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Abstract. The paper presents a new method for the synthesis of Petri
nets from event logs in the area of Process Mining. The method derives a
bounded Petri net that over-approximates the behavior of an event log.
The most important property is that it produces a net with the smallest
behavior that still contains the behavior of the event log. The methods
described in this paper have been implemented in a tool and tested on
a set of examples.

1 Introduction

The discovery of formal models from event logs in information systems is known
as process mining. Since the nineties, the area of process mining has been fo-
cused in providing formal support to business information systems [16]. In the
industrial domain, ranging from hospitals and banks to sensor networks or CAD
for VLSI, process mining can be applied to succinctly summarize the behavior
observed in large event logs [14]. Nowadays, several approaches can be used to
mine formal models, most of them included in the ProM framework [15].

The synthesis problem [7] is related to process mining: it consists in building
a Petri net that has a behavior equivalent to a given transition system. The prob-
lem was first addressed by Ehrenfeucht and Rozenberg [8] introducing regions to
model the sets of states that characterize marked places. Process mining differs
from synthesis in the knowledge assumption: while in synthesis one assumes a
complete description of the system, only a partial description of the system is
assumed in process mining. Therefore, bisimulation is no longer a goal to achieve
in process mining. Instead, obtaining approximations that succinctly represent
the log under consideration are more valuable [19].

In the area of synthesis, some approaches have been studied to take the
theory of regions into practice. In [3] polynomial algorithms for the synthesis of
bounded nets were presented. This approach has been recently adapted for the
problem of process mining in [4]. In [6], the theory of regions was applied for the
synthesis of safe Petri nets with bisimilar behavior. Recently, the theory from [6]
has been extended to bounded Petri nets [5]. In this paper we adapt the theory
from [5] to the problem of process mining.

The work presented in this paper aims at constructing (mining) a Petri net
that covers the behavior observed in the event log, i.e. traces in the event log
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Fig. 1. Petri net mining to avoid overfitting.

will be feasible in the Petri net. Moreover, the Petri net may accept traces not
observed in the log. Additionally, a minimality property is demonstrated on the
mined Petri net: no other net exists that both covers the log and accepts less
traces than the mined Petri net. This capability of minimal over-approximation
represents the main theoretical contribution of this paper. The methods pre-
sented in the paper can mine a particular k-bounded Petri net, for a given
bound k. We have implemented the theory of this paper in a tool, and some
preliminary results from logs are reported. The approach taken in this paper
is a formal one and differs from the more heuristic methods in the literature.
Although the methods presented might have a high complexity for large logs,
they can be combined with recent iterative approaches [18] to alleviate their
complexity.

This paper shares common goals with the previously presented paper [4].
In [4], two process mining strategies on region of languages are presented, having
the same minimality goal as the one that we have in this paper. However the
strategy is different: integer linear models are solved in order to find a set of
special places called feasible places that guarantee the inclusion of the traces
from the event log. The more places added, the more traces are forbidden in
the resulting net. If the net contains all the possible feasible places, then the
minimality property can be demonstrated. However, the set of feasible places
might be infinite. In our case, given a maximal bound k for the mining of a
k-bounded Petri net, minimal regions of the transition system are enough to
demonstrate the minimality property on this bound.
Example. In [14], a small log is presented to motivate the overfit-
ting produced by synthesis tools. The log contains the following activi-
ties: r=register, s=ship, sb=send bill, p=payment, ac=accounting, ap=approved,
c=close, em=express mail, rj=rejected, and rs=resolve. Now assume that the
event log contains the traces (r, s, sb,p, ac, ap, c), (r,sb,em, p, ac, ap, c),
(r, sb, p, em, ac, rj, rs, c), (r, em, sb, p, ac, ap, c), (r, sb, s, p, ac, rj, rs, c),
(r, sb, p, s, ac, ap, c) and (r, sb, p, em, ac, ap, c). From this log, a TS can
be obtained [13] and a PN as the one shown in Figure 1 will be synthesized
by a tool like petrify [6]. If the log is slightly changed (for instance, trace
(r, sb, s, p, ac, rj, rs, c) is replaced by (r, sb, s, p, ac, ap, c), the synthesis tool
will adapt the PN to account for the changes, deriving a different PN. This means
that synthesis algorithms are very sensitive to variations in the logs. However,
the techniques presented in this paper, as it happens also with traditional min-



ing approaches like the α-algorithm [16], are less sensitive to variations in event
logs, and will derive the same PN over the modified log.

