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1  |   INTRODUCTION

The low adoption rate of modern agricultural inputs, such 
as fertilizer, is often suggested as the major reason for much 
of the stagnation in agricultural productivity across sub-
Saharan African (SSA) countries (Bold, Kaizzi, Svensson, & 
Yanagizawa-Drott, 2017; Liverpool-Tasie, Omonona, Sanou, 
& Ogunleye, 2017). Various alternative explanations ranging 
from credit market constraints (Karlan, Osei, Osei-Akoto, & 
Udry, 2014), lack of agronomic knowledge (Liverpool-Tasie 
et al., 2017), information market constraints (Conley and 
Udry, 2010; Wossen, Berger, & Di Falco, 2015) to low re-
turns (Duflo, Kremer, & Robinson, 2008; Suri, 2011) have 
been cited as the main reasons for the low adoption rates of 
profitable technologies. In this paper, we revisited the rela-
tionship between adoption of chemical fertilizer and agricul-
tural productivity using cross-sectional and panel data from 
Ethiopia.

Estimation and identification of treatment effects of fer-
tilizer adoption in the context of cross-sectional data is chal-
lenging as adoption decision is not necessarily random. In the 

absence of random assignment of adoption status, construct-
ing a counterfactual is impossible as the same individual 
cannot be observed with and without fertilizer use simultane-
ously. In the impact evaluation literature, this is commonly re-
garded as the missing data problem and a range of approaches 
have been suggested to construct a reliable counterfactual 
distribution. These methods include matching approaches 
that consider observed sources of heterogeneities and instru-
mental variable (IV) approach that considers observed and 
unobserved sources of heterogeneities. Even though causal 
effects can be identified through IV approaches, identifying 
a relevant and exogenous instrument is often challenging. An 
important extension in this regard has been the use of panel 
data to estimate fixed effects by controlling for time-invariant 
sources of unobserved heterogeneities. However, building 
panel data sets is costly. As a result, many researchers in de-
veloping countries often resort to cross-sectional data to eval-
uate the effect of an intervention such as fertilizer use.

In this paper, we utilized an approach that exploits the 
typical decision-making behavior of farm households in de-
veloping countries in a cross-sectional data setting. Due to 
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prevalent insurance and credit market imperfections, many 
farm households engage in crop diversification activities as 
an ex ante risk reduction and ex-post consumption smoothing 
strategies. Thus, individual farm households often produce 
more than one crop on different plots with a specific tech-
nology being adopted in one plot and not on others. Under 
this context, technological choice is not a complete switch 
from adoption to non-adoption of a technology (e.g., fertil-
izer). In such settings, we can observe the productivity levels 
of the same individual farmer at the same point in time with 
and without fertilizer use as most farmers own more than one 
plot, and fertilizer may not necessarily be applied in all plots. 
For a farmer that has a fertilized and unfertilized plot, the 
unfertilized plot can be considered as a counterfactual if it has 
the same characteristics with the fertilized plot.1 This paper, 
therefore, exploits this observed pattern of fertilizer use 
by farmers to estimate a cross-sectional fixed effect (CFE) 
model. The most attractive feature of the CFE model is that 
any household and village level heterogeneities or aggregate 
shocks (such as market and climate) are plot invariant. The 
only source of variation is plot-level heterogeneities. If such 
plot-level heterogeneities are considered, treatment effects 
can be estimated consistently.

This paper uses the World Bank’s Living Standards 
Measurement Study-Integrated Surveys of Agriculture 
(LSMS-ISA) data from Ethiopia to estimate the relationship 
between fertilizer adoption and agricultural productivity. 
To verify the reliability of the CFE estimates, we also ex-
amined the relationship between fertilizer adoption and agri-
cultural productivity using other treatment effect estimation 
approaches: ordinary least square (OLS), propensity score 
matching (PSM), IV and standard panel fixed-effect models. 
The remainder of the paper is structured as follows: Section 2 
presents overview of the fertilizer sector in Ethiopia. Section 
3 outlines the empirical strategy and the description of the 
data source. Section 4 presents and discusses the main results 
and section 5 concludes.

