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Summary: 29 

Smallholder livestock systems in Central America are typically based on pastures with 30 

traditional grasses and associated management practices such as pasture burning and extensive 31 

grazing. With the rise of the global population and a corresponding increase in demand for meat 32 

and milk production, research efforts have focused on the development of improved grasses and 33 

the incorporation of legume species that can increase productivity and sustainability of Central 34 

American livestock systems. However, farmer adoption remains very limited, in part due to the 35 

lack of site-specific evaluation and recommendations by local institutions. Using a multi-site, 36 

participatory approach this study examined the potential of five improved grasses and five 37 

species of forage legumes as alternatives to the broadly disseminated grass Hyparrhenia rufa (cv. 38 

Jaragua) in pasture-based cattle systems in western Honduras and northern El Salvador. 39 

Improved grasses (four Brachiaria sp. and Megathyrsus maximus) produced significantly more 40 

biomass than H. rufa; also four of the five legume varieties evaluated (Canavalia ensiformis, 41 

Canavalia brasiliensis, Vigna unguiculata, and Vigna radiata) demonstrated high adaptability to 42 

diverse environmental conditions across sites. Farmer participatory evaluation offers a valuable 43 

means to assess performance of forages and will likely contribute to their improved utilization. 44 

Future research is needed on more refined management recommendations, pasture system 45 

design, costs, and environmental benefits associated with the adoption of these forages in local 46 

livestock production systems. 47 
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Introduction 52 

By the year 2050, growth in the global population and shifts in diet may require an 53 

associated 70% increase in global food production. Demand for meat (and to lesser extent for 54 

milk) is directly correlated with per capita real income, and is increasing at an even higher rate, 55 

particularly in developing nations (Tilman et al., 2011). Current efforts have focused on the 56 

intensification of livestock systems in developed countries and greater land clearing 57 

(extensification) in developing nations. If this trend is to continue, an estimated one billion ha of 58 

land would need to be cleared globally by 2050, representing a 30% increase over current pasture 59 

area. This number could be decreased to 0.2 billion hectares if policy-makers and research efforts 60 

instead focus on moderate intensification of existing agricultural systems in under-yielding 61 

regions (Tilman et al., 2011). Thus, transfer of high-yielding technologies to existing production 62 

areas may substantially reduce environmental impacts, while satisfying the global food demand.  63 

Aside from providing 25% of protein consumed worldwide, appropriately managed 64 

livestock systems have been shown to support diverse ecosystem services including water flow 65 

regulation and erosion control, climate regulation, as well as soil biodiversity conservation 66 

(Fisher et al., 1994; Montenegro et al., 2016; Lavelle et al., 2014). However, a large portion of 67 

livestock systems are based on low-yielding forage crops and apply practices that contribute to 68 

environmental degradation and high greenhouse gas emissions (Herrero et al., 2013). In Central 69 

America, pastures dominated by Hyparrhenia rufa (locally known as Jaragua) were introduced 70 

to Pacific parts of the region several decades ago and are typically managed with fire to stimulate 71 

regrowth at the end of the dry season. Pasture burning has been shown to contribute to soil 72 

degradation and when not closely monitored can impact forested areas that support a range of 73 

landscape level ecosystem services (Steinfeld et al., 2006). Such pastures are widespread 74 
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throughout the region and their relatively low biomass yields suggest considerable room for 75 

improvement. Given the pervasiveness of cattle production in Central America and globally, 76 

there is great potential for more productive forages and management practices to enhance 77 

sustainability of these regions (Rao et al., 2015). 78 

In the last 20 years a number of improved grasses have been developed and made 79 

commercially available with the aim of increasing forage productivity (Miles et al. 2004; Argel 80 

et al. 2007; Pizarro et al. 2013; Rao et al., 2015). Many of these (e.g. Brachiaria sp.) are adapted 81 

to sub-optimal environments (i.e., pests, drought or waterlogging prone areas). Legumes have 82 

also been considered as potential forage crops, and in addition to their benefits, such as N-83 

fixation and contribution to soil nutrient cycling, legumes also produce high quality feed. Similar 84 

to work on grasses, research efforts have focused on identifying and selecting legumes that are 85 

adapted to acidic soils with low to moderate fertility. Promising legumes include those in the 86 

genera Vigna and Canavalia. For instance, Canavalia brasiliensis performs well in areas with 87 

extended dry seasons (Peters et al., 2010).  88 

Despite the potential of these improved forages in tropical conditions, adoption by local 89 

producers has been limited. According to Rao et al. (2015), the main constraints to the adoption 90 

of legumes and grasses have been the susceptibility to diseases and pests, the lack of clear 91 

management recommendations, seed availability, and unrealistic expectations of farmers for 92 

rapid and dramatic increases in production. Another possible limitation is that development 93 

organizations often view legumes solely as cover crops and green manure, when their potential 94 

uses as feed may be much more attractive to land managers (Douxchamps et al., 2014; Kebede et 95 

al., 2016). High spatial heterogeneity within and between farms can also act as a barrier to 96 

improved forage adoption by smallholders, since the optimal types and arrangements of grasses 97 
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or legumes can vary widely depending on different niches within farms and landscapes, thus 98 

greatly complicating the selection process (Paul et al., 2016). 99 

The participation of local farmers in selection, adaptation and dissemination processes 100 

has been shown to increase the adoption of new innovations (Pretty, 1995; Peters et al., 2003). 101 

Under this approach, farmers play an active role in the development of practices and contribute 102 

intimate knowledge of their farming systems as well as provide the social, economic and cultural 103 

context that often determines feasibility of adoption. A case study by Stür et al. (2002) in 104 

Southeast Asia emphasized the wide range of constraints, opportunities, and goals that are 105 

considered in farmer decision-making. Aside from high forage yields, farmers valued easy to cut 106 

herbage, fast regrowth after harvesting, low competition with adjacent crops, and ease of 107 

collection and transportation of plant material. Overall, farmers were more likely to adopt 108 

varieties that best met these locally valued criteria. In fact, Horne and Stür (1997) suggest that 109 

researchers may often focus on completely different forage evaluation criteria (e.g., live weight 110 

gain) than those that are most valued by smallholders (e.g., risk management, labor constraints). 111 

In this study, on-farm trials were conducted to evaluate the establishment and potential 112 

productivity of five improved grasses (with H. rufa as a control) and five forage legumes across 113 

seven different locations in the Dry Corridor of Central America (western Honduras and northern 114 

