–1 

under rain-fed conditions, which are greater than the yield gains obtained for 409 

the early-maturing cultivars reported by Badu-Apraku et al. (2013a), who reported an annual yield gain 410 

of 1.1% (0.014 Mg ha
–1

)
 
and 1.3% (0.040 Mg ha

–1
) under drought and well-watered conditions, 411 

respectively. The annual yield gain obtained for this set of extra-early maize cultivars under drought 412 

was also higher compared with the annual percentage yield gains of 2.56 reported under artificial 413 

Striga infestation (Badu-Apraku et al., 2016), 2.14 under low soil nitrogen (Badu-Apraku et al., 414 

2017a), and 2.72 under multiple-stress environments (Badu-Apraku et al., 2017b) for the same set of 415 

extra-early cultivars. Furthermore, the annual yield gain of 0.034 Mg ha
–1 

achieved under drought in 416 

the present study was greater than the 0.029 Mg ha
−1

 gain obtained for CIMMYT’s ESA early-417 
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maturing OPVs (Masuka et al., 2017a) and was comparable with the annual yield gain of 0.042 Mg 418 

ha
−1

 reported for the CIMMYT’s ESA intermediate-late OPVs under random drought stress. The 419 

implications of the results obtained in the present study are that the extra-early OPVs had better 420 

responses to selection for improved grain yield and drought tolerance than the early and intermediate-421 

late varieties tested under drought stress.  Furthermore, the relative annual yield gain of 3.28 % 422 

obtained for the extra-early cultivars under drought conditions was higher than the 2.25 % achieved 423 

under rain-fed environments in the present study. A plausible reason for this was that the emphasis of 424 

the breeding program was more on improvement in drought tolerance rather than performance of 425 

cultivars under rain-fed environments. With the recent advances in molecular breeding techniques, 426 

marker-assisted selection (MAS) and genomic selection (GS) schemes are presently being employed to 427 

fast-track breeding processes and accelerate yield gains in our program. In addition to the MAS and 428 

GS, several other strategies outlined by Masuka et al. (2017a) for increasing genetic gains in Eastern 429 

and Southern Africa breeding pipeline are being used in WCA under the DTMA/STMA Project for 430 

accelerating genetic gains. These include, among others, increase in the size of the IITA maize 431 

breeding program to facilitate the use of higher selection intensity and increase in the precision of 432 

selection to achieve higher heritability.  433 

Meseka et al. (2006) indicated that drought-tolerant genotypes might be characterized using a 434 

selection index combining superior grain yield with desirable expression of PASP, EASP, and STGR, 435 

reduced ASI, and increased EPP under drought as well as high grain yield under optimal conditions. In 436 

the present study, the increased grain yields under drought and rain-fed environments were associated 437 

with prolonged DA and DS, increase in EHT and PHT, and improvement in SL resistance, EASP and 438 

PASP. In contrast, improved STGR and EPP accounted for yield gains only under drought 439 

environments. Gains achieved in grain yield associated with delayed leaf senescence during the 440 

breeding periods under drought may be attributed to longer grain filling duration period. The results of 441 

this study showed that the traits included in the selection index for characterizing drought tolerance 442 
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were indeed effective in the development of superior cultivars under this stress factor. However, it was 443 

not effective in keeping constant the EHT and PHT and the flowering dates of the cultivars. Selection 444 

for improved tolerance to drought is usually conducted under drought stress, whereas field evaluations 445 

for drought tolerance are conducted under drought and optimal environments. However, results of our 446 

studies have demonstrated repeatedly that outstanding cultivars identified under stress usually 447 

displayed outstanding performance under stress-free conditions (Badu-Apraku et al., 2013a). In this 448 

study, cultivar grain yield under drought adequately predicted yield performance of the cultivars under 449 

optimal environments (R
2
 = 58%). The implication of this result is that the performance of the 450 

cultivars relative to grain yield under drought is a reliable indicator of expected yield performance of 451 

the cultivars under optimal environments, and vice versa. Therefore, cultivars with outstanding 452 

performance under drought stress also display superior grain yield under optimal conditions, and vice 453 

versa. Similar results were obtained by Badu-Apraku et al. (2013a) when early-maturing maize 454 

cultivars were evaluated under drought and optimal conditions.  455 

 Badu-Apraku et al. (2014) and Talabi et al. (2017) used the path coefficient analysis (Wright, 456 

