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Abstract 

In light of the Paris Agreement’s objectives and the related European and Swiss goals of decarbonising the 

built environment, the importance, relevance, and potential benefits of integrating Building-Integrated 

Photovoltaic (BIPV) within building renovation processes are acknowledged. Functioning both as envelope 

material and on-site electricity generator, BIPV can simultaneously reduce the use of fossil fuels and 

greenhouse gas emissions. Motivated by the current barriers and misconceptions that withhold a 

widespread integration of BIPV, particularly regarding financial implications and solar exposure levels that 

are believed to be unfavourable, this paper aims at bringing new knowledge and a rigorous and adaptable 

method to inform decision-making and promote the use of BIPV in urban renewal processes. Focusing on the 

architectural design, we here present a methodology to select active (BIPV) surfaces during the retrofitting 

process based on a trade-off between the self-consumption (SC) and self-sufficiency (SS) of a building. The 

approach consists in iteratively identifying surfaces that achieve a varying annual irradiation value 

(threshold). It also includes the evaluation of the effect of electricity storage systems. The methodology and 

the results of its application are presented through the comparison of two case studies in Neuchâtel 

(Switzerland). The outcomes of this new approach for addressing building renovation projects in the urban 

context can help architects, designers and engineers to better size the installation and the repartition of 

active surfaces in the renovated thermal envelope. Results show that it is important to take into account a 

larger range of irradiation levels to choose the active surfaces, especially in high-rise buildings with a greater 

proportion of façade than roof. In such cases, the irradiation threshold can vary between 600 and 800 

kWh/m2·year depending on the strategy adopted in terms of Heating, Ventilation and Air-conditioning 
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(HVAC) system improvement or storage system implementation. Such findings demonstrate the need for 

context-specific methods towards a proper evaluation and better valorisation of BIPV potential.  

Keywords: renovation projects, architectural design, active surfaces, self-consumption, self-sufficiency, 

building-integrated photovoltaics  

0. Introduction 

According to the current European regulation, it is important to implement long-term building renovation 

strategies to achieve the 2050 objectives, which consist in a 80-95% reduction in greenhouse gas (GHG) 

emissions compared to 1990 [1]. The existing building stock is particularly put in the spotlight in the most 

recent revision of the Energy Performance of Buildings Directive (EPBD) [1], which stresses the importance of 

renovation processes, identified as a key measure to achieve the 2050 targets. 

In order to highly reduce the energy demand of existing buildings, one of the most common approaches in 

terms of renovation strategies consists, first, in the improvement of the energy performance of the building 

envelope [2].  Today, however, renovation projects focusing on thermal energy performance improvement 

using passive strategies are necessary, but not sufficient. Compensating buildings’ energy consumption and 

embodied energy of the construction materials by producing electricity on-site has become a number one 

priority. Energy renovation projects that do not integrate active elements – producing electricity from solar 

energy to cover as much as possible the energy demand of the building – are no longer an option if we want 

to achieve long-term carbon targets [3].  

As indicated by emerging strategies in Europe in general and in Switzerland in particular, the integration of 

photovoltaic energy in existing buildings is one of the solutions to achieve the 2050 objectives [4–11]. In 

reaction to this, photovoltaic manufacturers [12,13] and applied-research industry [14] have focused their 

efforts on creating new products that allow a better integration in the envelope of buildings (roofs and 

façades). As a result, there is currently a great variety of Building-Integrated Photovoltaic (BIPV) products for 

façade applications that try to respond to designers’ requirements [15]. The approach adopted by BIPV 

manufacturers is to offer different frameless BIPV panels [12,13] with a customisation possibility, both in 

terms of size and colour / texture [14].  
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Despite these developments, what predominates in practice remains to apply standard PV panels – through 

a Building-Added or Attached Photovoltaics (BAPV) approach – mainly on less visible building surfaces (e.g. 

flat roofs), a task often undertaken by engineers [16]. One reason for this is the lack of adequate design-

driven methods to support the sizing and holistic implementation of BIPV installations in renovation projects 

[17,18]. 

Attempting to address this lack of methods tailored to the needs of architects / designers, this research 

proposes a methodology to select active surfaces specifically adapted to the design-flow of renovation 

projects, incorporating BIPV strategies from the architectural phase of the design process. The selection 

methodology consists in finding an equilibrium between self-consumption (SC; indicating the level of use of 

the PV system) and self-sufficiency (SS; indicator of energy independence), two concepts further described 

later and that take into consideration the energy consumption of the building. An optimisation process is 

conducted to define which of the surfaces should ultimately be covered by BIPV elements versus non-active 

elements with the same aspect. The goal is to identify the size of the installation, using the annual irradiation 

threshold as a surface filtering mechanism, in a way that leads to a trade-off between SS and SC. The 

methodology is adapted to renovation projects where it is intended to use the complete building envelope 

(façades and roofs) to produce electricity.  

1. Literature review 

There are two types of concepts related to the use of PV in buildings. BAPV consists in putting PV elements 

on existing buildings, where the PV panels have no building envelope function [19–21]. The most extended 

current practice of BAPV is on roofs, but this application is highly criticised in terms of visual impact. BIPV on 

the other hand consists in replacing the last (most external) layer of the building envelope by adapted-PV 

products ready to comply with envelope requirements as a new construction material [22].  

The use of BIPV elements in renovation projects remains undervalued due to the lack of good examples and 

clear methodologies to develop this kind of projects specifically from the design phase, when architects, 

designers and engineers define the envelope concept [23]. At this moment, a key task is to envision the 

sizing and positioning of the BIPV elements. 
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Many of the existing methods for (BI)PV sizing are highly time-consuming and based on complex 

optimisation algorithms that architects / designers do not feel comfortable using [24,25]. In general, these 

methods either test every possible combination of single available surfaces [26,27] (using brute-force 

methods like HOMER developed by the NREL [28] or general calculation tools as MATLAB [29]) or employ an 

optimisation technique (e.g. genetic algorithm) to maximise some parameters (i.e. annual production or 

profitability of the installation) [30–33]. In terms of optimisation values, these methods present a high-

accuracy level, but they are not adapted to BIPV application on existing façades (where orientation and 

context are fixed) because the results can lead to an unrealistic repartition of the active surfaces from an 

operational point of view [24,25].  

Some interesting studies focus on the optimisation of the building shape through shape grammars [32] and 

using genetic algorithms to maximise the BIPV production in new buildings [33,34]. The application of this 

kind of approach is however not relevant in the renovation of buildings. In addition, some studies suggest 

that in real BIPV installations the optimum is not necessarily the goal [16,35].   

One of the classical design approaches of photovoltaic systems that the literature review highlights is to limit 

the implementation of PV elements to high levels of received irradiation, to maximise the yearly production 

and inject the electricity produced into the grid. Until now, using a BAPV approach and given the relatively 

high prices of PV elements, an irradiation threshold from which to install a panel was motivated mainly by 

economic profitability. The literature review shows that there is a general consensus around the values 

suggested by [36] for both façades (800 kWh/m2·year) and roofs (1000 kWh/m2·year) [37]. The use of these 

thresholds can however prevent the implementation of BIPV elements on building façades. In addition, the 

market is changing rapidly and the decrease of prices, the improvement of PV efficiency and the emergence 

of new customisation techniques [22,38–41] suggest that it is a good idea to not limit the sizing method to 

these two irradiation thresholds [37]. Nowadays, research focusing on the electricity-production of PV panels 

in low irradiation conditions [42] show that production losses, with respect to the nominal production under 

standard test conditions (STC) using 1000 W/m2 and 25˚C [43], are more than reasonable. In northern 

latitudes like Switzerland, irradiation levels close to the STC can be achieved only when installing PV 
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elements on the roof. However, as highlighted in [42], for irradiation levels of at least 400 kWh/m2·year, the 

efficiency losses in terms of production will not exceed 20% with respect to the production under STC. 

