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Abstract

Despite massive efforts by regional governments and partners in the East and Central African

region towards fighting Xanthomonas Wilt of banana, the disease is reported to continue to spread

to new areas and resurge in others it had been contained. The use of asymptomatic but infectious

plants is hypothesized to play a leading role in the persistence of the disease and it’s introduction

to new areas. A model for the transmission of BXW by symptomless plants is proposed and
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analyzed. It incorporates both horizontal and vertical transmission modes and a dual source of

inoculum in the force of infection. The basic reproduction number, R0, is obtained and it is

found to completely determine the global dynamics of the model. By construction of a suitable

Lyapunov function for the second additive compound system, the global stability of the endemic

equilibrium is established.

Numerical simulation and sensitivity analysis of the basic reproduction number indicate that the

disease is mainly driven by parameters involving asymptomatic plants rather than symptomatic

ones.

Keywords: Asymptomatic plants; banana Xanthomonas wilt; basic reproduction number; Bendixson
criterion; endemic equilibrium; global stability and vertical transmission.
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1 Introduction

Banana is an important food and cash crop in the world and ranks the fourth most important after
rice, wheat and maize. The East and Central African region is one of the most banana producing
and consuming regions in Africa. With an estimated annual production of 10 million tonnes from
1.5 million hectares, Uganda is the second largest producer of bananas in the world after India [1].
However, the production and yield of banana in the region face a number of challenges mainly soil
degradation, soil nutrient depletion, pests and diseases, availability of labor, population explosion
vis-a vis reduced farms sizes, access to clean planting materials and market availability. Diseases of
significance to banana production in the region include banana Xanthomonas wilt (BXW), black
leaf streak, Fusarium wilt, Bugtok/Moko, blood disease, head rot and top bunch virus disease.
Banana Xanthomonas wilt caused by the bacterium Xanthomonas campestris pv. musacearum,
(Xcm), is the most devastating of all the banana diseases in the East and Central African region
and is non-discriminative of all Musa cultivars. The disease was first reported in Ethiopia in 1969
on enset, a close relative of banana that is native to the Ethiopian highlands [2]. Outside Ethiopia,
BXW was first reported in Uganda and DR Congo in 2001 and later in the neighboring countries
of Kenya, Tanzania, Rwanda and Burundi [3].

The disease is characterized by progressive yellowing and wilting of leaves, uneven and premature
ripening of fruits, wilting of bracts, shriveling and rotting of male buds and a characteristic yellow
ooze from the cut pseudo stem [4]. It attacks all cultivars grown in the region and no resistant
varieties have so far been identified.

BXW is mainly spread by insect vectors through the male buds as they forage for nectar; contaminated
farm tools used for crop husbandry practices; use of infected but symptomless suckers as planting
material and via vertical transmission from mother banana plant to emerging suckers [5].

Based on experience with other banana bacterial wilt diseases such as Moko/Bugtok, the management
strategies promoted in the region against BXW include the destruction and disposal (or roguing
) of infected banana plants, disinfecting farm tools using chemicals or a flame of fire, using clean
planting materials and prompt removal of male buds (debudding) using a forked stick , removal
of infected banana mats, cutting of single diseased banana plants in mats and banana free fallows
[6, 7, 8] are some of measures recommended. These measures, coupled with institutional actions
such as quarantine, awareness creation and setting up of task forces at local, national and regional
levels, where effectively implemented have registered tremendous success in curtailing the initial
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outbreak.

Of late however, there have been extensive reports of resurgence and introduction of the disease
in new areas possibly due to complacency by farmers and failure to fully apply the management
options advocated for in the region [9].

Following the first report of the disease in Uganda in 2001, a lot of research has been carried out
and much data generated about the disease spread and control dynamics (see [7],[10],[11],[12],[13]
and references therein).

It was previously believed that once a banana plant in a banana mat becomes infected, all the
attached banana plants and emerging suckers would also become infected. This was the basis for
the recommendation to farmers to practice complete mat uprooting (CMU) upon identification of
a single diseased pseudo-stem on a mat. However studies have since established that Xcm does not
colonize all the lateral shoots and partial or incomplete systemicity results whereby some suckers
from the same mat get infected while others escape infection [12].

Based on recent data generated by the numerous studies, new control options are being promoted
such as single diseased stem removal (SDSR) as opposed to complete mat uprooting [11], suspension
of crop husbandry practices such as de-bugging, de-suckering and de-leafing for a given period to
address tool-based transmission, and cutting diseased pseudo-stems at ground level when symptoms
are still limited to the male buds to prevent Xcm colonizing the banana corm tissues and attached
suckers [12],[13].