1921; Dewey and Lu, 1959) to quantify the contributions of various agronomic traits to the variation in 457 

grain yield. Of particular interest was the sequential path analysis, which allowed for categorization of 458 

traits into orders corresponding to the relative importance of the traits in explaining the variation in 459 

grain yield (Mohammadi et al., 2003). Under drought conditions, the identification of EPP, EASP, RL, 460 

and EHT as first order traits implied that these traits could be useful for index selection for genetic 461 

enhancement of grain yield under drought stress. Of four first-order traits, only EPP and EASP were 462 

among the traits included in the selection index (i.e., EASP, PASP, EPP, STGR, and ASI) along with 463 

grain yield for improvement of drought tolerance, emphasizing the importance of these traits when 464 

cultivars are subjected to drought stress. The categorization of PASP and STGR among the second-465 

order traits was also an indication that these traits had potential value in selecting for drought 466 

tolerance. However, identification of ASI as a third-order trait in this study suggested that not only was 467 
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this trait of least importance but also that it did not play a prominent role in justifying its use in the 468 

drought-tolerance selection index in maize. The results of this study are inconsistent with the findings 469 

of Talabi et al. (2017), who identified ASI, EASP, PASP, STGR, and EPP as the primary traits directly 470 

responsible for the variability in grain yield of early-maturing full-sib progenies under drought stress. 471 

The difference in the findings may be explained by the differences in the genetic materials used for the 472 

present study; the cultivars evaluated in the present study were extra-early-maturing, whereas Talabi et 473 

al. (2017) evaluated early-maturing full-sib progenies. This suggested that specific selection indices 474 

may be needed for the different types of genetic materials as well as maturity groups. Under rain-fed 475 

environments, the identification of EASP, PASP, EPP, RL, SL, PHT, and DA as first-order traits 476 

implied that these traits were key in determining the variation observed in grain yield. Again, ASI was 477 

not in the first order traits, as observed under drought but was among the second-order traits under 478 

optimal conditions. The consistent identification of EASP and EPP as first-order traits under the 479 

contrasting environments confirmed their reliability for selection to improve grain yield across diverse 480 

environments. It is striking that Badu-Apraku et al. (2017) placed EASP and PASP among the first-481 

order traits under high- and low-N conditions for the same set of cultivars as used in this study. An 482 

important observation from the findings of several researchers (Badu-Apraku et al., 2011b; 2014; 483 

2017; Talabi et al., 2017) is that EASP is a key trait accounting for the variation observed in grain 484 

yield under diverse stress conditions. Hence, EASP should be accorded the desired emphasis in 485 

selection programs designed to improve grain yield under contrasting environments to achieve 486 

concomitant improvement in tolerance to diverse stress environments. 487 

Development of outstanding maize hybrids for adoption by small-scale farmers in SSA remains 488 

the most sustainable approach for increasing food security, alleviating poverty, and improving 489 

livelihoods in the sub-region. The AMMI biplot identified the following cultivars from Period 2: 2004 490 

TZEE-Y Pop STR C4 and TZEE-W Pop STR BC2 C0 as well as 2009 TZEE-W STR, TZEE-Y STR 491 

106, TZEE-W STR 107, and TZEE-W DT C0 STR C5 from Period 3 as highly productive and stable 492 
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genotypes across drought and optimal environments. These outstanding cultivars should be extensively 493 

tested in on-farm trials and commercialized for improving food self-sufficiency and farmers’ incomes 494 

in SSA. The cultivar 2009 TZEE-OR1 STR, which was high yielding but adapted to high-yield 495 

environments and TZEE-W STR 108, which was promising relative to grain yield but was adapted to 496 

low-yield environments should be further tested for commercialization in the specific environments in 497 

which they displayed outstanding performance.  498 

For more than two decades, early and extra-early maize cultivars have been developed for the 499 

savannas of SSA and extensively evaluated by IITA scientists in the sub-region. Based on the results 500 

of studies conducted under Striga-infested and Striga-free conditions, as well as those obtained from 501 

studies involving 50 early-maturing cultivars evaluated under drought, Striga-infestation, and optimal 502 

conditions (Badu-Apraku et al., 2013b; 2014, and 2017), the conclusion was that early and extra-early 503 

maize responded favorably to selection under biotic and abiotic stresses encountered in SSA. Selection 504 

for drought and/or Striga tolerance/resistance has inadvertently led to improvement in the level of 505 

tolerance to low N but not as much as the response to direct selection for low-N tolerance. 506 