El Salvador), a region with a prolonged dry season that lasts five to six months. Results from the 115 

multi-site trials were combined with participatory evaluation by local producers and technicians 116 

to identify the most adapted and favorable cultivars in the region. Along with formal assessment 117 

of biomass production, diverse stakeholders were involved in a hands-on evaluation of improved 118 

grass and legume cultivars in order to understand the selection criteria that are of greatest 119 

concern to farmers and to identify the most viable options for adoption and scaling. We 120 
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hypothesized that the improved grass options would outperform the widely distributed H. rufa 121 

across all sites, but that the best producing species and those mostly highly evaluated by farmers 122 

would vary according to the unique environmental contexts of each site. For legume species, we 123 

hypothesized that at least one species would perform well across local conditions and receive 124 

strong evaluations from participating farmers.  125 

 126 

Methodology  127 

Study Site and Experimental Design  128 

This study was carried out in a part of the Dry Corridor of Central America, specifically 129 

in the Chalatenango department in El Salvador and Lempira department in Honduras. Due to 130 

their close proximity (Fig. 1), the sites share a similar climate and soil properties. Both areas are 131 

characterized by mountainous topography and annual crops and pastures dispersed throughout 132 

sub-humid tropical forest. Soils, generally shallow and rocky, are largely dominated by Entisols 133 

and Inceptisols (Fonte et al. 2010; Kearney et al. 2017). Average monthly temperature varies 134 

between 22 and 27C and average annual precipitation is 1500 mm, with at least 90% of rainfall 135 

occurring between May and November. Economic activity in both Lempira and Chalatenango is 136 

focused on agriculture, specifically maize (Zea mays L.), sorghum (Sorghum bicolor L.) for grain 137 

and forage, and beans (Phaseolus vulgaris L.). Cattle production is becoming increasingly more 138 

important in the region, particularly in Chalatenango.  139 

The study was conducted from August 2014 to October 2015 at seven research sites in 140 

the region, the majority of which contained both improved grass and legume trials (Table 1). The 141 

experimental sites were located on land of local cattle producers with interest in evaluating and 142 

planting the grass varieties and legume forage options. Five grasses were tested: Brachiaria 143 
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brizantha CIAT 6780 (cv. Marandu), Brachiaria brizantha CIAT 26110 (cv. Toledo), 144 

Brachiaria decumbens CIAT 606 (cv. Basilisk), Brachiara hybrid (CIAT 36087; B. ruziziensis x 145 

B. decumbens x B. brizantha cv. Mulato II), Megathyrsus maximus CIAT 6962 (cv. Mombasa; 146 

previously known as Panicum maximum, cv. Mombasa). These were compared to H. rufa as a 147 

control, since this is the most commonly grown grass species in the region and likely serves as a 148 

benchmark against which new grasses would be evaluated. Five species of legumes were also 149 

evaluated: Canavalia ensiformis L., Canavalia brasiliensis (CIAT 17009), Vigna unguiculata 150 

(cowpea), Cajanus cajan (pigeon pea) and Vigna radiata (mung bean) as supplementary protein 151 

fodder. Improved grasses and forage legumes were selected based on their performance at other 152 

sites with similar environmental conditions, farmer interest, and local seed availability 153 

(particularly in the case of legumes). All materials were tested using a randomized complete 154 

block design, with all treatments established in 4 x 4 m plots, and each treatment present in four 155 

replicate blocks at each experimental site. 156 

Grass plots were established in August 2014 under no-till management. Rows were 157 

spaced at 50 cm with 30 cm spacing between holes and five to eight seeds per hole. Fertilizer (43 158 

kg N ha-1 and 23 kg P ha-1) was applied in rows to the soil surface when plants were 159 

approximately 15 cm in height. Legumes were also established in August 2014, as per 160 

recommendations provided by Peters et al. (2010) and without fertilization. Briefly, C. 161 

ensiformis and C. brasiliensis were planted in rows spaced 50 cm apart and 30 cm spacing 162 

between holes and two seeds per hole. Vigna unguiculata and V. radiata were planted in rows 163 

spaced 50 cm apart with 20 cm between holes containing three seeds of V. unguiculata and 10 164 

cm between holes containing three seeds of V. radiata. Rows of C. cajan were spaced at 1 m 165 

with 30 cm between holes, each containing 4 seeds.  166 
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Soil analyses 167 

Baseline soils (0-20 cm) were sampled prior to the start of the experiment by collecting 168 

five sub-samples per site to form one composite sample for analysis.  Upon collection, soils were 169 

air-dried and passed through a 2 mm sieve for analysis of soil texture (hydrometer method), pH 170 

using a ratio of soil to water of 2.5:1, soil organic matter (SOM; Walkley and Black), available 171 

phosphorus (P) and potassium (K) using Mehlich-3 extraction at the CENTA (Centro Nacional 172 

de Tecnología Agropecuaria y Forestal) laboratory in El Salvador. 173 

Evaluation of Forage and Seed Production  174 

Biomass yield was measured at 90 days after planting (November 2014) for the grass 175 

trials at each of the seven sites to evaluate establishment. Grasses were cut to 15 cm from the soil 176 

surface in the entire plot, while a 2 x 2 m sub-plot in the center of each experimental plot was 177 

used for evaluation of biomass production to avoid edge effects. In order to assess the 178 

productivity and regrowth potential in the dry season, biomass production during the six month 179 

dry season was evaluated in two sites in Honduras (San Jose and Tenango) at the start of the wet 180 

season (May 2015). Additionally, a sub-set of the trials, three sites in Honduras and El Salvador, 181 

were reevaluated at key time points in the subsequent wet season. In July and September of 182 

2015, pastures at these three sites were uniformly cut and left to recuperate for approximately 60 183 

days before sampling. 184 

Biomass of the legumes was measured when 50% of the experimental plots had reached 185 

flowering stage at each site. Half of the plants from each plot were cut to the soil surface for 186 

estimation of biomass (with the exception of pigeon pea, which was cut to a height of 60 cm to 187 

allow for potential regrowth, a unique attribute of this species; Rusinamhodzi et al. 2017). Dry 188 

biomass was determined for each species after oven-drying samples at 60 °C. The other half of 189 
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each plot was left intact to determine days to maturation and seed production potential. Seed 190 

yield was reported at a moisture content of 13%. These plots were not re-evaluated after the first 191 

harvest since not all of the species tested have the ability to regenerate successfully after cutting.  192 

Participatory Evaluation of Forage Materials 193 

Approximately 60 days after planting, participatory workshops were held at three of the 194 

study sites, but involved cattle producers from all of the experimental sites. Producers first 195 

worked together with project staff to define a set of key criteria for assessing grasses and legume 196 

forage crops (Hernández, 2007). The four main criteria included: growth, soil cover, foliage 197 

color (all estimated visually), and perceived palatability or lusciousness (assessed by smell and 198 

texture; Table 2). These criteria were then ranked by the producers (1-10) to develop a weight of 199 

the relative importance of each to be used in the final calculation of an overall score for each 200 

grass and legume material tested. Following this discussion, six groups of 3-4 producers were 201 

formed and asked to closely observe the materials growing in all of the replicate blocks at the 202 

experimental site. Each material (grasses and legumes) was then ranked on a scale of 1 to 5 for 203 

each criterion (1 – poor; 2 – fair; 3 – good; 4 – very good; 5 – excellent) and scores were tallied 204 

to provide an overall weighted measure of producer acceptance. The participatory evaluation 205 

carried out here sought not only to capture farmer perceptions of the genetic materials tested, but 206 

also to facilitate dissemination of these materials and engage in preliminary training of cattle 207 

producers and local technicians.   208 

Data Analysis 209 

Comparison of dry biomass production for each trial and sampling time were analyzed 210 

using ANOVA. Natural log transformations were applied as necessary (mainly for the grass 211 

production data) to meet the assumptions of ANOVA (i.e., normality, homogeneity of variance). 212 
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A preliminary analysis was conducted in which data across sites were analyzed together, with 213 

treatment considered a main effect and both sites and blocks treated as random variables. 214 