Mathematical models for the dynamics of the transmission and control of BXW have been developed
to gain insights on the disease dynamics. Kweyunga and Tumwiine [14] considered the dynamics
of the vector transmission and control of BXW with roguing of infected plants and replanting with
disease clean planting materials as control measures. It was established that at appropriate roguing
and replanting rates, the disease can be contained. Nannyonga et al [15] used optimal control theory
to study the dynamics of BXW within plantations with controls targeting transmission via vectors
and contaminated tools. Their model incorporated vertical transmission of the disease from mother
plant to emerging suckers. Vertical transmission of BXW and inflorescence infection were considered
in [16] that incorporated incomplete systemicity. It was established that inflorescence infection and
roguing rates had more impact on persistence threshold levels while vertical transmission parameters
had an insignificant impact. Furthermore, an optimal control framework in which the use of clean
planting materials, de-budding, disinfection of tools and roguing were considered as control measures
of BXW within a plantation of multiple cultivars was designed in [17].

In this paper, we investigate the role of asymptomatic but infectious banana plants on the continued
spread and possible resurgence of BXW in the East and Central African region. These banana
plants, especially suckers, have been used as planting materials by farmers who want to start new
farms and this could be responsible for the introduction of the disease to new areas. Moreover, in a
situation where farmers are unable distinguish asymptomatic banana plants from symptomatic ones,
the use of farms tools alternately between these banana plants results in disease transmission and
may account for its persistence. Furthermore, vectors foraging for nectar and pollen may pick the
pathogen from both asymptomatic and symptomatic plants and deposit it on healthy plants thereby
aiding in disease transmission. Therefore, asymptomatic banana plants play a significant role in
BXW transmission accounting for three major disease transmission modes namely via vectors, tools
and infected planting materials. Our model incorporates both horizontal transmission (via tools,
vectors and infected planting materials) and vertical transmission (from mother plant to emerging
suckers) of the disease and introduces infectious force in both asymptomatic and symptomatic
stages.
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The paper is organized as follows: In Section 2, the model is formulated, the equilibrium points are
obtained and their stability established. In Section 3, numerical simulation and sensitivity analyses
are carried out while in Section 4, a brief discussion of the results is undertaken and conclusions
given in Section 5.

2 Model Formulation and Analysis

BXW is a systemic disease in that it affects the entire plant which can then be used as a basic unit
of modeling. The following assumptions are made:

• In absence of the pathogen, we consider monomolecular growth of the plant host population
with carrying capacity K.

• The host plant size, N(t), is divided into three categories namely; healthy plants, H(t);
asymptomatically infectious plants, L(t) and symptomatically infectious banana plants, I(t)
with N(t) = H(t) + L(t) + I(t).

• Healthy banana plants become infected when they get in contact either directly or indirectly
(through tools, vectors or infected planting materials) with asymptomatically and symptomatically
infected banana plants or via vertical transmission from the mother plant to its emerging
suckers.

• We assume negligible latent period so that plants become infectious as soon as they are
infected but symptom expression occurs later.

• Replenishment of host plants is via emergence of new suckers at a uniform rate λ in all plant
categories.

• Of the suckers emerging from both asymptomatically and symptomatically infected plants,
a fraction is diseased and joins the asymptomatically infected class while the remainder is
healthy and joins the healthy plant category.

• Asymptomatically infected plants may be rogued otherwise they progress to the symptomatically
infected plant category. Likewise, symptomatically infected banana plants may also be
rogued otherwise they will die from the disease.

• Roguing rates are assumed to be different for both asymptomatically and symptomatically
infected banana plants; given the farmers inability to distinguish between asymptomatically
and symptomatically infected banana plants; their reluctance to rogue asymptomatically
infected banana plants thinking they may bear fruits, which might be labor intensive.

• The incidence term is of the standard incidence form with a dual source of infection from
both asymptomatically and symptomatically infected banana plants.

The model is specified by the following non-linear system of ordinary differential equations:

dH

dt
= λ(K −H) + (1− δ)λL+ (1− ϕ)λI − β1H

L

K
− β2H

I

K
− µH,

dL

dt
= β1H

L

K
+ β2H

I

K
+ δλI + ϕλI − (α+ r1)L, (2.1)

dI

dt
= αL− (r2 + d)I,

together with
dN
dt

= λ(K + L+ I)− (µ+ λ)H − r1L− (r2 + d)I
which shows that the total host plant size in presence of the disease is variable while in absence of
the disease, the plant population is given by dN

dt
= λ(K −H)− µH.
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Fig. 1. Compartmental diagram representing the transfer of the disease among the
different plant categories

Table 1. Parameter description and estimates for the model
Parameter Description Value Reference

λ sucker emergence rate 0.1667/day [16]
ϕ Suckers from asymptomatic plants 0.0143 estimated
δ Suckers from symptomatic plants 0.0286 [12]
µ Harvest rate of healthy plants 0.0022/day estimated
β1 Contact rate with asymptomatic plants 0.034/day estimated
β2 Contact rate with symptomatic plants 0.068/day estimated
r1 Roguing rate of asymptomatic plants 0.00525/day estimated
r2 Roguing rate of symptomatic plants 0.0105/day [14]
α Progression rate to symptomatic class 0.018/day [18]
d Death rate of infected plants 0.0167/day [14]