2  |   OVERVIEW OF FERTILIZER 
USE IN ETHIOPIA

It is widely recognized that improving agricultural pro-
ductivity is central to poverty reduction. Cognizant of this 
fact, the government of Ethiopia has envisaged the agri-
cultural sector as the engine of growth and transformation. 
For example, Ethiopia has implemented the Sustainable 
Development and Poverty Reduction Program (SDPRP) 
(2000/01–2004/05), Plan for Accelerated and Sustained 
Development to End Poverty (PASDEP) (2005/06–
2009/10), the first Growth and Transformation Plan (GTP) 
(2010/11–2014/15) and the second GTP since 2015. In all 
of the above programs, the main focus was the agricultural 

sector, and improving the adoption rate of fertilizer and im-
proved seed being sought as the main pathways for improv-
ing productivity. This was done by setting annual cereal 
production and fertilizer use targets in the first and second 
GTPs.

Despite such renewed efforts by the government, the 
marketing and distribution system of fertilizer is rather 
inefficient and costly (Rashid, Tefera, Minot, & Ayele, 
2013; Spielman, Kelemework, & Alemu, 2012). Currently, 
the Agricultural Inputs Supply Enterprise (AISE) plays a 
key role in fertilizer importation and to some extent in the 
distribution of fertilizer across the different regions of the 
country. At the regional level, often cooperative unions se-
lected by the AISE are the main distributers. Importation 
is done based on demand assessment at the district level 
and targets set by the GTP of the country (Rashid et al., 
2013; Spielman et al., 2012). Imported fertilizer is often 
transported to the warehouses of regional cooperatives and 
when this is not possible, to the central AISE warehouses 
(Spielman et al., 2012). During the planting season, the 
cooperative unions distribute fertilizer to the primary co-
operatives. Fertilizer is then sold to smallholders by the 
primary cooperatives. In regions that have no cooperative 
unions or are inaccessible, AISE takes the responsibility 
to deliver, with primary cooperatives acting as wholesalers 
(Rashid et al., 2013). In addition, large commercial farm-
ers (both state-owned and private) directly access fertilizer 
from AISE (Figure 1).

Data from the Central Statistical Authority (CSA, 2017a) 
suggest that in 2015/2016 cropping season more than 1.1 mil-
lion metric ton of fertilizer was used by 14.7 million farmers 
across the country (Figure 2). The most common fertilizers 
being NPS (19% N, 38% P2O5 and 7% S), Diammonium 
Phosphate (DAP: 46% P2O5 and 18% N), and urea. Farmers 
apply fertilizer in different combinations, the best combina-
tion being NPS + urea followed by DAP + urea. For exam-
ple, 45% of the fertilizer use in the country is in the form of 
NPS + urea while about 25% is a combination of DAP + urea. 
The rest is mostly urea or DAP independently. In terms of al-
location of fertilizer for major crops, cereals account about 
88% of the total fertilizer use of the country (CSA, 2017a).2

Contrary to conventional wisdom, the LSMS-ISA 2015/16 
data also suggests that about 42% of the farmers use chem-
ical fertilizer (this rate is about 73% when manure use is in-
cluded). In terms of the regional distribution, more than 70% 
of the country’s fertilizer consumption is concentrated in the 
two largest regions of the country: Oromia and Amhara re-
gions. However, the use of chemical fertilizer in these regions 
is still low. For example, only 54% of the farmers in Oromia 
and 48% of the farmers in Amhara region have used chemical 
fertilizer in the 2015/16 cropping season. The highest fertil-
izer application rate is reported in Tigray and Harari regions 
(about 59%).
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3  |   CONTEXT, EMPIRICAL 
STRATEGY AND DATA SOURCES