Significant interactions between site and treatment indicated that treatment effects were better 215 

evaluated on a site-by-site basis, with only forage species and block (treated as a random 216 

variable) included in the model for each site. Tukey’s honest significant difference was used to 217 

determine differences between treatments. Results from participatory evaluations by local 218 

producers were analyzed with a non-parametric Kruskal-Wallis test. All statistical analysis was 219 

carried out using the software INFOSTAT and significant differences reported at the P < 0.05 220 

level. 221 

Results  222 

Biomass Production 223 

At the first sampling, 90 days after planting, there was considerable variation in initial 224 

grass biomass production between sites; one site in particular (San Jose) presented the highest 225 

biomass production with twice the value observed at the other sites. Overall, B. decumbens, M. 226 

maximus, B. brizantha (Marandu) and B. brizantha (Toledo) generally produced more biomass 227 

than the Brachiaria hybrid (Mulato II) and H. rufa across all sites, although the most productive 228 

grass varied across sites (Table 3). For example, in both San Jose and San Lorenzo, Honduras, B. 229 

decumbens was the most productive, with more than four times higher biomass than H. rufa. In 230 

Tenango and Upatoro, B. brizantha (Toledo) was the most productive, having five times greater 231 

biomass than H. rufa at the Upatoro site. While in Comalapa and Chalatenango, El Salvador, M. 232 

maximus was the highest yielding grass cultivar, producing significantly more than H. rufa at 233 

both sites. While never being the most productive at any particular site, B. brizantha (Marandu) 234 
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was consistently high yielding across all sites showing the highest stability value in biomass 235 

production during establishment.  236 

The cumulative grass biomass production during the dry season, measured at the 237 

beginning of the wet season in May 2015, showed a dramatic decrease, considering that 238 

measurements represent production across a total of six months. This measurement in San Jose 239 

and in Tenango demonstrated a similar trend to that observed in the initial biomass measurement; 240 

B. decumbens produced three times more biomass than H. rufa in San Jose, and B. brizantha 241 

(Toledo) yielded the highest in Tenango (but was not significantly different from B. brizantha 242 

(Marandu), M. maximus, or B. decumbens). While B. decumbens continued to produce the most 243 

biomass during the wet season in San Jose, significant differences were only encountered for the 244 

September 2015 sampling date. While all varieties continued to produce better than H. rufa in 245 

Comalapa and Upatoro during the July and September 2015 sampling dates, these differences 246 

were not significant (Table 3).  247 

For the legumes, C. ensiformis and C. brasiliensis generally demonstrated the highest 248 

biomass production (except for the Isleta site in Honduras). V. unguiculata and V. radiata tended 249 

to produce less biomass, but reached their flowering stage in a much shorter period of time 250 

(Table 4). While biomass production of C. cajan was high in Upatoro, its yields were highly 251 

variable across sites, even failing to germinate in two sites. Canavalia ensiformis, C. brasiliensis, 252 

and C. cajan required about double the amount of time to reach flowering than did V. 253 

unguiculata and V. radiata. A comparison of biomass production on a per day basis showed no 254 

significant difference between species, with the exception of C. ensiformis which in Comalapa 255 

was superior to all other species except C. brasiliensis (Table 4). V. unguiculata and V. radiata 256 

were the only species to produce seed in all sites in which they were established, while C. 257 
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ensiformis produced seed in three of the sites, C. brasiliensis in two of the sites, and C. cajan 258 

produced seed only in Upatoro. 259 

Participatory Evaluation of Materials 260 

As a general trend, B. decumbens, B. brizantha (Marandú), M. maximus and B. brizantha 261 

(Toledo) were the pastures most favored by local livestock producers (Table 5). The soil cover 262 

provided by B. decumbens was particularly desirable and the volume of biomass produced by M. 263 

maximus also received high rankings. Conversely, the B. hybrid (Mulato II) and H. rufa indicated 264 

low acceptance in terms of growth and soil cover and overall quality. 265 

Examining the sites individually, B. decumbens was ranked the highest by producers at 266 

the San José (Honduras) site, predominantly due to its soil cover, growth, and color. In 267 

Chalatenango, all species except B. brizantha (Toledo) scored higher than the native control H. 268 

rufa. M. maximus was favored due to its rapid growth, while B. decumbens once again received 269 

high rankings due to the soil cover it provides. In Comalapa all species received higher rankings 270 

than H. rufa, but none were clearly favored by producers. 271 

For the legumes tested, C. ensiformis was the highest ranked by producers across all sites, 272 

primarily due to its growth, soil cover and color. V. unguiculata and C. cajan scored well among 273 

producers in terms of the perceived palatability (lusciousness). In San José, soil cover provided 274 

by V. unguiculata was also noted among farmers, being ranked as favorably as C. ensiformis. 275 

Similarily, in Comalapa C. ensiformis and V. unguiculata were favored along with C. 276 

brasiliensis for all criteria. In Chalatenango, there was no significant difference between species, 277 

but C. ensiformis was rated higher on average than the other species. 278 

 279 

Discussion  280 
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Forage Production and Adaptability Across Experimental Sites  281 

The grasses evaluated in this study demonstrated establishment and early biomass 282 

production within the expected range for these species (Peters et al., 2010; Pizarro et al., 2013), 283 

thus suggesting that most of the improved materials were appropriately selected for the 284 

biophysical conditions studied here. Forage yields of improved varieties were generally higher 285 

than the H. rufa (Jaragua) control at the first sampling and in the dry season (at least for the two 286 

sites considered), but in the following wet season (July through September) this trend was less 287 

pronounced. This may be related to the short evaluation interval (~60 days) under lower than 288 

average rainfall conditions. The relatively low biomass production of the Brachiaria hybrid 289 

(Mulato II) was surprising and possibly due to the generally low soil fertility across all sites. 290 

Although Mulato II was developed to address low P availability and pH, as well as high 291 

aluminum toxicity (Argel et al., 2005), the poor fertility of soils at these sites may be unique and 292 

related more to high sand content, than issues such as aluminum toxicity, but more research is 293 

needed. With the exception of Mulato II, all of the improved grasses evaluated in the study 294 

appear to be viable options for the replacement of H. rufa due to their high forage yields and 295 

general acceptance by local producers. Nonetheless, it is important to note that the pastures 296 

tested here were grown under recommended management techniques that are often not or 297 

inadequately applied by farmers due to lack of knowledge or resources, including labor.  298 

The substantial variability observed in top performing forages across sites highlights the 299 

need to consider site-specific conditions when making pasture recommendations to cattle 300 

producers in the region. For example, B. decumbens, which demonstrated a great capacity for 301 

soil coverage and relatively high yields across all sites could be an appropriate choice on 302 

degraded soils or soils that are highly susceptible to erosion (Peters et al., 2010; Shriar, 2007). 303 
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Meanwhile, M. maximus (Mombasa) demonstrated a high growth potential and high forage 304 

yields in most sites, but should not be recommended for use in degraded soils or on steep slopes 305 

due to its relatively high nutrient demand and tendency to grow in bunches and thus provide poor 306 

soil cover (Hare et al., 2015). Mulato II has been the grass most highly promoted in El Salvador 307 

by government institutions (possibly due to higher forage quality, including crude protein 308 

content), but was found in this study to be low yielding on sub-optimal soils and in the 309 

environmental conditions of Central America’s Dry Corridor. In another study carried out in 310 

Africa involving different Brachiaria grasses, B. brizantha cv. Toledo and B. decumbens 311 

presented higher biomass production compared to Mulato II in low rainfall regions (Mutimura 312 

and Everson, 2012). Additionally, other trials established in the Dry Corridor in Nicaragua (not 313 

published data) suggest lower, or at best similar, performance of Mulato II compared to B. 314 

brizantha (Marandu and Toledo) or M. maximus (cv. Mombasa). When considering all grasses 315 

tested here, poor management and/or poorly adapted recommendations may explain, in part, the 316 

low adoption rates observed in the region and this clearly illustrates the importance of site-317 

specific evaluation.  318 

B. brizantha (Marandu and Toledo) were relatively productive across all sites and thus 319 

appear to be resilient to soils of varying fertility and environmental conditions. B. brizantha 320 