Furthermore, selection under stress conditions results in improved performance of extra-early maize 507 

cultivars under stress-free environments. In addition, efforts at genetically enhancing maize for 508 

tolerance to drought in WCA has led to several conclusions that should guide breeders in SSA. The 509 

products of the research efforts include drought-tolerant early and extra-early populations, OPVs, 510 

inbred lines, and hybrids. Our experience has demonstrated unambiguously that the early and extra-511 

early materials are capable of escaping drought and also possess genes for drought tolerance and can 512 

withstand drought stress that occurs randomly during the cropping season. Based on information on 513 

the DA and DS used as maturity indices, we have clearly established that there is tremendous genetic 514 

variability for the flowering traits in each maturity group. These flowering traits have been shown to 515 

have high heritability and significant negative phenotypic and genetic correlations with grain yield 516 

(Badu-Apraku and Fakorede, 2017). Therefore, early and extra-early maturities are under genetic 517 
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control and are amenable to genetic enhancement and many maize improvement methods such as 518 

recurrent selection, pedigree selection, backcross breeding, double haploid, marker-assisted selection 519 

and genomic selection.  520 

 521 

CONCLUSIONS 522 

Based on the average annual rate of increase in grain yield under drought conditions (0.034 Mg ha
–1

) 523 

and under optimal conditions (0.068 Mg ha
–1

), it can be concluded that considerable progress has been 524 

made during the last three decades in the genetic enhancement of extra-early maturing maize cultivars 525 

for drought tolerance in WCA. The availability of these extra-early cultivars is expected to contribute 526 

to improved food self-sufficiency, farmers’ incomes, and farmers’ livelihoods in SSA. The significant 527 

improvements in grain yield under drought and optimal conditions were associated with prolonged DA 528 

and DS, increased EHT and PHT, and improvement in SL resistance, EASP, and PASP. In addition, 529 

delayed senescence and increased EPP accompanied significant improvement in productivity under 530 

drought. The EASP and EPP were consistently identified as highly reliable indirect selection criteria 531 

for improving grain yield through index selection under drought and rain-fed environments. High 532 

yielding and stable cultivars across all environments based on additive main effects and multiplicative 533 

interaction (AMMI) biplot included 2004 TZEE-Y Pop STR C4, and TZEE-W Pop STR BC2 C0 of 534 

Period 2 and 2009 TZEE-W STR, TZEE-Y STR 106, TZEE-W STR 107, and TZEE-W DT C0 STR C5 535 

of Period 3.  These cultivars could be commercialized to improve food self-sufficiency in SSA. 536 

Considerable improvement has been achieved in development and commercialization of drought-537 

tolerant maize cultivars in the extra-early maturity group for the sub-region. 538 
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Fig 1a and b. Regression of grain yield of extra-early maize cultivars of three breeding periods under 666 

drought on yield performance under rain-fed environments and vice versa. 667 

 668 

Fig. 2. Path analysis model diagram showing causal relationships of measured traits of extra-early 669 

maize cultivars of three breeding periods, evaluated under drought stress at six environments in WA, 670 

2013-2016.  Bold value is the residual effect; values in parenthesis are direct path coefficients while 671 

other values are correlation coefficients. R1 is residual effects; ASI, anthesis–silking interval; DA, 672 

days to 50 % anthesis; DS, days to 50 % silking; EASP, ear aspect; EHT, ear height; EPP, ears per 673 

plant; HUSK, husk cover; PASP, plant aspect; PHT, plant height; RL, root lodging; SL, stalk lodging; 674 

STGR, stay green characteristics; and YD, grain yield. 675 

 676 

 677 

Fig. 3. Path analysis model diagram showing causal relationships of measured traits of extra-early 678 

maize cultivars of three breeding periods, evaluated under rain-fed conditions at 17 environments in 679 

WA, 2013-2014.  Bold value is the residual effect; values in parenthesis are direct path coefficients 680 

while other values are correlation coefficients. R1 is residual effects; ASI, anthesis–silking interval; 681 

DA, days to 50 % anthesis; DS, days to 50 % silking; EASP, ear aspect; EHT, ear height; EPP, ears 682 

per plant; HUSK, husk cover; PASP, plant aspect; PHT, plant height; RL, root lodging; SL, stalk 683 

lodging; STGR, stay green characteristics; and YD, grain yield. 684 

Fig. 4. Mean performance and stability of selected 35 extra-early maturing maize cultivars of three 685 

breeding periods in terms of grain yield as measured by principal components across 23 drought and 686 

rain-fed environments in West Africa between 2013 and 2016. E1 = Ikenne, drought, 2013; E2 = 687 

