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Earth observation satellite programs are currently facing, for some applications, the need

to deliver hourly revisit times, sub-kilometric spatial resolutions and near-real-time data access

times. These stringent requirements, combined with the consolidation of small-satellite plat-

forms and novel distributed architecture approaches, are stressing the need to study the design

of new, heterogeneous and heavily networked satellite systems that can potentially replace or

complement traditional space assets. In this context, this paper presents partial results from

ONION, a research project devoted to studying distributed satellite systems and their architect-

ing characteristics. A design-oriented framework that allows selecting optimal architectures

for a given user needs is presented in this paper. The framework has been used in the study of

a strategic use-case and its results are hereby presented. From an initial design space of 5586

potential architectures, the framework has been able to pre-select 28 candidate designs by an

exhaustive analysis of their performance and by quantifying their quality attributes. This very
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exploration of architectures and the characteristics of the solution space, are presented in this

paper along with the selected solution and the results of a detailed performance analysis.

I. Nomenclature

Γi j = Aggregated figure of merit for architecture i generated from constellation j (unit-less, normalized.)

Γ′i j = Aggregation of measurement-specific figures of merit (i.e. aggregated architectural performance.)

Γi jk = Measurement-specific figure of merit for architecture i j and use-case parameter Kk (unit-less, normalized.)

Ci j = Normalized launch and development costs for architecture i j (unit-less.)

Kn = n-th remotely-sensed parameter (or “measurement”) of the use-case.

NK = Number of remote sensing parameters defined in a use-case.

Ai j = Aggregation of qualitative modifiers for architecture i j (unit-less, normalized.)

αn = Weighted architectural quality modifier for “ility” n (unit-less, normalized.)

bn = Normalized quality modifier weight for “ility” n (unit-less, normalized.)

an = Quantitative evaluation of “ility” n (unit-less, normalized.)

Subscripts

i = architecture identifier.

j = constellation configuration.

k = identifier of a use-case measurement, remotely sensed parameter.

Abbreviations

DSS = Distributed satellite system.

DoD = Depth of discharge.

EO = Earth observation.

EU = European Union.

GS = Ground station.

GNSS-R = Global Navigation Satellite System Reflectometer.

ISL = Inter-satellite link.

LTAN = Local Time of Ascending Node.

ONION = Operational Network of Individual Observation Nodes (EU-funded research project).

OSCAR = Observing Systems Capability Analysis and Review Tool.

SAR = Synthetic Aperture Radar.

SoS = System-of-systems.

TRL = Technology Readiness Level.
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II. Introduction

The urge for remotely sensed data of our planet is nowadays more palpable than ever. Studying the evolution and

state of our climate is crucial for the current environmental situation, which is demanding constant monitoring of

multiple parameters of interest. In parallel to that, several socio-economic needs and geopolitical interests are also

requiring versatile Earth observation capabilities to improve the global knowledge about oceans, forests and coasts, to5

improve crop monitoring or to detect natural disasters quicker. These and many other needs have pushed the industry

and research community to pursue new technological advancements that should be capable of tackling today’s stringent

Earth observation requirements. While several research activities are focused on delivering better models or improved

sensing techniques, others are also suggesting the adoption of new architectural paradigms, justified and motivated by

the reduction of costs, mitigation of risks and improvement of development times. These systemic changes propose to10

explore distributed satellite missions (so-called Distributed Satellite Systems) as a means to provide financially and

technologically feasible solutions that are capable of delivering better spatial, temporal and spectral resolutions.

Distributed Satellite Systems (DSS), in this context, are envisioned as heavily interconnected multi-satellite

architectures, where potentially heterogeneous platforms orbiting at different planes capture and download data in

a networked manner. Inspired by muti-core computing processors or the Internet of Things, these new satellite15

architectures are envisioned to exchange data and processing resources to fulfill the missions for which they are designed.

In line with the current trends in the aerospace industry, small spacecraft platforms and miniaturized instrument

technologies are deemed essential enablers for these innovative architectures. Several studies [1–3] endorsed the science

return capabilities of small spacecraft and have posed their compelling role in space-based scientific and engineering

programs. Similarly, ventures like the one started by Planet (former Planet Labs) or Spire Global have demonstrated20

the commercial value in deploying medium-resolution constellations of small spacecraft (i.e. large number of units

providing daily revisit times at lower development and launch costs.)

