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Degradation Analysis of Solid Oxide Fuel Cells with
(La,Sr)(Co,Fe)O;.5 Cathode/Gd;03-CeO; Interlayer/Y,03;-Zr0,
Electrolyte System: The Influences of Microstructural Change and
Solid Solution Formation

Toshiaki Matsui, ©® ** Siqi Li, Yuki Inoue, Norifumi Yoshida, Hiroki Muroyama,*
and Koichi Eguchi*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku,
Kyoto 615-8510, Japan

Solid oxide fuel cells with a configuration of (La,Sr)(Co,Fe)Os_s cathode/doped ceria interlayer/zirconia-based electrolyte have
been extensively studied to elucidate the degradation mechanism. Various degradation factors were suggested, such as the formation
of highly-resistive SrZrO3 phase, and the reduction in active reaction sites because of the agglomeration of constituent materials.
Among them, however, the influence of the ceria-zirconia solid solution formation at the doped ceria interlayer/zirconia-based
electrolyte on the cell performance has not been elucidated sufficiently. In this study to achieve a comprehensive understanding
of degradation phenomena at the cathode side, the chemical information of constituent materials, as well as the microstructural
parameters, were analyzed for single cells before and after discharge operation. Especially, the ionic conductivity of solid solutions
formed in the (La,Sr)(Co,Fe)03_5/Gd; 03—Ce0,/Y,03-ZrO, system was investigated in detail to clarify the ionic conductivity profile
at the Gd;03-Ce0,/Y,03-ZrO; interface.
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Solid oxide fuel cells (SOFCs) are promising power generation
devices due to high energy conversion efficiency, high fuel flexibility,
and low environmental load. Although several companies have com-
mercialized SOFC systems,'= the durability and reliability of SOFC
cells/stacks have not been fully established. Further fundamental stud-
ies are required to clarify the degradation factors and mechanisms. In
Japan, NEDO (New Energy and Industrial Technology Development
Organization) managed a series of projects, which focused on the
durability/reliability of SOFC stacks. Long-term performance tests
by CRIEPI (Central Research Institute for Electric Power Industry)
on six industrial stacks have revealed that the cathode degradation is
dominant; in most stacks, the anode degradation rate was small.*

In real stacks, the mixed oxide ion-electron conductor of
(La,Sr)(Co,Fe)Os_5 (LSCF) is widely used as a cathode to achieve
a good balance between the performance and the operating tempera-
ture. In this case, the cell configuration of LSCF cathode/doped ce-
ria interlayer/zirconia-based electrolyte is generally adopted; a doped
ceria interlayer serves as a diffusion barrier to prevent the solid state
reaction between LSCF and zirconia-based electrolyte."'* Substantial
efforts have been devoted to elucidate the degradation mechanism in
this system, and multiple degradation factors were pointed out; e.g., i)
the formation of highly-resistive SrZrO; (SZO) phase, ii) the agglom-
eration of LSCF and doped ceria phases, iii) the reduction in triple
phase boundary length, and iv) the formation of ceria-zirconia solid
solutions with low ionic conductivity. For the degradation factor i),
the formation of SZO phase is inevitable when the porous interlayer
is used.”>™" Furthermore, the cathodic polarization accelerates this
chemical reaction.”-?> Degradation factors ii) and iii) mainly reflect
the reduction in electrochemically-active reaction sites.??> Although
the last factor iv) has been recognized well,'>?*-?7 the influence of the
ceria-zirconia solid solution formation on the cell performance has not
been elucidated sufficiently.

Recently, we have reported the ionic conductivity of solid solutions
formed in the Y,0;-ZrO, (YSZ) electrolyte layer for a single cell
with a configuration of LSCF/Sm,03—CeQ,/YSZ;*® the composition
of solid solutions was determined by STEM-EDS analysis. Samar-
ium ion in the doped ceria interlayer migrated readily to the YSZ

*Electrochemical Society Member.
“E-mail: matsui @elech.kuic.kyoto-u.ac.jp

electrolyte and formed the low-conductive solid solutions; their ionic
conductivity was more than one order of magnitude lower than that
of YSZ. It was concluded that the formation of Sm,03-Y,03-ZrO,
solid solutions was mainly responsible for the lower conductivity. Fur-
thermore, the doping effect of Sm** and Gd** on the conductivity of
Y,0;-ZrO; phase was also studied. We found that the dopant species
in the interlayer had a great impact on the ionic conductivity; the ionic
conductivity of Sm,03-Y,03;-ZrO, was significantly lower than that
of Gd,03-Y,03-ZrO; even with the same dopant concentration.