(Toledo) has also demonstrated relative tolerance to flooding (Cardoso et al., 2014), which may 321 

explain its superior biomass production in Upatoro, where topography of the site and high 322 

organic matter content suggest seasonal waterlogging. Such resilience can contribute 323 

substantially to risk reduction and should therefore be considered in addition to productivity 324 

when making local recommendations. The use of more adaptable forages, along with their 325 

diversification in forage-based production systems reduces reliance on a single species that may 326 
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be susceptible to particular abiotic stresses or host-specific diseases. It should, however, be noted 327 

that diversified systems are inherently more complex and require greater knowledge and/or labor 328 

to manage. Additionally, it should be noted that many of the grasses tested here typically grow 329 

for many years (Peters et al. 2010) and results from this study may better reflect potential 330 

establishment and early production, rather than long-term productivity. While other participatory 331 

forage evaluations have noted the value of early growth in influencing adoption rates (Stür et al., 332 

2002), long-term productivity is essential for the success of forage cultivars and cannot be 333 

ignored. Still, a certain level of caution is warranted in extrapolating these results to a longer 334 

time interval.  335 

Biomass yields of the legumes were also generally within the expected range and are 336 

therefore considered to be suitable for the study region. The Canavalia and Vigna species also 337 

demonstrated greater regional adaptability in their full development and capacity to produce 338 

seeds even in management conditions not suited for seed production (Peters et al., 2010). This is 339 

an important consideration for forage types (e.g., legumes) with seeds that are particularly 340 

expensive or difficult to obtain from local markets. It is recommended to rotate Vigna spp. with 341 

other forage crops such as maize or sorghum, as this genus is reportedly susceptible to common 342 

bean pests (Katunga et al., 2014). We note that only one growth cycle for legumes was 343 

considered for data collection in this study. It is important to recognize that pigeon pea, for 344 

example, can provide several harvests per year and C. brasiliensis can regenerate three times 345 

during its biannual life cycle (Costa et al., 2013; Douxchamps et al., 2014). Taking into account 346 

multiple harvests per year would likely lead to added production benefits for farmers and 347 

therefore may increase the desirability of these legumes.  348 

Implications and Recommendations for Scaling  349 
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The improvement of pasture management and genetic resources in the region would be 350 

an important advancement for the productivity and sustainability of livestock systems (Rao et al., 351 

2015). Based on the data provided here, incorporating improved grasses and legumes as forage 352 

crops could lead to a two- or three-fold increase in forage production per unit area, which allows 353 

for higher stocking rates, assuming adequate management. Many improved forage crops also 354 

have a higher nutritional quality, with protein contents up to double that of natural pastures 355 

(Peters et al., 2010; Kebede et al., 2016). Still, benefits extend beyond higher yields and 356 

improved nutritional content. Increased soil coverage associated with the improved pastures 357 

could help mitigate erosion, suppress weeds and contribute to C sequestration through the 358 

extensive root production associated with improved grasses (Fisher, 1994; Lemaire et al., 2014).  359 

Improved forages have also been shown to increase the nutritional balance of livestock feed and 360 

reduce methane emissions associated with cattle production (Montenegro et al., 2016), while 361 

forage legumes in particular can contribute to soil fertility through the fixation of atmospheric N. 362 

To achieve the full benefits of the improved pastures, a change in management practices 363 

must accompany the change in genetic material. This region is characterized by relatively low 364 

soil fertility and a prolonged dry season, thus grazing schemes should be designed through 365 

collaboration between producers and technicians and include rotational grazing to achieve 366 

greater efficiency of grazing areas (Peters et al. 2003; Rouquette, 2015). This co-design of 367 

pasture systems also needs to consider climate change and the associated increase in drought 368 

intensity, as well as explore the suitability of multiple options (e.g., silage). Additionally, the 369 

moderate shade tolerance of improved grasses permits increasing tree density in pastures and the 370 

potential to obtain the additional benefits through implementation of agroforestry systems (Peri 371 

et al., 2016).  372 
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The favorable response of farmers toward legume species should not be ignored in future 373 

efforts to improve livestock-based systems for meat and/or dairy production. While legume 374 

adoption as cover crops has not been as high as anticipated, legumes have a wide range of other 375 

uses that could provide additional economic benefit to farmers (Kebede et al., 2016). For 376 

example, legumes could potentially be intercropped with annual crops or pastures, used for 377 

human consumption, planted in designated areas as protein banks for cut and carry management 378 

and also contribute to silage production (Costa et al., 2013; Lima-Orozco et al., 2016). Although 379 

ranked highly in both agronomic and participatory evaluations, some toxicity issues suggest that 380 

some caution should be exercised with the use of C. ensiformis as animal feed. To the contrary 381 

C. brasiliensis has been used as forage and green manure in smallholder crop-livestock system of 382 

the Nicaraguan hillsides. In these systems, C. brasiliensis is intercropped with maize and during 383 

the dry season the maize-Canavalia plots are grazed, allowing the animals to consume the maize 384 

stover and the green C. brasiliensis biomass (Douxchamps et al, 2012). Silage could be of 385 

particular importance in this region since it is already a widely utilized in parts of the region and 386 

offers great potential to meet livestock needs during the dry season when high quality forage is 387 

scarce. However, the use of silage and/or cut-and-carry systems depends on the ability of land 388 

managers, especially smallholders, to protect land from grazing. More research is needed 389 

regarding the nutritional quality of legumes as fodder silage and costs of utilizing legumes vs. 390 

traditional maize silage (Reiber et al. 2010). We suspect that improved familiarity of these 391 

legumes and efforts to better integrate them with a systems perspective could further improve 392 

perception of legumes and facilitate future adoption. We also note that increased focus on diary 393 

production, which typically has more frequent and faster revenue return than beef systems, could 394 

improve the ability of smallholders to invest in improved forages. 395 
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Participatory Evaluation of Pasture Systems  396 

This study emphasizes the importance of a participatory approach to establish more 397 

productive and sustainable livestock production systems in the region. Involvement of local 398 

producers informs the assessment of adaptability of new species while increasing the potential of 399 

adoption and impact (Horne and Stür, 1997; Peters et al. 2003). The participatory methodology 400 

utilized in this study to evaluate forage species proved to be effective, as farmer response closely 401 

coincided with the agronomic data that were subsequently collected. Local input allowed the 402 

evaluation to extend beyond establishment and early biomass production, including farmers’ 403 

criteria such as lusciousness and foliage color. Farmer evaluations can differ from scientific 404 

findings. For example, when ranking perceived palatability (scent and texture), farmers favored 405 

the Brachiaria hybrid (Mulato II), B. brizantha (Marandu), B. decumbens, C. cajan and V. 406 

unguiculata, while according to Peters et al. (2010) B. decumbens is not considered to have high 407 

palatability in Central America. 408 

The involvement of farmers in the research process can lead to increased adoption of 409 

improved forages. Participating farmers have the opportunity to observe favorable attributes on 410 

their own land, such as improved soil coverage of B. decumbens and C. ensiformis, and are more 411 

likely to promote these materials amongst their neighbors. As a result, adoption of the improved 412 

pastures and legumes within the study area has been widespread following the completion of this 413 

research (Smukler et al., 2017). While the findings presented here are encouraging, further 414 

experimentation (by farmers and researchers) is needed to better understand the role of inter-415 

annual variability in driving the performance of these improved forage options.   416 