The two models used in this paper are Petri nets and transition systems.
We will assume that a transition system represents an event log obtained from
observing a real system from which an event-based representation (e.g. a Petri
net) approximating its behavior must be obtained. The derivation of the tran-
sition system from an event log is an important step, that may have big impact
in the final mined Petri net, as it is demonstrated in [13]. A two-step approach
is presented in [13], emphasizing that the first step (generation of the transition
system) is crucial for the balance between underfitting and overfitting. If the de-
sired abstraction is attained in the first step, i.e. the transition system represents
an abstraction of the event log, the second step is expected to reproduce exactly
this abstraction, via synthesis. The methods presented in this paper extend the
possibilities of this two-step approach, given that the second step might also
introduce further abstraction in a controlled manner. The approaches based on
regions of languages perform the mining process in only one step, provided that
logs can be directly interpreted as languages [4].

2 Preliminaries: theory of regions

2.1 Finite transition systems and Petri nets

Definition 1 (Transition system). A transition system (TS) is a tuple
(S, E,A, sin), where S is a set of states, E is an alphabet of actions, such
that S ∩E = ∅, A ⊆ S ×E × S is a set of (labelled) transitions, and sin is the
initial state.

Let TS = (S, E,A, sin) be a transition system. We consider connected TSs
that satisfy the following axioms:

– S and E are finite sets.
– Every event has an occurrence: ∀e ∈ E : ∃(s, e, s′) ∈ A;
– Every state is reachable from the initial state: ∀s ∈ S : sin

∗→ s.

A TS is called deterministic if for each state s and each label a there can
be at most one state s′ such that s

a→ s′. The relation between TSs will be
studied in this paper. The language of a TS, L(TS), is the set of traces feasible
from the initial state. When, L(TS1) ⊆ L(TS2), we will denote TS2 as an over-
approximation of TS1. The notion of simulation between two TSs is related to
this concept:

Definition 2 (Simulation [2]). Let TS1 = (S1, E, A1, sin1) and
TS2 = (S2, E, A2, sin2) be two TSs with the same set of events. A simula-
tion of TS1 by TS2 is a relation π between S1 and S2 such that

– for every s1 ∈ S1, there exists s2 ∈ S2 such that s1πs2.
– for every (s1, e, s

′
1) ∈ A1 and for every s2 ∈ S2 such that s1πs2, there exists

(s2, e, s
′
2) ∈ A2 such that s′1πs′2.



When TS1 is simulated by TS2 with relations π, and viceversa with relation
π−1, TS1 and TS2 are bisimilar [2].

Definition 3 (Petri net [12]). A Petri net (PN) is a tuple (P, T, F, M0)
where P and T represent finite sets of places and transitions, respectively, and
F ⊆ (P × T ) ∪ (T × P ) is the flow relation. The initial marking M0 ⊆ P defines
the initial state of the system3.

The sets of input and output transitions of place p are denoted by •p and
p•, respectively. The set of all markings of N reachable from the initial marking
m0 is called its Reachability Set. The Reachability Graph of PN (RG(PN)) is a
transition system in which the set of states is the Reachability Set, the events
are the transitions of the net and a transition (m1, t,m2) exists if and only if
m1

t→ m2. We use L(PN) as a shortcut for L(RG(PN)).