In real stacks the interlayer of Gd,03;—CeO, is frequently ap-
plied, but the behavior of ionic conductivity in the vicinity of Gd,O3—
Ce0,/YSZ interface, especially the doped ceria side, has not been
elucidated. So, in this study, we mainly aimed to clarify the ionic
conductivity profile at the Gd,0;—CeO,/YSZ interface, based on the
average structure. Furthermore, other degradation factors described
above were also studied quantitatively to achieve a comprehensive
understanding of degradation phenomena at the cathode side. Since
the commercialized stacks are operated at < 800°C, accelerated tests
were conducted at 1000°C to investigate the influence of the interdif-
fusion of constituent elements. After discharge operation of the cell
for 400 h, the dissection analysis was conducted.

Experimental

The electrolyte-supported cell of Ni-YSZ|YSZ|GDC|LSCF was
fabricated as follows. A disk of 8 mol% yttria-stabilized zirconia (ab-
breviated as YSZ, Tosoh, 24 mm in diameter, 500 pwm in thickness)
was used as an electrolyte. The Ni-YSZ cermet anode with a volume
ratio of 60/40 was prepared from NiO (Wako Pure Chemical Indus-
tries) and YSZ powder (8 mol% Y,03;—ZrO,, Tosoh). The mixture of
NiO and YSZ was heat-treated at 1200°C for 5 h. The obtained powder
was mixed with polyethylene glycol and 10 wt% carbon black to form
a slurry. The resultant slurry of NiO-YSZ was screen-printed onto the
electrolyte and subsequently fired at 1400 °C for 5 h in air. The slurry
of Ce9Gdy 10,5 (GDC, Shin-Etsu Chemical Co., Ltd.) was screen-
printed on the other face of electrolyte, and then fired at 1250°C for
10 hin air. After that, Lag ¢Sty 4Co,Fey 303 (LSCF, Kusaka rare metal
products) was applied as a cathode; the slurry was screen-printed and
subsequently fired at 1150°C for 5 h in air. The area of each electrode
was 0.28 cm?. The reference electrode of platinum wire was attached
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to surround the side edge of the YSZ disk and fixed by a platinum
paste (Metalor Technologies (Japan) Corp.).

The single cell was sandwiched by alumina tubes with Pyrex glass
seal. The anode was reduced under a hydrogen atmosphere at 1000°C
prior to electrochemical measurements. The gases of 97% H,-3% H,O
and O, were supplied to the anode and cathode, respectively, with a
flow rate of 100 mL min™. Electrochemical measurements were con-
ducted at 1000°C using the CellTest system (Solartron Analytical, po-
tentiostat/galvanostat 1470E and frequency response analyzer 1455).
For ac impedance measurements, the applied frequency was in the
range of 0.1 Hz to 500 kHz with a voltage amplitude of 10 mV.

The microstructure of LSCF/GDC/YSZ system was analyzed
quantitatively by using a focused ion beam—scanning electron micro-
scope (FIB-SEM; NVision 40, Carl Zeiss-SIINT) equipped with an
energy dispersive X-ray spectrometer (EDS; INCAxact, Oxford In-
struments). The cells were infiltrated with the epoxy resin (Marumoto
Struers KK) under vacuum conditions, and then cut and polished for
the 3D reconstruction. The 2D cross-sectional SEM images (x-y plane)
of the LSCF/GDC/YSZ system were collected along the z-direction
with a spacing of about 30 nm by sequential milling-and-observation
operation, as is the same manner in our previous reports.’>>*2 The
3D microstructure of LSCF/GDC/YSZ system was reconstructed in a
computational field by aligning regularly spaced cross-sectional SEM
images, and then the microstructural parameters were calculated.