 417 

Conclusions 418 
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 In the face of rising demand for animal products, sustainability and productivity of 419 

smallholder livestock systems must be increased. Four of the five improved grasses - B. 420 

brizantha (cv. Marandu), B. brizantha (cv. Toledo), B. decumbens (cv. Basilisk), and M. 421 

maximus (cv. Mombasa) - exhibited high production potential and could therefore be considered 422 

viable replacements for traditional pastures, (i.e., H. rufa, cv. Jaragua). This suggests important 423 

benefits for forage production as well as soil conservation efforts, since H. rufa is typically 424 

burned annually and has poor soil cover at the onset of the rainy season. Forage legumes, 425 

specifically of the genera Canavalia and Vigna, also showed high regional adaptability. The 426 

multiple uses of these forages and their favorable response by farmers should help to inform 427 

future research efforts regarding their incorporation into livestock systems. In this study, 428 

participatory evaluation appears to be an effective approach for evaluating the performance and 429 

potential for adoption of forage crops across sites. This is supported by the fact that farmer 430 

evaluations largely agreed with the observed biomass production and their perceptions of forage 431 

quality (i.e., lusciousness) will likely be an important factor driving adoption. The materials 432 

evaluated here show a great potential for diffusion throughout Central America and similar 433 

regions, but additional studies are needed to better understand how inter-annual variability and 434 

environmental differences across sites affect not only biomass production, but also the nutritional 435 

value of the forage produced.  Future research and dissemination efforts should seek to promote 436 

optimal management practices and explore the co-design of pasture systems together with 437 

researchers, technicians and local land managers.  This approach would better facilitate the 438 

development and adoption of locally-adapted pastures that contribute to the long-term 439 

sustainability of tropical livestock systems. 440 

 441 



 Page 20 of 32 

Acknowledgements 442 

We’d like to thank Daniel Velasquez and Carlos Romero for their hard work in the 443 

management and supervision of the multi-site trials. The community “La Montañona”, the 444 

Agronomy Department at the University of El Salvador, the AZAMBIO Cooperative, the 445 

INFRAMS Institute in Chalatenango, and the Community Technical Institute in Candelaria were 446 

integral in research planning and implementation. We’d also like to thank the farmers in El 447 

Salvador and Honduras for providing their land and participating in the study.  Funding for this 448 

work was provided by Research Program on Integrated Systems for the Humid Tropics of 449 

CGIAR as well as the United States Agency for International Development (USAID) [award 450 

number AID-519-A-12-00002-00]. USAID had no role in the study design, collection, analysis 451 

and interpretation of data, writing of the report, nor the decision to submit the article for 452 

publication.  No other conflicts of interest exist. 453 

 454 

 455 

References 456 

Argel, M., Miles, J. W., Guiot García, J., & Lascano, C. (2005). Cultivar mulato (Brachiaria 457 

híbrido CIAT 36061): Gramínea de alta producción y calidad forrajera para los trópicos. 458 

International Center for Tropical Agriculture (CIAT), Cali, Colombia. 459 

Argel, P.J., Miles, J.W., Guiot García, J.D., Cuadrado Capella, H. & Lascano, C.E. (2007). 460 

Cultivar Mulato II (Brachiaria hybrid CIAT 36087): A high-quality forage grass, resistant 461 

to spittlebugs and adapted to well-drained, acid tropical soils. International Center for 462 

Tropical Agriculture (CIAT), Cali, Colombia 463 



 Page 21 of 32 

Cardoso, J. A., De La Cruz Jiménez, J., & Rao, I. M. (2014). Waterlogging-induced changes in 464 

root architecture of germplasm accessions of the tropical forage grass Brachiaria 465 

humidicola. AoB Plants 6: plu017. DOI: https://doi.org/10.1093/aobpla/plu017 466 

Costa, N. D. L., Soares, J., Townsend, C., Pereira, R. D. A., Magalhães, J., & Rodrigues, B. 467 

(2013). Effect of cutting regimes on forage yield and chemical composition of pigeon pea 468 

(Cajanus cajan) in Porto Velho, Rondônia. PUBVET, 7 (2). ISSN: 1982-1263 469 

Douxchamps, S., Rao, I. M., Peters, M., Van Der Hoek, R., Schmidt, A., Martens, S., Polania, J., 470 

Mena, M., Binder, C., & Schöll, R. (2014). Farm-scale tradeoffs between legume use as 471 

forage versus green manure: The case of Canavalia brasiliensis. Agroecology and 472 

Sustainable Food Systems 38: 25-45. DOI: 473 

http://dx.doi.org/10.1080/21683565.2013.828667 474 

Fisher, M.J., Rao, I.M., Ayarza, M.A., Lascano, C.E., Sanz, J.I., Thomas, R.J., & Vera, R.R. 475 

(1994). Carbon storage by introduced deep-rooted grasses in the South American 476 

savannas. Nature 371: 236-238. DOI: 10.1038/371236a0 477 

Fonte, S.J., Barrios, E. & Six, J. (2010) Earthworm impacts on soil organic matter and fertilizer 478 

dynamics in tropical hillside agroecosystems of Honduras. Pedobiologia, 53: 327-335. 479 

 DOI:10.1016/j.pedobi.2010.03.002 480 

Hare, M. D., Phengphet, S., Songsiri, T., & Sutin, N. (2015). Effect of nitrogen on yield and 481 

quality of Panicum maximum cvv. Mombasa and Tanzania in Northeast Thailand. 482 

Tropical Grasslands 3: 27-33. DOI: 10.17138/TGFT(3)27-33 483 

Hernández Romero L.A. (2007): Selection of Tropical Forages: Development and 484 

implementation of a participatory procedure and main results from Honduras, Nicaragua 485 

https://www.cabdirect.org/cabdirect/search/?q=sn%3a%221982-1263%22


 Page 22 of 32 

and Costa Rica. Reihe Kommunikation und Beratung 74, Margraf Publishers, 486 

Weikersheim, Germany, 108 pp. 487 

Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., & 488 

Obersteiner, M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas 489 

emissions from global livestock systems. Proceedings of the National Academy of 490 

Sciences 110: 20888-20893. DOI: 10.1073/pnas.1308149110 491 

Horne, P.M., & Stür, W.W. (1997). Current and future opportunities for introduced forages in 492 

smallholder farming systems of south-east Asia. Tropical Grasslands 31: 359-363 493 

Katunga, M., Muhigwa, J., Kashala, K., Ipungu, L., Nyongombe, N., Maass, B., & Peters, M. 494 

(2014). Testing agro-ecological adaptation of improved herbaceous forage legumes in 495 

South-Kivu, DR Congo. American Journal of Plant Sciences 5: 1384-1393. 496 

DOI: 10.4236/ajps.2014.59153 497 

Kearney, S.P., Coops, N.C., Chan, K.M.A., Fonte, S.J., Siles, P., & Smukler, S.M. Predicting 498 

carbon benefits from climate-smart agriculture: high-resolution carbon mapping and 499 

uncertainty assessment in El Salvador. Journal of Environmental Management 202: 287-500 

