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1. Introduction 32 

From ants to elephants, some organisms form groups and others live largely in solitude. Social living may 33 

improve foraging efficiency if individuals share information about food availability and location. 34 

Furthermore, forming a group has other benefits that depend on the needs of each species. For example, it 35 

might serve to reduce predation risk, reduce energy consumption related to air or water resistance, or 36 

improve reproduction efficiency (Barak and Yom-Tov 1989; Herskin and Steffensen 1998; Weimerskirch 37 

et al. 2001; Cameron et al. 2009).  38 

 One theory predicts that individuals at the periphery of a group are at higher risk of predation 39 

than individuals in central positions (Hamilton 1971). Some researchers have argued that food gains, as 40 

well as predation risk, are often higher at the peripheries. Thus, animals must at some level consider the 41 

tradeoff between predation risk and foraging benefits when choosing their spatial position within a group 42 

(Morrell and Romey 2008). As a result, risk of predation and degree of feeding competition, for example, 43 

can vary with respect to spatial position (Hirsch 2007).  44 

 Previous studies investigating spatial positioning in animals have focused on groups of 45 

numerous species, including schools of fish, flocks of birds, and groups of mammals (Rhine et al. 1985; 46 

van Schaik and van Noordwijk 1987; Janson 1990; Hirsch 2011; Ryder et al. 2012; Teichroeb et al. 47 

2015). Important social dynamics within animal groups that potentially affect individual spatial position 48 

often include dominance, friendships, and kin relationships. For example, movement of individual social 49 

mammals is strongly influenced by their social relationships such that the dominant or older individuals 50 

are more likely to become the leader in the leader-follower relationship (King et al. 2011; Sueur and 51 

Deneubourg 2011; Andrieu et al. 2016; Tokuyama and Furuichi 2017). In addition to social relationships, 52 

physical relationships between individuals within a space (i.e., distance, proximity, and orientation) need 53 

to be taken into account when considering animal movement because they might be a mediating factor 54 

between the relationships and movements. Researchers have investigated proximity among conspecifics 55 

within groups and found that shorter inter-individual distance indicates closer relationships in Japanese 56 

macaques (Furuichi 1983) and that proximity correlated with the reproductive states of female rhesus 57 

monkeys (Czaja et al. 1975). Similar aspects have been observed in horses. Crowell-Davis et al. (1986) 58 

showed that the sex difference between foals and their nearest neighbors changes as the foals develop 59 
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(Crowell-Davis et al. 1986). Kimura (1988) found that the partners who frequently accompany the nearest 60 

neighbor were not the same as those who participate in mutual grooming among females (Kimura 1998). 61 

Using spatial-positioning data, Bourjade et al. (2015) and Briard et al. (2015) reported that there might be 62 

no leaders on collective departure in domestic horses and the influence of a stallion on the group behavior 63 

is not strong (Bourjade et al. 2015; Briard et al. 2015). 64 

To obtain data on spatial positions, researchers recently have started using bio-logging 65 

technologies in which GPS devises are mounted on animals or video recordings are taken from relatively 66 

high above ground and are analyzed using image processing (Lukeman et al. 2010a; Rosenthal et al. 67 

2015; Farine et al. 2017). These studies have shown rules with respect to the distance and angle between 68 

individuals within a group, suggesting strong preference and anisotropy of the direction for neighboring 69 

individuals (Ballerini et al. 2008a; Lukeman et al. 2010a; Katz et al. 2011; Pettit et al. 2013; Rosenthal et 70 

al. 2015). Researchers have further suggested that the spatial area surrounding a single individual in a 71 

group can be divided into three zones: attraction (two individuals move toward each other when they are 72 

too far apart), orientation (two individuals tend to face the same direction), and repulsion (two individuals 73 

avoid each other when they are too close) (Couzin et al. 2002).  74 

In the case of large mammals in the wild however, attaching GPS devices to all group members 75 

or recording video that covers the locations of all group members from high enough above the ground is 76 

difficult (e.g., if video recordings are made from human eye height, recording orientation and the masking 77 

of individuals by other animal makes high accuracy analysis of individual spatial positions difficult). 78 

