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Abstract: Faults in power systems cause voltage sags, which, in turn, provoke large current peaks in grid-
connected equipment. Then, a complete knowledge of the inverter behaviour is needed to meet fault ride-
through capability. The aim of this paper is to propose a mathematical model that describes the behaviour 
of the currents that a three-phase inverter with RL filter inject to a faulty grid with symmetrical and 
unsymmetrical voltage sags. The voltage recovery process is considered, i.e., the fault is assumed to be 
cleared in the successive zero-cross instants of the fault current. It gives rise to a voltage recovery in 
different steps (discrete voltage sag), which differs from the usual model in the literature, where the voltage 
recovers instantaneously (abrupt voltage sag). The analytical model shows that the fault-clearing process 
has a strong influence on the injected currents. Different sag durations and depths have also been 
considered, showing that there exist critical values for these magnitudes, which provoke the highest 
current peaks. The analytical study is validated through simulations in MATLAB

TM and through experimental 
results. 
 

1. Introduction 

Nowadays, there has been a noticeable increase in the 
penetration of renewable energy systems into the main grid, 
whose percentage could reach up to 80% by 2050 [1]. This 
will imply a new scenario as far as power generation is 
concerned: the traditional high power stations based on 
nuclear, thermal or hydro power will reduce their 
importance, as renewable energy systems will increase its 
contribution into power generation. This will cause a 
noticeable reduction in the CO2 emissions due to the 
combustion of carbon-based fuels, but it has the drawback 
that the new power generation units will not be as robust as 
the traditional ones under grid disturbances. Certainly, high-
power synchronous machines used for electricity generation 
in traditional power stations have strong inertia, so they can 
get over faults in power systems with relatively no 
malfunction. However, when a renewable energy system is 
connected to the grid, it becomes “weak” under electrical 
disturbances, as there exist no inertia. Moreover, the critical 
point is the three-phase inverter, as this device couples the 
DC-link (where the energy delivered from the renewable 
energy source is stored) with the main grid. In order to get 
over this shortage in renewable energy systems, control 
techniques have been proposed in the literature. 

Among all grid disturbances, voltage sags are the most 
common ones [2]. They are mainly caused by faults in 
power systems, which can cause a reduction in the rms 
magnitude in one or two phases (unsymmetrical voltage 
sags) or in the three phases (symmetrical voltage sags). 
Studies in the literature reveal that large current and torque 
peaks appear on grid-connected equipment, such as 
transformers [3] or induction motors [4]-[5]. Protections in 
power systems are a good solution to tackle the problem [6], 
but they disconnect the equipment from the grid, thus power 

is not sent to the end-users. For this reason, it is important to 
propose analytical models that help in the understanding of 
grid-connected equipment under voltage sags with the aim 
of providing solutions to mitigate the problem without 
disconnecting the system from the grid (fault ride-through 
capability).  

The aim of this paper is not to provide a robust or a 
sound control for grid-connected renewable energy systems 
(a summary of these control techniques, as well as the grid 
interconnection issues between wind and photovoltaic 
systems and the grid can be found in [7]). This paper 
focuses on the study that the voltage recovery process cause 
on grid-connected inverters, because it gives rise to less 
severe effects than when sags are assumed to be cleared 
instantaneously. Then, the instantaneous voltage recovery 
process (abrupt sag) overestimates the sag severity, while if 
the voltage recovery process takes into account the 
successive zero-cross instants of the fault current (discrete 
sag), the sag severity is weakened, which is what it happens 
in real applications. 

This paper is structured as follows. Firstly, a description 
of voltage sags and the voltage recovery process is given. 
Secondly, the analytical model of a three-phase grid-
connected inverter with an RL filter is carried out when 
subject to either symmetrical or unsymmetrical voltage sags. 
Thirdly, the sag parameters influence (duration and depth) is 
analyzed. Finally, the analytical study has been validated 
through simulations in MATLAB

TM and experimental results. 

2. Voltage sags 

Voltage sags are the grid disturbances originated mainly 
by faults, which cause a decrease in the rms voltage with 
respect to the steady-state pre-fault voltage from 0.1 pu and 
0.9 pu and the usual durations go from 0.5 cycles and 1 
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minute [8]. Sags are characterized by four parameters [2]: 
depth (h), duration (Δt), phase-angle jump and fault current 
angle (ψ). 