Bagauda, drought, 2013; E3 = Dusu, drought, 2013; E4 = Kpeve, drought, 2014; E5 = Ikenne, drought, 688 

2014; E6 = Ikenne, drought, 2015; E7 = Ikenne, rain-fed, 2013; E8 = Ife, high-N, 2013; E9 = Zaria, 689 

rain-fed, 2013; E10 = Mokwa, high-N, 2013; E11 = Ina, rain-fed, 2013; E12 = Angaradebou rain-fed, 690 

2013; E13 = Maini-Hari, rain-fed, 2013; E14 = Nyankpala, rain-fed, 2013; E15 = Ikenne, rain-fed, 691 

2014; E16 = Ife high-N, 2014; E17 = Mokwa, high-N, 2014; E18 = Zaria, rain-fed, 2014; E19 = 692 

Bagauda, rain-fed, 2014; E20 = Ina, rain-fed, 2014; E21 = Angaradebou, rain-fed, 2014; E22 = Manga, 693 

rain-fed, 2014; and E23 = Fumesua, rain-fed, 2014. 694 

 695 

 696 

 697 

 698 

 699 
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Table 1. Mean squares for grain yield and other agronomic traits of extra-early maize cultivars of three breeding periods evaluated under drought stress in six 

environments and under rain-fed conditions in 17 environments in Nigeria, Benin, and Ghana, 2013 – 2016.  

             

Entry DF 

Grain yield 

(Mg ha-1) 

Days to 

anthesis  

Days to 

silk 

Anthesis 

silking 

interval 

(days) 

Plant 

height 

(cm) 

Ear height 

(cm)  

Root 

lodging 

(%) 

Stalk 

lodging 

(%) 

Husk 

cover†  

Plant 

aspect‡ 

Ear 

aspect¥ 

Ear rot 

(%) 

Ears/p

lant 

Stay 

green 

charact

eristic§ 

Drought environments 

Environment (E) 5 122796029** 4015.6** 3839.1** 100.0** 53250.1** 12167.6** 2555.2** 1057.7** 479.9** 775.5** 505.9** 4258.1** 8.35** 594.1** 

Block (E × Rep) 108 582011** 5.1** 9.1** 2.4** 650.4** 266.2** 13.1** 21.1** 0.8** 0.9** 0.9** 6.6** 0.03** 1.3** 

Rep(E) 12 798912** 26.4** 31.8** 1.5 1247.4** 426.4** 39.2** 19.7** 1.4** 1.8** 2.8** 14.3** 0.02 2.8** 

Era 2 10230293** 163.5** 128.6** 2.1 4712.2** 1604.7** 54.0** 129.8** 3.1** 20.7** 16.9** 27.2** 0.19** 7.5** 

Cultivar (Period) 53 787274** 26.2** 31.1** 2.3** 801.2** 363.5** 12.9** 31.1** 0.8** 1.8** 1.3** 19.5** 0.03** 1.2** 

E  ×  Cultivar (Period) 265 250476** 5.3** 6.1** 2.1** 268.9** 138.7*’ 11.1** 16.0** 0.7** 0.9** 0.7** 14.2** 0.02** 0.9** 

E  ×  Period 10 574222** 7.4** 5.7 3.4* 631.0** 129.4 10.4 20.7** 3.1** 1.2** 1.4** 33.1** 0.01 2.6** 

Error 548 131885 2.3 3.3 1.4 190.9 113.2 7.8 8.7 0.2 0.4 0.3 5.2 0.01 0.4 

Repeatability 0.78 0.84 0.84 0.09 0.74 0.71 0.26 0.54 0.14 0.67 0.63 0.28 0.42 0.38 

  

   

      

         Rain-fed environments 

Environment (E) 16 12755930** 1962.8** 2574.8** 134.8** 97075.2** 54264.3** 6919.2** 33292.6** 46.6** 75.5** 57.7** 657.5** 2.00** - 

Block (E × Rep) 306 830616** 4.5** 5.3** 1.1** 286.1** 216.1** 34.2** 84.3** 0.2** 0.6* 0.4** 2.7** 0.01** - 