Although studies have investigated spatial relationships in mammals including horses, they have been 79 

primarily conducted with captive animals that were confined to a relatively small area or they relied on 80 

visual judgements of the distance between individuals, which are often categorical (e.g., less than 1 m or 81 

greater than 5 m) (Krueger et al. 2014; Briard et al. 2015) . Recently, researchers succeeded in obtaining 82 

location data from wild baboons by mounting GPS devices on them (Strandburg-Peshkin et al. 2015; 83 

Farine et al. 2017), but the data were not collected from all group members, which exemplifies the 84 

difficulty of attaching GPS devices to wild mammals. To obtain data from GPS devices, animals must 85 

first be captured and they must weigh enough to carry the device. Thus, the question remains: are there 86 

any differences in spatial positions across and within taxonomic groups? Are the rules (e.g., existence of 87 
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attraction-repulsion areas or anisotropy of nearest neighbors) for spatial positioning of individual fish 88 

within schools or birds within flocks also applicable to wild mammals? Quantitative data on spatial 89 

positioning is imperative for understanding the processes and rules that generate variation in the patterns 90 

exhibited across and within taxa. To address this question, we conducted the present case study using 91 

drones—unmanned aerial vehicles that are remotely controlled by an operator— to focus on large and 92 

feral mammals. Although researchers have already used drones to examine some species of wild and 93 

domestic animals (Vermeulen et al. 2013;Chrétien et al. 2016; Goolsby et al. 2016; Torney et al. 2016; 94 

Jung 2017), most of these studies focused on detecting and monitoring them from the perspective of 95 

conservation and management, and few have focused on animal behavior (Ozogány and Vicsek 2014).  96 

 Using drones enables the recording of all members of a group from the sky, which is optimal 97 

for analyzing spatial positions, as long as no obstacles come between the drone and subject animals. Feral 98 

horses meet the first requirement of this methodology because they usually live in relatively monotonous 99 

plains that are covered with grasses and herbs, as opposed to complex three-dimensional spaces that 100 

include tall trees or thick bushes that can block a drone’s line of sight. Horses usually form long-term 101 

stable harems comprising multiple members (Berger 1977; Klimov 1988), which are comparable to some 102 

primate species that also form stable groups with fixed members (Nishida 1968; Harcourt 1978; Kano 103 

1982; Linklater and Cameron 2009).  104 

In the present study, we investigated several characteristics related to spatial position in a group 105 

of feral horses as a case study for clarifying the nature of spatial positions within a mammal group. We 106 

investigated characteristics that have been commonly investigated in the case of fish schools and bird 107 

flocks, including the relative positions of each individual in the group, inter-individual distances, and the 108 

distances and angles to the nearest neighbors (Lukeman et al. 2010a; Strandburg-Peshkin et al. 2013; 109 

Rosenthal et al. 2015). Additionally, we tested for correlation between social networks measured by 110 

grooming frequency (which has previously been used as an indicator of friendship association) and spatial 111 

position, as a study by Kimura (1998) suggested a possibility that these two might differ. Our focus was 112 

on analyzing stationary spatial positions because fast and relatively long-distance movement of individual 113 

feral horses makes positional analysis difficult for a number of reasons (e.g., short battery life and the 114 

drone’s own movement). We focused on stationary spatial positions during foraging, a situation in which 115 
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horses do not engage in fast or long-distance movement. The present study had two primary aims: (1) to 116 

describe the basic characteristics of stationary spatial positions within a group of horses and (2) to clarify 117 

how social networks in a group influence spatial position. 118 

 119 

2. Material and Methods 120 

2.1 Study site and animals 121 

The study was conducted in June 2016 at Serra D’Arga, an 825 m high mountain located in northern 122 