The sag depth (h) is defined for symmetrical sags as the 
remaining voltage with respect to the pre-fault steady-state 
voltage, and for unsymmetrical sags it is defined for radial 
feeders after applying a voltage divider for the positive- and 
negative-components [2]. The fault current angle indicates 
the origin of voltage recovery, as it is defined as the instant 
when fault current crosses zero. It varies between 75º and 
85º for transmission systems [9]. In this paper, the three-
phase inverter is assumed to be connected at the 
transmission level, so a fault current angle of ψ = 80º is 
considered. Moreover, for transmission grids it is possible to 
neglect the phase-angle jump [2]. Finally, the duration is 
defined as the time that goes from the instant in which the 
sag is originated until the instant in which the last phase of 
the protections clear the fault. It should be noted that in the 
literature this fault-clearing process is assumed to be done 
instantaneously, while what it really happens is that the 
protection system acts at the instants where the fault current 
crosses zero. It gives rise to a voltage recovery process 
which can be done in one, two, or three steps, as indicated in 

Table 1. 
Table 1 shows the sag classification with the expressions 

for the zero-, positive-, and negative-sequence components 
(adapted from [2]) and the voltage recovery process 
(adapted from [9]). Type A sags are the symmetrical sags, 
which are originated by 3-phases or 3-phases-to-ground 
faults, causing the same voltage reduction in the three 
phases. Unsymmetrical sags are a voltage reduction which is 
different for the three phases and they are classified into 
seven types, according to the cause of origin: B (1-phase-to-
ground fault); C (2-phases fault or 1-phase-to-ground fault 
after a Dy transformer); D (2-phases fault after a Dy 
transformer o 1-phase-to-ground fault after two Dy-
transformers); E (2-phases-to-ground fault); F (2-phases-to-
ground fault after a Dy transformer); and G (2-phases-to-
ground fault after two Dy-transformers). All these sags have 
an instantaneous voltage recovery, and they are named 
abrupt sags. 

With respect to the voltage recovery process, Table 1 
shows that there are 14 types of discrete voltage sags: 5 
symmetrical sags (A1, A2, A3, A4, and A5) plus 9 
unsymmetrical sags (B, C, D, E1, E2, F1, F2, G1 and G2). 
However, the authors’ previous work [10] demonstrated that 

Table 1  Voltage sags: types, phasors and sequence components (adapted from [2]) and voltage recovery process (adapted from [9]) 

Type Phasors  Zero seq.  Positive seq.  Negative seq. 
Voltage Recovery Process 

Type First recovery (ωtf1) Second recovery (ωtf2) Third recovery (ωtf3) 

A 

c

b

a

 

0 0V A  V hV A  0V  A  

A1 n 180° – αa + ψ – 90°  n 180° – αa + ψ ─ 

A2 n 180° – αa + ψ  n 180° – αa + ψ + 90° ─ 

A3 n 180° – αa + ψ – 90°  n 180° – αa + ψ – 30°  n 180° – αa + ψ + 30° 

A4 n 180° – αa + ψ  n 180° – αa + ψ + 60° n 180° – αa + ψ + 120° 

A5 n 180° – αa + ψ – 90°  n 180° – αa + ψ – 90°  n 180° – αa + ψ + 30° 

B 

c

b

a

 

0 1

3

h
V V


 B  

2

3

h
V V 

B  
1

3

h
V V 

 B  B n 180° – αa + ψ – 90°   ─ ─ 

C 

c

b

a

 

0 0V C  
1

2

h
V V 

C  
1

2

h
V V 

C  C n 180° – αa + ψ ─ ─ 

D 

c

b

a

 

0 0V D  
1

2

h
V V 

D  
1

2

h
V V 

 D  D n 180° – αa + ψ – 90°  ─ ─ 

E 

c

b

a

 

0 1

3

h
V V


E  

1 2

3

h
V V 

E  
1

3

h
V V 

E  

E1 n 180° – αa + ψ + 30° n 180° – αa + ψ + 150° ─  

E2 n 180° – αa + ψ + 150° n 180° – αa + ψ – 150° ─ 

F 

c

b

a

 

0 0V F  
1 2

3

h
V V 

F  
1

3

h
V V 

 F  

F1 n 180° – αa + ψ + 120° n 180° – αa + ψ – 120° ─ 

F2 n 180° – αa + ψ + 60° n 180° – αa + ψ + 120° ─ 

G 

c

b

a

 

0 0V G  
1 2

3

h
V V 

G  
1

3

h
V V 

G  

G1 n 180° – αa + ψ + 30° n 180° – αa + ψ + 150° ─ 

G2 n 180° – αa + ψ + 150° n 180° – αa + ψ – 150° ─ 
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when studying the behaviour of grid-connected equipment 
under voltage sags the following group of voltage sags cause 
the same behaviour in the electrical variables: A1-A2, A4-A5, 
C-D, F1-G1 and F2-G2. As a result, for the present paper only 
the following sags are considered: symmetrical sag types A1 
and A4, and unsymmetrical sag types C, F1 and F2. 