2.1 Model Analysis

For simplicity, we let h = H
K
, l = L

K
and i = I

K
, then after differentiation and simplification, the

following system of ordinary differential equations is obtained:

dh

dt
= λ(1− h) + (1− δ)λl + (1− ϕ)λi− β1hl − β2hi− uh,

dl

dt
= β1hl + β2hi+ δλl + ϕλi− (α+ r1)l, (2.2)

di

dt
= αl − (r2 + d)i,

together with h(t) + l(t) + i(t) = 1.
System (2.2) is equivalent to system (2.1), therefore we can study system (2.1) by studying system
(2.2). For biological reasons, the model is analyzed in the feasible region

Γ = {(h, l, i) ∈ ℜ3
+ | h, l, i ≥ 0, h+ l + i ≤ 1},

where Γ is positively invariant with respect to system (2.2) and ℜ3
+ denotes a nonnegative cone

of ℜ3 including its lower dimensional faces denoted by ∂Γ and Γ̇ the boundary and interior of Γ in
ℜ3 respectively.
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2.1.1 Equilibrium points

Equilibrium points are obtained by setting the derivatives of system (2.2) equal to zero.
Calculations show that system (2.2) admits two equilibria namely: the disease free equilibrium,
E0(

λ
λ+µ

, 0, 0), at which only the healthy plant population is present at its carrying capacity and the
endemic or coexistence equilibrium point, E1(h

∗, l∗, i∗) at which the proportion of healthy plants
is depressed below the disease free value with

h∗ =
(α+ r1 − δλ)(r2 + d)− ϕλα

β1(r2 + d) + β2α

l∗ =
λ(r2 + d)[β1(r2 + d) + β2α]− (λ+ µ)(r2 + d)[(α+ r1 − δλ)(r2 + d)− αϕλ]

[(α+ r1)(r2 + d)− λ(r2 + d+ α)][β1(r2 + d) + β2α]

i∗ =
λα[β1(r2 + d) + β2α]− (λ+ µ)α[(α+ r1 − δλ)(r2 + d)− αϕλ]

[(α+ r1)(r2 + d)− λ(r2 + d+ α)][β1(r2 + d) + β2α]

It is noted that the healthy plant proportion at E0 depends only on the natural processes of sucker
emergency at a rate λ and harvest at a rate µ whose reciprocal 1

µ
measures the length of the

reproductive life time of the banana plant. Since all the parameters are non-negative constants,
then λ

λ+µ
< 1, the carrying capacity.

The impact of the disease is related to the proportion of healthy banana plants at the endemic
equilibrium point. The parameters β1 and β2 appear only in the denominator while r1 and the
vertical transmission parameters δ and ϕ and the sucker emergence rate λ appear only in the
numerator. The equilibrium healthy plant population therefore is proportional to the roguing rate
of asymptomatic banana plants and inversely proportional to the contact rates β1 and β2 with
asymptomatic and symptomatic banana plants respectively. The parameters α, r2 and d appear in
both the denominator and numerator and are therefore assumed to have limited influence on the
equilibrium level of the healthy plants at the endemic equilibrium point.

2.1.2 Basic reproduction number

Since all the parameters have non-negative values, one condition holds for all the state variables
(h∗, l∗, i∗) at the endemic equilibrium point to be biologically realistic namely:

λ[β1(r2 + d) + β2α] > (λ+ µ)[(α+ r1 − δλ)(r2 + d)− αϕλ]

or

R0 =

(
λ

λ+ µ

)
β1(r2 + d) + β2α

[(α+ r1 − δλ)(r2 + d)− αϕλ]
. (2.3)

Equation (2.3) is the expression for the basic reproduction number for Xanthomonas campestris
pv. musacearum. According to Anderson and May [19], it is the number of secondary infectives
generated by the introduction of a single infective in the population at the disease free equilibrium.
When R0 > 1, the disease persists in the population when introduced otherwise it fails to invade.
It can be noticed that when ϕ = δ = 0, vertical transmission is lost and the basic reproduction
number becomes

R∗
0 =

(
λ

λ+ µ

)
[β1(r2 + d) + β2α]

[(α+ r1)(r2 + d)]
. (2.4)

Equation (2.4) can be re-arranged as

R∗
0 = h∗

(
β1

α+ r1
+

β2

r2 + d
.