Portugal (8°42’N, 41°48’E), which was established as a new research site in 2016 (see Ringhofer et al. 123 

2017 for details) (Figure 1). This region has a Mediterranean climate, and the horse habitat includes a 124 

grass field, rocky ground, a forest, and shrub areas. More than 200 feral Garrano horses live in this region 125 

(Ringhofer et al. 2017). The focal group comprised one adult male (Uzumasa), seven adult females (Uji, 126 

Katsura, Gion, Fushimi, Kishiwada, Ayabe, and Akashi), and two foals born in the spring of 2016. One 127 

adult female (Akashi) was in the process of transferring from another group; this female moved back and 128 

forth between the two groups throughout the observation period. All members of the group were 129 

identifiable by their appearance. Analysis was conducted during the period when this individual was 130 

present in the group.  131 

The target group had two foals. The orientation and distance of foals depended on those of 132 

their mothers. We excluded data from these two foals as our goal was to analyze the positions and 133 

relationships of independent adult horses. A separate analysis including the foals is provided as 134 

Supplementary Material. 135 

The field observations complied with the guidelines for animal studies in the wild issued by 136 

the Wildlife Research Center of Kyoto University, Japan. 137 

 138 

2.2 Data collection 139 

Photos of the target group were taken every 30 min using an unmanned aerial vehicle (drone, Phantom3 140 

Advanced, DJI, China) (Figure 2). The vehicle was a quadcopter with a video camera (1080p resolution) 141 

that was operated remotely with the camera angle set perpendicular to the ground. The drone took off 142 

approximately 10–50 m from the horses and flew at an altitude of 25–80 m. Advance test flights 143 
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confirmed that as long as the drone stayed at least 10 m away from the horses, they did not run away, 144 

panic, or show any other behavioral responses to the drone. Because horses did not move rapidly, position 145 

data from two consecutive scans would not be independent if the scan interval was too short. Therefore, 146 

we set the scan interval at 30 min to avoid this potential for correlated horse positions. 147 

 While photos were taken, the positions of each individual were recorded from the ground by 148 

observers who could identify individuals. When horses were located in the shadows of trees, we stopped 149 

taking photos, and began again after 30 min. Three to thirteen images were acquired per day, and a total 150 

of 102 images were acquired during our 13-day observation. Observation lasted 4–10 h per day, for a 151 

total of 88.5 h over the course of the study. 152 

  153 

2.3 Behavioral data collection 154 

We also recorded aggressive behavior and grooming events using all-occurrence sampling (Altmann 155 

1974). These recordings took place regardless of whether or not the drone was flown. Grooming and 156 

aggressive behaviors performed against or by foals were not analyzed. Similar to a previous study with 157 

horses (Heitor et al. 2006), aggressive behaviors included biting, chasing, kicking, and striking were 158 

considered indicators of social rank within the group. We then calculated the frequency of aggressive 159 

events per hour and per individual. 160 

  161 

2.4 Image categorization 162 

We excluded images from further analysis if they did not contain all individuals. Additionally, 163 

individuals from other groups were occasionally present with the target group, and such cases were also 164 

excluded from analysis. Group activities were divided into three categories: (1) travel (the entire group 165 

walked/ran toward a certain direction, often in a line), (2) rest (more than half the group rested 166 

motionlessly, usually packed in a small space), and (3) forage (group members foraged freely). We 167 

determined the category of activity based on observations before and after taking the drone photos, and 168 

then excluded instances of travel and rest from the analysis. This resulted in 61 foraging images (60% of 169 

the total number of images) for further analysis. 170 

  171 
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2.5 Correction of camera distortion  172 

The distortion of the camera lens was corrected using the lens filter function in Photoshop CC (Adobe 173 

Systems incorporated) selecting the FC300 camera property for DJI Phantom 3, which was provided by 174 