Rep(E) 34 4759476** 22.8** 23.0** 1.1 1118.4** 673.4** 200.1** 497.5** 0.4** 0.8* 0.8** 4.6** 0.01** - 

Era 2 124088801** 743.1** 608.2** 5.4** 14815.0** 10611.3** 100.8** 499.6** 3.0** 13.5** 31.2** 6.8** 0.10** - 

Cultivar (Period) 53 8815082** 79.9** 91.9** 1.3** 1309.9** 974.6** 59.7** 242.1** 0.7** 2.1** 2.1** 4.4** 0.01** - 

E × Cultivar (Period) 848 698835** 3.7** 4.1** 0.9** 220.0** 154.5** 27.5** 80.9** 0.2** 0.6** 0.2** 1.9** 0.01* - 

E ×  Period 32 1142530** 7.1** 8.0** 2.0** 585.8** 330.6** 35.6** 133.3** 0.2* 0.8** 0.5** 3.1** 0.01* - 

Error 1564 360244 1.9 2.2 0.8 144.4 127.2 19.6 38.7 0.2 0.5 0.2 1.4 0.01 - 

Repeatability 

 

0.95 0.97 0.96 0.39 0.89 0.89 0.58 0.69 0.76 0.78 0.93 0.56 0.44 - 

*, ** Significant at 0.05 and 0.01 probability level, respectively.  700 
†Husk cover scored on a scale of 1-9, where 1 = husks tightly arranged and extended beyond the ear tip and 9 = ear tips exposed.; ‡Plant aspect recorded on a scale of 1-9 701 

based on plant type,  where 1 = excellent and 9 = poor; 
¥
Ear aspect rated on a scale of 1 – 9, where 1 = clean, uniform, large, and well-filled ears and 9 = ears with undesirable 702 

features; 
§
Stay green characteristic scored on a scale of 1 – 9, where 1 represented plants with almost all leaves green and 9 indicated plants with virtually all leaves dead. 703 
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Table 2. Means ± SE for grain yield and other agronomic traits of extra-early maize cultivars of three 

breeding periods evaluated under drought stress in six environments and under rain-fed growing 

conditions in 17 environments in Nigeria, Benin, and Ghana, 2013 to 2016. 