298. DOI: 10.1016/j.jenvman.2017.07.039 501 

Kebede, G., Assefa, G., Feyissa, F., & Mengistu, A. (2016). Forage legumes in crop-livestock 502 

mixed farming systems-A Review. International Journal of Livestock Research 6: 1-18. 503 

DOI: 10.5455/ijlr.20160317124049 504 

Lavelle, P., N. Rodríguez,N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gómez, Y., 505 

Gutiérrez, A. Hurtado, M.P., Loaiza, S., Rodríguez, E., Sanabria, C., Velásquez, & Fonte 506 

S.J. (2014) Soil ecosystem services and land use in the rapidly changing Orinoco River 507 

http://dx.doi.org/10.4236/ajps.2014.59153
http://dx.doi.org/10.5455/ijlr.20160317124049


 Page 23 of 32 

Basin of eastern Colombia. Agriculture, Ecosystems, and Environment 185: 106-117. 508 

DOI: http://dx.doi.org/10.1016/j.agee.2013.12.020 509 

Lemaire, G., Alan, F., Carvalho, D. F., Y, P. C., & Benoît, D. (2014). Integrated crop–livestock 510 

systems: Strategies to achieve synergy between agricultural production & environmental 511 

quality. Agriculture, Ecosystems and Environment 190: 4-8. DOI: 512 

http://dx.doi.org/10.1016/j.agee.2013.08.009 513 

Lima-Orozco, R., Van Daele, I., Álvarez-Hernández, U., & Fievez, V. (2016). Combination of 514 

the underutilised legumes Canavalia ensiformis (L.) DC and Mucuna pruriens, with 515 

sorghum: integrated assessment of their potential as conserved ruminant feed. Cuban 516 

Journal of Agricultural Science 50: 99-103. 517 

Miles J.W., do Valle C.B., Rao, I.M., & Euclides V.P.B. (2004). Brachiaria grasses. In: Moser, 518 

L., Burson, B., Sollenberger, L.E., eds. Warm-season (C4) grasses. ASA-CSSASSSA, 519 

Madison, WI, USA. p. 745–783. DOI: 10.2134/ agronmonogr45.c22 520 

Montenegro, J., Barrantes, E., & Dilorenzo, N. (2016). Methane emissions by beef cattle 521 

consuming hay of varying quality in the dry forest ecosystem of Costa Rica. Livestock 522 

Science 193: 45-50. DOI: http://dx.doi.org/10.1016/j.livsci.2016.09.008 523 

Mutimura, M., Everson, T., (2012). On-farm evaluation of improved Brachiaria grasses in low 524 

rainfall and aluminium toxicity prone areas of Rwanda. International journal of 525 

Biodiversity and Conservation 4, 137-154. 526 

Paul, B.K. Muhimuzi  F.L., Bacigale, S.B., Wimba , B.M.M., Chiuri, W.L. ,Amzati, G.S., & 527 

Maass, B.L. (2016). Towards an assessment of on-farm niches for improved forages in 528 

Sud-Kivu, DR Congo. Journal of Agriculture and Rural Development in the Tropics and 529 

Subtropics 117: 243-254. 530 



 Page 24 of 32 

Peri, P.L., Dube, F., & Varella, A.C. (2016). Opportunities and Challenges for Silvopastoral 531 

Systems in the Subtropical and Temperate Zones of South America. In P. L. Peri, F. 532 

Dube & A. Varella (Eds.), Silvopastoral Systems in Southern South America (pp. 257-533 

270). Cham: Springer International Publishing. 534 

Peters, M., Franco, L. H., Schmidt, A., & Hincapié, B. (2010). Especies Forrajeras 535 

Multipropósito: Opciones para Productores del Trópico Americano. Centro Internacional 536 

de Agricultura Tropical (CIAT); Bundesministerium für Wirtschaftliche Zusammenarbeit 537 

und Entwicklung (BMZ); Deutsche Gesellschaft für Technische Zusammenarbeit (GIZ), 538 

Cali, CO. vii, 212 p.. (Publicación CIAT no. 374).  539 

Peters, M., Lascano, C.E., Roothaert, R. & De Haan, N.C. (2003). Linking research on forage 540 

germplasm to farmers: the pathway to increased adoption—a CIAT, ILRI and IITA 541 

perspective. Field Crops Research 84: 179-188.  DOI: https://doi.org/10.1016/S0378-542 

4290(03)00149-7 543 

Pizarro, E. A., Hare, M. D., Mutimura, M., & Changjun, B. (2013). Brachiaria hybrids: potential, 544 

forage use and seed yield. Tropical Grasslands 1: 31-35. DOI: 545 

https://doi.org/10.17138/tgft(1)31-35 546 

Pretty, J. N. (1995). Participatory learning for sustainable agriculture. World development 23(8): 547 

1247-1263.  DOI: http://dx.doi.org/10.1016/0305-750X(95)00046-F 548 

Rao, I., Peters, M., Castro, A., Schultze-Kraft, R., White, D., Fisher, M., Miles, J., Lascano, C., 549 

Blümmel, M., Bungenstab, D., Tapasco, J., Hyman, G., Bolliger, A., Paul, B., Hoek, R. 550 

V. D., Maass, B., Tiemann, T., Cuchillo, M., Douxchamps, S., Villanueva, C., Rincón, 551 

Á., Ayarza, M., Rosenstock, T., Subbarao, G., Arango, J., Cardoso, J., Worthington, M., 552 

Chirinda, N., Notenbaert, A., Jenet, A., Schmidt, A., Vivas, N., Lefroy, R., Fahrney, K., 553 



 Page 25 of 32 

Guimarães, E., Tohme, J., Cook, S., Herrero, M., Chocón, M., Searchinger, T., & Rudel, 554 

A. T. (2015). LivestockPlus: The sustainable intensification of forage-based agricultural 555 

systems to improve livelihoods and ecosystem services in the tropics. Cali, CO: 556 

International Center for Tropical Agriculture (CIAT), 40 p. (CIAT Publication No. 407). 557 

Reiber, C., Schultze-Kraft, R., Peters, M., Lentes, P., & Hoffman V. (2010) Promotion and 558 

adoption of silage technologies in drought constrained areas of Honduras. Tropical 559 

Grasslands 44: 231-245. 560 

Rouquette, F. (2015). Grazing systems research and impact of stocking strategies on pasture–561 

animal production efficiencies. Crop Science 55: 2513-2530. DOI: 562 

10.2135/cropsci2015.01.0062 563 

Rusinamhodzi, L., Makoko, B., & Sariah J. (2017) Ratooning pigeonpea in maize-pigeonpea 564 

intercropping: Productivity and seed cost reduction in eastern Tanzania. Field Crops 565 

Research 203: 24-32. DOI: https://doi.org/10.1016/j.fcr.2016.12.001 566 

Shriar, A.J. (2007). In search of sustainable land use and food security in the arid hillside regions 567 

of Central America: putting the horse before the cart. Human Ecology 35: 275-287. DOI: 568 

10.1007/s10745-006-9088-z 569 

Smukler, S., Barillas, R., Siles, P., Garcia, E., Kearney, S., & Fonte, S.J. (2017). Final Report: 570 

USAID Agroforestry for Biodiversity and Ecosystem Services Project. San Salvador: 571 

This publication was produced for review by the United States Agency for International 572 

Development. It was prepared by the team the Earth Institute at Columbia University and 573 