Photoshop CC as a preset value. We confirmed the accuracy of the correction by taking a photo of a 175 

checkerboard grid with a known absolute size and applying the lens-distortion correction. We then 176 

calculated the error by comparing the length of the grid in the photo with its actual length. Before we 177 

corrected the distortion using Photoshop CC, the maximum error was 12% and around the periphery of 178 

the photo. After correction, it was 3% or less. This was acceptable, and we thus based our analysis on the 179 

distortion-corrected images.  180 

 181 

2.6 Calculation of distance and direction  182 

We used three measures to characterize the spatial positions of individuals within the group: inter-183 

individual distance, nearest neighbor distance, and the distance between each individual and the center of 184 

the group. This latter value was calculated based on the x-y pixel coordinates of each individual’s 185 

location in a 3200 × 4000 pixels photo, with the top left of an image being the origin (0, 0). The group 186 

center was defined as the average of all individual coordinates. We defined an individual’s location as the 187 

midpoint between the tip of the head and the base of the tail. Average body length (BL) of all individuals 188 

was used as the unit of length for further analysis in measuring the distance between individuals. This was 189 

because the drone’s ground height varied, and the scale of the images was thus different in each 190 

photograph (i.e., the length of a pixel represented a different absolute length in the real environment) 191 

because no standard object of known size could be placed in the photos. The assumption here is that 192 

because all members were present in all photos that we analyzed, the average body length of all 193 

individuals should remain constant across photos. Body length was the distance between the base of the 194 

tail and the base of the neck. The reason for not using the tip of the head was that head orientation varied 195 

depending on the posture of the horses. When horses were grazing in the field, they lowered their head. In 196 

contrast, the distance from the base of the neck to the base of the tail was relatively constant and always 197 

straight, as viewed from above via the drone.  198 
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 To characterize the direction of individual horses, we used individual vectors. We calculated 199 

vectors from the base of the tail to the tip of the head. Although several previous studies have adopted one 200 

body length (≤ 1.5 m) as the category that best estimates the strength of the interaction between two 201 

horses, we defined “proximity” as two individuals being within 2 BL of each other. This was because our 202 

method measures the distance between the center point of one individual to that of another, not the edge 203 

of one individual to the edge of another, as was the case in previous studies (Waring 1983; Heitor and 204 

Oom 2006). Our study remains comparable to these previous studies because 2 BLs using our method is 205 

effectively equivalent to 1 BL in the Waring (1983) and Heitor and Oom (2006) studies (the distance 206 

from the central point of the body and its outer surface is roughly 0.5 BL, which is then multiplied by two 207 

individuals), with the proviso that the two measures are not actually identical because the animals are not 208 

circular in shape. Next, to investigate how the orientation of an individual to its nearest neighbor depends 209 

on position (front and rear, viewed from the target individual), we calculated the inner product between 210 

the unit vector of an individual (from the tail base to the head) and that of its nearest neighbor. Higher 211 

inner product values indicate greater orientation alignment. 212 

 213 

2.7 Random test 214 

Under complete spatial randomness, individual positions in local areas follow a Poisson distribution and 215 

the average distance to the nearest neighbor follows a Weibull distribution (Fortin et al. 2002). To 216 

measure the randomness of individual positions, we used the following index: 217 

𝑞 =
𝑑√𝑛
π𝑟'

 218 

where r is the average distance to the nearest neighbor for all individuals in an image, n is the number of 219 

individuals, and d represents the distance between the group center and the furthest individuals. If q 220 

equals 0.5, horse positions are random, if it is close to 0, positions are in a limited smaller area, and if it is 221 

close to 1, positions have some non-random regularity (Skellam 1952; Pollard 1971). 222 

 223 

2.8 Social network analysis 224 
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To estimate the strength of association between two individuals, we used measures of grooming and 225 

proximity frequency. Mutual grooming and proximity are generally used to estimate the positive 226 

relationship between individuals (Briard et al. 2015). We calculated simple ratio indices (SRI) for each 227 

measure that were defined as follows:  228 

𝑆𝑅𝐼 = 	
𝑥

𝑥 + 𝑦/ + 𝑦0
 229 

where x represents the frequency of grooming or the proximity between individuals a and b, ya is the 230 

frequency of grooming or the proximity between individual a and other individuals, and yb is the same as 231 

ya, but for individual b (Cairns and Schwager 1987). Additionally, we calculated a distance index (DI) 232 

from the average distance between each pair of individuals:  233 

𝐷𝐼 = 	
−𝐷/0 + 0.5(𝐷/ + 𝐷0)