2.2 Regions

We now review the classical theory of regions for the synthesis of Petri nets [6–8].
Let S′ be a subset of the states of a TS, S′ ⊆ S. If s 6∈ S′ and s′ ∈ S′, then we
say that transition s

a→ s′ enters S′. If s ∈ S′ and s′ 6∈ S′, then transition s
a→ s′

exits S′. Otherwise, transition s
a→ s′ does not cross S′.

Definition 4. Let TS = (S, E,A, sin) be a TS. Let S′ ⊆ S be a subset of states
and e ∈ E be an event. The following conditions (in the form of predicates) are
defined for S′ and e:

nocross(e, S′) ≡ ∃(s1, e, s2) ∈ A : s1 ∈ S′ ⇔ s2 ∈ S′

enter(e, S′) ≡ ∃(s1, e, s2) ∈ A : s1 6∈ S′ ∧ s2 ∈ S′

exit(e, S′) ≡ ∃(s1, e, s2) ∈ A : s1 ∈ S′ ∧ s2 6∈ S′

The notion of a region is central for the synthesis of PNs. Intuitively, each
region is a set of states that corresponds to a place in the synthesized PN, so
that every state in the region models the marking of the place.

Definition 5 (region). A set of states r ⊆ S in TS = (S, E,A, sin) is called a
region if the following two conditions are satisfied for each event e ∈ E:

– (i) enter(e, r) ⇒ ¬nocross(e, r) ∧ ¬exit(e, r)
– (ii) exit(e, r) ⇒ ¬nocross(e, r) ∧ ¬enter(e, r)

A region is a subset of states in which all transitions labeled with the same
event e have exactly the same “entry/exit” relation. This relation will become
the predecessor/successor relation in the Petri net. The event may always be
either an enter event for the region (case (i) in the previous definition), or

3 Although this paper deals with bounded Petri nets, for the sake of clarity we restrict
the theory of current and next sections to the simpler class of safe (1-bounded) Petri
nets. Section 4 discusses how to generalize the method for bounded Petri nets.
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Fig. 2. (a) Transition system, (b) minimal regions, (c) synthesis applying Algorithm
of Figure 3.

always be an exit event (case (ii)), or never “cross” the region’s boundaries,
i.e. each transition labeled with e is internal or external to the region, where
the antecedents of neither (i) nor (ii) hold. The transition corresponding to the
event will be successor, predecessor or unrelated with the corresponding place
respectively.

Examples of regions are reported in Figure 2: from the TS of Figure 2(a),
some regions are enumerated in Figure 2(b). For instance, for region r2, event a
is an exit event, event d is an entry event while the rest of events do not cross
the region.

Definition 6 (Minimal region). Let r and r′ be regions of a TS. A region r′

is said to be a subregion of r if r′ ⊂ r. A region r is a minimal region if there is
no other region r′ which is a subregion of r.

Going back to the example of Figure 2, in Figure 2(b) we report the set of
minimal regions. The union of disjoint regions is a region, so for instance the
union of the regions r1 and r4 is the set {s1, s2, s3, s4} which is also a (non-
minimal) region.

Each TS has two trivial regions: the set of all states, S, and the empty set.
Further on we will always consider only non-trivial regions. The set of non-trivial
regions of TS will be denoted by RTS. Given a set S′ ⊆ S and a region r, r |S′

represents the projection of the region r into the set S′, i.e. r |S′= r ∩ S′.
A region r is a pre-region of event e if there is a transition labeled with

e which exits r. A region r is a post-region of event e if there is a transition
labeled with e which enters r. The sets of all pre-regions and post-regions of e
are denoted with ◦e and e◦, respectively. By definition it follows that if r ∈ ◦e,
then all transitions labeled with e exit r. Similarly, if r ∈ e◦, then all transitions
labeled with e enter r.



Algorithm: PN synthesis

– For each event e ∈ E generate a transition labeled with e in the PN;
– For each minimal region ri ∈ RTS generate a place ri;
– Place ri contains a token in the initial marking iff the corresponding

region ri contains the initial state of the TS sin;
– The flow relation is as follows: e ∈ ri• iff ri is a pre-region of e

and e ∈ •ri iff ri is a post-region of e, i.e.,

FTS
def
= {(r, e)|r ∈ RTS ∧ e ∈ E ∧ r ∈ ◦e}

∪{(e, r)|r ∈ RTS ∧ e ∈ E ∧ r ∈ e◦}

Fig. 3. Algorithm for Petri net synthesis from [11].