3.1  |  Theoretical context
In this section, we present the theoretical framework em-
ployed to examine the effect of fertilizer adoption on the 
value of crop production. In our context, we defined the plot-
level average treatment effect (ΔP) of adopting fertilizer by 
household i on a specific plot p (Tip) on the value of produc-
tion (Vip) as:

The above relationship implies that ΔP for a given farmer 
in a specific plot (Tip) would be the difference between the 
value of production with and without fertilizer at the same 
point in time. This, however, is impossible as the same plot 
cannot be observed with and without fertilizer at the same 
time. On the other hand, the farmer that owns the plots can 
be observed with and without fertilizer use at the same mo-
ment in time as fertilizer is not necessarily applied in all 
of the plots owned by the farmer. We therefore exploit this 
fertilizer use behavior of farmers to estimate a model that 
controls for plot-level heterogeneities. Our approach mim-
ics the standard fixed-effect model in panel data settings as 
the same farmer often has more than one plot.3 Household-
level heterogeneities will play no role as they are fixed for 
a given household across plots. However, fertilized and un-
fertilized plots could be different in both observed and un-
observed characteristics. For example, a farmer may apply 
fertilizer in less fertile plots to improve productivity. Other 
general biophysical factors, such as weather shocks, market 
and other village-level general characteristics will be fixed 
as they are plot invariant. Therefore, by estimating a CFE 
model that considers plot-level heterogeneities, treatment 
effects can be estimated consistently.

3.2  |  Empirical strategy
Our empirical strategy closely follows the approach of 
Bellemare (2013). Let Vpi be the value of output per hectare 
for plot p and household i. The effect of fertilizer use (Fpi) on 
Vpi is then estimated as follows:(1)ΔP= (Vip|Tip =1)− (Vip|Tip =0)

F I G U R E   1   Overview of the fertilizer distribution system in Ethiopia: (Source, ATA, 2014)
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F I G U R E   2   Fertilizer use in 2015/16 season (CSA, 2017a,b)
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Qpi represents a vector of plot-specific land quality indi-
cators for a given household (such as soil types, soil fertility, 
wetness index, slope, etc.). The variable Fpi is a dummy vari-
able that takes on a value of one if farmer i applies fertilizer 
in plot p and zero otherwise. The variable Zpi, captures a vec-
tor of household and village-level variables (such as rainfall, 
farm assets, age education, etc.). Finally, wpi = epi + hi is a 
composite error term of household specific/plot invariant (hi) 
unobserved characteristics and plot-varying unobserved char-
acteristics (ep). γ is a vector of parameters to be estimated.

In the above specification, adoption decision can be en-
dogenous due to omitted variables bias. For example, farm-
ers who choose to adopt fertilizer may have better farming 
skills and management abilities, which are clearly correlated 
with productivity. Therefore, OLS estimates would be biased. 
To account for such unobserved household level heterogene-
ities, we employed two approaches. First, we employed an IV 
regression approach. In our identification strategy, we used 
spatial variation in the number of fertilizer suppliers as an 
identifying instrument. This variable affects farmers’ deci-
sion to use fertilizer but it does not affect the value of crop 
production through any channel other than fertilizer use. We 
constructed the number of fertilizer suppliers across the dif-
ferent regions of the country using data from the Ethiopian 
Statistical Authority (CSA, 2017a). The variable, number of 
fertilizer suppliers, is arguably exogenous to household char-
acteristics. However, it is expected to affect fertilizer adop-
tion positively. Our first stage regression result also suggests 
that this variable is relevant as it was significant at 1% level.4

Second, we estimated a CFE model by introducing house-
hold fixed effects. The inclusion of household fixed effects 
overcomes potential biases from unobserved heterogeneities 
at the household level by exploiting variation in fertilizer use 
within a household as shown in the following specification:

Equation 3 extends Equation 2 by incorporating house-
hold fixed effects (Di). The introduction of household fixed 
effects eliminates endogeneity biases that stems from un-
observed household level heterogeneity.5 Our parameter of 
interest (φ) can therefore be estimated consistently in the 
presence of household level observed/unobserved hetero-
geneities. However, unobserved plot-level heterogeneities 
may still bias parameter estimates of φ6. As an alternative 
approach, we also extended the above specification to panel 
data settings. This is possible in our settings since households 
and parcels were tracked over time.