0.5(𝐷/ + 𝐷0)
 234 

where Dab represents the average distance between individuals a and b, and Da and Db represent the 235 

maximum distance between individuals a and b and other individuals, respectively. In this way, we 236 

obtained three weighted (from 0 to 1) indices of interactions (grooming, proximity, and distance). We 237 

then measured eigenvector centrality to clarify the influence of each individual in these networks with 238 

Ucinet 6.0 software (Borgatti et al. 2002).  239 

 240 

2.9 Statistical analysis 241 

Statistical tests were performed with R 3.3.2 (R Development Core Team 2016). With respect to the 242 

distribution of the distance between individuals, we first determined whether the distribution followed a 243 

Weibull distribution based on the reasoning described above. However, visual inspection of the data 244 

indicated a gamma distribution; thus, we tested whether it followed a gamma distribution. With respect to 245 

the social network, we used Ucinet 6.0 to conduct Quadratic Assignment Procedure (QAP) tests to assess 246 

the influence of grooming on proximity and distance. We used 5000 permutations in the QAP tests. 247 

 248 

3 Results 249 

3.1 Aggressive behavior  250 
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At this research site, the frequency of aggressive behaviors was very low. We observed only 10 251 

aggressive behaviors over the course of the study, and average frequency per individual per hour was 252 

0.03. This was significantly lower (Kruskal-Wallis test, χ2 = 28.718, df = 3, p < 0.01) than what was 253 

reported in previous studies of feral horses at other sites (Heitor and Vicente 2008; Keiper 1988; Weeks 254 

et al. 2000; the frequencies of aggressive behaviors were 2.43, 5.9, and 0.4, respectively). Therefore, 255 

social rank could not be determined statistically.  256 

 257 

3.2 Relative locations of individuals 258 

Analyzing the distance of each individual from the central point revealed that the mean distance was 259 

significantly greater for the male (Uzu) than for five of the seven females (Figure 3; Steel test, n = 61, 260 

Uzu-Uji: t = 5.48, p < 0.01, -Kis: t = 4.19, p < 0.05, -Kat: t = 4.26, p < 0.05, -Aya: t = 1.89, p = 0.95, -261 

Gio: t = 4.44, p < 0.05, -Fus: t = 2.65, p = 0.61, -Aka: t = 4.65, p < 0.01). We did not find any significant 262 

differences in female positioning regarding the center vs. the periphery (ANOVA, n = 61, df = 6, F= 2.03, 263 

p = 0.06). 264 

  265 

3.3 Distribution of distance between individuals 266 

The distribution of inter-individual distances could indicate whether horse positions are random or related 267 

to aggregation or diffusion. The histogram of all inter-individual distances followed a gamma distribution 268 

(shape = 2.24, rate = 0.172; -S test, n = 1708, D = 0.06, p = 0.11) (Fig. 4), while that for nearest-neighbor 269 

distances did not follow a gamma distribution (shape = 1.83, rate = 0.31; K-S test, n = 488, D = 0.1394, p 270 

< 0.01) or a Weibull distribution (shape = 1.18, scale = 6.38; K-S test, n = 488, D = 0.14, p < 0.01) (Fig. 271 

4). The peak of the nearest-neighbor histogram was shifted left compared with that of the all-pair 272 

histogram. We excluded the male from q-value calculation because he was located in the periphery. 273 