2.3 Generation of minimal regions

The computation of the minimal regions is crucial for the synthesis methods
in [5, 6]. It is based on the notion of excitation region [10].

Definition 7 (Excitation region4). The excitation region of an event e,
ER(e), is the set of states in which e is enabled, i.e.

ER(e) = {s | ∃s′ : (s, e, s′) ∈ A}

Minimal regions can be generated from the ERs of the events in a TS in the
following way: starting from the ER of each event, set expansion is performed on
those events that violate the region condition (a pseudocode of the expansion
algorithm is given in Figure 10 from [6]). This exploration can be done efficiently
by considering only sets that are not supersets of regions already computed [6],
because only minimal regions are required. Each time a region is obtained (ac-
cording to Definition 5), it is added to the set of regions. Finally, from the set
of regions computed, non-minimal regions are removed.

2.4 Region-based synthesis

The procedure given by [11] to synthesize a PN, NTS = (RTS, E, FTS, Rsin), from
an elementary transition system5, TS = (S, E,A, sin), is illustrated in Figure 3.
Notice that only minimal regions are required in the algorithm [7].

An example of the application of the algorithm is shown in Figure 2. The
initial TS and the set of minimal regions is reported in Figures 2(a) and (b),
respectively. The synthesized PN is shown in Figure 2(c).

4 Excitation regions are not regions in the terms of Definition 5. The term is used due
to historical reasons.

5 Elementary transition systems are a proper subclass of the TS considered in this
paper, were additional conditions to the ones presented in Section 2.1 are required.
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2.5 Excitation-closed transition systems

Definition 8 (Excitation-closed TS). A transition system
TS = (S, E,A, sin) is called excitation-closed (ECTS) if it satisfies the fol-
lowing two axioms:

– Excitation closure: For each event a:
⋂

r∈ ◦a r = ER(a)
– Event effectiveness: For each event a: ◦a 6= ∅

The synthesis algorithm in Figure 3 applied to an ECTS derives a Petri
net with reachability graph bisimilar to the initial TS [6]. Note that the state
separation property of elementary transition systems, which enforces every pair
of states to be distinguished by the set of regions is not required. The set of
regions needed by the algorithm to preserve bisimilarity can be constrained to
minimal pre-regions.

When the TS is not excitation closed, then it must be transformed to enforce
that property. One possible strategy is to represent every event by multiple
transitions with the same label. This technique is called label splitting. Figure 4
illustrates this technique. The initial TS, shown in Figure 4(a) is transformed
by splitting the event b into the events b1 and b2, as shown in Figure 4(b),
resulting in an ECTS. The synthesized PN, with two transitions for event b is
shown in Figure 4(c). Hence in PN synthesis label splitting might be crucial
for the existence of a PN with bisimilar behavior. However, sometimes label
splitting might degrade the resulting PN structure significantly, deriving intricate
causality relations that are not helpful for visualization. This phenomenon is
discussed in [5].

The following sections introduce PN mining, a version of PN synthesis where
the excitation closure is dropped.

3 Algorithm for Petri net mining

The goal of Petri net mining is to generate a PN that over-approximates all
observed behaviors in the TS, i.e. L(TS) ⊆ L(PN), and where L(PN) \ L(TS) is
small [4]. Additionally, obtaining a succinct PN with nice causality relations is
desirable. For this purpose, the classical synthesis conditions must be adapted



to allow the discovery of behaviors not present in the input TS. In this section
we show a simple yet powerful approach for relaxing the region-based synthesis
conditions from [5,6] to obtain over-approximations of the TS. Formally, given
a TS=(S, E,A, sin) , the theory of regions can be adapted for mining a Petri net
PN=(P, T, F, M0) with the following characteristics:

1. L(TS) ⊆ L(PN),
2. T = E, i.e. there is no label splitting, and
3. Minimal language containment (MLC) property:

∀PN′ = (P ′, T ′, F ′,M ′
0) s.t. T ′ = E : L(TS) ⊆ L(PN′) ⇒ L(PN) ⊆ L(PN′)

Therefore the obtained Petri net represents the minimal over-approximation of
the input TS that can be synthesized without label splitting. The remainder
of this section will show how to relax the region-based synthesis to derive such
Petri net.

3.1 Mining over-approximations of a TS

Bisimilarity or language equivalence are very restricting equivalence relations,
not very useful for the area of Petri net mining where over-approximations of
the initial event log are more valuable [4,19]. In [5,6], bisimulation between the
TS and the synthesized PN holds due to the excitation closure condition. Let us
assume in this section that the excitation closure condition is dropped, i.e. the set
of minimal pre-regions of some events may properly include the excitation region
of the event. With this simple relaxation, the PN obtained by the Algorithm of
Figure 3 will satisfy the MLC property (Theorem 2).

Theorem 1. Let TS=(S, E,A, sin) be a transition system, and
PN=(P, T, F, M0) be the synthesized net with the set of minimal regions
of TS, using Algorithm of Figure 3. Then L(TS) ⊆ L(PN).

Proof. The proof corresponds to the sufficiency direction from Theorem 3.4
in [6]. The theorem guarantees bisimilarity between an ECTS and the reach-
ability graph of the synthesized Petri net from the set of minimal regions. From
the two simulations necessary for having bisimulation in that theorem, only one
is preserved if the excitation closure condition is dropped. This remaining sim-
ulation is the one between the TS and the reachability graph of the PN. Hence
every trace in the TS can be simulated by the PN when minimal regions are
used, even if the TS is not excitation closed. This suffices to prove the theorem.
2

Moreover, as the following results show, regions are preserved under language
containment or simulation.

Lemma 1. Let TS=(S, E,A, sin), TS′ = (S′, E′, A′, sin) be two transition sys-
tems such that S ⊆ S′, E ⊆ E′, T ⊆ T ′. If r ∈ RTS′ then r |S ∈ RTS.



Proof. If predicates (i),(ii) in Definition 5 hold in r for transitions in A′, then
they also hold for the transitions in A when r is restricted to S, given that A ⊆ A′

and S ⊆ S′, i.e. by removing arcs, no new violations of the region conditions can
be created (see Definition 5). 2

We now prove a similar lemma on the correspondence of regions between
simulated TSs.

Lemma 2. Let TS=(S, E,A, sin), TS′ = (S′, E, A′, s′in) be such that there ex-
ists a simulation relation of TS by TS′ with relation π. If r ∈ RTS′ , then
π−1(r) ∈ RTS, and the nocross/enter/exit predicates for every event at r
are preserved in π−1(r).

Proof. The proof for this lemma is similar to the one used in Lemma 1, but
on simulated states: for every transition (s, e, s′) ∈ A there exists a transition
(π(s), e, π(s′)) ∈ A′. Therefore, the predicates (i),(ii) in Definition 5 hold in TS
for the set π−1(r). 2

In general, language containment between two TSs does not imply simula-
tion [9]. However, if the TS corresponding to the superset language is determin-
istic then language containment guarantees the existence of a simulation:

Lemma 3. Let TS1 = (S1, E1, A1, sin1) and TS2 = (S2, E2, A2, sin2) be two TSs
such that TS2 is deterministic, and L(TS1) ⊆ L(TS2). Then TS2 is a simulation
of TS1.