α

α+ r1

)
(2.5)

and can be partitioned into independent components representing contributions from the dual
source of infection from both asymptomatic and symptomatic plants. Thus, R∗

0 = RA
0 +RS

0 with
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RA
0 = h∗( β1

α+r1
) and RS

0 = h∗( β2
r2+d

). α
α+r1

. The expression RA
0 is the product of the proportion

of healthy plants at the disease free equilibrium and the number of new infections per unit time
arising out of contact with asymptomatic plants. Similarly, RS

0 is the product of the proportion
of healthy plants at the disease free equilibrium, the number of new infections per unit time due
to symptomatic plants and the probability that a plant reaches the symptomatic stage. The sum
of these two terms represents the number of new infections arising out of one infectious plant
introduced in the population at the disease free equilibrium. If this sum exceeds unity, the disease
will invade the plantation otherwise it will die out.
The endemic equilibrium point can be expressed in terms of R0 as

h∗ =

(
λ

λ+ µ

)
1

R0

l∗ =
λ(r2 + d)

(α+ r1)(r2 + d)− λ(r2 + d+ α)

(
R0 − 1

R0

)
i∗ =

αλ

(α+ r1)(r2 + d)− λ(r2 + d+ α)

(
R0 − 1

R0

)
Clearly, the endemic equilibrium point, E1, exists whenever R0 > 1, (α+r1)(r2+d) > λ(r2+d+α),
(α+ r1) > δλ and (r2 + d)(α+ r1 − δλ) > αϕλ.

2.2 Local Stability of Equilibrium Points

In this section we establish the local stability of both the disease free and endemic equilibrium
points.
The Jacobian matrix associated with the general solution of system (2.2) is

J =

 −(λ+ µ+ β1l + β2i) (1− δ)λ− β1h (1− ϕ)λ− β2h
β1l + β2i β1h+ δλ− (α+ r1) β2h+ ϕλ

0 α −(r2 + d)

 (2.6)

2.2.1 Local stability of the disease free equilibrium point

The local stability of the disease-free is evaluated At the disease free equilibrium point E0, the
deflated Jacobian matrix

JE0 =

 −(λ+ µ) (1− δ)λ− β1h (1− ϕ)λ− β2h
0 β1h+ δλ− (α+ r1) β2h+ ϕλ
0 α −(r2 + d)


which has three eigenvalues. Clearly one eigenvalue is −(λ+ µ) and the rest are obtained from the
submatrix

J ′
E0

=

(
β1h+ δλ− (α+ r1) β2h+ ϕλ

α −(r2 + d)

)
whose tr(J ′

E0
) = β1h+ δλ− (α+ r1 + r2 + d) and

det(J ′
E0

) = [(α+ r1 − δλ)(r2 + d)− αϕλ]− λ

λ+ µ
[β1(r2 + d) + β2α]

By Routh-Hurwitz criteria [Britton [20] , E0 is locally asymptotically stable if the tr(J ′
E0

) < 0 and
det(J ′

E0
) > 0. Now tr(J ′

E0
) < 0 if

β1h+ δλ < (α+ r1 + r2 + d) (2.7)
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and det(J ′
E0

) > 0 if

R0 =

(
λ

λ+ µ

)
[β1(r2 + d) + β2α]

(α+ r1 − δλ)(r2 + d)− αϕλ]
< 1

Thus, the disease free equilibrium point E0(
λ

λ+µ
, 0, 0) is locally asymptotically stable if R0 < 1.

2.2.2 Local stability of the endemic equilibrium point

The local stability of endemic equilibrium points E1 is investigated using the Routh-Hurwitz’s
criteria. That is, an equilibrium point is locally asymptotically stable if the characteristic equation
of the Jacobian matrix evaluated at that point has all the coefficients being positive and that all of
its roots have negative real parts. The deflated Jacobian matrix at the endemic equilibrium point,
E1, is given by

J(E1) =

 −(λ+ µ+ β1l
∗ + β2i

∗) (1− δ)λ− β1h
∗ (1− ϕ)λ− β2h

∗

β1l
∗ + β2i

∗ β1h
∗ + δλ− (α+ r1) β2h

∗ + ϕλ
0 α −(r2 + d)

 (2.8)

The eigenvalues are obtained from det(J(E1) −mI) = 0, where m represents the eigenvalues and I
is a 3× 3 unit matrix. The characteristic equation is of the form m3 + a1m

2 + a2m+ a3 = 0, where

a1 = λ+ µ+ β1l
∗ + β2i

∗ + α+ r1 + r2 + d− (β1h
∗ + δλ)

a2 = (λ+ µ+ β1l
∗ + β2i

∗)(α+ r1 + r2 + d− (β1h
∗ + δλ))

+(β1l
∗ + β2i

∗)(β1h
∗ + δλ− λ)

a3 = (β1l
∗ + β2i

∗)[(α+ r1)(r2 + d)− λ(α+ r2 + d)].