Figure 5 shows the q-value histogram. The peak was around 0.5, but the cases less than 0.5 outnumbered 274 

those greater than 0.5.  275 

 276 

3.4 Positioning and orientation of the nearest neighbor 277 
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Rather than being uniform, the density plot for the nearest-neighbor data was biased depending on the 278 

angle (K-S test, n = 444, D = 1, p < 0.01). Figure 6 shows a density plot of nearest neighbors within 5 BL 279 

that is magnified from a density plot within 10 BL. The plot shows that the nearest neighbor tended to be 280 

located toward the sides of a horse more frequently than toward the back or front (Fig. 6). 281 

Next, the ratio of inner products larger than 0 to those less than 0 was smaller when the 282 

nearest neighbor was located behind a horse than when it was located in front (prop test, n = 132, χ2 = 283 

1.56, df = 1, p = 0.10). Thus, when the nearest neighbor was behind a horse, the target individual was less 284 

frequently orientated in a similar direction. Further, the minimum and average values for the rear (mean: 285 

0.62, minimum: −0.64) were higher than those for the front (mean: 0.44, minimum: −0.99), whereas the 286 

maximum values were the same (both were 1).  287 

 288 

3.5 Social network analysis  289 

Three social networks were drawn from the three quantified social interactions: grooming, proximity (< 2 290 

BL; see Methods), and inter-individual distance (Fig. 7). The proximity and inter-individual distance 291 

networks trended towards a correlation, although it was not statistically significant (QAP test, r = 0.30, p 292 

= 0.09). This result was expected because removing auto-correlation between the two networks was not 293 

possible. We found a significant correlation between the grooming and inter-individual distance networks 294 

(QAP test, r = 0.51, p < 0.01), but not between the grooming and proximity networks (QAP test, r = 295 

−0.14, p = 0.27). 296 

 For each network, we next calculated the eigenvector centrality, which indicates power in a 297 

network. Individuals with high eigenvector centralities were different in each of the three networks. 298 

Regarding the inter-individual distance network, no individual had high power in terms of eigenvector 299 

centrality.  300 

 301 

4. Discussion 302 

In the present study, we were able to characterize aspects of individual spatial positioning within a group 303 

of feral horses as a test case using a drone. We found a sex difference in spatial positioning in which a 304 

male was located toward the periphery of the group more frequently than females, at least during the 305 
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breeding and birth season (our observation period). Distribution of inter-individual distances showed a 306 

regularity in that it fit with a gamma distribution. Additionally, spatial distributions were not random 307 

within the area, as indicated by the q-value that tended to be less than 0.5. Nearest neighbors were located 308 

toward the sides of horses more often than toward the rear. Finally, grooming frequency and the spatial 309 

cohesion did not correlate with each other. 310 

Our finding indicating that the distance from the central point to an individual did not differ 311 

among females contradicts a previous study which showed that subordinate horses were more likely to be 312 

located in the periphery of a group comprising a gelding and several females (Ingólfsdóttir and 313 

Sigurjónsdóttir 2008). The richness of food resources in our study site might have resulted in less 314 

competition among individuals. Center/periphery positioning is thought to affect foraging efficiency less 315 

when is food is depleted more slowly, which was the case for grass and herbs that covered this field site 316 

(Morrell and Romey 2008; Hirsch 2007). This could also explain the low frequency of aggressive 317 

behavior during our observation period. The tendency for the male to be located at the periphery could be 318 

related to a seasonal behavioral pattern. Thus, the male might have been attempting to defend females in 319 

the group from other males by staying in the periphery. This possibility is supported by previous research 320 

demonstrating that females choose males that protect them from harassment (Rubenstein 1994; Linklater 321 

et al. 1999). Notably, more than 20 other groups, including bachelor groups, were located in the same 322 

field (Ringhofer et al. 2017). To better understand the social and ecological factors influencing the 323 

positioning of horses, future studies collecting location data in non-breeding seasons will be necessary.  324 