3. Three-phase grid-connected inverters 

Fig. 1 shows the general scheme of a three-phase 
inverter connected to a grid. The DC-link consists of a 
capacitor (C), which is fed by a DC current source (Idc), 
which models the renewable energy conversion system. This 
DC voltage is transformed into AC voltage by means of a 
proper control of the inverter, whose output voltage (vi abc) is 
not sinusoidal, thus a filter is needed to reduce the total 
harmonic distortion (THD). The selected filter for the 
present paper is a RL filter, which simplifies the analytical 
study, although there are other possibilities, such as the LCL 
filter [11]. 

It is observed from Fig. 1 that the control system works 
in dq variables, which are the direct and quadrature 
components after applying Park’s transformation [12] to the 
abc variables. The dq variables are usually obtained in the 
synchronous reference frame. To this end, a phase-locked 
loop (PLL) [13] obtains the angle of the grid voltages in 
order to make the system be in synchronism with them. The 
proper control of the vdc voltage and the idq currents give the 
reference values for the abc inverter voltages. These 
voltages are compared with a carrier triangular wave by 
means of the sinusoidal pulse-width modulation (SPWM) 
technique [14]. The result of the SPWM gives the switching 
pattern for the 6 IGBTs of the inverter. 

An interesting compilation among the different controls 
in the literature and the problems related to the grid 
synchronization of renewable energies can be found in [1]. 
Control algorithms to be used for three-phase inverter under 
unbalanced grid conditions, i.e., under unsymmetrical sags 
can be found, among others, in [15], which are based in a 
proper calculation of the reference values for the positive- 
and negative-sequence components of dq currents according 
to the instantaneous power theory developed in [16]. Note 
that the aim of this work is not to propose an improved 

control to the three-phase inverter, but to develop an 
analytical study. 

4. Analytical study 

4.1. Injected current solution in complex form 

The mathematical study is developed using the complex 
form of the dq variables, as they provide a compact form for 
the electrical expressions, which easies the task to obtain an 
analytical solution to the problem. This is done by applying 
the Ku transformation (see Appendix II for more details). 

The mathematical expressions that model the system of 
Fig. 1 (considering the generator-sign convention) are: 

gaia a a

ib b b gb

ic c c gc

0 0 0 0
d

0 0 0 0 .
d

0 0 0 0

vv R i L i

v R i L i v
t

v R i L i v

         
                     
                   

  (1) 

If we apply the Ku transformation in the synchronous 
reference frame (equation (19) in Appendix II) to the matrix 
system (1), we obtain the following expression: 

  if f gfs jv R L i v                             (2) 

where vif is the transformed voltage at the inverter output, R 
and L are the filter resistance and the filter inductance, 
respectively, s = d/dt is the derivative operator, ω = 2πf is 
the pulsation of the grid voltages (f = 1/T is the grid 
frequency and T is its period), if is the transformed current 
that the inverter injects to the grid, and vgf is the transformed 
grid voltage, which is given by the following equation 
(according to (22) in Appendix II) under unbalanced 
conditions: 

 j2
gf gf gf e tv v v                                  (3) 

and according to (25) in Appendix II, vgf
+ and vgf

– are: 

 *gf gf3 2 ; 3 2v V v V            (4) 

being V + and V – the positive- and negative-sequence 
components of sags shown in Table 1. Then, the differential 
equation of the transformed current can be obtained from (2) 
considering the transformed grid voltage (3), resulting in: 

   j2
f if gf gf f

1
s e j .ti v v v R L i

L
               (5) 

In order to find an analytical solution for (5), the 
following assumption is made: the control systems is able to 
set the transformed inverter voltage (vif) constant in the 
synchronous reference frame at its pre-fault steady-state 
value. By doing this, (5) is a first-order ODE with constant 
coefficients. Its solution will be the homogenous solution 
plus the particular solution. The homogeneous solution is 
obtained by neglecting the excitations of (5), i.e. 

j2
if gf gf e 0tv v v      , giving: 

  j
f homog e e .R L t ti K                        (6) 