By Routh-Hurwitz criterion, E1 is locally asymptotically stable when a1, a2, a3 > 0 and a1a2 > a3.
By inequality (2.7), it is clear that a1 > 0. In addition, a2 > 0 provided (β1h

∗+δλ) > λ and a3 > 0
provided (α + r1)(r2 + d) > λ(α + r2 + d). It is easy to show that a1a2 > a3 if the conditions for
the positivity of a1, a2 and a3 are met.

Thus the endemic equilibrium point E1(h
∗, l∗, i∗) is locally asymptotically stable whenever it

exists. Since E1 exists whenever R0 > 1, we conclude that the endemic equilibrium point is locally
asymptotically stable whenever R0 > 1.

2.3 Global stability of the equilibrium points

We proceed to establish the global stability of the equilibrium points.

2.3.1 Global stability of the disease free equilibrium

Global stability of the system was analyzed by considering suitable Lyapunov function. Consider
the following Lyapunov function candidate,

V = αl + (α+ r1 − δλ)i. (2.9)

It is observed that the chosen Lyapunov function candidate V (h; l; i) of (2.9) satisfy the conditions
that V (h∗; l∗; i∗) = 0 and V (h; l; i) > 0 for all (h; l; i) ̸= (h∗; l∗; i∗) . Moreover, V (h; l; i) is radially
unbounded.
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We are now required to verify V ′ ≤ 0.

V ′ = α[β1hl + β2hi+ δλl + ϕλi− (α+ r1)l] + (α+ r1 − δλ)[αl − (r2 + d)i]

= [(β1(r2 + d) + β2)h+ αϕλ− (r2 + d)(α+ r1) + δλ(r2 + d)]i

= [(β1(r2 + d) + β2)h− [(α+ r1 − δλ)(r2 + d)− αϕλ]]i

= [(α+ r1 − δλ)(r2 + d)− αϕλ]

[(
λ+ µ

µ
)h(R0 − 1

)]
i

= [(α+ r1 − δλ)(r2 + d)− αϕλ](R0 − 1)i

≤ 0

if R0 < 1.
In addition, V ′ = 0 if and only if i = 0 or R0 = 1 and h = λ

λ+µ
. Therefore, the largest compact

invariant set in {(h, l, i) ∈ Γ : V ′ = 0} is a singleton {E0}. By LaSalle’s invariance principle [21], we
deduce then that E0 is globally stable in Γ. Thus, the disease free equilibrium point, E0 is globally
asymptotically stable provided R0 < 1.

2.3.2 Global stability of the endemic equilibrium point

The global stability of the endemic equilibrium point is determined using the approach developed
by Smith [22] and Li and Muldowney [23] for SEIR models. We first present a brief general
mathematical framework for proving the global stability of the endemic equilibrium point:
Let x 7→ f(x) be a C1 function for x in an open set D ⊂ ℜn. Consider the differential equation:

x′ = f(x) (2.10)

Denote by x(t, x0) the solution to (2.10) such that x(0, x0) = x0.

Definition . A set K is said to be absorbing in D for the differential equation (2.10) if
x(t, k1) ⊂ K for each compact k1 ⊂ D and t sufficiently large.
The following two basic assumptions are made;
(H1): There exists a compact absorbing set K ⊂ D
(H2): Equation (2.10) has a unique equilibrium point x̄ in D.
The equilibrium point x̄ is said to be globally stable in D if it is locally stable and all trajectories
in D converge to x̄.
The assumptions (H1) and (H2) are satisfied if x̄ is globally stable in D.
For epidemic models and many other biological models where the feasible region is a bounded cone,
(H1) is equivalent to the uniform persistence of (2.10) Butler and Waltman [24].
The following global stability problem is formulated in Li and Muldowney [23].
Global stability problem: Under assumptions (H1) and (H2), find conditions on the vector field
of equation (2.10) such that the local stability of x̄ implies its global stability in D.
For n ≥ 2, by a Bendixson criterion, is meant a condition satisfied by f which precludes the existence
of non-constant periodic solutions of equation (2.10).
A Bendixson criterion is said to be robust under C′ local perturbations of f at x ∈ D if, for
sufficiently small ϵ > 0 and neighborhood U of x1, it is also satisfied by g ∈ C′(D → ℜn) such that
the support(f−g) ⊂ U and |f−g| < ϵ, where |f−g|C′ = sup{|f(x)−g(x)|+| ∂f

∂x
(x)− ∂g

∂x
(x)| : x ∈ D}.

Such g will be called the local ϵ − perturbations of f at x. The classical Bendixson’s condition,
divf(x) < 0 for n = 2 is robust under C′ perturbations of f . For higher dimensional systems, the
C′ robust properties are discussed in Li and Muldowney [23].
Definition: A point x0 is wandering for equation (2.10) if there exists a neighborhood U of x0 and
T > 0 such that U ∩ x(t,∩) is empty for all t > T . As examples, all equilibria and limit points are
non-wandering.
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The following global stability result is proved in Li and Muldowney [23].
Theorem 1: Suppose

1. assumptions (H1) and (H2) hold;

2. System (2.10) satisfies the Bendixson criterion that is robust under C′ local perturbations
of f at all non-wandering points.