Either through optimisation algorithms or following a more manual approach, BIPV sizing can thus be done 

on the basis of maximising different indicators or a combination of indicators such as electricity production, 

economic profitability, etc. Two indicators that take into account the load profile of the building are the self-

consumption (SC) and self-sufficiency (SS) ratios [44]. The SC is the percentage of the PV-generated 

electricity that is consumed by the building, corresponding to the orange area in Figure 1 divided by the 

light-blue area (example for one day). The SS – which represents the level of energy independence of the 

building – is computed by comparing the self-consumed PV-electricity to the building’s total electricity 

needs, i.e. the orange area with the grey area. The detailed formulas for computing both indicators are 

provided in the Methodology section (equations (1) and (2)).  

The SC and SS depend not only on the size of the installation and the building’s needs, but also on the 

temporal match between electricity production and need. The trend these indicators follow are in 

opposition, as can be understood from a simple example. In a situation where a small BIPV installation is 

applied, the SC will be high as most produced energy is self-consumed in real-time by the building 

(representing a good use of the BIPV installation), whereas the SS will be low since not much energy can be 

produced with respect to the building’s total needs. Conversely, in a situation where a large installation is 

applied to the same building, the SC will be low (indicating that too much energy is produced for the 

immediate needs of the building) and the SS higher, since the total PV electricity produced is closer to the 

total needs. At this point, it is important to note that this high value of SS can only be taken into account in 

the global energy balance if the overproduced energy can be injected into the grid, otherwise the majority of 

the electricity produced is lost, putting in evidence the oversizing of the installation. It is therefore necessary 

to size the installation by finding a good compromise between SS and SC to obtain a well-adapted 

installation.  
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Fig. 1 Schematic example of a daily profile in terms of hourly electricity needed by the building, PV-generated, self-consumed, and 

purchased from the grid. Best viewed in colour. 

A summary of research conducted on PV self-consumption in residential buildings [45] concluded that “The 

total number of papers is however rather limited and further research and more comparative studies are 

needed to give a comprehensive view of the technologies and their potential. Behavioural responses to PV 

self-consumption and the impact on the distribution grid also need to be further studied”. In addition, the 

paper presents the relationship between SC and SS highlighting that in the context of new Net Zero Energy 

Buildings (NZEB), it is recommended to size PV installations targeting equal or an equilibrium between SC 

and SS ratio. 

Regarding commercial and office buildings, [31] proposed finding the best production-consumption match 

allowing to reach 100% of SC (main objective) and optimal SS (secondary objective), to identify active 

surfaces out of all building surfaces except those facing North (in the northern hemisphere).  

Since building surfaces are fixed in existing buildings, as mentioned in [46], BIPV elements can be cost-

effective even when installed in non-optimal orientations if a self-consumption approach is adopted. This is 

made possible when PV elements situated in the façade can help match the energy demand, specifically in 

residential buildings where the energy consumption is during early morning and in the evening. As exposed 

in [40], apart from the constructive function of the BIPV element, the BIPV concept should indeed answer to 

the real needs of the building taking into account the economic benefits of self-consumption.  

Based on the literature review, the main motivations for this paper are thus that: a) existing methods to 

address PV integration are far from the design-decision process and are highly time-consuming; b) common 

sizing objectives do not take into account the current BIPV requirements in terms of energy utilisation; and c) 

reference values historically used to select building surfaces on which to fix PV panels are too restrictive in 

light of current and emerging technologies and their associated cost. 
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Our research addresses the above elements by focusing on the selection of BIPV active surfaces to ensure 

the viability and adaptation of the PV installation to the project, taking into consideration the constraints 

related to the existing building (e.g. orientation, neighbour context, physical conditions, heritage 

protection…). 

The issues are addressed through the proposal of a new methodology with low computational and time 

requirements [47], well-adapted to the design process, using simulations as a design tool, and allowing to 

obtain visual and quantitative results rapidly [48]. Our methodology, as suggested in [49], proposes to use 

parametric tools (in this case Grasshopper [50] for Rhino [51]) to allow architects to focus on their main task 

of building design and quickly test the impact of their design-decisions. This parametric approach moreover 

enables an in-depth analysis from the early design stage in order to decrease the cost of design changes [52].  

The main added-value of the approach lies in the fact that the BIPV sizing and positioning procedure is 

simultaneously streamlined and automated, yet adapts to and respects the specific building’s architectural 

features and its energy needs, leading to a configuration of active surfaces that is coherent and rational. 

Moreover, it is independent from uncertainties in the economic parameters (e.g. price of PV panels, 

subsidies) and is not based on fixed (and not context-specific) irradiation threshold values.    

One of the goals is notably to demonstrate that a larger range of irradiation thresholds should be considered 

for two reasons: first, for matching the building needs to improve SC and SS values, and second, for cost-

effectiveness due to the actual prices of BIPV products. This article ultimately aims at contributing to help 

stakeholders involved in the BIPV renovation process by providing a rapid, simple and robust methodology to 

support the design of active façades.  

2. Methodology 

Before describing our methodology, it is important to note that we here illustrate its application through two 

case studies (presented below), corresponding to two real buildings in their current status and following a 

renovation. These buildings date from different periods and are considered as representative of the building 

stock from these respective construction periods. More information on this initial phase of the research can 

be found in [53–55].   
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Fig. 2 Methodology and used tools. (1) EnergyPlus-DesignBuilder, (2) Rhino, (3) Grasshopper, (4) DIVA, (5) VBA-Excel. 

For each case study building, we first develop an architectural design proposition for a renovation scenario, 

using standard-size BIPV elements on façades and roof. From these façade design concepts, a methodology 

to select the active surfaces is proposed and applied to identify what element should be activated in order to 

find a compromise between SS and SC. 

The methodology consists in four phases (Figure 2): 1) Architectural design phase to define all possible active 

surfaces on façades and roof; 2) Building modelling of the proposed renovation scenario including all 

possible active elements and the surrounding context; 3) Energy and PV simulation through an automated 

simulation-based process, with an hourly time-step to obtain the electricity production for different 

irradiation thresholds; 4) Data processing and visualisation. 

Design phase and case study application 

As mentioned, the selection process is here applied on two representative case studies, which are based on 

the architectural design strategies for renovation projects with BIPV proposed in [55,56]. The case studies 

are situated in Neuchâtel (Switzerland) and their main features and characteristics are shown in Figure 3 and 

Table 1. Scenario E0 represents the current status and scenario S_BIPV the renovation with BIPV elements.  

As described in Table 1, for scenario S_BIPV, the insulation is increased for all opaque surfaces and windows 

are replaced to achieve both the current legal requirements defined by the SIA 380/1:2016  [57] and the 
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2000-Watt society requirements defined in SIA 2040 [58]. The latter (and strictest) limits the energy 

consumption for the operational phase to 70 kWh/m2·year in terms of non-renewable primary energy 

(NRPE) and to 5 kgCO2/m2·year in terms of global warming potential (GWP). In order to achieve these 

objectives, the external layer of the envelope is used to implement BIPV elements.  

Existing BIPV products on the market allow to use almost all the opaque surfaces of the building envelope. 

Mass-produced products with fixed sizes [13] offer a limited flexibility in the design of façades, making them 

difficult to apply in renovation because the offered dimensions rarely match those needed for the existing 

building. From a design point of view, having to adapt an architectural design to a series of standard 

products represents an important barrier, mainly because architects need more freedom to be able to give a 

response adapted to each building.  
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Visualisation of the BIPV renovation scenario, using BIPV 
elements on the sloped roof, façade and balconies. 