And the particular solution is the steady-state solution 

C
L R

iabc

+

vg abc

Idc

Grid RL filter

Inverter

vi abc

vdc

DC-link Renew. 
energy

vg dq

PLL

abcdq

idq

abcdq

vi dq*
SPWM

Switching signals 
for  IGBTs

vi abc*

dqabc

Voltage 
& Current 
controllers

vdc

vg abc

vg abc

iabc

x 6

Fig. 1  General scheme of a three-phase inverter with RL filter connected to
the main grid and its control. Generator-sign convention 
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of (5), which can be expressed as: 

j2
f part f part f part e ti i i                        (7) 

where if part
+ is the steady-state solution (s = 0) of (5) with no 

negative-sequence voltage (vgf 
– = 0), and if part

– is the steady-
state solution of (5) with no positive-sequence voltage  
(vif = vgf 

+ = 0), which results in: 

if gf gf
f part f part; .

j j

v v v
i i

R L R L

 
 
  

   
        (8) 

Finally, the solution of the first-order ODE (5) is the 
addition of the homogenous solution (6) plus the particular 
solution (7)-(8), resulting in: 

  if gf gfj j2
f e e e .

j j
R L t t tv v v

i K
R L R L

 
    

  
   

     (9) 

The complex constant K is obtained by means of the 
initial conditions (at t = t0, the initial transformed current is 
if = if0): 

   00 0gf if gf j2 j
f0 e e e .

j j
R L tt tv v v

K i
R L R L

 
  

 
   
     

     (10) 

Finally, substituting (10) in (9) gives: 

   0
00gf if gf jj2

f f0

if gf gf j2

e e e
j j

e .
j j

R
t t

t tt L

t

v v v
i i

R L R L

v v v

R L R L

           

 
 

 
   
     


 

   

(11) 

4.2. State 1: Before the sag (t < ti) 

It is assumed that the system operates at its steady-state 
before the sag is originated at t = ti. So, the positive-
sequence component for the transformed grid voltage equals 
its steady state value (vgf 

+ = vgf st) and there is no negative-
sequence voltage (vgf 

– = 0). So, the steady-state expression 
for (11) is: 

 if gf st
f 1 i; .

j

v v
i t t

R L


 

 
             (12) 

4.3. State 2: During the sag (ti < t < tf) 

The voltage sag starts at t = ti and ends at t = tf. The 
initial transformed current for this time interval is (12), 
which substituted in (11) results in: 

      i ij j2
f 2 i f1 2 3e e e ;R L t t t t ti K K K t t t           (13) 

where the complex constants K1, K2 and K3 are given by: 

i
gf gf st gf if gfj2

1 2 2 3e ; ; .
j j j

tv v v v v
K K K K

R L R L R L

  
  

   
     

  (14) 

4.4. State 3: After the sag (t > tf) 

The fault is cleared at t = tf. The initial condition is then 
given by the current (13) evaluated at t = tf. Moreover, when 
the sag ends the system goes back to its steady-state 
operation (vgf 

+ = vgf st), so there is no negative-sequence 
voltage (vgf 

– = 0). Substituting these conditions in (11), it 
results in: 

      f fj
f 3 f4 5e e ;R L t t t ti K K t t          (15) 

where the complex constants K4 and K5 are given by: 

    f i f i fj j2
4 1 2 6

+
if gf st gf st gf

5 6

e e e

; .
j j

R L t t t t tK K K K

v v v v
K K

R L R L

        

 
 

   

     (16) 

The proposed analytical model consists of equations 
(12), (13), and (15), which describe the behaviour of a three-
phase grid-connected inverter with RL filter under 
unsymmetrical voltage sags. These equations can be 
represented by the three voltage-controlled current sources 
depicted in Fig. 2. Note that the presented model is also 
valid for symmetrical sags (in this case, there is no negative-
sequence component, so vgf 

– = 0).  

5. Voltage recovery influence 

Fig. 3 shows the voltage recovery influence (abrupt and 
discrete sags) on the injected currents from the inverter to 
the grid when faults cause symmetrical sags (type A) and 
unsymmetrical sag type F. All the simulated sags have a 
duration Δt = 5.5 cycles (i.e., 110 ms with f = 50 Hz) and a 
depth h = 0.8. Both transformed and real currents are 
represented in per unit (or pu) values, according to: 

           f pu f b abc pu abc b3 2 ; 2i t i t I i t i t I  (17) 

where Ib is the current base value (Ib = IN, see Appendix I). 
Regarding symmetrical voltage sags, when the sag 

starts at t = ti, note that the transformed current rotates at 
pulsation ω: the locus of the transformed current (Fig. 3a) 
has a circumferential shape and the time evolution of the 
transformed current (Fig. 3b) shows a pulsation ω during the 
period of time when the fault occurs. This is due to the 
exponential term e–jω(t–ti) that appears in (13). Note also that 
when the sag ends at t = tf if the sag is modelled abrupt, then 
the voltage recovery process is more severe than if it is 
modelled discrete. Indeed, note from Fig. 3c that for type A1 
(abrupt), the peak value of the real currents is 1.77 pu, while 
for type A1 (discrete with two-step voltage recovery) this 
peak value is 1.48 pu and for type A4 (discrete with three-
step voltage recovery) the value is 1.47 pu. It means that as 
the number of steps in fault-clearing increases, the sag 
causes less severe effects on the injected currents.  