CIAT, Cooperative Agreement No. AID-519-A-12-00002. 574 

Steinfeld, H., Wassenaar, T., & Jutzi, S. (2006). Livestock production systems in developing 575 

countries: Status, drivers, trends. Revue Scientifique et Technique 25(2): 505-516. 576 

javascript:void(0)
javascript:void(0)


 Page 26 of 32 

Stür, W., Horne, P., Gabunada, F., Phengsavanh, P., & Kerridge, P. C. (2002). Forage options for 577 

smallholder crop–animal systems in Southeast Asia: working with farmers to find 578 

solutions. Agricultural Systems 71: 75-98. DOI: http://dx.doi.org/10.1016/S0308-579 

521X(01)00037-3 580 

Tilman, D., Balzer, C., Hill, J., & Befort, B.L. (2011). Global food demand and the sustainable 581 

intensification of agriculture. Proceedings of the National Academy of Sciences 108(50): 582 

20260–20264. DOI: 10.1073/pnas.1116437108  583 

http://dx.doi.org/10.1016/S0308-521X(01)00037-3
http://dx.doi.org/10.1016/S0308-521X(01)00037-3


Table 1: Site locations and select soil characteristics for improved pasture and forage legume 584 

trials in El Salvador and Honduras.  Soil texture was determined by hydrometer method, pH 585 

using a ratio of soil to water of 2.5:1, soil organic matter (SOM) by Walkley and Black, and 586 

available P and K were evaluated using a Mehlich-3 extraction method. 587 

Site Experiment 

Type 

Coordinates Elevation 

(m) 

Slope 

(%) 

Sand 

(%) 

Clay 

(%) 

pH 

 

SOM 

(%) 

P 

(ppm

) 

K 

(ppm) 

Chalatenango, 

ES 
Pasture 

14° 2.40' N 

88° 57.92' W 

300 5 57.9 22.7 6.1 2.6 14 109.8 

Comalapa, ES 
Pasture 

14° 7.46' N 

88° 58.17' W 

440 12 65.9 10.4 5.3 4.3 0.4 164.1 

Legume 
14° 7.46' N 

88° 58.17' W 

442 15 64.2 11.4 5.3 3.7 0.4 101.6 

Upatoro, ES 
Pasture 

14° 3.75' N 

88° 57.52' W 

360 10 55.0 16.4 5.3 7.5 0.4 86.4 

Legume 
14° 3.73' N 

88° 45' W 

380 20 60.6 17.7 6.0 4.8 0.4 45.9 

Isleta, Hn 
Legume 

14° 2.99' N 

88° 35.44' W 

400 30 64.7 18.2 5.5 3.2 8.0 72.7 

San José, Hn Pasture + 

Legume 

14° 2.46' N 

88° 33.76' W 

280 15 65.1 18.8 5.3 2.7 2.3 122.7 

San Lorenzo, Hn Pasture + 

Legume 

14° 3.50' N 

88° 35.18' W 

580 10 >55* <20 5.4 2.7 7.8 42.9 

Tenango, Hn 
Pasture 

14° 6.14' N 

88° 34.83' W 

870 35 66.2 12.4 4.7 4.0 0.9 94.6 

*soil texture evaluated by hand at this site, so precise numbers were not obtained 588 

 589 

 590 
  591 
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 592 

Table 2: Criteria and importance levels defined by local producers to evaluate the quality of each 593 

evaluated species of grass or legume.  594 

No. 

Producer-

identified 

criterion 

Description 
Importance 

(1-10) 

1.  Growth Refers to the observed volume of forage (height, 

volume, thickness). Greater volumes are associated 

with higher rankings.  

10 

2.  Coverage Refers to soil cover of the forage species. More 

ground cover is associated with higher rankings.  

10 

3.  Color Refers to the color of the foliage. A green-blue color 

is ideal, while a yellow color is undesirable.  

8 

4.  Lusciousness Refers to scent and texture. Measured by rubbing a 

few leaves gently between fingers. Scent of corn with 

a soft texture is ideal.  

5.5 

 595 
 596 
 597 
  598 
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Table 3: Mean forage production of six grasses at seven sites in Honduras and El Salvador.  599 

Samples were cut at a height of 15 cm above soil surface on the following times: 90 days after 600 

planting (Nov 2014), just after the dry season (May 4-15, 2015) and during the wet season, after 601 

a ~ 60 day recovery period (July 13-24, 2015 and September 8-18, 2015).  Values in italics to the 602 

right of each mean represent the standard error of the four blocks tested at each site. Means with 603 

a common letter are not significantly different according Tukey’s Test.  P-values for treatment 604 

comparisons at each site are presented below each set of means (ns, not significant at P < 0.05).  605 

Site Species/Cultivara 
Nov. 2014b May 2015 July 2015 Sept. 2015 

----------------------  Dry Biomass (kg ha-1) ---------------------- 

San José, Hn 

 

B. decumbens 10225 a 393 4232 a 620 9118  1034 7072 a 901 
M. maximus 8224 ab 700 3912 a 809 8216  823 5789 ab 429 
B. brizantha (Mar) 7318 ab 1044 2886 ab 354 8268 612 5684 ab 708 
B. brizantha (Tol) 5739 bc 915 2147 ab 676 7798 1342 4886 ab 916 
B. hybrid 4344 bc 1210 2812 ab 747 7531 682 3895 ab 596 
H. rufa 1866 c 219 1221 b 315 5447 1175 3000 b 1175 
  P < 0.001      P = 0.010    ns   P = 0.056 

Tenango, Hn 

 

B. brizantha (Tol) 2294 a 279 4816 a 729      

B. brizantha (Mar) 1968 a 274 4088 a 455      

M. maximus 1609 a 172 2554 a 283      

B. decumbens 1420 a 245 3270 a 458      

B. hybrid 590 b 59 1203 b 151      

H. rufa ngc           

   P < 0.001      P < 0.001      

San Lorenzo, Hn 

 

B. decumbens 4346 a 657         

M. maximus 3509 a 1076         

B. brizantha (Mar) 3279 a 649         

B. brizantha (Tol) 3015 ab 728         

H. rufa 994 bc 293         

B. hybrid 752 c 58         

 P = 0.001         

Comalapa, ES 

 

M. maximus 4749 a 917    3873 625 2120  180 
B. brizantha (Mar) 3795 a 402    5311 462 2398  156 
B. decumbens 3043 ab 675    3333 1217 2310  383 
B. brizantha (Tol) 2904 ab 513    4601 460 1918  120 
B. hybrid 2890 ab 566    2969 710 1890  276 
H. rufa 1298 b 423    2458 347 1857  250 
 P = 0.005        ns           ns 

Upatoro, ES 

 

B. brizantha (Tol) 3124 a 684    2148 417 1640  295 
B. brizantha (Mar) 1809 ab 250    1291 146 1071  180 
B. decumbens 1330 b 153    1293 259 1094  189 
M. maximus 1089 b 294    1494 52 1517  409 
B. hybrid 607 b 206    1309 375 1115  165 
H. rufa 578 b 235    1309 191 1065  113 

 P < 0.001        ns           ns 

Chalatenango, ES 

 

M. maximus 5545 a 2153         

B. brizantha (Mar) 3163 ab 1037         

B. decumbens 2932 ab 306         

B. brizantha (Tol) 1850 ab 571         

B. hybrid 1548 ab 243         

H. rufa 857 b 355         

 P = 0.030         

a Cultivar abbreviations: Mar, Marandu; Tol, Toledo; B. hybrid, Brachiara hybrid CIAT 36087 
b ng= Seed did not germinate 