Visualisation of the BIPV renovation scenario, using BIPV 
elements on the flat roof and façades. 

Fig. 3 Images of the E0 - current status and S_BIPV renovated status of each building along with their main characteristics. Best 
viewed in colour. 

Table 1 Summary of the main characteristics used in the building simulation of each archetype, E0 – current status and S_BIPV 
transformation. Using data from: * Swiss construction catalogue [59]; ** Database WINDOW [60] and DesignBuilder [61]. 
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Archetype 1 Archetype 2 

U-Value [W/m
2
∙K] 

E0 S_BIPV E0 S_BIPV 

Roof* 1.59 0.17 0.62 0.17 

Façade* 1.07 0.17 0.98 0.17 

Internal floor* 0.94 0.30 2.19 0.32 

Ground floor * 1.74 1.74 2.44 2.44 

Glazing ** 5.70 (sg-w) 0.77 (tg-w) 2.90 (dg-a) 0.77 (tg-w) 

 

Airtightness | Infiltration rate [1/h] 

2.00 0.5 1.50 0.5 

Type (colour) of finishing material and the PV modules efficiency (STC) according to the colour 

Roof Tiles (brown) SSz (brown) | ɳ - 14.5 % Gravel SSz-f (black) | ɳ - 17 % 

Façades Exterior plaster (ochre) SSz (light grey) | ɳ - 11 % Concrete SSz (grey) | ɳ - 13 % 

Abbreviations: Custom-size (CSz) or standard-size PV panels (SSz), with frame (-f), single (sg), double (dg) or triple glazing (tg), aluminium (-a), 

polyvinyl chloride (-pvc) or wooden windows frame (-w), PV panel efficiency (ɳ)  

This limitation is however being overcome thanks to the synergies between the solar and glass industry. This 

union is promoting a paradigm shift and modifies the definition of "standard panel", going from a panel 

produced in series with fixed measures to a panel manufactured according to the requirements of the 

architectural design (shape, appearance and layout of the pattern of photovoltaic cells) whose sole limitation 

is the maximum size that is usually of 2.4x3.8 meters [62]. This is the design concept applied in the proposals 

for the S_BIPV scenario; this approach leaves the possibility to use larger panels reflecting the manufacturing 

flexibility that is emerging. Practically new façades emerge, to maximise the possible active surfaces by 

maintaining a formal coherence of the aspect of the building.  

To further help the integration of PV in buildings, the Centre Suisse d’Electronique et Microtechnique (CSEM) 

[63] has developed coloured panels using one of the most promising low-cost customisation techniques. This 

technique is based on the introduction of a radiation-selective layer (selective filter; foil technique) between 

the encapsulation layers, using standard solar glass and crystalline-silicon based PV panels. Example BIPV 

modules produced using this technique are shown in Figure 4. Developed in the framework of the 

Archinsolar research project [64], such products are now commercialised by SOLAXESS [65] and ISSOL [66], 

and real applications can now be found in the Swiss context.  
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Fig. 4 Reflectance/transmittance (graph) and efficiency loss (right, below photo) of different coloured BIPV modules [67]. For 
example, a red-coloured film reflects the red part of the visible spectrum and transmits most of the remaining part including the 

infrared (IR) portion of the spectrum. Its efficiency loss is of around 15% with respect to a standard PV panel (no film; transparent). 
Right: example of BIPV modules with a coloured film [18,64] (photo by Patrick Heinstein). Best viewed in colour. 

For this foil technique, depending on the colour, the final efficiency of the module is affected; the clearer the 

colour, the greater the loss in efficiency. For white or light grey, the efficiency loss can reach up to 40% 

because the filter blocks the passage of the irradiation in the visible spectrum (only the infrared (IR) part of 

the spectrum passes through). Figure 4 shows the reflectance/transmittance for different film colours along 

with the efficiency loss compared to a standard panel without film (transparent) [67]. 

Regarding the façade definition of S_BIPV scenario (Figure 3), a prefabricated wooden ventilated-façade 

system is implemented for both archetypes, initially modulated according to frameless standard-size 

monocrystalline BIPV elements [13] visually customised with a grey coloured film, with an efficiency of about 

11-13% [14,65]. The flexibility of the ventilated-façade system allows designers to easily address the 

constraints of renovation projects, specifically in terms of geometry [68]. Regarding the roof renovation, for 

archetype 1 where the roof is visible, we implement the same BIPV elements but of terracotta colour, with 

an efficiency of about 14.5% [14,65]. For archetype 2, black standard monocrystalline PV modules of 17% 

efficiency [69] are disposed on the gravel flat-roof with a south orientation [13].   
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In addition to the passive and BIPV strategies, two HVAC cases are simulated for the S_BIPV scenario: 

maintaining the existing oil-boiler (S_BIPV-OIL) and replacing it with an electric air-water heat-pump system 

(S_BIPV-HP). 

Energy modelling and active surfaces selection process  

In order to obtain the energy demand in terms of appliances, lighting, ventilation, heating and domestic hot 

water (DHW), a dynamic simulation with an hourly time-step is conducted for each archetype and both 

scenarios (E0 and S_BIPV) using DesignBuilder [61], based on the EnergyPlus® simulation engine [70]. This 

phase does not take into account the BIPV production, as the idea is to first obtain the energy demand after 

the application of the passive renovation strategies (i.e., insulation and replacement of windows) and the 

replacement of the HVAC system. This energy model is built using the normative assumptions and user 

profiles for multi-family buildings provided by the SIA 2024 [71], including occupancy schedules, standard 

utilisation profiles, heating set-points, etc. Assumptions and schedules are presented in Table 2 and Figure 5.  

The use of normed user profiles allows to overcome uncertainties about how to set the simulation 

parameters, but also allows to easily compare results from different buildings by isolating the user behaviour 

issue [72]. The weather file (.epw) with hourly climate data of Neuchâtel, obtained from Meteonorm [73], is 

used in the simulation. 

Table 2 Input parameters in reference to the activity and use of the building according to [71]. 

Activity – Multi-Family buildings Value Units 

Occupation rate Depending on the specific case study 0.0342 person/m
2
 

26 m
2
/person 

Metabolic rate Factor (Men=1, Women=0.85, Children=0.75) 0.90 - 

 Metabolic activity 1.2 met 

 Internal load (at < 24ºC) 70 W/person 

 Humidity production (at < 24ºC) 80 g/h 

Clothing rate Winter / summer Clothing 1 / 0.5 clo 

Domestic Hot Water Consumption 0.876 litres/m
2
·day 

Heating Set point and Set back point 18-21 °C 

Cooling No cooling is considered   

Humidity Control Without humidity control 

Ventilation Natural ventilation 

Indoor min temperature control By user opening windows 

Min Temperature 22 °C 

Minimum Fresh Air 10 litres/s·person 

Mechanical ventilation 

Minimum Fresh Air 10 litres/s·person 

Mean annual electricity demand 0.7 kWh/m
2
·year 

Lighting Target illuminance 100 lux 

Normalised power density 6.5 W/m
2
·100lux 

Electric equipment Density 6 W/m
2
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Fig. 5 Daily occupancy factor (top) and use factor for lighting and electric equipment (bottom) according to [71]. 

Regarding the HVAC systems, the coefficient of performance (COP) values adopted for the heating and DHW 

system are presented in Table 3 and are based on the recommendations of SIA 380/1:2016 [57] including 

15% of losses due to distribution, emission and regulation, as proposed in [74] for a “reasonably insulated” 

distribution loop. 

Regarding the natural ventilation and uncontrolled infiltration through the building envelope (e.g. window 

frames), reference values used correspond to SIA 180:2014 [75], which defines minimum requirements in 

terms of indoor comfort conditions and fixes the airtightness targets for renovation projects (Table 4). 