Faulty grid

t

V
Eq. (12)

Inverter + RL filter

vgf 

Eq. (3)

if 1 

if 2 

if 3 

Eq. (13)

Eq. (15)

S1 

S2 

S3 

tON: t < ti

tON: ti < t < tf

tON:  t > tf

Fig. 2  Proposed electrical model for a three-phase inverter with RL filter
under a faulty grid 
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Fig. 3  Voltage recovery influence on the currents injected from the inverter to the grid under symmetrical sag types A1 and A4 (abrupt and discrete) and under 
unsymmetrical sag type F1 (abrupt and discrete). Sags characteristics: Δt = 5.5 cycles, h = 0.8 and ψ = 80º 

a  Locus of the transformed current 

b  Real and imaginary part of the transformed current 

c  Three-phase components (abc) of the current 
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This is a logical consequence if we look at the locus of 
the transformed current shown in Fig. 3a. Note from this 
figure that if the sag has an abrupt voltage recovery process, 
the value of the transformed current when the sag ends, 
if (tf), is located in a further position from its pre-fault 
steady-state value, if (ti). However, when the sag has a 
discrete voltage recovery, the transformed current in the 
second recovery, if (tf2), or in the third recovery, if (tf3), is 
closer to the pre-fault steady-state value, if (ti). 

Regarding unsymmetrical sags (type F1), note that when 
the sag starts at t = ti, neither the locus of the transformed 
current (Fig. 3a) has a circumferential shape, nor the time 
evolution of the transformed current (Fig. 3b) has a 
pulsation ω. This is explained by the exponential term that 
depends on twice the fundamental pulsation, e–j2ωt, which 
appears in (13). The addition of this term and the term that 
depends on the fundamental pulsation, e–jω(t–ti), creates a 
distorted circumferential shape on the locus during the 
voltage sag (Fig. 3a). However, note that when the voltage 
sag ends at t = tf, the transformed current has again a 
circumferential shape in its locus (Fig. 3a) and the 
fundamental pulsation ω in the time response (Fig. 3b). This 
is because after voltage recovery, (15) shows that there is no 
exponential term that depends on twice the fundamental 
pulsation. Note also from Fig. 3a that, as it happened under 
symmetrical sags, when unsymmetrical sags are modelled 
discrete, the transformed current after the second voltage 
recovery, if (tf2), is closer to its pre-fault steady-state value, 
if (ti), than in the case of abrupt sags. Then, it leads to a less 

severe peak values in the injected abc currents from the 
inverter. Indeed, the current peak value is 1.36 pu for abrupt 
unsymmetrical sag type F1, while for discrete sag type F1, 
the current peak value is 1.22 pu. 

Finally, it should be noted that the aim of the paper is 
not to explain or to improve the control of a three-phase 
grid-connected inverter under voltage sags (as there is a lot 
of literature to this respect), but to show how the voltage 
recovery process have a strong influence on the injected 
currents by the inverter. Indeed, note from the results shown 
in Fig. 3 that if voltage sag is modelled abrupt, then the peak 
values of the injected currents after the voltage recovery are 
higher in the abrupt sag than in the discrete sag. It should 
also be noted that the filter’s inductor tries to sooth the 
voltage sag effects. If this inductor where not placed in the 
filter, the time index of the current expression, i.e., L/R in 
the exponential term in (11) will be zero, which implies that 
the injected current will never reach its steady state value 
during the sag.   