By estimating a standard fixed-effect model at the plot 
level (Equation 4), we will be able to obtain consistent es-
timates for δ as the correlation between the time-invariant 
plot-level unobservables and adoption of fertilizer is fully 
controlled.

After establishing the average return from the use of 
chemical fertilizer, we then examine the distribution of 
such returns by explicitly accounting for comparative ad-
vantage in the use of fertilizer using the correlated random 
coefficient (CRC) model (Michler, Tjernstro, Verkaart, & 
Mausch, 2018; Suri, 2011). Considering such heterogene-
ity is important as there might be significant heterogeneity 
in returns across fertilizer adopters.7 Using the CRC model, 
we estimated effects for farmers that always use fertilizer 
(always adopters), farmers that never used fertilizer (never-
adopters), farmers that used fertilizer in the current produc-
tion season but not in the previous season(adopters), and 
farmers that used fertilizer in the previous production sea-
son but not in the current production season (dis-adopters). 
Following Suri (2011) and Barriga Cabanillas, Michler, 
Michuda, and Tjernström (2017), the CRC model is pre-
sented as follows:

In the above specification, β measures average return 
from fertilizer adoption; θi captures the key unobservables 
that determine selection into fertilizer adoption and mea-
sures the relative productivity of a farmer with and with-
out fertilizer. �, denotes the sorting of farmers in fertilizer 
adoption (θi) and measures the importance of comparative 
advantage (Michler et al., 2018; Suri, 2011). For example, 
if a farmer with high θi’s has lower gains from adoption, 
then 𝜗<0 (Michler et al., 2018; Suri, 2011). Similarly, if 
𝜗>0 then the self-selection process leads to greater in-
equality in returns as farmers with high θi’s has higher 
gains from adoption. Finally, τi is a household fixed effect 
which measures absolute advantage.8 In the above specifi-
cation, the parameter (θi), is correlated with the adoption 
decision of farmers (fit). Therefore, the correlation between 
θi and fit is eliminated by projecting θi onto the full adop-
tion history of farmers (Michler et al., 2018; Suri, 2011). 
In our case, since we have two rounds of panel data, the 
projection coefficient is given by:

The parameter θi is recovered by inserting Equation 6 into 
Equation 5. Once θi and � are determined, returns are esti-
mated as (�+��i)). These values are the predicted counter-
factual returns for non-adopters using weighted averages of 
all possible returns (Michler et al., 2018; Suri, 2011).

(2)Vpi = f (Fpi,Qpi,Zpi,wpi,�)

(3)Vpi = f (Fpi,Qpi,Zpi,Di,wpi,�)

(4)Vpit = f (Fpit,Qpit,Zpit,Djk,wpit,�)

(5)Vit =�+�fit+�i+��ifit+�i+uit

(6)�i =�0+�1fi1+�21fi2+�3fi1fi2+ui
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3.3  |  Data and descriptive statistics
For this study, we utilized the LSMS-ISA data. We used 
the 2015/16 survey round for our main analysis. In addi-
tion, data from the previous round (2013/14 round) is used 
to build a panel data set. The survey provides detail plot- and 
household-level information on crop production and adoption 
of new technologies, including the use of fertilizer at the plot 
level. In addition, the post-planting and post-harvest question-
naire solicited information on land ownership, labor use, and 
other inputs. Our main data set, the 2015/16 round contains 
detail data from about 5,000 households. Of these, about 66% 
are from rural areas and 9% from small towns. The remain-
ing sample, about 25%, are from medium and large towns. 
For our purpose, we utilized data from rural areas and small 
towns.9 Agricultural output is recorded in physical quantities 
(kilograms) of different crops at the plot level. Plot size is 
measured using GPS. In addition, the data also contains detail 
information on the full set of inputs used at the plot level.