Table 3 Coefficient of Performance of the different HVAC systems, based on SIA 380/1:2016 [57]. 

 Oil-boiler Air-water Heat-Pump 

COP (heating) 0.85 3.00 

COP (DHW) 0.66 2.73 
 

Table 4 Airtightness targets for renovation projects according to [75] with a pressure difference of 50 Pa. 

 Type of ventilation system m
3
/h∙m

2
 Air changer per hour [1/h] 

Natural ventilation 3.6 1.44 

Mechanical ventilation 2.4 0.96 

To reflect the building envelope performance, a different airtightness value is adopted for each archetype, 

going from 1.5-2.0 1/h (for the current status of the building) to 0.5 1/h (after renovation).  

The calculation of the hourly electricity production by the BIPV elements on the building envelope is 

conducted  through an automated simulation process using Grasshopper for Rhino [50] and the DIVA plugin 

for Grasshopper [48]. The different BIPV production scenarios are generated automatically by filtering the 

possible active surfaces using a cumulative annual irradiation threshold that is varied from 0 to 1200 

kWh/m2·year with a step of 100 kWh/m2·year. The use of an irradiation threshold ensures that selected 

surfaces are mainly adjacent to each other, as groups or patches of active surfaces with similar solar 
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exposure naturally emerge. This results in scenarios that are more realistic than if the active surfaces were 

scattered. The 1200 kWh/m2·year threshold means that the possible active surfaces that receive less than 

this amount of solar energy are discarded and will be considered as non-active panels "dummies", whereas a 

threshold of 0 kWh/m2·year means that all surfaces are considered in the simulation as active elements 

producing electricity. At each iteration, i.e. at each irradiation threshold, the algorithm produces a 3D image 

of the building showing the location of the active surfaces that receive more than the irradiation threshold 

and generates a file with the annual electricity production at an hourly time-step.  

Output and data processing and visualisation 

The final data processing and visualisation is done in an Excel-based tool using VBA programming. The 

outputs obtained at this phase correspond to the final energy balance and PV production, from which the SC 

and SS percentages are computed through the following equations:  

SC [%] =
PV electricity consumed by the building

Annual electricity production
= 

∑ 𝐶𝑃𝑉𝑡𝑛
𝑡=1

𝐸𝑃𝑉
      (1) 

Where: 

CPV: Hourly PV electricity consumed directly by the building [kWhe-pv] 

EPV: Annual PV electricity production [kWhe-pv/year] 

n: Simulation period [hours] – (8760 hours) 

SS [%] = 1 - 
Electricity purchased

Annal electricity needs
= 

PV electricity consumed by the building

Anual electricity needs
 = 

∑ 𝐶𝑃𝑉𝑡𝑛
𝑡=1

𝐸𝑁
   (2) 

Where: 

CPV: Hourly PV electricity consumed directly by the building [kWhe-pv] 

EN: Annual electricity needs [kWhe-pv/year] 

n: Simulation period [hours] – (8760 hours) 

The range of irradiation thresholds, with associated sizes of the BIPV installation according to SC and SS, are 

then identified. In order to highlight the effect of the selection method and a storage system 

implementation, three options are compared: A-100% – considering as active all identified surfaces; B-

Selection – considering as active the surfaces identified through the SC-SS trade-off point; and C-Batteries – 
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considering, in addition to the selection (B), a battery as a storage system, sized for a 1-day of autonomy 

using standard values for lithium-ion battery with an approximated 5000 cycles (charge-discharge) of 

lifespan, considering a depth of discharge (DOD) of 90% and a battery efficiency of 80% (round-trip 

efficiency) [76–78]. In all cases, the results are presented for both HVAC systems scenarios, OIL - maintaining 

the existing oil-boiler or HP - replacing it by an electric heat-pump system.  

A simplified economic study is also conducted to verify the consistency with our BIPV sizing approach. The 

analysis consists in calculating the difference between the incomes (I) generated by the BIPV installation 

(during an estimated lifetime of 25 years) and the investment cost (C), calculated according to the formulas 

(3) and (4). The difference between incomes and cost allows us to identify the irradiation threshold value 

from which the installation is cost-effective (i.e. break-even point where the incomes are larger than the 

cost, leading to the difference becoming positive), and therefore verify if the threshold values obtained 

through our selection method fall within these economically favourable ranges.  

Incomes (I): corresponds to the amount saved with the self-consumed energy, avoiding purchasing this 

energy from the grid (over the25-year lifetime), including the amount received for the energy injected into 

the grid (Feed-in-tariff). 

I =  
(𝑆𝐶∙𝐸𝐿𝑐𝑜𝑠𝑡+𝑂𝑃∙𝐹𝑖𝑇)∙𝑛

𝐸𝑅𝐴
           (3) 

 

Where: 

I:  Incomes [CHF/m2] 

SC: Self-consumed energy (per year) [kWhe-pv/year] 

ELcost: Electricity cost [CHF/kWhe-grid] – (0.25 CHF/kWhe-grid [79]) 

OP: Overproduction of energy, injected into the grid (per year) [kWhe-pv/year] 

FiT: Feed-in-Tariff [CHF/kWhe-pv] – (0.037 CHF/kWhe-pv [80]) 

n: Expected lifetime [years] – (25 years) 

ERA: Energy Reference Area [m2] 

Cost (C): corresponds to the investment cost taking into account subsides or public aids. 
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C =  
𝐶𝐵𝐼𝑃𝑉−(𝑆𝑃𝑅𝑈/𝐺𝑅𝑈+𝑆𝑇𝑅+𝑆𝑁𝐵)

𝐸𝑅𝐴
          (4) 

Where: 

C:  Cost [CHF/m2] 

CBIPV: BIPV installation cost (incl. batteries) [CHF] 

SPRU/GRU: Federal subsidies for BIPV installations [CHF] – (~ 30% of CBIPV [81,82]) 

STR: Amount corresponding to the tax reduction [CHF] – (~ 11 - 17% of CBIPV [41]) 

SNB: Communal subsidies for PV installations (Neuchâtel bonus) [CHF] – (500 CHF/kWp [83]) 

ERA: Energy Reference Area [m2] 

3. Results and discussion 

This section presents the results of the methodology’s application on the two residential case studies 

described in section 2. Table 5 presents a summary of the annual final energy consumption of each building.  

Table 5 Energy consumption (without taking into account the BIPV production) in terms of final energy (FE) expressed in 
kWhFE/m

2
·year for E0-current status and S_BIPV renovation with and without changing the HVAC system for heating and domestic hot 

water (DHW). Grey cells correspond to the electricity consumption taking part in the self-consumption and self-sufficiency ratios. 

 Archetype 1 Archetype 2 

 E0 S_BIPV-OIL S_BIPV-HP E0 S_BIPV-OIL S_BIPV-HP 

Heating 222 (oil-boiler) 15 (oil-boiler) 7 (heat-pump) 89 (oil-boiler) 13 (oil-boiler) 5 (heat-pump) 

DHW 21 (oil-boiler) 21 (oil-boiler) 6 (heat-pump) 21 (oil-boiler) 21 (oil-boiler) 6 (heat-pump) 

Electricity* 19 19 20 19 19 20 

* Including artificial lighting, appliances. And mechanical ventilation for the S_BIPV-HP scenario. 

These values highlight the impact on the energy consumption provided by the passive strategies and the 

replacement of the existing HVAC system. It is interesting to note that an increase in electricity consumption 

is observed in the heat-pump scenario due to the implementation of a heat-recovery mechanical ventilation 

system. 
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Fig. 6 Example of daily energy balance for the three comparative energy-use configurations (Archetype 1, 15th April, scenario 
S_BIPV-HP) using A) 100% of active surfaces, B) making a selection and C) incorporating batteries for 1-day of autonomy. Best viewed 

in colour. 