6. Sag parameters influence 

The maximum (or peak) value of the injected current 
from the inverter to the grid is chosen as the variable to 
analyze the sag parameters influence. This variable (in pu) is 
obtained as: 

        max pu a b c bmax , , 2i i t i t i t I         (18) 

where Ib is the current base value (Ib = IN, see Appendix I) 

 
          a             b                          c 

Fig. 4  Sag depth influence on the maximum current peak. Sags characteristics: Δt = 5.5 cycles, h = 0…1 and ψ = 80º  

a  Inverter under symmetrical sag types A1 and A4 (abrupt and discrete) 

b  Inverter under unsymmetrical sag type C 

c  Inverter under unsymmetrical sag types F1 and F2 (abrupt and discrete) 
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Fig. 5  Sag duration influence on the maximum current peak. Sags characteristics: Δt = 5…7 cycles, h = 0.8 and ψ = 80º 

a  Inverter under symmetrical sag types A1 and A4 (abrupt and discrete) 

b  Inverter under unsymmetrical sag type C 

c  Inverter under unsymmetrical sag types F1 and F2 (abrupt and discrete) 
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and ia(t), ib(t) and ic(t) are the abc (or real) components of 
the currents injected from the inverter to the grid. 

Fig. 4 shows the sag depth influence. All the simulated 
sags have a duration Δt = 5.5 cycles (i.e., 110 ms with 
f = 50 Hz) and the sag depth is varied from 0 < h < 1, i.e., 
from the completely loss of voltage to the steady-state pre-
fault voltage. Note that for both symmetrical sags (type A1 
and A4) and unsymmetrical sags (type F1 and F2) the effects 
are less severe if the discrete voltage recovery process is 
considered. Certainly, the obtained curves for abrupt sags 
are always in a higher position than in the case of discrete 
sags, which means that the peak values of the injected 
currents will always be higher in the former than in the 
latter. Take the example of the sag depth h = 0: for 
symmetrical sag types A1 and A5 the peak current is around 
5 pu if sag is modelled abrupt, while it is around 4 pu if sag 
is modelled discrete; for unsymmetrical sag types F1 and F2 
the peak current is around 4 pu for abrupt sags, while for 
discrete sags this value is around 3 pu. Note also that for 
unsymmetrical sag type C there is no discrete recovery 
process, as Table 1 shows that the fault-clearing for this sag 
type is done in just one step (instantaneously). 

Fig. 5 shows the sag duration influence. All the 
simulated sags have a depth h = 0.8 and the duration is 
varied from 5T < Δt < 7T, i.e., from 5 to 7 cycles, which 
corresponds from 100 ms to 140 ms, with f = 50 Hz (T = 20 
ms). From this figure, two conclusions can be drawn. On the 
one hand, discrete voltage sags originate less severe current 
peaks, as happened when studying the sag depth influence 
(Fig. 4). On the other hand, the sag duration influence is 
periodical, i.e., the current peaks for the most unfavourable 
sag durations are repeated either every cycle or half cycle. 
Table 2 shows the most unfavourable sag durations for each 
sag type, i.e., the durations that cause the highest current 
peaks in the inverter. 

It should also be noted from the results shown in 
Sections V and VI that symmetrical sags cause the most 
severe effects on the inverter, as the injected currents have 
their highest peak values. Among unsymmetrical sags, it is 
observed that sag type F2 causes the most severe effects and 
sag type C causes the less severe effects on the three-phase 
inverter. 

Finally, it should be noted that this work has shown that 
when a voltage sag is produced in a power system, the way 
in which the voltage recovers has a strong influence on grid-
connected inverters. The usual approach in the literature is 
to consider that the fault is cleared abruptly in all the 
affected phases. However, what it happens in real 
applications is that protections (e.g. circuit breakers) clear 
the fault in the natural zero-cross instants of the fault 
current, thus giving rise to a discrete fault-clearing process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This paper has proposed a mathematical model for the 
three-phase grid-connected inverters under voltage sags, 
which describes their behaviour when either abrupt or 
discrete fault-clearing process take place. The simulations 
results have shown that a voltage sag modelled with an 
abrupt voltage recovery process overestimates the sag’s 
severity, as the peak value of the injected currents is higher 
than in the real case (i.e. discrete voltage recovery process). 
So, the authors propose the use of discrete voltage sags 
when studying the behaviour of three-phase grid-connected 
inverters under voltage sags. In the following section, the 
analytical model and simulation results are validated by 
means of experimental tests. 