Then the unique equilibrium x̄ is globally asymptotically stable in D.
A method for deriving the Bendixson criterion in ℜn is developed in Li and Muldowney [25] in
which the main idea is to show that the second compound system equation

z′(t) =
∂f [2]

∂x
(x(t, x0))z(t), (2.11)

with respect to a solution x(t, x0) ⊂ D to equation (2.10) is uniformly asymptotically stable. Here
∂f
∂x

[2]
is the second additive compound matrix of the Jacobian matrix ∂f

∂x
. If D is simply connected,

then the uniform asymptotic stability of (2.11) precludes the existence of any invariant simple closed
rectifiable curve in D, including periodic orbits. The required uniform asymptotic stability of the
linear system (2.11) can be proved by construction of a suitable Lyapunov function.

Let x 7→ P (x)( n
2 ) × ( n

2 ) be a matrix- valued function that is C′ for x ∈ D. Assume that P−1

exists and is continuous for x ∈ K, the compact absorbing set. A quantity q̄2 defined as q̄2

= limt→∞ sup sup
x0∈K

1

t

∫ t

0

ρ(B(x(s, x0)))ds (2.12)

where B = PfP
−1 + PJ [2]P−1. The matrix Pf is obtained by replacing each entry Pij of P by it’s

derivative in the direction of f, pij and the quantity ρ(B) is the Lozinskĭi measure of B with respect

to a vector norm |.| in ℜN , N = ( n
2 ), and is defined by

ρ(B) = inf
h→0+

|I + hB| − 1

h

For a simply connected region D, the condition q̄2 < 0 rules out the presence of any orbit that
may give rise to a simple closed rectifiable curve that is invariant for equation (2.10) such as closed
orbits, homoclinic orbits and heteroclinic cycles. Moreover, it is robust under C′ local perturbations
of f near any non-equilibrium point that is non-wandering.
The following global stability result is established in Theorem (3.5) in Li and Muldowney [23],

Theorem 2: Assume D is simply connected and that assumptions (H1) and H2 hold. Then the
unique equilibrium x̄ is globally stable in D if q̄2 < 0.
This is the approach we adopt to establish the global stability of the endemic equilibrium point,
E1.
It has already been established in Section 2 that system (2.2) has a unique equilibrium E1 which is
locally stable whenever R0 > 1.
Let x = (h, l, i) and let f(x) denote the vector field of system (2.2). The second additive compound
matrix associated with the Jacobian matrix (2.6) of the general solution x(t) of system (2.2) is given
by

J [2] =

 J11 β2h+ ϕλ β2h+ ϕλ− λ
α J22 (1− δ)λ− β1h
0 β1l + β2i J33

 , (2.13)

where J11 = −(λ+ µ+ β1l + β2i+ α+ r1) + β1h+ δλ
J22 = −(λ+ µ+ β1l + β2i+ r2 + d) and
J33 = β1h+ δλ− (α+ r1 + r2 + d).

10
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We choose a vector |.| in ℜ3 and a 3×3 matrix-valued function P (x) such that the quantity q̄2 < 0.

We set P as P (h, l, i) = diag(1, l
i
, l
i
), then P−1 = diag(1, i

l
, i
l
). Now, PfP

−1 = diag(0, l′

l
− i′

i
, l′

l
− i′

i
)

and PJ [2]P−1 is given by

PJ [2]P−1 =

 J11
i
l
[β2h+ ϕλ] i

l
[β2h+ ϕλ− λ]

α l
i

J22 λ− (δλ+ β1h)
0 β1l + β2i J33


such that B = PfP

−1 + PJ [2]P−1 is given by

B =

 J11
i
l
[β2h+ ϕλ] i

l
[β2h+ ϕλ− λ]

α l
i

l′

l
− i′

i
+ J22 λ− (δλ+ β1h)

0 β1l + β2i
l′

l
− i′

i
+ J33


which can be written in block form as

B =

(
B11 B12

B21 B22

)
with
B11 = J11 = −(λ+ µ+ β1 + β2 + α+ r1) + β1h+ δλ
B12 = [ i

l
(β2h+ ϕλ), i

l
(β2h+ ϕλ− λ)]

B21 =

(
α l

i

0

)
and

B22 =

(
l′

l
− i′

i
+ J22 λ− (δλ+ β1h)

β1l + β2i
l′

l
− i′

i
+ J33

)