Figure 6 shows the daily energy balance (15th April) calculated from hourly data for archetype 1 and scenario 

S_BIPV-HP (according to Table 5). With the selection of active surfaces (B-Selection) following the procedure 

described in the previous section, we obtain a better balance between SC and SS, leading to a trade-off 

between the two ratios. 

As mentioned, SC and SS follow opposite trends. The compromise between these two parameters allows a 

dimensioning of the installation responding to the needs of the building, ensuring a good use of the 

installation (SC) and a correct level of SS.  

After the previous definition of the BIPV installation size achieving a balance between SC and SS (B-

Selection), when batteries are added (C-Batteries), both ratios increase while guaranteeing one average day 

of autonomy. This option offers the possibility to see how high can reach the SC and SS values with the use of 

stationary batteries. This example serves to demonstrate the importance of the hourly time-step analysis, as 

well as the impact of the selection process and batteries in terms of SC and SS. 
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Fig. 7 Annual irradiation threshold study for the renovation scenario S_BIPV (SE-SW façades) for archetype 1 (left) and 2 (right). 

Coloured surfaces (according to the scale at the bottom) reach the respective irradiation threshold values. Best viewed in colour. 

As a result of the automated selection process (phase III of the methodology), Figure 7 highlights the 

surfaces that receive enough solar energy to be considered as active. This visualisation thus indicates where 

the installation of active elements is advisable. The example shown here corresponds to the 200, 400 and 

800 kWh/m2·year thresholds. The resulting active surfaces (or number of BIPV panels), the hourly on-site 

production and the final SC and SS values are used to build Figures 8 and 9. 
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For each scenario, two different thresholds are obtained, depending on whether the existing boiler is 

maintained or replaced and if a battery system is implemented or not. The battery system is sized for one 

day of mean electricity consumption. For archetype 1, 40 kWh/day (oil-boiler) and 84 kWh/day (heat-pump) 

lead to a total battery capacity of 54 and 122 kWh respectively. For archetype 2, this sizing value is of 233 

kWh/day (oil-boiler) and 313 kWh/day (heat-pump) leading to a total battery capacity of 485 and 653 kWh 

respectively.  

Figure 8 shows the SS, SC and BIPV production for each irradiation threshold. Two curves are represented, SC 

(in blue) and SS (in green), with oil-boiler (triangle dots) and electric heat-pump (circle dots). The SS and SC 

curves present an opposite tendency. The larger the installation, the higher the SS due to the amount of 

electricity produced. However, the SC is then lower because it is not possible to use all electricity at the same 

time that it is produced.  

If no battery system is included, for archetype 1, the recommended threshold is about 1150 kWh/m2·year 

(oil-boiler) and 825 kWh/m2·year (heat-pump), leading to 16 and 25 MWh/year of on-site production 

respectively with 26% and 23% and of SC and SS. These irradiation levels correspond to the most exposed 

surfaces, located on the inclined roof and balcony railings. For archetype 2, where the roof-to-façade surface 

ratio is lower than for archetype 1, the recommended thresholds are also lower at 800 kWh/m2·year (oil-

boiler) and 640 kWh/m2·year (heat-pump), leading to 87 and 139 MWh/year of on-site production 

respectively with 32% and 28% of SC and SS respectively. For that building, the selection procedure indicates 

that more façade surfaces must be rendered active, despite the fact that more efficient panels are installed 

on the roof (compared to archetype 1). These results demonstrate that the method adapts to the 

morphology and energy performance specific to each case study.  

If a battery system is included, for archetype 1, the recommended threshold is 1160 kWh/m2·year (oil-boiler) 

and 840 kWh/m2·year (heat-pump), leading to 15 and 24 MWh/year of on-site production respectively with 

69% and 59% of SC and SS respectively. For archetype 2, the recommended threshold is 800 kWh/m2·year 

(oil-boiler) and 690 kWh/m2·year (heat-pump), leading to 87 and 136 MWh/year of on-site production 

respectively with 70% and 62% of SC and SS respectively.  
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Fig. 8 Results from the irradiation threshold study based on SC (in blue) and SS (in green); depending on the HVAC system used oil-

boiler (triangles dots) or an electric heat-pump (circle dots). Best viewed in colour. 

 

Figure 9 shows the results from the economic study for a case with and without batteries and with the oil-

boiler maintained and replaced by a heat-pump system, for scenario S_BIPV of archetypes 1 and 2.  

Observing both Figures 8 and 9, as expected, results show that an installation using all possible active 

surfaces (without any filtering condition, corresponding to an irradiation threshold of 0 kWh/m2·year) is not 

recommended in any case, because the priority should be the maximisation of the amount of energy self-

consumed by the building itself, avoiding as much as possible the injection into the grid in exchange of 

progressively decreasing FiT [80].  
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Fig. 9 Simplified economic study for Archetype 1 and 2 for S_BIPV scenario. Comparison of the BIPV initial investment cost and the 

incomes produced by the installation during a life cycle of 25 years using electricity cost of 0.25 CHF/kWh (self-consumed part) [79] 
and 0.037 CHF/kWh (part injected into the grid) [80]. 

In the no battery case, for archetype 1, the level from which the incomes compensate the cost – the break-

even point – is found at 800 kWh/m2·year (oil-boiler) and 700 kWh/m2·year (heat-pump). For archetype 2, 

these values are of 800 kWh/m2·year (oil-boiler) and 600 kWh/m2·year (heat-pump). 

When including batteries, the break-even point generally decreases, to 700 kWh/m2·year (oil-boiler) and 400 

kWh/m2·year (heat-pump) for archetype 1. For archetype 2, a peculiar result is obtained; rather than a break-

even point, we observe a cost-effective range bounded by a lower and upper threshold value. These are of 

600 to 800 kWh/m2·year (oil-boiler) and of 500 to 800 kWh/m2·year (heat-pump). This situation indicates 

that for this building, the battery sized for a 1-day of autonomy represents an important cost. When above 
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800 kWh/m2·year, the installation becomes small to the point where all the produced energy is used in real-

time, thus making the battery oversized and therefore no longer cost-effective.  

In all cases, the irradiation threshold values obtained through the selection method (from Figure 8) fall 

within the cost-effective range from Figure 9, meaning that the equilibrium point between SC and SS is 

coherent also in economic terms. 

It is to note that the economic results are dependent upon the hypotheses used for different parameters:  

BIPV cost, purchase energy price for electricity, public subsidies, and feed-in-tariff received in exchange for 

the overproduction injected into the grid. These hypotheses are subject to variations, reason for which the 

selection method proposed in this paper – independent from such economic uncertainties – is more robust.   

4. Conclusions  

A review of the literature suggests the necessity of an adapted methodology to implement BIPV installations 

in renovation processes during the design phase. Therefore, the purpose of this study is to propose a new 

methodology to select active surfaces on building envelopes allowing to rapidly obtain visual and 

quantitative results during the design process. 

The results show that the use of this selection methodology is highly recommended on buildings with a big 

façade-to-roof ratio. Our study shows that the threshold must be adjusted according to the specific 

characteristics of the building, namely its consumption, orientation and urban context. This threshold will be 

unique for each type of installation and building, depending on the type of renovation that is proposed and 

on whether the HVAC system is changed or not.  