7. Experimental results 

The analytical model and the simulations results have 
been validated by means of the experimental setup shown in 
Fig. 6a. It consists of the following parts: two 6.4 kVA 
three-phase AC voltage sources and a control panel (with 
contactors and protections) to generate the voltage sag 
(emulating the grid); a 10 kVA three-phase inverter of 

Table 2  Most unfavorable sag durations (n = 0, 1, 2…) 

Symmetrical voltage sags 

A1 (abrupt) A1 (discrete) A4 (abrupt) A4 (discrete) 

Δt = nT + 0.55T Δt = nT + 0.55T Δt = nT + 0.55T Δt = nT + 0.64T 

Unsymmetrical voltage sags 

C F1 (abrupt) F1 (discrete) F2 (abrupt) F2 (discrete) 

Δt =  
(n/2)T + 0.72T 

Δt =  
nT + 0.30T 

Δt =  
(n/2)T + 0.30T 

Δt =  
nT + 0.63T 

Δt =  
(n/2)T + 0.63T
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Fig. 6  Experimental setup used to validate the analytical model and the 
simulation results of the three-phase inverter with RL filter under voltage 
sags 
a Real setup 
b Electrical scheme 
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CINERGIA with a switching frequency of 20 kHz and DC 
link of 800 V with a capacitor of 1 mF; a three-phase RL 
filter with values 0.2 Ω and 10 mH; a 6.4 kVA voltage 
source that rectifies AC into DC voltage to generate the 
required voltage for the inverter’s DC bus; voltmeters and 
ammeters connected to an oscilloscope, which registers the 
time evolution of the measured variables; and a 
dSPACE DS1104 of Texas Instruments for the double aim 
to send the measured voltages and currents to a PC (with the 
software MATLAB

TM) and to send the switching times for the 
three-phase inverter according to the desired control law. 

The behaviour of the experimental setup can be 
explained by means of the electrical scheme depicted in 
Fig. 6b. The procedure to follow is explained below: 
1) An adjustable three-phase AC source (V1) is regulated 

to deliver 50 V (phase-to-phase voltage). This source 
emulates the grid. 

2) An adjustable DC source (V3) is regulated to deliver 
180 V to the inverter’s DC-link.  

3) The inverter with RL filter is connected to the grid. 
Note that this inverter is safeguarded by means of an 
overcurrent protection.  

4) The measuring devices read the values of the grid 
voltages (vabc), the line currents (iabc) and the DC-link 
voltage (vdc), which are sent to an oscilloscope and to 
the dSPACE DS1104. 

5) The dSPACE sends the measured real-time values to a 
PC with the MATLAB

TM software, by means of which a 
PLL obtains the voltage angle in order to synchronize 
the inverter with the grid. The inverter is controlled to 
deliver 95 V (phase-to-phase voltage). Note that this 
voltage is higher than the grid voltage, so the current 
flows from the inverter to the grid. 

6) Once the whole system is operating in steady-state 
conditions, a three-phase voltage sag with depth h = 0.9 
is applied by pressing a button (from the control panel), 
which acts on two contactors. The first contactor is now 
open, so the V1 source is disconnected from the system, 
while the second contactor is now closed, so the V2 
source is connected to the system. This source has been 
previously regulated to create the voltage sag with 
depth h = 0.9 from 50 V. 
Fig. 7 shows the measured voltage and currents when 

applying a three-phase voltage sag (i.e. type A sag) with 
depth h = 0.9 and duration Δt = 5 cycles. The measured abc 
components of the grid voltages are depicted in Fig. 7a. It 
should be noted that the grid is not perfectly balanced, so 
that the measured abc components of the current, which are 
depicted in Fig. 7b, are not perfectly balanced in steady state 
conditions. Finally, Fig. 7c shows the abc components of the 
currents in the simulated case. It is observed that when the 
voltage sag originates, the injected current increases in order 
to keep constant the active power. This current increase is 
not critical, as the protection system did not act in the 
experimental test. If we compare the results shown in 
Fig. 7b and in Fig. 7c we can conclude that they are very 
similar: there is one phase (c phase) that has the highest 
peak values (because at the time instant when the sag starts, 
it corresponds to the c phase of the voltage, as shown in 
Fig. 7a). Finally, when the sag finishes, the system goes 
back to the steady-state regime. So, it can be concluded that 
the experimental results and the simulated ones correspond 
each other. 

8. Conclusion 

The present paper has developed an analytical model to 
study the behaviour of three-phase grid-connected inverters 
with RL filter under symmetrical and unsymmetrical voltage 
sags. The analytical results have been validated by 
simulations in MATLAB

TM and by experimental results. 
Voltage sags are usually modelled in the literature with 

abrupt (or instantaneous) voltage recovery, while in practice 
the voltage recovery process takes part in different steps 
(according to the natural zero crossing of the fault current), 
giving rise to discrete voltage sags. This work has shown 
that abrupt sags cause the most severe effects on three-phase 
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Fig. 7  Three phase voltage sag effects on the injected current by the inverter.
Sags characteristics: Δt = 5cycles, h = 0.9 and ψ = 86º 

a  Measured abc voltages (in pu) 

b  Measured abc currents (in pu) 

c  Simulated abc currents (in pu) 
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inverters, as they provoke the largest current peaks. In other 
words, abrupt sags overestimate the sag severity. Therefore, 
this paper proposes the use of discrete sags, because apart 
from being the real case, they are less severe than abrupt 
sags. 