The main treatment variable, adoption of chemical fer-
tilizer, is constructed using the following question from the 
survey instrument, “Is fertilizer used on this field?” If yes, 
then the survey collected information on the type of fertilizer 
used by farmers. We defined the treatment variable (chemical 

fertilizer adoption) if the farmer uses either DAP, urea, NPS, 
or other inorganic fertilizers. In particular, we constructed a 
dummy variable that takes on a value of one if chemical fer-
tilizer was applied in the plot and zero otherwise. The data 
contains extensive plot-varying variables. These include 
mostly agronomic practices and land quality indicators. The 
data provide labor use (family labor, hired labor, and unpaid 
labor from other households) for each plot. In addition, the 
data contains other agronomic practices such as the use of 
pesticide, herbicide, irrigation, and fallowing. The survey also 
contains information on land ownership (as measured by the 
certification status of the plot). Since our approach requires 
controlling for plot level heterogeneity, we used extensive 
land quality indicators. These variables include: soil fertility 
measurements, erosion level, elevation, slope, wetness index, 
distance of each plot from homestead and soil types of the 
plot. Some of these variables were constructed using georef-
erenced plot and household locations in conjunction with var-
ious geospatial databases (CSA, 2017b).10

Table 1 presents characteristics of fertilized and unfertil-
ized plots. The data shows agronomic synergy since in plots 
where fertilizer is used, there is more herbicide and pesticide 
application. Farmers also tend to apply fertilizer in less sloppy 
plots, self-owned plots and to those closer to the homestead. 

T A B L E   1   Plot characteristics by fertilizer use status

Full sample 
(N = 14,366)

Plots with fertilizer 
(N = 3,299)

Plots without fertilizer 
(N = 11,067) Mean diff

Value of production per ha (in ETB) 12,046 19,307 9,881 9,426***

Use of pesticide (Yes = 1) 0.036 0.073 0.025 0.05***

Use of herbicide (Yes = 1) 0.11 0.27 0.06 0.21***

Slope of the plot (%) 13.1 10.1 14 −3.9***

Elevation of the plot (m) 1,989 2,121 1949.7 171***

Wetness index of the plot 12.6 12.97 12.5 0.48***

Good soil fertility level (Yes = 1) 0.33 0.33 0.332 −0.002

Fair soil fertility level (Yes = 1) 0.523 0.54 0.52 0.025***

Poor soil fertility level (Yes = 1) 0.147 0.13 0.15 −0.02***

Plot under extension program (Yes = 1) 0.217 0.63 0.094 0.54***

Plot under irrigation (Yes = 1) 0.027 0.027 0.028 −0.001

Plot Tenure (Plot owned = 1) 0.66 0.73 0.64 0.09***

Plot prevented from erosion (Yes = 1) 0.61 0.80 0.55 0.25***

Plot fallowed (Yes = 1) 0.087 0.08 0.09 −0.012***

Labor (hr) 139 188 124 64*

Manure (1 = yes) 0.28 0.216 0.30 0.08***

Compost (1 = yes) 0.044 0.054 0.04 0.01***

Leptosol soil type (Yes = 1) 0.108 0.101 0.11 −0.008

Cambisol soil type (Yes = 1) 0.024 0.033 0.02 0.012***

Vertisol soil type (Yes = 1) 0.352 0.357 0.35 −0.006

Luvisol soil type (Yes = 1) 0.346 0.362 0.34 −0.02***

ETB: Ethiopian birr. ***, ** and * refer to significance at 1%, 5% and 10% respectively.



6 of 9  |      WOSSEN et al.