Trait Period Number of Drought Rain-fed 

  cultivars conditions conditions 

Grain yield (Mg ha-1) 1995-2000 14 1.190 ± 0.0512 3.296 ± 0.1214 

2001-2006 17 1.353 ± 0.0733 3.674 ± 0.1000 

2007-2012 25 1.538 ± 0.0361 4.056 ± 0.1218 

Days to anthesis 1995-2000 14 53 ± 0.33 51 ± 0.43 

2001-2006 17 54 ± 0.39 53 ± 0.35 

2007-2012 25 54 ± 0.21 53 ± 0.27 

Days to silking 1995-2000 14 55 ± 0.38 53 ± 0.45 

2001-2006 17 57 ± 0.44 54 ± 0.37 

2007-2012 25 56 ± 0.21 54 ± 0.28 

Anthesis silking interval (days) 1995-2000 14 3 ± 0.12 2 ± 0.06 

2001-2006 17 3 ± 0.11 2 ± 0.04 

2007-2012 25 3 ± 0.06 2 ± 0.03 

Plant height (cm) 1995-2000 14 147 ± 1.49 167 ± 1.58 

2001-2006 17 152 ± 1.95 173 ± 1.57 

2007-2012 25 154 ± 1.53 175 ± 1.22 

Ear height (cm) 1995-2000 14 66 ± 1.13 79 ± 1.54 

2001-2006 17 69 ± 1.39 84 ± 1.16 

2007-2012 25 70 ± 0.92 85 ± 1.03 

Root lodging (%) 1995-2000 14 3.6 ± 0.23 5.5 ± 0.32 

2001-2006 17 4.1 ± 0.27 5.4 ± 0.20 

2007-2012 25 3.3 ± 0.17 4.8 ± 0.28 

Stalk lodging (%) 1995-2000 14 5.8 ± 0.42 11.6 ± 0.63 

2001-2006 17 6.1 ± 0.29 11.2 ± 0.54 

2007-2012 25 4.8 ± 0.29 9.8 ± 0.53 

Husk cover
†
 1995-2000 14 3.0 ± 0.05 2.1 ± 0.03 

2001-2006 17 2.8 ± 0.06 2.0 ± 0.04 

2007-2012 25 2.8 ± 0.05 2.0 ± 0.02 

Plant aspect
‡
 1995-2000 14 4.4 ± 0.10 2.5 ± 0.05 

2001-2006 17 4.0 ± 0.08 2.4 ± 0.04 

2007-2012 25 3.9 ± 0.07 2.3 ± 0.06 

Ear aspect
¥
 1995-2000 14 3.7 ± 0.07 2.8 ± 0.07 

2001-2006 17 3.5 ± 0.09 2.6 ± 0.05 

2007-2012 25 3.3 ± 0.05 2.4 ± 0.06 

Ear rot (%) 1995-2000 14 4.5 ± 0.21 1.8 ± 0.09 

2001-2006 17 3.9 ± 0.34 1.7 ± 0.07 

2007-2012 25 4.5 ± 0.26 1.7 ± 0.06 

Stay green characteristic
§
 1995-2000 14 4.2 ± 0.08 - 

2001-2006 17 3.9 ± 0.08 - 

2007-2012 25 3.9 ± 0.07 - 

Ears per plant 1995-2000 14 0.7 ± 0.011 0.9 ± 0.0044 

2001-2006 17 0.8 ± 0.013 0.9 ± 0.0038 

2007-2012 25 0.8 ± 0.008 0.9 ± 0.0039 
†Husk cover scored on a scale of 1-9, where 1 = husks tightly arranged and extended beyond the ear tip and 9 = ear tips 704 

exposed.; 
‡
Plant aspect recorded on a scale of 1-9 based on plant type,  where 1 = excellent and 9 = poor; 

¥
Ear aspect rated on 705 

a scale of 1 – 9, where 1 = clean, uniform, large, and well-filled ears and 9 = ears with undesirable features; 
§
Stay green 706 

characteristic scored on a scale of 1 – 9, where 1 represented plants with almost all leaves green and 9 indicated plants with 707 

virtually all leaves dead. 708 

 709 

710 
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 711 

Table 3. Relative genetic gains, in grain yield and other agronomic traits of extra-early maize cultivars 

of three breeding periods across six drought and 17 rain-fed research environments in Nigeria, Benin, 

and Ghana, 2013 to 2016. 

          

Trait 
Relative gain 

(% per year) 
R

2
 a (intercept) 

b (linear 

regression 

coefficient) 

Drought stress environments 

Grain yield (Mg ha
-1

) 3.28 0.358 1.03 0.034** 

Days to anthesis 0.17 0.086 52.6 0.089* 

Days to silk 0.16 0.076 55.3 0.087* 

Anthesis silking interval (days) -0.52 0.022 2.9 -0.015 

Plant height (cm) 0.49 0.185 144 0.710** 

Ear height (cm) 0.65 0.152 64 0.416** 

Root lodging (%) -1.05 0.045 4.1 -0.043 

Stalk lodging (%) -1.65 0.102 6.5 -0.107** 

Husk cover† -0.17 0.010 3.0 -0.005 

Plant aspect‡ -0.91 0.171 4.5 -0.041** 

Ear aspect¥ -1.51 0.315 4.0 -0.061** 

Ears rot (%) -0.23 0.001 4.4 -0.010 

Stay green characteristic§ -0.72 0.121 4.3 -0.031** 

Ears/plant 0.40 0.101 0.8 0.003* 

Rain-fed environments 

Grain yield (Mg ha
-1

) 2.25 0.361 3.017 0.068** 

Days to anthesis 0.30 0.199 50.7 0.150** 

Days to silk 0.20 0.108 52.8 0.107** 

Anthesis silking interval (days) -0.45 0.025 2.0 -0.009 

Plant height (cm) 0.44 0.289 164.5 0.727** 

Ear height (cm) 0.77 0.264 76.8 0.591** 

Root lodging (%) -1.09 0.065 5.9 -0.064 

Stalk lodging (%) -1.17 0.077 12.2 -0.143* 

Husk cover† -0.32 0.061 2.1 -0.007 

Plant aspect‡ -1.52 0.217 2.6 -0.040** 

Ear aspect¥ -1.75 0.284 3.2 -0.055** 

Ears rot (%) -0.91 0.046 2.0 -0.018 

Ears/plant 2.25 0.059 0.9 0.020 
*, ** Significant at 0.05 and 0.01 probability level, respectively. 712 
†
Husk cover scored on a scale of 1-9, where 1 = husks tightly arranged and extended beyond the ear tip and 9 = ear tips 713 

exposed.; 
‡
Plant aspect recorded on a scale of 1-9 based on plant type,  where 1 = excellent and 9 = poor; 