Nevertheless, the design of fully-fledged DSS still poses multiple technological and fundamental challenges [4]

(e.g. formation flying, on-board processing and data fusion, inter-satellite networks, autonomous mission management,

etc.) and is one of the core subjects of several research endeavors. As a critical aspect, it is still unclear how this25

type of systems-of-systems have to be optimally architected in order to satisfy the requirements of new applications

while also achieving most of their promised qualities: low data-access latencies, system resiliency, structural flexibility

and adaptability, or the ability to deploy these systems incrementally. In this sense, this paper presents partial results

of a research project aimed at exploring this new type of mission architectures. Entitled “Operational Network of

Individual Observation Nodes” (ONION) and funded by the European Commission under a Horizon-2020 program, the30

project intends to contribute to the study of Federated and Fractionated Earth observation architectures. ONION is

studying distributed satellite architectures that are conceived as complementary assets to existing European programs

(e.g. Copernicus) and is aimed at reviewing new potential applications and user requirements. Likewise, one of the

goals of the project is to identify critical design aspects that still represent a technological barrier for the realization

of DSS. In line with these goals, the ONION project has focused in the exploration of architectures for four strategic35

use-cases, and has optimized architectures for them. The selected architectures in ONION have served as an illustration
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of new DSS concepts for Earth observation and have triggered further studies in this field. This paper unveils the results

of this architectural optimization (for one of the identified use-cases) and analyzes the design trends observed during the

design optimization process.

III. Methodologies and Tools for Architecting Satellite Systems40

Optimizing the design of systems-of-systems (SoS) with computational tools is a common and well-known practice

in systems engineering [5] and has yielded several quantitative tools specifically tailored to the satellite systems domain,

e.g. [6–9]. These automated frameworks have assisted the architecting and analysis process by describing, quantifying

or optimizing multiple system attributes. A fruitful landscape of academic studies has applied multi-atribute tradespace

exploration methodologies [10] to find optimal design solutions and capture the values and weaknesses of space45

systems. The available works have not only been concerned with the design of traditional imaging constellations

[7, 8, 11], but also opportunistic satellite federations [12], missions requiring formation flying and near-simultaneous

measurements [13, 14]. In general, early design decisions are encoded by computational tools to allow for the generation

of a complete solution space. These automatically-enumerated architectural candidates are then traded by modeling

their functional traits in the context of a given target application and/or the requirements of the system. In multiple50

occasions, Model-Based System Engineering (MBSE) frameworks have been closely coupled with simulation tools

[8, 9, 14] in order to feed the optimization process with system-level performance metrics such as revisit time, coverage,

latency, capacity, or specific indicators related to the system’s function. Integral tools tailored to the design and

detailed simulation of satellite constellations have been proposed: for Earth observing systems [9, 15]; as well as for

space communication networks [7]. Similarly, a Rule-Based Expert System has been proposed in [8], which assesses55

architectures under both quantitative and qualitative stakeholders needs. Science-driven scores in [8] are combined with

satisfaction metrics in order to maximize the value delivery to stakeholders.

In effect, including qualitative attributes in tradespace studies has been considered as a critical factor to the design

of space systems. Modeling ilities as part of the architecture evaluation criteria has been explored during the past

decade, e.g. [5, 16, 17]. The authors of [18], proposed to factor in a single qualitative metric, survivability, to illustrate60

how the design optimization process for a space tug could also be influenced by such kinds of properties. Similarly,

[19] combined multi-epoch analysis with conventional tradespace exploration to architect satellite constellations that

maximized the delivered value regardless of future context changes. The latter study integrated value-robustness in the

tradespace process, thus enhancing the decision process with qualitative attributes. Considering qualitative attributes

can also be done at different design levels, including the behavioral layer of a system. The work presented in [14], for65

instance, achieves resilient, risk-aware space architectures through the design of an activity planning executive, while

trading-off multiple complementary qualities. In the context of distributed Earth observing systems, suitable system

ilities for the assessment of DSS have been reviewed in [20], where the authors suggest their evaluation methods to be

integrated into new DSS design tools.
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IV. ONION Architecture Selection Framework70

In line with the recommendation in [20], the work presented in this paper proposes a design framework oriented

to EO satellite constellations that integrates modeling and evaluation of qualitative system properties as part of the

architecture evaluation and optimization methodology. Thus, this work leverages on previous tradespace exploration

methodologies and identifies a compendium of ilities tailored to the project needs and stakeholders interests. The