Such differences in plot characteristics suggest selection bias 
at the plot level. The outcome variable, value per ha, is also 
reported in Table 1. Value of production is computed by mul-
tiplying total production by crop-specific prices. We used 
household-specific farm gate prices as reported in the survey. 
For cases where the household-specific farm gate prices were 
not reported, community-level crop prices were used. The 
plot-specific value of crop production was then converted into 
hectare equivalent and transformed into logarithmic form for 
estimation.11 Values reported in Table 1 suggest that the value 
of production in fertilized plots is significantly higher than the 
value of production in unfertilized plots.

In Table 2, we present household-level variables. In this 
case, fertilizer adopter refers to a farmer that uses fertilizer 
at least in one of the plots. Table 2 suggests the presence 

of significant heterogeneity at the household level between 
adopters and non-adopters.

4  |   RESULTS

4.1  |  Effect of fertilizer use on value of 
production
Table 3 reports our main results (the CFE model results) as 
well as OLS, PSM, and IV regression estimates. In our es-
timation, we included plot-specific soil types as additional 
controls. In addition, we also controlled for crop-specific 
fixed effects. These include the type of crop grown in a 
specific plot as well as the type of variety grown (improved 
or local varieties). Results in Table 3 show that parameter 

T A B L E   2   Household characteristics by adoption status

Full sample Fertilizer adopter Fertilizer non-adopter Mean diff

Household size 5.6 5.67 5.58 0.09***

Drought shock (1 = yes) 0.22 0.28 0.21 0.07***

Ownership of sickle 2.02 2.41 1.91 0.5***

Ownership of axe 0.65 0.62 0.77 0.155***

Ownership of pick axe 0.71 0.52 0.75 −0.18***

Ownership of traditional plough 0.84 0.68 0.88 −0.20***

Ownership of modern plough 1.06 1.24 1.0 0.24***

Ownership of water pump 0.06 0.057 0.065 0.008

Median plot distance (km) 84.5 13.6 147.8 134.2
***, ** and * refer to significance at 1%, 5% and 10% respectively.

CFE PSM OLS IV PFE

(1) (2) (3) (4) (5)

Use of fertilizer 0.30*** 0.542*** 0.498*** 0.329** 0.246***

(0.067) (0.078) (0.093) (0.174) (0.067)

Soil type controls Yes Yes Yes Yes Yes

Household level 
controls

No Yes Yes Yes Yes

Regional fixed 
effects

No No Yes Yes -

Crop fixed effects Yes Yes Yes Yes Yes

R2 0.42 0.11 0.10 –

N 14,336 14,336 14,336 14,336 9,234

Standard errors clustered at the enumeration area-level are reported in parentheses. ***, ** and * refer to signifi-
cance at 1%, 5% and 10% respectively. Standard controls include: use of pesticide, herbicide, labor, plot slope, 
plot elevation, plot wetness index, plot soil fertility level, erosion level, plot tenure status, plot management (ir-
rigation, fallowing, etc.). Household fixed effects not reported include: household size, drought shock, owner-
ship of farm assets (sickle, axe, plough and water pump). Soil type fixed effects include: Leptosol, Cambisol, 
Vertisol and Luvisol. Crop fixed effect are: Teff, Maize, Barley, Wheat, sorghum and a dummy for the use of 
improved varieties. Regional fixed effects include location dummies (Tigray, Amhara, Oromia, Somalia, SNNP, 
Afar, Benshangul Gumz, Harrar, Diredawa and Gambela).

T A B L E   3   Estimated results using 
cross-section data (2015/16 LSMS-ISA 
round)
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estimates of the CFE model are very different from those 
obtained using OLS and PSM. The CFE estimates show 
a coefficient of 0.30 implying that adoption of fertilizer 
increases gross return by 35%.12 However, treatment ef-
fects from OLS and PSM are much higher, the effect size 
being between 65–72%. The coefficient for IV is about 
0.33, suggesting that fertilizer use increase gross return by 
about 39%, which is close to the CFE estimates. Note that, 
IV estimates are local average treatment effects. The effect 
size from the fixed-effect estimator (PFE) is 0.28, implying 
a 32.3% increase in gross-returns.13 If we use IV and PFE 
estimates as a benchmark, then the CFE estimator can be a 
reliable estimation strategy in the absence of panel data and 
reliable instruments.