Results show that for small buildings with large roof areas (as archetype 1), the recommended irradiation 

threshold corresponds to 800-900 kWh/m2·year, i.e. making active the roof and the well-exposed parts of 

the façade only. However, in the case of high-rise buildings (as archetype 2), this irradiation threshold is 

situated in the range between 600-800 kWh/m2·year. This information indicates to designers that it is 

important to take into account the façade surfaces, one of the reasons being the important energy demand 

(many apartments) and the small roof surface. 
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The analysis of the two case studies highlights the consistency of the selection method regarding the energy 

and economic indicators. It also highlights that the best cost-effectiveness does not correspond to the 

biggest installation possible, but to the one that allows balancing SC and SS by choosing the location of the 

active surfaces with respect to the building’s consumption profile and obtaining grouped BIPV surfaces to 

facilitate the installation of the panels. 

Considering that a disconnection from the grid is not an option because of security supply reasons, the role 

of storage systems using batteries in this kind of renovation projects can offer a great advantage. In a self-

consumption approach, where the possibility of injecting the electricity into the grid could be difficult or 

impossible, the role of batteries can be remarkable, because they help increase the SC ratio by decreasing 

the energy needed from the grid. 

The results presented in this article are key elements allowing us to achieve the performance objectives for 

2050 in a more rational way by optimising the installation to minimise the grid-injected energy. This in turn 

allows avoiding the intrinsic problem linked to decreasing prices of injected electricity. Ultimately, our study 

shall provide architects, designers and engineers with a new method to propose a photovoltaic installation 

that is best adapted to each project from the initial phases of conception, allowing a rapid and fluid iterative 

process between design and quantitative evaluation. 

The main uncertainties of the study concern the available reference values for the economic evaluation 

(prices) that are not up-to-date with respect to the employed products. However, they represent worst-case 

values given that reductions are expected in terms of panels' price, manufacturing and installation. At the 

same time, these observations reinforce the relevance of the proposed method, which is independent from 

such uncertainties.  

As future work projections, in terms of integration of BIPV in existing buildings, it is highly recommended to 

analyse the profitability of the complete rehabilitation process, taking into account the cost deduction due to 

the substitution of an inert building material by the BIPV elements. 

The application of the proposed methodology can directly be adapted to other types of buildings and 

contexts, mainly by adjusting the settings in the simulation models (e.g. neighbour context in the 3D model, 

weather file corresponding to the geographic location). In addition, our methodology could be implemented 
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into a building information modelling (BIM) environment. New functionalities in the latest version of the 

DesignBuilder software [61], that improve the interoperability with BIM tools using gbXML exchange files 

[84], could be used to obtain results automatically from the digital model when changing strategies at the 

architectural level. Given the tools used to develop the automated algorithm to calculate PV production and 

filtering the active surfaces through the annual irradiation threshold (Grasshopper [50] for Rhino [51] and 

DIVA [48]), the process could therefore be easily adapted to be used for example in Dynamo [85] (an open-

source visual programming extension for Autodesk® Revit [86], one of the most widely used BIM software) 

that also allows to use the DIVA plugin [48]. 

5. Acknowledgements 

The authors would like to express their gratitude to the National Research Programme "Energy Turnaround" 

(NRP 70) of the Swiss National Science Foundation (SNSF) for their financial support to the ACTIVE 

INTERFACES research project, which represents a continuation of certain reflexions undertaken within the 

framework of this study. 

6. References 

[1] E. European Commission, Energy Performance of Buildings directive revision, (2018) 17–18. 

https://ec.europa.eu/energy/en/news/commission-welcomes-agreement-energy-performance-

buildings (accessed January 20, 2019). 

[2] S. Schwab, J.-L. Rime, G. Jaquerod, L. Rinquet, G. Rey, R. Camponovo, et al., eRen - Rénovation 

énergétique - Approche globale pour l’enveloppe du bâtiment, 2016. https://www.energie-

fr.ch/FR/SiteAssets/Lists/Actualits/NewForm/eRen-Approche globale pour l%27enveloppe du 

bâtiment.pdf (accessed February 1, 2019). 

[3] S. Aguacil, S. Lufkin, E. Rey, Influence of energy-use scenarios in Life-Cycle Analysis of renovation 

projects with Building-Integrated Photovoltaics – Investigation through two case studies in Neuchâtel 

(Switzerland), in: Internatonal Conference for Sustainable Design of the Built Environment SDBE 2017, 

London, 2017: pp. 1101–1112. doi:978-1-9997971-0-2. 

[4] B. Building Performance Institute Europe, Europe’ s buildings under the microscope. A country-by-

country review of the energy performance of buildings., 2011. 

[5] E.P. EU, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the 

energy performance of buildings EPBD (recast), Official Journal of the European Union. (2010) 13–35. 

doi:doi:10.3000/17252555.L_2010.153.eng. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

- 25 -  

[6] J.S. Bourrelle, I. Andresen, A. Gustavsen, Energy payback: An attributional and environmentally 

focused approach to energy balance in net zero energy buildings, Energy and Buildings. 65 (2013) 84–

92. doi:10.1016/j.enbuild.2013.05.038. 

[7] E. Pikas, M. Thalfeldt, J. Kurnitski, Cost optimal and nearly zero energy building solutions for office 

buildings, Energy and Buildings. 74 (2014) 30–42. doi:10.1016/j.enbuild.2014.01.039. 

[8] O. Pombo, K. Allacker, B. Rivela, J. Neila, Sustainability assessment of energy saving measures: a multi-

criteria approach for residential buildings retrofitting–A case study of the Spanish housing stock, 

Energy and Buildings. (2016). doi:10.1016/j.enbuild.2016.01.019. 

[9] A. Brandão de Vasconcelos, M.D. Pinheiro, A. Manso, A. Cabaço, EPBD cost-optimal methodology: 

application to the thermal rehabilitation of the building envelope of a Portuguese residential 

reference building, Energy & Buildings. 111 (2015) 12–25. doi:(under review). 

[10] I. Zacà, D. D’Agostino, P.M. Congedo, C. Baglivo, Assessment of cost-optimality and technical solutions 

in high performance multi-residential buildings in the Mediterranean area, Energy and Buildings. 102 

(2015) 250–265. doi:10.1016/j.enbuild.2015.04.038. 

[11] E. Stocker, M. Tschurtschenthaler, L. Schrott, Cost-optimal renovation and energy performance: 

Evidence from existing school buildings in the Alps, Energy and Buildings. 100 (2015) 20–26. 

doi:10.1016/j.enbuild.2015.04.005. 

[12] Emirates Insolare, Swissinso, Kromatix PV Module, (2018). http://emirates-

insolaire.com/en/KromatixModule (accessed September 21, 2018). 

[13] 3S Solar Plus AG, MegaSlate PV panels, (2018). https://3s-solarplus.ch/fr/produits/systeme-de-

megaslate-integration-au-batiment/ (accessed October 8, 2018). 

[14] J. Escarré, C. G., L. Sansonnens, J. Bailat, L.-E. Perret-Aebi, S. Nicolay, et al., White Solar Modules: from 

Prototypes to Industrial Products., CSEM Scientific and Technical Report 2015. (2015) 1. 

www.csem.ch (accessed November 17, 2018). 

[15] PV Database, Building integrated and urban photovoltaic solar energy projects and products (On-line 

database), (2018). http://pvdatabase.org/ (accessed April 9, 2018). 

[16] J. Palm, K. Reindl, Understanding barriers to energy-efficiency renovations of multifamily dwellings, 

Energy Efficiency. 11 (2018) 53–65. doi:10.1007/s12053-017-9549-9. 

[17] C. Ballif, L.-E. Perret-Aebi, S. Lufkin, E. Rey, Integrated thinking for photovoltaics in buildings, Nature 

Energy. 3 (2018). doi:10.1038/s41560-018-0176-2. 

[18] P. Heinstein, C. Ballif, L.-E. Perret-Aebi, Building Integrated Photovoltaics ({BIPV}): Review, Potentials, 

Barriers and Myths, Green. 3 (2013). doi:10.1515/green-2013-0020. 