Proof. The relation π ⊆ (S1 × S2) defined as follows:

s1πs2 ⇔ ∃ σ : sin1
σ→ s1 ∧ sin2

σ→ s2

represents a simulation of TS1 by TS2: the first item of Definition 2 holds since
L(TS1) ⊆ L(TS2). If the contrary is assumed, i.e. ∃s1 ∈ S1 :6 ∃s2 ∈ S2 : s1πs2

then the trace leading to s1 in TS1 is not feasible in TS2, which contradicts the
assumption. The second item holds because the first item and the determinism
of TS2: for every s1 ∈ S1, TS2 deterministic implies that there is only one state
possible s2 ∈ S2 such that s1πs2. But now if e is enabled in s1 and not enabled
in s2 will imply that the trace σe, with sin1

σ→ s1, is not feasible in TS2, reaching
a contradiction to L(TS1) ⊆ L(TS2). 2

And now we can proof the MLC property on the mined Petri net from a TS:

Theorem 2. Let PN=(P, T, F, M0) be the synthesized net with the set of mini-
mal regions of TS=(S, E,A, sin), using Algorithm of Figure 3. Then PN satisfies
the MLC property.

Proof. By contradiction. Let TS′ = (S′, E′, A′, s′in) be the reachability graph
corresponding to a PN′ = (P ′, T ′, F ′,M ′

0) such that E′ = T , L(TS) ⊆ L(TS′)
and L(PN) 6⊆ L(TS′). The following facts can be observed:



– TS′ and RG(PN) are deterministic because E = E′ = T and therefore they
correspond to the reachability graph of Petri nets with a different label for
each transition.

– Since TS′ is deterministic and L(TS) ⊆ L(TS′), then there is a simulation π
of TS by TS′ (Lemma 3).

– ∀r′ ∈ RTS′ , r = π−1(r) ∈ RTS, and the nocross/enter/exit predicates of
the events is the same in r′ and r (Lemma 2).

– Each non-minimal region can be described as the union of disjoint minimal
regions [6], and therefore we can focus only on minimal regions.

– Each minimal region r ∈ RTS is a region in RRG(PN), since PN has been
obtained with Algorithm of Figure 3 from the set of minimal regions in TS.
Moreover, since RG(PN) is deterministic and L(TS) ⊆ L(PN) (Theorem 1),
then there is a simulation of TS by RG(PN) (Lemma 3). Now using Lemma 2,
together with the fact that r is a region both in RTS and RRG(PN), the
nocross/enter/exit predicates of events in TS hold also in RG(PN).

– Hence, the previous items show that for a region in TS′ there is a corre-
sponding region in RG(PN) with the same nocross/enter/exit predicates
on the events. In Petri net terms, this fact means that the flow relation of
PN′ is included in the flow relation of PN. Additionally, the simulations con-
necting both transition systems preserve the initial states (see Lemma 3).
This contradicts the assumption that L(PN) 6⊆ L(TS′). 2

3.2 Related issues and further extensions

Now we discuss the features of the mining strategy and possible extensions.

Visualization capabilities. By removing the excitation closure condition, one
guarantees that there is a 1-to-1 correspondence between the events in the log
and the transitions in the Petri net. This is important in terms of visualization.
Moreover, the set of minimal regions can include redundant regions: a region r
is redundant if the language of the Petri net without r is preserved. Therefore
redundant regions can be safely removed from the net. The theory in [5, 6]
proposes methods to detect redundant places, based in the preservation of
the excitation closure. Those methods have been adapted and included in the
mining approach presented in this paper.

Mining of Petri net subclasses. As it has been done in synthesis (see [6],
Section 4.4), the approach presented in this paper might be adapted to mine
Petri net subclasses. The basic idea is to restrict the generation of regions in
order to generate regions satisfying structural Petri net conditions. Let us use
the example in Figure 5 to illustrate this. In Figure 5(b) we report the mined
two-bounded Petri net from the TS of Figure 5(a) (next Section shows how to
generalize the mining method to the bounded case). Now imagine that we are
interested in the mining of marked graphs, i.e. Petri nets where places have at
most one predecessor (successor) transition. Notice that place p in Figure 5(b)
does not satisfy this condition. If the mining of a marked graph is applied, the
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Petri net shown in Figure 5(c) is obtained.