4.2  |  Considering heterogeneity in returns
In this section, we present estimates from the CRC model. 
Estimated structural parameters of the CRC model are presented 
in Table 4. In the first two columns, we presented estimates at 
the household level (with and without covariates). While esti-
mating effects at the household level, a farmer is considered as 
an adopter if fertilizer is used in at least one of the plots and zero 
otherwise. These structural estimates are then used to recover θi 
which is a farmer-specific productivity effect (comparative ad-
vantage). In the next two columns, estimates at the parcel level 
are reported as some households and parcels were tracked over 
time. In this case, the θip measures parcel-specific unobserved 
productivity effects (comparative advantages). In recovering θip 
in Equation 5 and Equation 6, we estimated the model with the 
assumption that the unobserved heterogeneity that makes the 
adoption decision endogenous depends on the farmers ability 
to use fertilizer and unobserved quality of the specific parcel 
of land. As such, the θip measures the relative productivity of a 

parcel of land with and without fertilizer while the θi measures 
the relative productivity of a farmer with and without fertilizer 
use. Note that, the household and parcel level estimates are not 
directly comparable as parcel and household combinations that 
were not present in the two survey rounds were dropped while 
estimating structural parameters of the parcel-level model. 
Across all household level estimates, � is positive and statis-
tically significant suggesting the existence of selection into 
fertilizer adoption based on comparative advantage (i.e., farm-
ers that do better on average, do relatively well with fertilizer). 
Similarly, at the parcel level, � is positive and significant with 
and without covariates (parcels that are productive on average 
will be more productive with fertilizer).

Using the above household level structural estimates, 
we presented the distribution of predicted counterfac-
tual returns to fertilizer adoption (�+��i) in Figure 3. 
The distribution is presented for the following group of 
farmers: always-adopters, never-adopters, adopters, and 
dis-adopters. As shown in Figure 3, adopters and always-
adopters have a higher return from adoption compared to 
dis-adopters and never-adopters. This suggests that farmers 
adoption decision of fertilizer is rational in the sense that 
farmers with high returns adopt fertilizer while those with 
low returns do not.

Figure 4 shows the distribution of predicted returns at the 
parcel level (�+��ip).14 The distributions of returns in Figure 4 
suggest that the adoption decision of current adopters and dis-
adopters is rational. However, returns in parcels where fertilizer 
is always applied is smaller than the returns in parcels where 
fertilizer was never applied. In 17% of the parcels, fertilizer was 
applied in both survey rounds while in about 58% of the parcels 
fertilizer was never applied.

Farmers decision not to use fertilizer despite large poten-
tial returns in some parcels is puzzling. The result may imply 

Household level Parcel level

Without covariates With covariates Without covariates With covariates

Optimal Minimum Distance (OMD) Structural Estimates

β 0.366*** 0.363*** 0.360*** 0.311***

(0.079) (0.073) (0.088) (0.075)

0.69** 0.77** 1.74* 1.26*

(0.35) (0.38) (0.94) (0.76)

δ1 −0.126* −0.087 −0.22*** −0.20***

(0.074) (0.073) (0.065) (0.065)

δ2 0.41*** 0.407*** 0.043 0.075

(0.057) (0.056) (0.05) (0.052)

δ12 −0.20*** −0.193*** 0.11** 0.10**

(0.079) (0.053) (0.047) (0.05)

N 2,338 2,338 4,174 4,174

Standard errors are reported in parentheses. ***, ** and * refer to significance at 1%, 5% and 10% respectively.