[19] B.P. Jelle, C. Breivik, State-of-the-art Building Integrated Photovoltaics, Energy Procedia. 20 (2012) 

68–77. doi:10.1016/j.egypro.2012.03.009. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

- 26 -  

[20] B.P. Jelle, C. Breivik, The Path to the Building Integrated Photovoltaics of Tomorrow, Energy Procedia. 

20 (2012) 78–87. doi:10.1016/j.egypro.2012.03.010. 

[21] C. Peng, Y. Huang, Z. Wu, Building-integrated photovoltaics (BIPV) in architectural design in China, 

Energy and Buildings. 43 (2011) 3592–3598. doi:10.1016/j.enbuild.2011.09.032. 

[22] I. Zanetti, P. Bonomo, F. Frontini, E. Saretta, M. van den Donker, F. Vossen, et al., BIPV- Product 

overview for solar building skins- Status Report 2017, 2017. https://www.seac.cc/wp-

content/uploads/2017/11/171102_SUPSI_BIPV.pdf (accessed February 1, 2019). 

[23] S. Lufkin, E. Rey, R. Wuestenhagen, S. Wittkopf, P. Bacher, Building integrated photovoltaics. ACTIVE 

INTERFACES, NRP 70(Energy Turnaround) and NRP 71 (Managing Energy Consumption), Kick-off 

Meeting Luzern, 24 April, Luzern, 2015. http://www.activeinterfaces.ch. 

[24] T. Østergård, R.L. Jensen, S.E. Maagaard, Building simulations supporting decision making in early 

design - A review, Renewable and Sustainable Energy Reviews. 61 (2016) 187–201. 

doi:10.1016/j.rser.2016.03.045. 

[25] S. Attia, L. Beltrán, A. De Herde, J. Hensen, Architect Friendly: a Comparison of Ten Different Building 

Performance Simulation Tools, Eleventh International IBPSA Conference. (2009) 1–8. 

papers2://publication/uuid/C5D874D9-B854-4E97-980B-A555604BE791. 

[26] G. Peronato, S. Aguacil, A. Legrain, S. Vitali, E. Rey, M. Andersen, et al., Assessing the photovoltaic 

potential of flat roofs : Insights from the analysis of optimised array arrangements (accepted paper), 

in: 34th PLEA Conference ProceedingsPLEA Conference Proceedings: Smart and Healthy within the 2-

Degree Limit, 2018: pp. 4–6. 

[27] N. Chowdhury, C. Hossain, M. Longo, W. Yaïci, Optimization of Solar Energy System for the Electric 

Vehicle at University Campus in Dhaka, Bangladesh, Energies. 11 (2018) 2433. 

doi:10.3390/en11092433. 

[28] NREL, HOMER Energy, Getting Started Guide for HOMER Legacy (Version 2.68), Archives of 

Dermatology. (2011). doi:10.1001/archderm.135.10.1277. 

[29] MathWorks, Matlab software, (2019). https://ch.mathworks.com/ (accessed February 1, 2019). 

[30] C. Waibel, G. Mavromatidis, L.A. Bollinger, R. Evins, J. Carmeliet, Sensitivity analysis on optimal 

placement of façade based photovoltaics, in: Proceedings of ECOS 2018 - The 31st International 

Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy 

Systems, At Guimarães, Portugal, Guimarães (Portugal), 2018: pp. 1–13. 

[31] N. Martín-Chivelet, D. Montero-Gómez, Optimizing photovoltaic self-consumption in office buildings, 

Energy and Buildings. 150 (2017) 71–80. doi:10.1016/j.enbuild.2017.05.073. 

[32] A.M.A. Youssef, Z. (John) Zhai, R.M. Reffat, Generating proper building envelopes for photovoltaics 

integration with shape grammar theory, Energy and Buildings. 158 (2018) 326–341. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

- 27 -  

doi:10.1016/j.enbuild.2017.09.077. 

[33] A.M.A. Youssef, Z.J. Zhai, R.M. Reffat, Genetic algorithm based optimization for photovoltaics 

integrated building envelope, Energy and Buildings. 127 (2016) 627–636. 

doi:10.1016/j.enbuild.2016.06.018. 

[34] R. Joshi, M. Pathak, A.K. Singh, Designing Self-Energy Sufficient Buildings in India, Energy Procedia. 57 

(2014) 3110–3119. doi:10.1016/j.egypro.2015.06.062. 

[35] N. Schüler, S. Cajot, M. Peter, J. Page, F. Maréchal, The Optimum Is Not the Goal: Capturing the 

Decision Space for the Planning of New Neighborhoods, Frontiers in Built Environment. 3 (2018) 1–

22. doi:10.3389/fbuil.2017.00076. 

[36] R. Compagnon, Solar and daylight availability in the urban fabric, Energy and Buildings. 36 (2004) 

321–328. doi:10.1016/j.enbuild.2004.01.009. 

[37] V. Costanzo, R. Yao, E. Essah, L. Shao, M. Shahrestani, A.C. Oliveira, et al., A method of strategic 

evaluation of energy performance of Building Integrated Photovoltaic in the urban context, Journal of 

Cleaner Production. (2018). doi:10.1016/j.jclepro.2018.02.139. 

[38] SIONIC, PV prices 2017, 2017. http://www.sionic.ch/fr/ (accessed February 1, 2019). 

[39] EIA, International Energy Outlook 2017 Overview, U.S. Energy Information Administration. IEO2017 

(2017) 143. doi:www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf. 

[40] SolarPower Europe, Global Market Outlook for Solar Power 2017-2021, SolarPower Europe. (2017) 60 

pgs. http://www.solarpowereurope.org/home/. 

[41] O. fédéral de l’énergie OFEN, MétéoSuisse, Swisstopo, Solar potential, roof and façade (web tool), 

(2018). http://www.uvek-gis.admin.ch/BFE/sonnendach/?lang=fr (accessed March 3, 2018). 

[42] L. Stamenic, E. Smiley, K. Karim, Low light conditions modelling for building integrated photovoltaic 

(BIPV) systems, Solar Energy. 77 (2004) 37–45. doi:10.1016/j.solener.2004.03.016. 

[43] N. Taylor, Guidelines for PV power measurement in industry, 2010. doi:10.2788/90247. 

[44] S. Summermatter, T. Schläpfer, L. Fleischli, S. Wittkopf, Simulation of on-site Consumption for 

Building Integrated Photovoltaics ( BIPV ), in: 10th Conference on Advanced Building Skins, Bern, 

Switzerland, November 03-04, 2015., 2015. 

http://www.activeinterfaces.ch/sites/default/files/downloads/summermatterschlapferfleisliwittkopf_

simulation_of_on-site_consumption_for_building_integrated_photovoltaics_bipv.pdf. 

[45] R. Luthander, J. Widén, D. Nilsson, J. Palm, Photovoltaic self-consumption in buildings: A review, 

Applied Energy. 142 (2015) 80–94. doi:10.1016/j.apenergy.2014.12.028. 

[46] E. Sánchez, J. Izard, Performance of photovoltaics in non-optimal orientations: An experimental study, 

Energy and Buildings. 87 (2015) 211–219. doi:10.1016/j.enbuild.2014.11.035. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

- 28 -  

[47] N. Jakica, State-of-the-art review of solar design tools and methods for assessing daylighting and solar 

potential for building-integrated photovoltaics, Renewable and Sustainable Energy Reviews. 81 (2018) 

1296–1328. doi:10.1016/j.rser.2017.05.080. 

[48] Solemma LCC, DIVA for Rhino. Environmental analysis for buildings, (2018). http://diva4rhino.com/ 

(accessed April 15, 2018). 