  606 
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Table 4: Mean biomass production at flowering, days to maturity and seed production (kg ha-1) 607 

of five species of legumes across five sites in Honduras and El Salvador.  Values in italics to the 608 

right of each mean represent the standard error of the four blocks tested at each site. Means with 609 

a common letter are not significantly different according Tukey’s Test.  P-values for treatment 610 

comparisons at each site are presented below each set of means (ns, not significant at P < 0.05).   611 

 612 

Site Species 
Days to 

floweringa 

Biomass at 

flowering 

(kg ha-1) 

Rate of biomass 

gain 

(kg ha-1 day-1) 

Time to 

maturity 

(days)b 

Seed 

production 

(no. seeds 

per m-2) 

San José, Hn    C. ensiformis   80 6354 a 1347 79.4  16.8 140 2591    

C. brasiliensis 102 5586 ab 741 54.8  7.3 150 336 

C. cajan        113 3843 ab 1021 34.0  9.0 nm 0 

V. unguiculata     44 1890 ab 576 42.9  13.1 55 1350 

V. radiata 44 1720 b 494 39.1  11.2 55 756 

  P = 0.025             ns   

Isleta, Hn      C. brasiliensis 95 1781  124 18.8  1.4 nm 0 

C. ensiformis   95 1538  534 16.2  5.6 nm 0 

V. unguiculata             45 1207  237 26.8  5.3 55 856 

V. radiata 45 1065  84 23.7  1.9 55 711 

C. cajan ng           ns   

      ns      

San Lorenzo, 

Hn 

C. brasiliensis 92 2377 a 353 25.8  3.8 nm 0 

C. ensiformis   92 1975 a 327 21.5  3.6 nm 0 

V. radiata 45 693 b 68 15.4  1.5 55 471 

V. unguiculata             nse           

C. cajan        ng           

  P  = 0.001                ns   

Comalapa, 

ES    

C. ensiformis   71 6006 a 755 84.6 a 10.6 162 1475 

C. brasiliensis 86 2999 ab 449 34.9 ab 5.2 162 138 

V. radiata  54 1266 bc 570 23.4 b 10.6 70 349 

V. unguiculata     57 1096 c 477 19.2 b 8.4 70 168 

C. cajan        94 350 c 72 3.8 c 0.8 nm 0 

      P < 0.001                  P < 0.001   

Upatoro, ES    C. ensiformis   91 4677 a 449 51.4  4.9 209 1985 

C. cajan        126 4497 a 834 35.7  6.6 215 91 

C. brasiliensis 112 2825 ab 451 25.2  4.0 nm 0 

V. unguiculata             55 1844 b 446 33.5  8.1 81 115 

V. radiata  44 1371 b 530 31.2  12.0 81 278 

  P = 0.003              ns   

 a ng= seed did not germinate; nse= was not established due to lack of seed 

 b nm= did not mature within period of observation (220 days after planting) 

 
 

 
 613 
  614 
  615 



Table 5: Participatory evaluation of forage materials at three farmer workshops. Criteria defined and evaluated by farmers on a scale 

of 1 to 5, where 5 is the highest ranking. A weighted average was calculated taking into consideration the producer-determined weight 

or importance of each criterion. Means with a common letter are not significantly different. P-values for treatment comparisons at 

each site are presented below each set of means (ns, not significant at P < 0.05). 
   

Site    
Grasses Legume 

 Speciesa Growth Coverage Color Lusciousnessb Overall  Species  Growth Coverage Color Lusciousness b Overall 

San José, Hn 

 

 

B. decumbens 4.2 a 5.0 a 4.7 a 4.7  4.6 a V. unguiculata          4.3 ab 4.8 a 4.3 a 4.3 ab 4.5 a 

B. brizantha (Mar) 3.5 ab 3.5 ab 4.0 abc 4.5  3.9 ab C. ensiformis   4.7 a 4.2 a 4.5 a 3.0 c 4.0 ab 

M. maximus 4.7 a 3.0 b 3.0 c 3.8  3.7 b V. radiata          3.5 bc 3.5 ab 3.2 b 3.7 abc 3.5 bc 

B. brizantha (Tol)   3.5 ab 3.3 b 3.7 bc 4.0  3.6 b C. cajan         3.8 ab 1.7 c 3.8 ab 4.5 a 3.5 bc 

B. hybrid 2.2 bc 2.7 bc 4.3 ab 3.8  3.2 bc C. brasiliensis 2.5 c 2.5 bc 3.2 b 3.3 bc 2.9 c 

H. rufa 1.3 c 1.3 c 3.2 bc 4.0  2.5 c   P = 0.003 P < 0.001 P = 0.016 P = 0.017 P= 0.001 

 P < 0.001  P < 0.001 P = 0.005 ns  P < 0.001   
          

Chalatenango, 

ES 

 

  

B. decumbens 3.8 abc 4.4 a 4.1  3.9  4.0  C. ensiformis   5.0 a 5.0  5.0  3.9  4.7  

M. maximus 5.0 a 3.1 ab 3.4  3.6  3.8  C. cajan         5.0 a 3.1  4.7  4.1  4.2  

B. hybrid 3.4 bc 3.4 ab 4.1  4.2  3.8  C. brasiliensis 4.1 a 4.1  4.1  4.1  4.1  

B. brizantha (Mar) 4.1 ab 4.1 a 3.4  3.4  3.8  V. unguiculata                 3.4 a 3.8  4.1  3.6  3.7  

B. brizantha (Tol) 4.1 ab 3.4 ab 3.4  3.4  3.6  V. radiata          3.8 a 3.8  3.1  3.1  3.5  

H. rufa 2.5 c 1.9 b 3.8  2.8  2.7    P = 0.04    ns  ns  ns  ns  
 P = 0.002 P = 0.034 ns 

 
ns 

 
ns     

 
 

 
 

 
 

 
 

 
Comalapa, ES 

 

  

B. hybrid 3.2 bc 3.9 a 4.7 a 4.5 a 4.0 a C. ensiformis   4.8 a 4.8 a 4.8 a 3.8  4.5 a 

B. decumbens 3.5 b 4.3 a 4.2 ab 4.1 ab 4.0 a C. brasiliensis 3.8 ab 4.0 a 4.3 ab 3.7  3.9 ab 

M. maximus 4.8 a 4.3 a 2.8 bc 3.7 bc 4.0 a V. unguiculata                3.7 bc 3.5 ab 4.2 ab 4.0  3.8 ab 

B. brizantha (Mar) 4.0 ab 3.5 ab 4.2 ab 3.9 abc 3.9 a C. cajan         3.7 bc 2.0 c 3.5 bc 4.2  3.3 bc 

B. brizantha (Tol) 4.0 ab 3.7 a 4.0 ab 3.3 c 3.8 a V. radiata          2.5 c 2.5 c 1.8 c 2.8  2.4 c 

H. rufa 1.5 c 1.8 b 2.2 c 3.4 bc 2.2 b   P = 0.003 P < 0.001 P < 0.001 ns  P < 0.001 

  P < 0.001 P = 0.018 P = 0.005 P = 0.009 P = 0.014                       
a Mar, Marandu; Tol, Toledo; B. hybrid, Brachiara hybrid CIAT 36087 
b Average of scent and texture rankings 

 

 
 
 
 
 



Figure 1: Map of study site locations in the departments of Chalatenango, El Salvador and 

Lempira, Honduras. 

 

 