¥
Ear aspect rated on 714 

a scale of 1 – 9, where 1 = clean, uniform, large, and well-filled ears and 9 = ears with undesirable features; §Stay green 715 

characteristic scored on a scale of 1 – 9, where 1 represented plants with almost all leaves green and 9 indicated plants with 716 

virtually all leaves dead. 717 
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 718 

719 Supplementary Table 1:  Description of test locations used for the evaluation of the cultivars of 

three breeding periods under drought and rain-fed environments, 2013 to 2016. 

 

Location Agro 

ecological 

zone† 

Latitude Longitude Altitude 

(m ASL) 

Annual rainfall during 

growing season (mm) 

Ikenne RF 6
o
87’N 3

o
7’E 60 1500 

Kadawa SS 11
o
45’N 8

o
45’E 468.5 884 

Bagauda SS 12
o
00’N 8

o
22’E 580 884 

Mokwa SGS 9
o 

18’N 5
o 

4’E 457 1100 

Zaria NGS 11
o
11’N 7

o
38’E 640 1200 

  †NGS, Northern Guinea Savanna;
 
RF, Rain forest zone; SGS, Southern Guinea savanna; SS, Sudan savanna. 
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Supplementary Table 2: Extra-early maize cultivars used in the study, their year of 720 

release/development and reactions to biotic and abiotic stresses. 721 

Code Cultivars Year of 
development 

Reactions to stresses 

        Drought Striga 

hermonthica 

Low N 

1 95 TZEE-Y  1995  Susceptible Susceptible Susceptible 

3 97 TZEE-Y 2-C1 1997  Susceptible Susceptible Susceptible 

5 CSP SR × TZEE-Y STR 1997  Susceptible Susceptible Susceptible 

6 TZEE-W ST × GUA 314 BC1 1997  Susceptible Susceptible Susceptible 

7 TZEE-W-SR BC5 (RE)      1997  Susceptible Susceptible Susceptible 

8 98 SYN EE-W 1998  Susceptible Susceptible Tolerant 

9 98 TZEE-W STR 1998  Tolerant Susceptible Susceptible 

10 99 TZEE-Y STR C0 1999  Susceptible Susceptible Susceptible 

11 99 TZEF-Y Pop STR QPM C0 1999  Susceptible Susceptible Susceptible 

12 EV 99 QPM  1999  Susceptible Susceptible Susceptible 

35 99 TZEF-Y STR C0 1999  Susceptible Susceptible Susceptible 

36 TZEE-Y Pop STR C0 1999  Susceptible Susceptible Susceptible 

13 2000 SYN EE-W STR 2000  Susceptible Susceptible Tolerant 

14 2000 SYN EE-W STR QPM  2000  Tolerant Susceptible Susceptible 
15 FERKE TZEE-W STR 2001  Susceptible Resistant Tolerant 

16 SINE TZEE-W STR  2001  Susceptible Susceptible Susceptible 

18 TZEE-Y Pop STR C3 2001  Tolerant Susceptible Susceptible 

19 TZEE-W Pop STR C3 2002  Tolerant Resistant Tolerant 

20 TZEE-Y Pop STR C4 2002  Tolerant Susceptible Tolerant 

21 2004 TZEE-W Pop STR C4 2004  Tolerant Tolerant Tolerant 

22 2004 TZEE-Y Pop STR C4 2004  Tolerant Tolerant Tolerant 

23 TZEE-W Pop STR QPM C0 2004  Tolerant Tolerant Tolerant 

24 TZEE-W Pop STR BC2 C0 2004  Tolerant Tolerant Tolerant 

27 TZEE-W Pop × LD S6 (SET 1) 2004  Tolerant Tolerant Tolerant 

28 TZEE-W Pop × LD S6 (SET2) 2004  Tolerant Tolerant Susceptible 

29 TZEE-W Pop × LD S6 (SETA1) 2004  Susceptible Resistant Tolerant 
30 TZEE-W Pop × LD S6 F2 (SET A2) 2004  Susceptible Susceptible Tolerant 