Furthermore, solid solutions were synthesized from the
corresponding metal nitrates via the coprecipitation method;
Ce(NO3);3-6H,0, Gd(NO;);-6H,0, ZrO(NO;),-2H,0, Sr(NO;);
(Wako Pure Chemical Industries), and Y(NOj3);-6H,O (Aldrich).
Metal nitrates were dissolved in pure water, and then the pH of the
solution was controlled to be 11 by adding aqueous ammonia (Wako
Pure Chemical Industries). The resultant mixture was stirred overnight
at 80°C, and subsequently dried at 120°C. The obtained coprecipitate
was calcined at 700°C for 5 h in air. The resultant powders were cold-
isostatically pressed into pellets at 300 MPa and sintered at 1600°C
for 10 h in air; the atomic ratio of constituents in the sintered sample
was identical to that of nominal composition. The relative density of
sintered pellets was over 95%. The pellets were cut into the rectangu-
lar shape, ca. 3.5 mm x 3.5 mm x 8.0 mm. The ionic conductivity of
resultant samples was measured at 600—1000°C in air by the dc four-
probe method. The platinum paste and wire were applied as electrodes.
Some pellets were grinded into powders, and their crystal structures
were analyzed by X-ray diffraction (XRD, Rigaku Ultima IV X-ray
diffractometer, Cu Ka). The working condition was 40 kV and 40
mA with a scanning rate of 5° min~—'. Raman spectroscopy was also
performed for the phase identification by using LabRAM HR-800
(Horiba Jobin Yvon). Samples were irradiated with the Ar ion laser
(Green line, 20 mW, 514.5 nm output).

Results and Discussion

Fig. 1 shows time courses of the potential and the ohmic resistance
between the cathode and the reference electrode, and the polariza-
tion resistance of LSCF cathode during discharge (0.3 A cm™) for
400 h at 1000°C. The ohmic and polarization resistances decreased
significantly from the beginning of discharge up to ca. 20 h, and then
gradually reduced up to 280 h. This performance improvement will be
due to the current passage effect;** similar behavior was observed in
our previous report with the LSCF/Sm,03;—Ce0,/YSZ system.?> Over
280 h of operation, resistances were changed into an increase, suggest-
ing the progress of deterioration. Thus, the potential change in Fig. 1a
can be explained by a series of changes in these resistive components.
After this test, the post-dissection analysis was conducted.

The microstructural evolution upon discharge was quantitatively
analyzed by FIB-SEM with focusing on the cathode side. The ob-
tained parameters are summarized in Table I. The result for the single
cell before discharge is also listed for comparison. After discharge
operation, the length of active triple phase boundary (TPB) decreased
drastically, which was in contact with open pore, GDC, and LSCF.
The contact area between pore and LSCEF, so-called as the double
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Figure 1. Time courses of (a) cathode-reference electrode potential and (b)
ohmic (cathode-reference electrode) and polarization resistances of cathode for
a single cell during discharge at 0.3 A cm™2 for 400 h. Operating temperature:
1000°C; Cathode gas: O,; Anode gas: 3% H,O-97% H,.

phase boundary area (abbreviated as DPB area), also reduced. Thus,
the agglomeration of LSCF was the main reason for the reduction
of active reaction parts. These factors will predominantly affect the
polarization resistance. On the other hand, a reduction in the contact
area between LSCF and GDC will mainly contribute to an increase

Table 1. Microstructural parameters of reconstructed
LSCF/GDC/YSZ systems before and after discharge at 0.3 A cm™
for 400 h.

Operating time

of the cell

Oh 400 h

Dimension (jum) X 24.57 24.57
12.36 12.36
z 12.88 12.62

Contact area between LSCF and GDC/y—z 0.51 0.33

area (Wm2/pum?)

Active TPB length/y—z area (m/pum?)* 3.33 1.61
DPB area/LSCF volume (um?/pum?)** 2.92 1.60
LSCEF porosity (%) 43.6 33.2

0.0611 0.212
0.0151 0.0279

SrZrO3 volume/y—z area (wm3/pm?)
Co304 and CoFe,;04 volume/LSCF volume
(Lm*/um?)