This paper has also shown that symmetrical sags are 
more severe than unsymmetrical sags, as they lead to the 
largest current peaks. Among unsymmetrical sags, the most 
severe is abrupt sag type F2 and the least severe is type C. 

An in-depth analysis considering all sag depths and 
durations has been carried out, showing two effects. On the 
one hand, discrete sags are less severe than abrupt sags, as 
they cause the largest current peaks injected from the 
inverter. On the other hand, the sag duration effects are 
periodical, i.e., the largest current peaks are obtained 
periodically. Moreover, it has also been observed that the 
largest peak currents are obtained not during sag but after 
voltage recovery, as depending on sag duration the value of 
the current could be closer or further from its pre-fault 
steady-state value. So, each sag type has its most 
unfavourable sag durations, which should be taken into 
account when proposing a suitable control algorithm to 
tackle the problem. 

Finally, this preliminary study could be used to propose 
more robust control algorithms, which would let three-phase 
inverters with RL filter meet fault ride-through 
requirements. 
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10. Appendix 1: parameters of the studied system 

Table 3 shows the parameters of the studied system, 
which consists of an AC-side (RL filter plus AC grid), and a 
DC-side (renewable energy source and DC-link). 

11. Appendix 2: Ku transformation 

The Ku transformation is used to obtain the transformed 
components of a given variable x from the abc components 
of this variable. Its power-invariant (or normalized) form is 
[17]: 

 

         

j j
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j j2
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 
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 
  

            

K

K K

  (19) 

where x is the studied variable (voltage, current or flux), the 
subscripts a, b and c stand for the abc components of the 
variable x, the subscripts 0, f and b stand for the zero, 
forward and backward components of the transformed 
variable x, and Ψ is the transformation angle. If the 
synchronous reference frame is used, then Ψ = ωt, where 
ω = 2πf is the pulsation of the grid voltages (f  is the grid 
frequency). Note that the backward (b) component is the 
complex conjugate of the forward (f) component, so only 
the latter is considered. 

Let’s assume an unbalanced system of three-phase 
voltages: 

Table 3  Parameters of the studied system

DC-side AC-side 

Renew. source DC-link         Filter       Grid 

   P  = 50 kW 
   cos φ = 1  

  C = 18 mF  
  Vdc = 1000 V 

      R = 1 mΩ 
      L = 4.9 mH 

     Vg = 400 V (line)
      f  = 50 Hz 

 

ReView by River Valley Technologies IET Generation, Transmission Distribution

2018/09/23 00:13:19 IET Review Copy Only 14



10 
 

 
 
 

a

a

b

b

c

c

j
a a aa

j
b b bb

j
c c cc

e 2 cos

e 2 cos

e 2 cos

V

V

V

V

V

V

V V v V t

V V v V t

V V v V t







    

    

    

   (20) 

where Va, Vb and Vc are the phasors of the abc voltages, Va, 
Vb and Vc are the modulus (rms values) of this phasors, φVa, 
φVb and φVc are the phase angles of the abc voltages and ω is 
the pulsation of the voltages. If the Ku transformation (19) is 
applied to (20), the transformed forward component results 
in: 

 
j

2
f a b c

e
a a .

3

t

v v v v
 

                         (21) 

Substituting (20) in (21) and taking into account the 

trigonometric relation    j jcos e e 2     we have: 

j2
f f f e tv v v                                 (22) 

where fv and fv are given by: 
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Now, if we apply the Fortescue transformation [18] to 
the phasors in (20) we obtain their zero-, positive- and 
negative-sequence components (the zero component is 
neglected):                      

 
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a b c
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             (24) 

If we compare (24) with (23), it results in: 

 *f f3 2 ; 3 2 .v V v V             (25) 

Note that if (20) were a set of sinusoidal balanced 
voltages (steady-state conditions), then there will be no 

negative-sequence voltage, i.e., f 0v  , and V + would 

correspond to the steady-state phasor: 

j
f steady state 3 2 3 2 e .Vv V V                 (26) 

Finally, the Ku forward component is related to the 
Park dq components as follows: 

     f d q d f q f
1

j 2 Re ; 2 Im .
2

x x x x x x x     (27) 
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