31 TZEE-Y Pop STR QPM C0 2004  Susceptible Susceptible Susceptible 

32 TZEE-Y SR BC1 × 9450 STR S6 F2 2004  Susceptible Susceptible Susceptible 

33 TZEE-Y Pop STR QPM C1 2005  Susceptible Tolerant Tolerant 

34 TZEE-W Pop STR C4 2006  Tolerant Tolerant Tolerant 
37 2008 SYN EE-W DT STR 2008  Tolerant Susceptible Tolerant 

38 2008 SYNEE-Y DT STR 2008  Susceptible Susceptible Susceptible 

39 2008 TZEE-W STR 2008  Tolerant Tolerant Tolerant 

40 2008 TZEE-Y STR 2008  Susceptible Susceptible Susceptible 

41 TZEE-W Pop STR C5 2008  Tolerant Resistant Tolerant 

42 TZEE-Y Pop STR C5 2008  Tolerant Susceptible Susceptible 
43 2009 TZEE-OR1 STR                 2009  Tolerant Tolerant Tolerant 

44 2009 TZEE-OR1 STR QPM 2009  Susceptible Tolerant Tolerant 

45 2009 TZEE-OR2 STR 2009  Tolerant Resistant Tolerant 

46 2009 TZEE-OR2 STR QPM 2009  Susceptible Tolerant Tolerant 

47 2009 TZEE-W STR 2009  Susceptible Tolerant Susceptible 

48 TZEE-W STR 104  2009  Tolerant Resistant Tolerant 
49 TZEE-W STR 105 2009  Tolerant Resistant Tolerant 

50 TZEE-Y STR 106 2009  Susceptible Tolerant Susceptible 

51 TZEE-W STR 107 2009  Tolerant Resistant Tolerant 

52 TZEE-W STR 108 2009  Tolerant Resistant Tolerant 

2 TZEE-W STR 104 BC1 2010  Susceptible Resistant Tolerant 

4 TZEE-Y STR 106 BC1 2010  Tolerant Tolerant Tolerant 

17 TZEE-W STR 105 BC1 2010  Tolerant Resistant Tolerant 

25 TZEE-W STR 107 BC1 2010  Tolerant Tolerant Tolerant 

26 TZEE-W STR 108 BC1 2010  Tolerant Resistant Tolerant 

53 2012 TZEE-W DT STR C5 2012  Tolerant Resistant Tolerant 

54 2012 TZEE-Y DT STR C5 2012  Susceptible Tolerant Susceptible 
55 TZEE-W DT C0 STR C5 2012  Tolerant Resistant Tolerant 

56 TZEE-Y DT C0 STR C5 2012   Tolerant Susceptible Tolerant 

 722 
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Supplementary Table 3. Environments, locations, research conditions and years of evaluation of extra-723 

early maturing maize cultivars under drought-stress and rain-fed growing environments in West Africa. 724 

 725 

Environment Country Location Management Year Grain yield 

(Mg ha
-1

) 

Heritability 

 

1 Nigeria Ikenne Managed drought 2013/2014 2.438 0.67 

2 Nigeria Ikenne Managed drought 2014/2015 0.760 0.71 

3 Nigeria Ikenne Managed drought 2015/2016 1.046 0.73 
4 Nigeria Bagauda Terminal drought 2013 2.237 0.57 

5 Nigeria Dusu Terminal drought 2013 0.284 0.78 

6 Ghana Kpeve Terminal drought 2014 1.649 0.65 

7 Nigeria Bagauda Rain-fed 2014 4.421 0.76 

8 Ghana Fumesua Rain-fed 2014 2.493 0.54 

9 Benin Ina Rain-fed 2013 2.858 0.67 

10 Benin Ina Rain-fed 2014 3.053 0.72 

11 Nigeria Ikenne Rain-fed 2013 2.964 0.51 

12 Nigeria Ikenne Rain-fed 2014 3.367 0.86 
13 Nigeria Mania Rain-fed 2013 2.210 1.00 

14 Ghana Manga Rain-fed 2013 3.447 0.53 

15 Ghana Nyankpala Rain-fed 2013 2.975 0.34 
16 Ghana Nyankpala Rain-fed 2014 3.441 0.47 

17 Nigeria Zaria Rain-fed 2013 4.841 0.82 

18 Nigeria Zaria Rain-fed 2014 5.670 0.91 
19 Benin Angaradebou Rain-fed 2013 3.234 0.37 

20 Benin Angaradebou Rain-fed 2014 3.793 0.61 

 726 

 727 

 728 
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