*The length was calculated from the contact interface between open
pore, GDC, and LSCEF, and divided by the y-z area.

**The contact area between pore and LSCF was divided by the phase
volume of LSCF.
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Figure 2. (a) The cross-sectional BSE image of GDC/YSZ interface before
discharge, (b) the EDS line scan profile along the yellow line in (a), and (c) the
ionic conductivity profile at 800°C predicted from Fig. 4.

in the ohmic resistance. Furthermore, the volume of highly-resistive
SrZrO; phase in the vicinity of the GDC/Y SZ interface was 3.5 times
larger than that in the as-prepared cell, indicating that the current pas-
sage accelerated the SrZrO; formation. Note that the SrZrO; phase
was located dispersedly, not formed a thin layer, as was reported in
our previous report.”> The formation of by-products such as Co3O4
and CoFe, 0, phases was also confirmed by the EDS analysis, and its
amount increased after discharge operation. Thus, we can guess that
the segregation of A-site cation of Sr>* in the LSCF lattice resulted in
the formation of these oxides consisting of residual B-site elements.
In the next part, the influence of solid solutions formed at the
porous GDC interlayer/YSZ electrolyte interface on the ionic con-
ductivity was investigated precisely. Fig. 2a shows the cross-sectional
back-scattered electron (BSE) image of the GDC/YSZ interface be-
fore discharge, which corresponds to the square part in Fig. S1(a) in
the electronic supplementary information. Fig. 2b displays the line
scan profile of constituent elements along the yellow line in Fig. 2a;
this measurement was conducted by using SEM-EDS to obtain the
composition information based on the average structure because the
interfacial structure is complicated and its composition changes de-
pending on analyzed points. The same series of BSE image and line
scan profile after discharge is summarized in Figs. 3a and 3b. It is clear
that the substantial interdiffusion of constituent elements occurred
even during the cell fabrication process. Especially, the diffusion of
gadolinium was prominent in the YSZ electrolyte side. Furthermore,
the interdiffusion has progressed during the discharge operation. An
increase in the amount of strontium was also observed, which agreed
well with an increment in the volume of SrZrO; in the vicinity of the
GDC/YSZ interface in Table I. Note that the diffusion of other cathode
components, such as Co and Fe, was not detected. Subsequently, the
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Figure 3. (a) The cross-sectional BSE images of GDC/YSZ interface after
discharge for 400 h, (b) the EDS line scan profile along the yellow line in (a),
and (c) the ionic conductivity profile at 800°C predicted from Fig. 5.

EDX data was analyzed in detail at points 1~20 in Figs. 2a and 3a.
The atomic ratio of constituent elements at representative points was
picked up and summarized in Table II with sample notations. Based on
these results, solid solutions with corresponding compositions were
synthesized and their crystalline structures were analyzed. The XRD
patterns and Raman spectra of solid solutions are displayed in Figs.
S2-S5 (electronic supplementary information), and the obtained phase
information was summarized in Table II. For the as-prepared sample,
the main phase of solid solutions was changed along the yellow line in
Fig. 2a. At the YSZ side, solid solutions were the mixture of the cubic
and tetragonal zirconia phases and Gd,(Zr;_,Ce,),0; phase with the
pyrochlore structure. The formation of StZrO; phase was confirmed
in the vicinity of GDC/YSZ interface, and then the main phase was
changed to the fluorite-type ceria phase at the GDC side. This tendency
was unchanged even after discharge operation.

