
Title Electrochemical actuation of nanoporous Ni in NaOH solution

Author(s) Hakamada, Masataka; Matsumura, Satoshi; Mabuchi, Mamoru

Citation Materials Letters (2012), 70: 132-134

Issue Date 2012-03-01

URL http://hdl.handle.net/2433/237628

Right

© 2011. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/; The full-
text file will be made open to the public on 1 March 2014 in
accordance with publisher's 'Terms and Conditions for Self-
Archiving'.; This is not the published version. Please cite only
the published version. この論文は出版社版でありません。
引用の際には出版社版をご確認ご利用ください。

Type Journal Article

Textversion author

Kyoto University



1 

Electrochemical actuation of nanoporous Ni in NaOH solution 

Masataka Hakamada*, Satoshi Matsumura and Mamoru Mabuchi 

Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, 

Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan 

*Corresponding author. Tel: +81-75-753-5427; Fax: +81-75-753-5428 

E-mail: hakamada.masataka.3x@kyoto-u.ac.jp (M. Hakamada) 

 

Abstract: The fabrication of a bilayer-stacked Ni electrochemical actuator is reported. The stacked 

bilayer sheet composed of bulk and nanoporous Ni deformed when a potential of ±1 V was applied in 

aqueous NaOH solution, which is the first report of nanoporous Ni exhibiting actuation characteristics. 

Actuation is considered to have a strong relationship with the electrical double layer, because cyclic 

voltammetric measurements suggested that the effect of oxygen adsorption on the surface was minor. The 

results suggest that nanoporous Ni can be used as an actuator, and it has potential in being applied for 

commercial use because of its low price and high availability. 
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1. Introduction 

The direct conversion of electrical energy to mechanical energy is important in many applications 

including robotics, artificial muscles, optical displays, prosthetic devices, optical communication and 

micromechanical devices [1–3]. Thus, increasing effort to improve the actuation characteristics is being 

made. Piezoelectric ceramics [4], shape memory alloys [5] and magnetostrictive materials [6] are 

well-known conventional actuation materials and their applications have been commercialized. However, 

these conventional materials have drawbacks including an upper limit of operation temperature, voltage 

requirements of up to 100 V [7] and small work densities per cycle. Polymer actuators have been 
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proposed as an alternative because of their low weight and cost, flexibility and wide range of material 

options. However, the Faradaic process involved in the actuation requires dopant diffusion and structural 

changes [7], which limit the response, life cycle and energy conversion efficiency [7]. 

Aggregated Pt nanoparticles in an electrolyte have recently been investigated as a novel and promising 

actuator [8], as their high output and good mechanical strength are ideal for miniaturization. Various 

nanoporous metals including Au [9] and Au-Pt [10] fabricated by dealloying can be also used as actuators 

in an electrolyte. In the current study, we show that nanoporous Ni also possesses actuation characteristics 

in aqueous NaOH solution. Ni is cheaper and more abundant than Au and Pt, so nanoporous Ni may be a 

more preferable actuator material than nanoporous Au and Pt. 

 

2. Materials and Methods 

Commercially available Ni (>99.9%) and Mn (>99.9%) ingots were melted together by arc melting 

under an Ar atmosphere to produce a precursor Ni0.3Mn0.7 alloy ingot. The Ni0.3Mn0.7 ingot was then 

annealed for homogenization at 1173 K for 24 h under an Ar atmosphere, followed by water-quenching to 

avoid the formation of Ni-Mn intermetallic species. The Ni0.3Mn0.7 ingot was then cold-rolled by several 

passes to a thickness of 0.2 mm [11]. 

Fig. 1 illustrates the fabrication of the actuator sheet composed of a bulk and nanoporous Ni stacked 

bilayer. Ni was initially electrodeposited onto the rolled Ni-Mn sheet. The electrolyte was composed of 

NiSO4·6H2O (150 g/L) and NiCl2·6H2O (15 g/L), and the pH was adjusted to 4.0 using H3BO3. The 

working electrode and counter electrode were the Ni-Mn film and bulk Ni sheet, respectively. A direct 

current density of 30 mA/cm2 was applied for 1 h at 333 K. The Ni-electrodeposited Ni-Mn sheet was 

then heated at 773 K for 2 hrs under Ar flow, to allow diffusion bonding to occur. The (Ni-Mn)/Ni sheet 

was then dealloyed in 1 mol/L (NH4)2SO4 at room temperature. A three-electrode electrochemical cell 

controlled by a potentiostat was used for dealloying. The counter electrode, working electrode and 
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reference electrode were platinum wire, (Ni-Mn)/Ni sheet and a saturated calomel electrode (SCE), 

respectively. An electrochemical potential of −650 mV (vs SCE) was applied on the working electrode for 

30 h until very little current was detected. The dealloying conditions were similar to those reported 

previously [11]. 
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Figure 1.  