Following Li and Muldowney [23], we let (u, v, w) denote the vectors in ℜ3∼=ℜ
(

3
2

)
for the norm |.|

in ℜ3 chosen as |(u, v, w)| = max{|u|, |v|+ |w|} and let ρ denote the Lozinskĭi measure with respect
to this norm. The estimate for the Lozinskĭi measure ρ(B) with respect to this norm is given by
ρ(B) ≤ sup{g1, g2} where g1 = ρ1(B11) + |B12| and g2 = |B21|+ ρ1(B22). It should be noted that
|B12| and |B21| are operator norms of B12 and B21 with respect to the l1 vector norm when they
are regarded as mappings from ℜ2 to ℜ and ℜ2 to ℜ respectively. ρ1(B22) denotes the Lozinskĭi
measure of the 2× 2 matrix B22 with respect to the l1 norm in ℜ2. To compute ρ1(B22) , we add
the absolute value of the off-diagonal elements to the diagonal one in each column of B22 and take
the maximum of the two sums.
Now, ρ1(B11) = −(λ+ µ+ β1l + β2i+ α+ r1) + β1h+ δλ,

ρ1(B22) = max{ l
′

l
− i′

i
+ J22 + β1l + β2i;

l′

l
− i′

i
+ J33 + λ− δλ− β2h}

= max{ l
′

l
− i′

i
− (λ+ µ+ r2 + d);

l′

l
− i′

i
+ λ− (α+ r1 + r2 + d)}

=
l′

l
− i′

i
− (λ+ µ+ r2 + d),

|B21| = max{ i
l
[β2h+ ϕλ]; i

l
[β2h+ ϕλ− λ] = i

l
[β2h+ ϕλ] and |B21| = α l

i
.

Thus for t >t̄,

g1 = ρ(B11) + |B22|

= −(λ+ µ+ β1l + β2i+ α+ r1) + β1h+ δλ+
i

l
(β2h+ ϕλ) (2.14)

11
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and

g2 = |B21|+ ρ1(B22)

=
l′

l
− i′

i
+ α

l

i
− (λ+ µ+ r2 + d) (2.15)

From the second and third equations of system (2.2), we have

l′

l
+ (α+ r1)− (β1h+ δλ) = (β2h+ ϕλ)

i

l
(2.16)

i′

i
= α

l

i
− (r2 + d) (2.17)

Substituting equation (2.16) into equation (2.14) and equation (2.17) into equation (2.15) gives:

g1 =
l′

l
− (λ+ µ+ β1l + β2i), (2.18)

g2 =
l′

l
− (λ+ µ). (2.19)

Now,

ρ(B) ≤ sup{g1, g2}

≤ l′

l
− (λ+ µ)

=
l′

l
−M,

where M = (λ+ µ). We then have

1

t

∫ t

0

ρ(B)ds ≤ 1

t
log

l′

l
−M

which implies q̄2 ≤ −M
2

< 0.

This completes the proof. Since the endemic equilibrium E1 exists whenever R0 > 1, we therefore
conclude that the endemic equilibrium point, E1, is globally stable whenever R0 > 1.

The stability results in this section can be summarized in the following theorem:

Theorem 3: System (2.2) admits two equilibrium points; the disease free equilibrium point, E0,
and the endemic equilibrium point, E1, which are such that:

(a) When R0 < 1, E0 is the only equilibrium in the feasible region Γ and is both locally and globally
stable.

(b) When R0 > 1, then E0 is unstable and there exists a unique endemic equilibrium point E1, that
is both locally and globally stable. Furthermore, all solutions starting in Γ and sufficiently close to
E0 move away from E0 if R0 > 1.

3 Numerical Simulation

The system was simulated using ODE solvers coded in Matlab programming language. The
estimated parameter values given in Table 2 were used. The numerical results compare with the
analytical results obtained in Section 2. The variations of plant proportions with time when R0 < 1

12
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are shown in Fig. 2 while the situation where R0 > 1 at which the disease persists in the population
when introduced is depicted in Fig. 3. The relationship between the basic reproduction number,
R0 and the contact (or transmission ) rates β1 and β2 is captured in Fig. 3 where it is shown that
R0 increases with the contact rates.

Fig. 2. Proportions of plant sizes at the disease free equilibrium point for

R0 = 0.67 < 1 with λ = 0.1667, δ = 0.0286, ϕ = 0.0143, β1 = 0.034, β2 = 0.068, µ = 0.0022, α =

0.0265, r1 = 0.0525, r2 = 0.105, d = 0.0167 and h = 0.7, l = 0.2, i = 0.1

Fig. 3. Proportions of plant sizes at the endemic equilibrium point equilibrium point

for R0 = 1.25 with λ = 0.1667, δ = 0.0286, ϕ = 0.0286, β1 = 0.068, β2 = 0.068, µ = 0.0022, α =