ONION Architecture Selection Framework (OSAF) identifies optimal architectural decisions and allows the studying of75

relative improvements between candidate designs and coupling between design variables. Like Selva put it, the tool has

targeted the ability to understand the shape of the trade space, to localize interesting and detrimental design regions or to

compute sensitivities to design decisions [8]. With this purpose, the framework presented herein has elaborated means

of graphically representing architectural trends that are particular of the methodology and the system characteristics

(i.e. platform heterogeneity), and which ultimately rely on an all-encompassing aggregated figure of merit. This merit80

factor compresses traditional performance metrics (i.e. similar to utility representations), cost estimates and multiple

qualitative attributes into a single value. Therefore, the results presented in this paper explore multi-attribute trade

spaces where several of their dimensions correspond to qualitative attributes. Albeit this was previously explored and

incorporated in the optimization methodology of [18] for a single quality, the methodology presented herein is, to the

best of our knowledge, the first to explore multi-dimensional qualitative spaces and to modulate their influence in the85

design through weights in their aggregation function.

In addition, the aggregation of attributes into a single figure has also allowed for a comparison environment that

can quantify the relative distance between solutions. A derivative application of the framework could encode strategic

non-optimal decisions and compare the results with their optimal counterparts. Although not addressed in this paper, the

presented framework is also being considered for a technology gap analysis, where currently unavailable technologies90

or assets would be assumed during the architecture enumeration process and would allow the quantification of their

relevance and importance.

Problems with high dimensionality often force the reduction of complexity in architecture evaluation functions. This

is especially the case for full-factorial explorations coupled with simulation tools that require moderate computational

resources to complete (i.e. CPU time). Reducing simulation complexity may translate to limited fidelity metrics, like in95

the case of revisit times that would be computed without a careful energy and storage analysis. In traditional space

systems design, often sized to ensure power availability, these performance figures have been considered reliable and

present low uncertainty. Nonetheless, the design of systems with small-satellite platforms, inherently much more

constrained in power, may compromise the results of the optimization process when internal spacecraft states are not

considered in simulation. Implementing efficient search heuristics can cope with this situation and can allow detailed100

simulations to feed the decision process. However, these approaches would not allow the analysis of the trade space as a

whole. Instead, the work presented in this paper proposes to cope with high dimensionality by splitting the optimization

in a two-step, coarse-fine process, as depicted in Fig. 1.

The proposed architecting process starts with the definition of user needs and performance requirements. This initial

enumeration of requirements allows to identify instrument alternatives and to generate an initial set of constellation105
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Fig. 1 OASF study logic and workflow

configurations (a). Constellation configurations are partially-enumerated solutions that do not bind specific instruments

to each spacecraft in the DSS. For each constellation, coarse data-access latencies and maximum revisit times are

computed for every potential instrument (b). With constellation configurations defined and analyzed individually, the

generation of architectures is performed by combining instrument alternatives in each satellite of a constellation (c).

This essentially results in a large set of architectures for which coarse performance metrics are already computed. The110

results presented in this paper consider a design-space of more than five thousand architectural candidates and explore

their commonalities and qualitative characteristics. Aggregated scores are then computed for each architecture (d),

allowing to pre-select the reduced set of solutions with the highest scores. This smaller set of candidate architectures

can then be analyzed in detail using refined subsystem and payload models (e). Such analysis, derives accurate revisit

times and latencies for each measurement, and studies the feasibility and availability of power and on-board data storage115

(f). Finally, the OASF concludes the optimization process by selecting the final design based on refined metrics and a

resource feasibility study (g).

The sections that follow, briefly introduce the case study (Section IV.A), the OASF methodology (Sections IV.B and

IV.C) and the simulation tool that has been used to provide refined performance metrics and resource budgets (Section

V.) The paper then disseminates the results of the overall optimization framework (in Section VI) and concludes in a120

short discussion that proposed future improvements (Section VII.)

A. Use-case Definition and System Requirements

The optimization process for DSS architectures begins with the definition of end users and their requirements.