Our result regarding the distance to the nearest neighbor suggests that horses have a repulsion 325 

area with a 3-BL radius. The distribution of distances to the nearest neighbor did not follow a Weibull 326 

distribution. According to a Weibull distribution, which reflects a random distribution of points (Fortin et 327 

al. 2002), the distance between two points can be as close as possible to 0. Thus, a repulsion area creates a 328 

non-Weibull (non-random) distribution. The result of the q-value analysis also supports the idea that 329 

individual horses were not located at random positions. The low frequency of q-values greater than 0.6 330 

further suggests the possibility that individuals are attracted to each other within groups of horses. Thus, 331 

our results indicate that horses might have both areas of repulsion and attraction, similar to findings in 332 

flocks of birds and schools of fish, although the horses might also sometimes follow a random 333 
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distribution as indicated by the ~30% of cases in which the q-value was around 0.5. However, we must 334 

keep in mind that our result is not direct evidence of repulsion and attraction areas, as we relied on 335 

photographic data of stationary positions, rather than measuring movements. Further studies with 336 

movement or velocity data are thus warranted. 337 

 The nearest neighbors of the horses were located on the sides more frequently than to the rear. 338 

Horses are able to see 350 degrees around themselves, but they have a blind spot directly behind them 339 

(Rees 1993). Therefore, horses may express fear of animals or objects grouping to their rear, which 340 

renders them invisible. Our results regarding the orientation of the nearest neighbors support this 341 

hypothesis. The average and minimum values of the inner product for the rear were higher than those for 342 

the front. This result indicates that individuals located behind others did not completely reverse their 343 

orientations to the individuals in front of them. This may be because horses tend to avoid putting animals 344 

in their blind spot or because they try to avoid being in the blind spots of other animals. Anisotropic 345 

positioning of the nearest neighbor has been reported in starlings and surf scoters (Ballerini et al. 2008; 346 

Lukeman et al. 2010; Pettit et al. 2013). But a direct comparison of our findings with horses and the 347 

previous study with starlings should be approached with caution because horses live in 2D space and 348 

starlings live in 3D space. On the other hand, a comparison between horses and surf scoters (Lukeman et 349 

al. 2010) would be more feasible because scoters in the cited study lived in 2D space (floated on the sea 350 

surface). Thus both horses and scoters lived in 2D space and can more easily be compared. Although our 351 

study had a similar research question to that by Lukeman et al. (2010), our results were somewhat 352 

different. In particular, the nearest neighbors of scoters were usually located to the front or rear, and most 353 

were within 2 BL. Preference for positioning with respect to the nearest neighbor seems to depend on the 354 

species, as well as on factors such as environment, the number of individuals in a group, and density of 355 

individuals.  356 

 Kimura (1998) reported that a partner with highest grooming frequency differed from the 357 

most frequent nearest neighbor in free-ranging horses. Our results from social network analysis showed 358 

mixed trends. The social networks measured by grooming frequency and proximity had a positive 359 

correlation, while the social network measured by distance (i.e., used as a quantitative measure) did not 360 

correlate with grooming networks. Individuals with high eigenvector centrality were different in each of 361 
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the three networks. Grooming, proximity, and inter-individual distance might to some extent indicate 362 

different and independent social relationships between individuals. Observing one type of social 363 

interaction is clearly insufficient for describing horse society, and different types of indices can illustrate 364 

different aspects of horse society. 365 

One limitation of our study is the short observation period. However, some factors favor 366 

short-term data acquisition for investigating social relationships in horses. First, addition of individuals 367 

due to the birth of new foals changes the positioning of individuals within a group. In the present study, 368 

we excluded the foals that were dependent on their mothers from the analysis (see Supplementary 369 

Material for the inclusion of foals in the analysis). However, horse foals grow rapidly. Thus, these foals 370 

must be included in the analysis at some point when their spatial positioning becomes independent. 371 