Figs. 4 and 5 show the temperature dependence of the ionic con-
ductivity for solid solutions at 600—1000°C. The data for YSZ, GDC,
GdyZr,07,* and [(Zr0,),_«(Ce03),]0.92(Y203)00s (x = 0.1, 0.5)*° are
also plotted for comparison. All solid solutions exhibited lower ionic
conductivity as compared to YSZ and GDC. This result indicates that
the elemental interdiffusion results in the formation of low conductiv-
ity region at the YSZ/GDC interface. Furthermore, the lowering extent
of conductivity was significantly dependent on analyzed positions. For
the as-prepared sample, the gradient of P-3 and P-4 was almost the
same and was steeper than that of others. This can be explained by
the difference in the main phase. The samples of P-3 and P-4 were
the mixture of cubic-tetragonal zirconia phase and Gd,(Zr,.,Ce,),0;.
The ionic conductivity of these samples was lower than that of
ceria-zirconia solid solutions of [(ZrO,;);_,(Ce03),]0.92(Y203)p.08 (x =
0~0.5). This result is the same as was observed in the LSCF/Sm, 03—
Ce0,/YSZ system.?® Thus, the migration of gadolinium from the
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Table II. Sample notation, atomic ratio of constituent elements, and phase information of solid solutions at representative points in

Figs. 2a and 3a.

Sample notation

Atomic ratio of constituent elements

Phase information

Before discharge Point 3 P-3
Point 4 P-4

Point 6 P-6

Point 7 P-7

Point 8 P-8

After discharge for 400 h Point 13 P-13
Point 15 P-15

Point 17 P-17

Point 18 P-18

Point 19 P-19

interlayer side and the subsequent formation of Gd,0;—Y,0;-ZrO,
solid solutions will be mainly responsible for the lower ionic con-
ductivity. In Fig. 2a, the contrast of gray scale turned from dark gray
to white gray in the vicinity of P-6 and P-7. This boundary can be
roughly considered as the phase change region from the zirconia-based
phase to the ceria-based phase; note that this part did not correspond
exactly to the intersection point between the zirconium and cerium
lines in Fig. 2b. In fact, the main phase of P-6, P-7, and P-8 was
the fluorite-type ceria and a little amount of SrZrO; was contained.
Considering that these solid solutions exhibited higher conductivity
than SrZrOj itself, the impact of insulating SrZrO; phase on the to-
tal conductivity is not significant; the ionic conductivity of StZrO;
is ca. 10°~10 S cm™ at 1000°C.*® On the other hand, after 400
h of discharge, the distribution of ionic conductivity was different
from that in the as-prepared sample. The samples of P-13 and P-15
exhibited higher conductivity than P-3 and P-4 while these materials
had the same main phases; the ionic conductivity of P-13 and P-15
was located between [(ZI‘OZ)1,X(CCOZ)X]0492(Y203)0'08 (X = 01’\'05)
This will be due to the lower gadolinium ratio in these solid solutions.
Note that the significant reduction in the ionic conductivity was con-
firmed for P-17 and P-18; their conductivity was almost two orders
of magnitude lower than that of GDC at 1000°C. Judging from the
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Figure 4. Temperature dependence of the ionic conductivity of solid solutions
formed in the vicinity of GDC/YSZ interface in Fig. 2a. For comparison, the
data for YSZ, GDC, Gd>Zr,07,%* and [(ZrO2)1_+(CeO0)x10.92(Y203)0.08 (x =
0.1, 0.5)35 are also plotted.
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structural analysis, it can be expected that a certain amount of insu-
lating SrZrO; phase was formed. This will resulted in the significant
reduction in the ionic conductivity. This expectation coincides to the
fact that as can be seen in Fig. 3a, P-17 and P-18 were located on a
dark gray region, which was a SrZrOs-concentrated region. If such a
S1ZrOs-enriched part formed a continuous thin layer, the ionic con-
duction will be inhibited considerably. J. Sz4sz et al. reported that the
firing temperature of GDC interlayer affects the formation process of
SrZrO;-concentrated region.'® Whereas in this study the formation of
continuous thin layer was not observed, we need to pay attention to
this phenomenon during the long-term operation because of the accel-
eration of strontium migration under a discharge condition. Although
P-19 consisted of the fluorite-type ceria phase with an atomic ratio
of Ce/Gd/Zr = 4.8/1.1/1.0, its conductivity was about one order of
magnitude lower than that of GDC. Since the Ce/Gd ratio in P-19
was close to that in Cey3Gd,0,_s, the additive effect of zirconium to
(Ce,Gd)O, was studied. Since P-19 can be roughly considered as the
Ce(3Gdj,0,_s-based solid solution dissolved with 14% of zirconium,
its conductivity was compared with the pristine CeysGdy,0,_s> and
the Ce(sGdy,0,_s-based solid solution dissolved with 10% of zirco-
nium (see Fig. 6). It is apparent that the addition of zirconium led to
the drastic reduction in the ionic conductivity. Furthermore, the ionic
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Figure 5. Temperature dependence of the ionic conductivity of solid solutions
formed in the vicinity of GDC/YSZ interface in Fig. 3a. For comparison, the
data for YSZ, GDC, GdyZr,07,%* and [(ZrO2)1_+(CeO02),10.92(Y203)0.08 (x =
0.1, 0.5)35 are also plotted.
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Figure 6. Temperature dependence of the ionic conductivity of P-
19, GDC, CepgGd202-5.%7 [(Ce02)08(Gd203)0.1109(Zr02)0.1, and
[(Ce02)0.9(Gd203)0.0510.9(ZrO2)o.1.