The ONION project aims at exploring DSS approaches that would fulfill unsatisfied demands in the EU Copernicus

program [21]. Coordinated by the European Commission (EC), Copernicus is EU’s Earth observation program, offering125

information services based on satellite data (i.e. Sentinel missions) and in-situ data (airborne and ground-based

monitoring networks). A study conducted during the ONION project [22] pointed out that most Copernicus services

would benefit from higher temporal resolutions. The study also implemented a structured database to capture value-chain
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Table 1 Decision variables for the architecture generation process

Variable Possible values

Altitude 510 km, 657 km, 807 km

Walker pattern Delta, Star

# of planes 2, 3, 4, 6, 8

# of nodes 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48

Node platform sizes H: heavy (600 kg. dry mass; 200 kg. payload),
M: medium (166 kg. dry mass; 50 kg. payload),
S: small (3U-6U CubeSat)

Node instruments Instrument archetypes generated from user needs and
their feasible combinations.

data related to Copernicus services, needs, users, products, measurements, instruments, and missions. Based on that

relational knowledge base, the authors of [22] proposed a scoring methodology to identify critical use-cases. The130

ranking yielded ten critical use-cases where Copernicus services were not covering most user needs. This owed to the

need to improve data-access latencies (near-real-time), update frequency and coverage. Distributed observation systems

are advantageous approaches to attaining these three product (and system) attributes and, as such, these properties have

partially been reflected in the choice of performance metrics in OASF. Among the list of critical use-cases for ONION

[22], the measuring of marine weather parameters in the Arctic and Subarctic regions emerged as the most critical one.135

Beneficiaries of the identified data products include the fishing and shipping industries, environmental, pollution and

climate research community, oil and gas, security, and commercial transportation. Its detailed definition comprehends

up to seven marine weather parameters, namely:

1) Ocean surface currents (K1): water flow on ocean surface (in cm/s.)

2) Wind-speed and vector over sea surface, horizontal (K2): 2D wind vector conventionally measured at 10 m140

height.

3) Significant wave height (K3): average amplitude (in meters) of the highest 30 of 100 waves.

4) Dominant wave direction (K4): the direction of the most energetic wave in the ocean wave spectrum (in degrees.)

5) Sea surface temperature (K5): measured in Kelvin, for surface of up to 2 meter depth.

6) Atmospheric pressure (K6): air pressure at the sea level (in hPa.)145

7) Sea ice cover (K7): fraction of a given area (in %) that is covered by ice.

Each measured parameter Kn is defined along with its expected performance. Use-case performance needs are

given in the form of valid intervals for three system metrics: 3h to 24h of maximum revisit time for latitudes above

60º, less than 1h of data-access latency, and specific horizontal spatial resolutions (varying from 10 meters to 25

kilometers, depending on the parameter.) The results presented in this paper are focused on the application of OASF to150

the above-mentioned use-case. Additionally, the ONION project architected and analyzed different use-cases from [22]

as a mean to demonstrate the validity of the overall approach for other applications.
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Table 2 Instrument archetypes for the use-case. Values are taken from OSCAR and [23]

# Name Reference
mission

Mass
(kg)

Power
(W)

Datarate
(kbps)

Swaths
(km)

Horiz. spatial
resolutions (km)

Measures use-
case param.

Final selection

1 GNSS-R CYGNSS,
DDMI

2 12 200 730
946
1170

25 / 1.6 (a)

32 / 2 (a)

39.5 / 2.5 (a)

K2, K3, K7 yes

2 Optical Imager MetopC,
AVHRR/3

31 27 515 1636
2186
2812

0.64
0.82
1.01

K5, K6, K7 yes

3 Radar Altimeter AltiKa,
SARAL

40 85 43 6.5
8.2
10.1

6.38
8.17
10.08

K1, K2, K3, K4 no

4 Millimeter-wave
radiometer (small)

TEMPEST-D 3 8 20 1066
1392
1739

7.65
9.79
12.09

K6 no

5 Microwave
radiometer
(medium)

SSM/I 48.5 45 5 925
1159
1367

9
12
14.2

K2, K7 no

6 Microwave
radiometer (heavy)

TRMM, TMI 65 50 8.8 1065
1325
1576

9 / 15.6 (b)

12 / 20.1 (b)

14.2 / 25 (b)

K2, K5, K7 no

7 SAR Altimeter Sentinel-3,
SRAL

70 149 12k 12.53
16.13
19.6

0.3
0.3
0.3

K1, K2, K3, K4,
K7

no

8 SAR-X Severjanin-M 150 1k 10k 289
358
425

1.0
1.0
1.0

K1, K2, K3, K4,
K7

yes

(a) The second value corresponds only to the sea-ice cover parameter (K7).
(b) The second value corresponds only to the sea surface temperature parameter (K5).