Second, immigration/emigration of individuals between groups is common (Linklater and Cameron 2009; 372 

see Ringhofer et al. 2017 for the data from the present study site), and the addition/loss of individuals will 373 

also affect spatial positioning within a group. Along with the passage of time after the addition of 374 

individuals, the relationships between individuals within a group can change. By the time the 375 

relationships have stabilized again, another immigration/emigration might occur. Therefore, the 376 

relationships of individual horses in our study area are constantly changing. Even if we collect long-term 377 

data, we would need to segment the data into short-term periods based on these reasons. With that said, 378 

long-term data on multiple groups of horses are necessary to verify our results, and we plan to conduct 379 

further research on related topics in the future. 380 

 In terms of using a drone, the advantages include higher accuracy and more objective data 381 

than can be recorded with human eyes at head height. Our method will be applicable to studies with many 382 

other species such as cows, elephants, and other ungulates that have been already monitored by the drone 383 

technology (Vermeulen et al. 2013;Chrétien et al. 2016; Goolsby et al. 2016; Torney et al. 2016; Jung 384 

2017). At the same time however, the use of drones has several environmental limitations. First, flying a 385 

drone is impossible if the wind is too strong (approximately > 10 m/s for the drone we used in our study) 386 

(DJI 2015). In fact, we experienced a situation in which our drone became uncontrollable and flew away 387 

in a sudden strong wind. Second, drones are best when applied to diurnal animals living in open areas. 388 

Recording forest-living animals via drone is difficult and hindered by trees. In addition, using drones to 389 
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record nocturnal animals is still difficult, although using an infrared camera is a potential option. Third, 390 

the battery-life of quadcopter-type drones (like the one used in our study) is only about 15 min, which is 391 

very short. Fixed-wing drones have a longer battery-life, but they are not capable of hovering, and thus 392 

recording animals that stay put in a given area is impossible with fixed-wing drones. Quadcopter drones 393 

are capable hovering but their short battery-life is certainly a limitation. Therefore, we have to take into 394 

consideration the short-battery life when we use drones for scientific studies. Indeed, this limitation was 395 

one of the factors that forced us to limit our analysis to analyze stationary situations. Fourth, quadcopter 396 

drones also make noise, thus it is not suitable for nervous animals that might react to the noise. Using 397 

drones thus has advantages and disadvantages, and our study has provided an example of what can be 398 

achieved when using them in animal studies. Our study has thus opened up new possibilities for studying 399 

animal behavior in the wild. 400 

  401 
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Figure 1. Serra D’Arga and horses.402 

 403 

 404 

Figure 2. Drone picture of the Kyoto group. 405 

 406 
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Figure 3. Average distance (+SE) between each individual and the central point of the group. Uzu is the 407 

only male in this group.  408 

 409 

Figure 4. Histograms of inter-individuals distance. Bin size is 1 body length (BL). (A) Histogram of the 410 

distances between all pairs. The peak of this histogram was around 4 BL. (B) Histogram of the distance to 411 

nearest neighbor. The peak of this histogram was 3 BL. 412 

 413 

 414 

 415 

 416 

 417 

Figure 5. q-value histogram. 418 
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 419 

Figure 6. Density plot of nearest neighbor positions within 5 body lengths (BL). 420 

We drew the density plot of the nearest neighbor based on pooled data from all individuals with the R 421 

package “spatstat” (Baddely and Turner, 2007), with bin sizes of Δx = Δy = 0.5 BL, and smoothening 422 

with a Gaussian Blur = 0.4. If the nearest neighbors were located more than 10 BL away, these cases 423 

were excluded from analysis because 91% of the data regarding the distance to the nearest neighbor fell 424 

within 10 BL.  425 

 426 

Figure 7. Horse social networks (a: distance, b: grooming and c: proximity). 427 
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 430 

Supplemental Figure 1 431 

Distribution of distances between foals and other individuals (Orange) compared with distances between 432 

all individuals including foals (white), and distances between foals and their mothers (Red). The result 433 

shows that the distances between foals and other individuals tended to be shorter than those between all 434 

individuals. Additionally, the distribution of peak distances between foals and their mothers was shifted 435 

to left compared with other distributions.  436 
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