Critical events. The methods presented can be extended to select those events
that might be critical in terms of representation: for those events, the avoidance
of over-approximation might be imposed by requiring excitation closure on them.
The application of label-splitting can be guided to attain this goal.

4 Mining bounded Petri nets

In the literature for the mining of Petri nets from event logs, it is widely accepted
the use of ordinary and safe Petri nets for the discovery of process models (a
remarkable exception is presented in [4]). Due to the recent results for the syn-
thesis of bounded and weighted Petri nets [5], this limitation can be waved, and
therefore a more succinct and accurate model of the log can be obtained using
the techniques developed in this paper. Moreover, the possibility to search for
unsafe regions might be crucial in order not to over-approximate the event log
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too much. To illustrate this fact, see the example in Figure 6. The mining of a
safe Petri net from the TS of Figure 6(a) is shown in Figure 6(b), whereas Fig-
ure 6(c) reports the mining of a 3-bounded net. The language accepted by the
PN from Figure 6(b) is (a∗ ‖ b)c which might be an over-conservative approx-
imation6, while the net in Figure 6(c) accepts (a3 ‖ b)c, which although being
also an over-approximation, it is a more accurate one. This section introduces
informally how the theory of the previous sections can be generalized to mine
bounded systems.

In [5], an extension of the region-based synthesis of Petri nets has been pre-
sented to support bounded nets. The methods assume that a k is initially given
for the search of a k-bounded Petri net. Let us use the example in Figure 7 to
summarize the theory. In the bounded case, the basic idea is that regions are
represented by multisets (i.e., a state might have multiplicity greater than one).
Figure 7 depicts a TS with 9 states and 3 events. After synthesis, the Petri net
at the right is obtained. Each state has a 3-digit label that corresponds to the
marking of places p1, p2 and p3 of the Petri net, respectively. The shadowed
states represent the general region that characterizes place p2. Each grey tone
represents a different multiplicity of the state (4 for the darkest and 1 for the
lightest). Each event has a gradient with respect to the region (+2 for a, -1 for
b and 0 for c). The gradient indicates how the event changes the multiplicity of
the state after firing. For the same example, the equivalent safe Petri net has 5
places and 10 transitions.

In summary, the generalization of the theory of Sections 2 and 3 is based
on the idea that regions are no longer sets but multisets, and the predicates
for region conditions must take into account the gradient of each event on the
multisets. The excitation closure notion is defined on the support (states with
multiplicity greater or equal than one) of the multiset. Finally, the algorithm for
synthesis of bounded Petri nets is generalized to account for bounded markings
and weighted arcs. The interested reader may refer to [5] for details.

The theory in [5] has been incorporated in the Petri net mining approach
presented in this paper. Hence the mining of Petri nets can be guided to find
bounded Petri nets. An example of k-bounded mining is shown in Section 5.

6 The expression e1 ‖ e2 denotes the set of possible interleavings between e1 and e2.
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Fig. 8. (a) Initial TS, (b) Mined Petri net.

5 Examples, experiments and tool

The theory described in this paper has been incorporated in Genet, a tool for
the synthesis and mining of concurrent systems [5]. Most of the examples have
been obtained from [1].

Mining of safe Petri nets

Some examples have been presented along the paper. An additional example
is shown in Figure 8. The language accepted by the PN of Figure 8(b) is
ae ∗ (b ‖ c)d, which properly includes the language of the TS of Figure 8(a). Re-
markably, applying the α-algorithm [17] to this event log results in the same PN.