Microstructures of the nanoporous/bulk Ni bilayer sheet were investigated by scanning electron 

microscopy (SEM) and energy-dispersive X-ray spectrometry (EDXS). Cyclic voltammetry (CV) was 

conducted using a potentiostat and a typical three-electrode electrochemical cell, with a Pt plate counter 

electrode, SCE reference electrode and sample working electrode in aqueous 1 mol/L NaOH solution. 

To determine the actuation in nanoporous Ni, the nanoporous/bulk Ni bilayer sheet (length, width and 

thickness of 40, 3 and 0.25 mm, respectively) was immersed in 1 mol/L NaOH as a working electrode. 

The counter electrode was a platinum wire. The potential difference between the electrodes was switched 

from −1 to +1 V every 10 seconds, and the movement of the specimen was observed with a 

stereomicroscope. A strain gauge was pasted on the bulk Ni side of the specimen so that the strain was 

simultaneously monitored during switching of the applied potential. A characteristic evaluation of the 

actuator with the strain gauge was carried out previously [12]. 

 

3. Results and Discussion 

Dealloying resulted in a composite foil consisting of a 200-µm-thick layer of nanoporous Ni covered 
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with 50 µm of solid Ni. A typical SEM image of the nanoporous Ni is shown in Fig. 2a. Image analyses 

showed that the ligament diameter was approximately 10 nm. The EDXS spectrum in Fig. 2b showed that 

Mn dissolved selectively from Ni0.3Mn0.7. 
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Figure 2. 

When the potential difference between the electrodes was switched from −1 to +1 V in the NaOH 

solution, the specimen moved reversibly in response to the changes in potential. The tip of the sheet 

moved by up to 0.5 mm. 

The variation in strain during potential switching is shown in Fig. 3, where the positive strain means 

the expansion of nanoporous layer. The strain was well-aligned with the voltage change; i.e. the strain 

increased when +1 V was applied and vice versa. A fast strain response was obtained, similar to the case 

reported for nanoporous Au [9]. 

The adsorption and desorption of oxygen have been reported to have an effect on the actuation [10] and 

mechanical response [13] of nanoporous Au. CV curves in Fig. 4 show no clear peaks for the adsorption 

and desorption of oxygen, suggesting that oxygen sorption has a minor effect on the actuation of 

nanoporous Ni, although direct comparison between actuation (Fig. 3) and CV (Fig. 4) is difficult because 

of the difference in the electrode setup (2-electrode and 3-electrode). 
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Figure 3.  
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Figure 4. 

The dependence of surface stress on the surface charge density for a clean metal surface has been 

known as electrocapillarity [14], and theoretically predicted based on the jellium model [15,16]. 

Therefore, nanoporous metals exhibit actuator characteristics because they have a large surface-to-volume 

ratio and considerable charge induced on their surface [8,9]. It has been clarified that modified bonding in 

the space-charge layer within the metal surface has an important effect on the change in surface stress 

[8,9,16,17]. That is, induced charge varies the net charge in space-charge layers at the metal surface. Thus, 

the change in the electronic density of states leads to a change in surface stress. If this concept is valid, 

then each metallic species should exhibit different actuation behavior. 

The coexistence of lattice expansion and contraction at the surface of nanoporous metals [18] may vary 

the electronic density of states of the surface. Therefore, we also consider that nanoporous metals exhibit 
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actuator characteristics not only because they have a large surface area, but also because the electric 

density of states is changed by the disordered lattice at the surface [17]. An investigation of the difference 

between nanoporous Ni and Au in actuation characteristics based on electronic theory may be helpful for 

further understanding of this concept. 

In the case of nanoporous Au and Pt, clean metallic surface state shows expansion under the positive 

potential sweeping [10], which was also observed in the present nanoporous Ni. On the other hand, 

according to Pourbaix diagram of Ni species [19], contribution of hydrogen adsorption/desorption due to 

possible naturally-oxidized surface state of Ni should be taken into consideration. 3-electrode setup of 

electrochemical cell during actuation test will be useful for further clarification [10]. 

 

4. Conclusions 

The actuation of nanoporous Ni in NaOH has been demonstrated for the first time, in which the strain 

varied sensitively with the change of induced potential. CV results suggested that oxygen sorption had a 

minor effect on the actuation of nanoporous Ni in NaOH aqueous solution. In contrast to Au and Pt, Ni 

has magnetic properties [20] and the present nanoporous Ni actuator may possess synergistic effects of 

piezoelectric and magnetostrictivity. 
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Figure Captions 

Figure 1. Preparation of the nanoporous/bulk Ni stacked bilayer sheet. 

Figure 2. (a) SEM image and (b) EDXS spectrum of nanoporous Ni fabricated by dealloying. EDXS 

indicated 18 at.% of residual Mn. 

Figure 3. Strain variation during potential switching of the nanoporous/bulk Ni actuator in aqueous 

NaOH. 

Figure 4. Cyclic voltammetry curves for the nanoporous/bulk Ni stacked bilayer in 1 mol/L NaOH. 