0.0265, r1 = 0.0525, r2 = 0.0525, d = 0.0167 and h = 0.7, l = 0.2, i = 0.1

13
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Fig. 4. Variation of R0 with β1 and β2 for parameter values in Table 1

3.1 Sensitivity Analysis of R0

The sensitivity analysis of the basic reproduction number gives a measure of how different parameters
influence it. The higher the magnitude of the sensitivity index, the greater is the parameter’s
influence on R0. Following Arriola and Hyman [26], we define sensitivity analysis, χp, by the
expression χp = ∂R0

∂P
× P

R0
, where P is the parameter under consideration. When the sensitivity

index of a particular parameter is positive, it implies that an increase in the parameter results in a
corresponding increase in the value of R0 and vice versa. We performed a sensitivity analysis of the
basic reproduction number for parameter values given in Table 2 and obtained the results shown
in Table 3.1. It can be deduced from the results for sensitivity analysis that R0 is highly sensitive

Table 2. Expression and values for sensitivity analysis of R0

Parameter, P Expression for sensitivity Analysis, χP Value of χP

β1
β1(r2+d)

β1(r2+d)+β2α
0.723

β2
β2α

β1(r2+d)+β2α
0.277

r1
−r1(r2+d)

(α+r1−δλ)(r2+d)−αϕλ
−0.725

r2
−αr2[ϕλβ1+β2(α+r1−δλ)]

[(α+r1−δλ)(r2+d)−αϕλ][β1(r2+d)+β2α]
−0.217

λ 1− ( λ
λ+µ

)[ (α+r1−2δλ−µδ)(r2+d)−αϕ(2λ+µ)
(α+r1−δλ)(r2+d)−αϕλ

] 0.1041

µ − µ
(λ+µ)

−0.013

α α(r2+d)[β2(r1−δλ)+β1(ϕλ−(r2+d))]
[(α+r1−δλ)(r2+d)−αϕλ][β1(r2+d)(β2α)]

−0.064

d dα[αϕβ1+β2(α+r1−δλ)]
[(α+r1−δλ)(r2+d)−ϕαλ][β1(r2+d)+β2α]

0.069

ϕ αϕλ
(α+r1−δλ)(r2+d)−αϕλ

0.025

δ λδ(r2+d)
(α+r1−δλ)(r2+d)−αϕλ

0.0658

to the parameters β1 and r1 representing the contact with asymptomatically infected plants and
their roguing rate; is moderately sensitive to the parameters β2 and r2 representing contact with
symptomatically infected plants and their roguing respectively. For example, a 10% increment in
the transmission rate due to contact with asymptomatically infected plants would translate in a
7.2% increment in the basic reproduction number. Likewise, a 10% increase in the rouging rate of
asymptomatically infected banana plants would result in 7.3% decrease in the value of R0. It is
also clear that R0 is least sensitive to the vertical transmission parameters δ and ϕ in addition to
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parameters representing natural processes µ, λ and d as well as the parameter α, whose reciprocal
is the average length of the incubation period. Management measures therefore should target the
parameters with a high sensitivity index in particular reducing the contact rate with asymptomatic
plants and intensifying their roguing.

4 Discussion

In this paper, a model for the dynamics of banana Xanthomonas wilt incorporating infectious
force in both the asymptomatic and symptomatic stages has been formulated and analyzed. The
model also incorporates both horizontal and vertical transmission. The motivation was the need to
investigate the contribution of asymptomatically infected banana plants on the reported resurgence
and persistence of the disease in the East and Central African region. The equilibrium points of
the model were obtained and their stability established. Numerical simulation as well as sensitivity
analysis of the basic reproduction number were carried out. It was revealed that the dynamics of the
models are completely determined by the basic reproduction number,R0; that both the disease-free
and the endemic equilibrium points are asymptotically stable whenever R0 > 1. It was also found
out that R0 is more sensitivity to the parameters involving asymptomatically infected plants than
those concerning symptomatically infected plants specifically β1 and r1 vis-a-vis β2 and r2. It was
further revealed that vertical transmission parameters ϕ and δ had a nominal effect which is not
surprising considering that BXW is a fast killing disease.

5 Conclusion

Previous efforts have emphasized the roguing of symptomatically infected plants but this study
recommends that similar attention should equally be placed on the asymptomatically infected plants
as well in order to address the reported re-occurrence and persistence of the disease. Attempts
should be made by regional governments to provide clean planting to farmers for re-establishment
of destroyed fields and those who want start new plantations. Farmers should be discouraged to
use apparently healthy looking suckers which may unfortunately be infectious as planting materials.
In addition, cheaper and accessible technologies need to be developed to enable farmers positively
identify infectious but asymptomatic plants rather than relying on visible symptoms to identify
diseased plants. Roguing of both asymptomatic and symptomatic plants is crucial in managing
BXW as it reduces the inoculum load thereby reducing opportunities for the further spread of the
pathogen.
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