conductivity decreased with an increase in a zirconium content. When
these temperature dependences of ionic conductivity were examined
from the viewpoint of a gadolinium content in the sample, a high con-
tent of gadolinium mitigated the reduction in the ionic conductivity;
the Ce9Gdy ;0,_s-based solid solution dissolved with 10% of zirco-
nium exhibited lower conductivity, compared with the CeysGdy,0;_s-
based solid solution dissolved with 10% of zirconium though the ionic
conductivity of pristine Cey9Gdg ;O,_; and CegGdy,0,_5 was almost
comparable with each other. Consequently, the zirconium dissolution
to the ceria-based oxide is responsible for the lower conductivity of
P-19.

Figs. 2c and 3c show the ionic conductivity profiles at 800°C along
the yellow line in Figs. 2a and 3a, respectively; the ionic conductivity
ateach point was extracted from Figs. 4 and 5. In both cases, a low con-
ductive region was formed at the YSZ/GDC interface with a thickness
of ca. 2~3 pm. This tendency is similar to that observed for ceria-
zirconia solid solutions; the ionic conductivity shows the downward
convex curve depending on the composition at fixed temperatures, as
is reported for (Ce,Zr;_,)o.s Y0201.0-5 (0< x<1).*} Note that a low con-
ductive region was formed even soon after the cell fabrication process.
However, the shape of downward convex curve was somewhat difter-
ent depending on a current passage condition; a downward convex
curve was expanded in the depth direction after discharge operation
because of a significant reduction in the ionic conductivity of solid
solutions. This will be induced by the continuous interdiffusion of el-
ements during the discharge operation. Therefore, this will become a
potential degradation factor upon prolonged operation, leading to an
increase in the ohmic loss.

Conclusions

In this study, degradation factors at the cathode side in the
LSCF/GDC/YSZ system were comprehensively studied. As is re-
ported by many researchers, the significant microstructural change
upon discharge was observed; the formation of highly-resistive StZrOs
phase, and the reduction in active reaction sites because of the agglom-
eration and elemental diffusion of constituent materials. Furthermore,
we found that the formation of solid solutions at the GDC/YSZ in-
terface has a great potential to degrade the cell performance upon

prolonged operation. At the YSZ side, the migration of gadolinium
from the GDC interlayer side and the subsequent formation of Gd, 03—
Y,03-Zr0O, solid solutions resulted in the reduction in the ionic con-
ductivity. On the other hand, at the GDC side, the zirconium dissolution
to the ceria-based oxide was responsible for the lower conductivity. As
a result, the ionic conductivity profile at the GDC/YSZ interface has
revealed that a low conductive region was formed with a thickness of
ca.2~3 pm even soon after the cell fabrication process. Furthermore,
this specific region was expanded after discharge operation because
of the continuous interdiffusion of elements, accompanied by a sig-
nificant reduction in the conductivity. Thus, a multilateral analysis is
indispensable to understand and predict the degradation phenomena
at the cathode side upon long-term discharge operation.
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