[49] A. Hollberg, J. Ruth, LCA in architectural design—a parametric approach, International Journal of Life 

Cycle Assessment. 21 (2016) 943–960. doi:10.1007/s11367-016-1065-1. 

[50] S. Davidson, Grasshopper (Algorithmic modeling for Rhino), (2018). http://www.grasshopper3d.com/ 

(accessed May 9, 2018). 

[51] Robert McNeel & Associates, Rhinoceros software, (2019). https://www.rhino3d.com/ (accessed 

February 1, 2019). 

[52] A. Hollberg, A parametric method for building design optimization based on Life Cycle Assessment, 

2016. 

[53] Active Interfaces, Active Interfaces research project, (2019). http://www.activeinterfaces.ch/ 

(accessed February 1, 2019). 

[54] S. Aguacil, S. Lufkin, E. Rey, Integrated design strategies for renovation projects with Building-

Integrated Photovoltaics towards Low-Carbon Buildings: Two comparative case studies in Neuchâtel 

(Switzerland), in: 33rd PLEA Conference ProceedingsPLEA Conference Proceedings: Design to Thrive, 

2017: pp. 3000–3007. 

[55] S. Aguacil, S. Lufkin, E. Rey, Architectural design scenarios with building-integrated photovoltaic 

solutions in renovation processes: Case study in Neuchâtel (Switzerland), in: PLEA 2016 Los Angeles - 

36th International Conference on Passive and Low Energy Architecture. Cities, Buildings, People: 

Towards Regenerative Environments, 2016. 

[56] S. Aguacil, S. Lufkin, E. Rey, ACTIVE INTERFACES . Holistic design strategies for renovation projects 

with building- integrated photovoltaics ( BIPV ): case study from the 1900s in Neuchâtel ( Switzerland 

)., in: 15th National Photovoltaic Congress. March 23-24, 2017, Lausanne, Switzerland, 2017. 

https://www.swissolar.ch/fr/15eme-congres-national-photovoltaique-2017/ (accessed February 1, 

2019). 

[57] S.S. des I. et des A. SIA, SIA 380/1:2016 - Besoin de chaleur pour le chauffage, (2016). 

[58] S.S. des I. et des A. SIA, SIA 2040:2017 “La voie SIA vers l’efficacité énergétique,” 2017. 

http://www.2000watt.ch/ (accessed January 20, 2019). 

[59] Suisse Energie, Catalogue de la construction en Suisse, (2016). 

http://www.bauteilkatalog.ch/ch/fr/catalogueconstruction.asp (accessed January 20, 2016). 

[60] L.B.N.L. LBNL, WINDOW Software, (2019). https://windows.lbl.gov/software (accessed February 1, 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

- 29 -  

2019). 

[61] DesignBuilder, DesignBuilder software v.5, (2018). http://www.designbuilder.co.uk/ (accessed 

February 23, 2018). 

[62] C.E.C. CEC, C.P.U.C. CPUC, List and main features of PV Modules on the market, (2018). 

http://www.gosolarcalifornia.ca.gov/equipment/pv_modules.php (accessed April 4, 2018). 

[63] CSEM, Centre suisse d’électronique et de microtechnique, (2018). https://www.csem.ch/ (accessed 

July 26, 2018). 

[64] C.C.E. and M. CCEM, Archinsolar - Unique and Innovative Solution of Thin Silicon Films Modules 

Building Integration, 2012. doi:10.1021/ie900953z.http. 

[65] Solaxess, Colored BIPV modules using selective scattering filters, (2018). http://www.solaxess.ch/ 

(accessed October 7, 2018). 

[66] ISSOL, Solar-Terra PV module, (2018). http://www.issol.eu/ (accessed August 3, 2018). 

[67] DETAIL green, New design potentials for solar energy, DETAIL Green. 02 (2017) 48–55. 

[68] S. Aguacil, S. Lufkin, E. Rey, Stratégies de rénovation active pour le parc bâti suisse, in: 9e Édition Du 

Forum Ecoparc. Potentiel Solaire Des Territoires Urbains: Vers de Nouveaux Paradigmes ?.TRACÉS 

Dossier 11.2017, 2017: pp. 6–9. 

[69] I. Cerón, E. Caamaño-Martín, F.J. Neila, ‘State-of-the-art’ of building integrated photovoltaic products, 

Renewable Energy. 58 (2013) 127–133. doi:10.1016/j.renene.2013.02.013. 

[70] U.D. of E. DOE, EnergyPlus, (2018). https://energyplus.net/ (accessed April 15, 2018). 

[71] S.S. des I. et des A. SIA, SIA 2024:2015 - Donées d’utilisation des locaux pour l’énergie et les 

installations du bâtiment, (2015). 

[72] K. Jad, Rénovation énergétique des bâtiments résidentiels collectifs : état des lieux, retours 

d’expérience et potentiels du parc genevois., Université de Genève, 2014. doi:10.13097/archive-

ouverte/unige:48085. 

[73] Meteotest, Meteonorm software, (2018). https://www.meteonorm.com/. 

[74] U.C. de L. UCL, Le rendement d’une installation de chauffage central, (2018). 

https://www.energieplus-lesite.be/index.php?id=10988#c5063+c5064 (accessed December 30, 

2018). 

[75] SIA -Société Suisse des Ingénieurs et des Architectes, SIA 180:2014 Protection thermique, protection 

contre humidité et climat intérieur dans les bâtiments, (2014). 

[76] P. Stenzel, M. Baumann, J. Fleer, B. Zimmermann, M. Weil, Database development and evaluation for 

techno-economic assessments of electrochemical energy storage systems, 2014 IEEE International 

Energy Conference (ENERGYCON). (2014) 1334–1342. doi:10.1109/ENERGYCON.2014.6850596. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

- 30 -  

[77] L. Vandepaer, J. Cloutier, B. Amor, Environmental impacts of Lithium Metal Polymer and Lithium-ion 

stationary batteries, Renewable and Sustainable Energy Reviews. 78 (2017) 46–60. 

doi:10.1016/j.rser.2017.04.057. 

[78] Swiss-green, Solar batteries, (2018). www.swiss-green.ch (accessed July 16, 2018). 

[79] C. fédérale de l’électricité ElCom, Electricty prices in Switzerland, (2018). https://www.prix-

electricite.elcom.admin.ch/Map/ShowSwissMap.aspx (accessed August 29, 2018). 

[80] A. des producteurs d’energie independants VESE, pvtarif.ch, Les tarifs de rétribution pour l’énergie 

solaire solaire injectée, (2018). http://www.vese.ch/ (accessed February 1, 2019). 

[81] pronovo, pronovo - Programmes d’encouragement, (2018). www.pronovo.ch (accessed November 

20, 2018). 

[82] O. fédéral de l’énergie OFEN, Encouragement du photovoltaïque, 2018. 

http://www.bfe.admin.ch/themen/00612/05410/06149/index.html?lang=fr&dossier_id=06150. 

[83] Ville de Neuchâtel, Arrêté concernant l’utilisation du fonds communal pour l’énergie (Du 29 janvier 

2018), (2018). 

https://www.neuchatelville.ch/fileadmin/sites/ne_ville/fichiers/votre_commune/reglementation/70.

70_Arrete_utilisation_fonds_communal_energie_0718.pdf (accessed February 1, 2019). 

[84] carmelsoft, Green Building XML schema, (2019). http://www.gbxml.org/ (accessed February 1, 2019). 

[85] Autodesk, Dynamo, (2019). https://dynamobim.org/download/ (accessed February 1, 2019). 

[86] Autodesk, Autodesk Revit, (2019). https://www.autodesk.com/ (accessed February 1, 2019). 

 