�

T A B L E   4   Structural parameters of the 
CRC model
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evidence of misallocation, suggesting significant productivity 
gain from reallocation of fertilizer across plots. It also suggests 
that by applying fertilizer in unfertilized parcels, aggregate pro-
ductivity can be improved. Low returns in always fertilized plots 
may also imply that the use of chemical fertilizer without other 
soil fertility enhancing practices may not increase productivity 
substantially. The continuous use of fertilizer despite lower po-
tential returns in some parcels may also be due to insufficient 
knowledge about plot-specific returns of fertilizer among farm-
ers. In this regard, improving farmers awareness about precision 
farming through site-specific extension services would be vital 
to improve overall agricultural productivity.

5  |   CONCLUSIONS

This paper examined returns to fertilizer adoption in the 
presence of unobserved heterogeneity by exploiting cross-
sectional variations in plot-specific characteristics. The CFE 
estimates suggest that adoption of fertilizer increases gross 
return by about 35%. Using standard panel fixed-effect and 
IV estimates as a bench mark, we show that the CFE estimator 
performs better than other approaches (OLS and PSM) that 
do not take unobserved heterogeneities into account. It worth 
noting that, despite our best effort to control for extensive 

land quality indicators at the plot level, unobserved plot-level 
heterogeneities may still bias estimates of the CFE model.

Further, results from the correlated random coefficient 
model suggest substantial heterogeneity in returns to fertil-
izer adoption. We also find that comparative advantage plays 
a key role in the adoption decision of farmers. In particu-
lar, we find that farmers with high returns from adoption use 
fertilizer while those with low returns do not. However, fer-
tilizer allocation across parcels was sub-optimal, implying 
evidence of misallocation. This sub-optimal decision may be 
due to difference in specific plot characteristics and insuffi-
cient knowledge about plot-specific returns to fertilizer use. 
Overall, the results underscore the importance of improving 
farmers awareness about proper use of fertilizer through site-
specific extension services.

ENDNOTES

	1	 Assuming the same plot quality in both observed and unobserved plot 
characteristics. 

	2	 Of the total fertilizer use in the country, 27% is applied to teff, 25% 
for maize and 22% for wheat. 

	3	 In our data, the average number of fields/plots is about four per 
farmer and only few farmers operate a single plot. In this paper a plot 
is defined as a unit of land within a parcel which is clearly demarcated 
by a hedge or path. 

	4	 These results are reported in the appendix. Note that, we have not 
extended the CFE to IV-CFE approach by using IV as the available 
instruments are measured at the household/region level. IV-CFE re-
quires an IV that affects the decision to apply fertilizer at the plot-
level but not plot level productivity. Our data, does not have a relevant 
and exogenous instrument at the plot level. 

	5	Cov(Djk,�pjk)=0. This is what is estimated by the CFE approach. 

	6	 To overcome this bias, an instrument is required to control unob-
served plot level heterogeneities. 

	7	 Controlling the type of crop-grown in each specific plot is vital as 
farmers may apply fertilizer based on crop type instead of specific 
qualities of the plot. 

	8	 Detail treatment of the CRC model is presented in Suri (2011). 

	9	 Medium and large towns were excluded as agriculture is not their 
source of livelihood. 

	10	 In principle, this land quality indicators will allow controlling for the 
unobserved heterogeneity between plots. Although precise measures 
of soil quality are observed here, they are typically unobservable. 

	11	 In order to make reasonable comparisons across survey rounds, we 
converted nominal value of production into real values by using the 
regional spatial price index as provided in the LSMS-ISA data. Note 
that, our focus is on gross returns instead of net-returns due to issues 
associated with the measurement of shadow wages. 

	12	Note that, effects are calculated as 100[exp(coef.)−1] as the depen-
dent variable is expressed in logarithm. 

	13	 In the PFE model, effects were estimated at the parcel level as the 
data tracked parcels and households instead of households and plots. 
A parcel is defined as a unit of land (which contains more than one 

F I G U R E   3   Household specific distribution of return per ha
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F I G U R E   4   Parcel specific distribution of return per ha
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plot) that is owned by a single household and surrounded by a land 
owned by another household or demarcated by natural boundaries. 

	14	Note that, Figures 3 and 4 are not directly comparable due to differ-
ence in sample size. 
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