Mining of bounded Petri nets

An example of the power of k-bounded PN mining is shown in Figure 9.
The system modeled represents 5 procesess sharing 3 resources. Every process
requires one resource, but there is one process that requires two resources.
We assume that the TS used for this example can be constructed from a set
of simulations. The 3-bounded PN from the corresponding transition system
contains 20 states and 74 arcs. The synthesis of a safe PN from the transition
system applies many label splittings in order to enforce the excitation closure,
deriving in a PN with 15 places, 34 transitions and 128 arcs. Clearly, neither
the initial TS nor the synthesized PN are of any help to realize the control flow
of this example. However, the mined 3-bounded PN is a succint representation
of the log.
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synthesis mining

petrify Genet Genet ProM ProM

safe safe 2-bounded Parikh Heuristics

benchmark |S| |[S]| |E| |P | |T | |P | |[S]| |P | |[S]| |P | |TU | |[S]| |P | |TI | |[S]|
groupedFollowsa7 18 10 7 7 7 6 11 7 11 7 0 10 7 1 8

groupedFollowsal1 15 15 7 8 9 10 16 12 15 7 0 7 14 10 22

groupedFollowsal2 25 25 11 15 11 15 25 15 25 11 0 13 15 3 25

herbstFig6p21 16 16 7 11 13 7 22 11 16 1 6 2 18 15 ∞
herbstFig6p34 32 32 12 16 13 16 34 18 32 8 2 12 19 12 ∞
herbstFig6p41 20 18 14 16 14 16 18 16 18 17 0 18 14 0 18

staffware 15 31 24 19 20 20 18 22 19 31 18 0 21 19 0 19

pn ex 10 233 210 11 64 218 13 281 16 145 8 2 14 41 25 ∞

Table 1. PN mining applied to event logs from [1].

Experiments

The mining of some examples is summarized in Table 1. Following the two-
step mining approach from [13], we have obtained the transition systems from
each log with the FSM Miner plugin available in ProM. For each log, columns
report the number of states of the initial log |S|, number of states of the minimal
bisimilar transition system |[S]| (that gives an idea of the amount of redundancy
present in the initial log) and number of events |E|. Next, the number of places
|P | and transitions |T | of the PN obtained by synthesis is reported. For each
version of the mining algorithm (safe and 2-bounded), the number of places
of the mined PN and number of states of the corresponding minimal bisimilar
reachability graph are reported. The CPU time for the mining of all examples
but the last one has taken less than two seconds. The mining of pn ex 10, 2-
bounded version, took one minute. Finally the same information is provided for
two well-known mining algorithms in ProM: the Parikh Language-based Region
and the Heuristics [20] miners. The number of unconnected transitions (|TU |)



derived by the Parikh miner and the number of invisible transitions introduced
by the Heuristic miner is also reported (|TI |).

The numbers in Table 1 suggest some remarks. If the synthesis is compared
with the mining in the case of safe PNs, it should be noticed that even for
those small examples the number of transitions is reduced, due to the absence
of label splitting (see row for pn ex 10). The number of places is also reduced
in general. It should also be noticed that 2-bounded mining represents the log
more accurately, and thus more places are needed with respect to the mining of
safe nets. Sometimes the mined PN accepts more traces but the corresponding
minimal bisimilar transition system has less states, e.g. pn ex 10: after over-
approximating the initial TS, several states become bisimilar and can be mini-
mized.

The Parikh miner tends to derive very aggressive abstractions, as it is demon-
strated in the pn ex 10 and herbstFig6p21 logs. Sometimes the Petri nets ob-
tained with this miner contain isolated transitions, because the miner could not
find places connecting them to the net. The Heuristics miner is based on the
frequency of patterns in the log. The miner derives a heuristic net that can be
afterwards converted to Petri net with ProM. Some of the Petri nets obtained
with this conversion turned out to be unbounded (denoted with symbol ∞ in
the table), and contain a significant amount of invisible transitions. This miner
is however very robust to noise in the log. In conclusion, different miners can
achieve different mining goals, widening the application of Process mining into
several directions.

6 Conclusions

A strategy for adapting the theory of regions for the area of Process mining
has been presented. The main contribution is to allow the generation of over-
approximations of the event log by means of a bounded Petri net, not necessarily
safe. An important result is presented that guarantees the minimal language
containment property on the mined PN. The theory has been incorporated in a
synthesis tool.
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