B. Decision variables and coarse performance analysis

An architecture is considered to encompass a number of spacecraft platforms orbiting in different planes (i.e. satellite

constellation). Each platform (or “node”) embarks a given combination of instruments depending on the available155

payload mass (i.e. spacecraft class). The OASF enumeration process gathers the use-case requirements and produces

specific satellite constellations by assigning the decision variables in Table 1.

The first five decision variables in Table 1, are fixed when constellation configurations are initially generated. The

definition of each constellation configuration is complemented by a number of slots. A constellation slot identifies a

group of spacecraft which share some orbital parameters and provides simulated performance metrics for the nodes in160

the group. This allows to have revisit times for fractions of a constellation a priori, without having platform sizes and

instrument combinations bound in the design. These constellation configuration slots, are then used to generate as many

unique architectures as possible, by assigning the actual instruments on-board.

Eight instrument archetypes are identified for this use-case, as shown in Table 2. The list of instruments has been

prepared taking into account two factors: (1) spatial resolution and (2) revisit time requirements. The list comprehends165

suitable instrument technologies that could be used to measure multiple marine weather parameters (Kn). In addition to

providing distinct sensing technologies, the list of instrument archetypes has tried to simplify the number of alternatives

while still providing options of different sizes. The latter is done to allow small spacecraft to measure parameters of
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interest and to demonstrate whether these platforms are suitable components in the actual use-case context. Instrument

combinations that can be embarked in each platform have been assessed in a preliminary analysis. The selected ones are170

then combined to fit in either of the three platform classes, trying to minimize design inconsistencies. This constitutes

an input to the architecture enumeration process.

The size of the complete combinatorial set and its simulation is, without doubt, computationally unfeasible. Hence

the generation process of both constellation configurations and architectures has been limited by constraining a finite

number of slots and by assigning the same instruments and platform classes to all the spacecrafts in a same slot. Likewise,175

preliminary iterations of the OASF revealed that instruments #1 (GNSS-R), #2 (optical imager) and #7 (SAR-X) were

the only present ones in optimal solutions. Given that the remaining instrument archetypes were effectively ruled-out

during the optimization process, the results of OASF presented in this paper have actually removed them from the list

of alternatives. That notwithstanding, the generation of architectures still allowed for a large number of alternatives

encompassing all platform sizes and capable of measuring most or all the use-case parameters simultaneously. For180

further details on the generation process and the enumeration of slots in a constellation, the reader is directed to [24].

Despite the constraints above, platform homogeneity within an architecture is not forced. The generated set includes

architectures with both small, medium and heavy platforms orbiting together and exchanging information through

their Inter-Satellite Links. This tries to represent the idea of DSS in which the functionality of a monolithic, heavy,

multi-instrument satellite is divided into multiple, single-instrument, smaller satellites. Platforms of the same size are,185

however, forced to embark the same instruments. This is also consistent with the idea that producing several identical

nodes can minimize development costs.

C. Aggregated Figure-of-Merit and System “Ilities”

Once architectures are enumerated and their performance is evaluated, a single figure of merit (Γ) is computed for

each of them. This figure of merit, computed with the expression in (1), encompasses launch and development costs (C,190

normalized) and aggregated system ilities (A, also normalized). Cost Estimating Relationships (CER) have been taken

from [25] to compute development expenses with spacecraft masses (Table 3). A learning curve has been applied and is

shown in (2) to account for reduction of expenses in repeated units. Launch costs, on the other hand, are computed by

optimizing launcher vehicle selection per orbital plane with an ad-hoc tool [24]. The third term in (1), Γ′, represents

the aggregated performance metrics of an architecture, for all the remotely-sensed parameters defined in the use-case.195

Subscripts i j indicate that the architecture identified with i has been generated from constellation configuration j and,

thus, computes its performance (Γ′i j) based on the simulations performed for j.

NK corresponds to the number of remotely-sensed parameters required by this use-case (NK = 7 types of

measurements in the marine weather forecast use-case) and Γi jk is the aggregation of weighted metrics (i.e. revisit time,

spatial resolution and latency) for each measurement k. Thus, the figure of merit for an architecture i j is influenced by200

the intrinsic performance of the constellation and is then modified by cost and the assessment of qualitative attributes.

The final figure of merit (Γ) will be used to relatively rank architectures and compare solutions.
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Table 3 Development cost models.

S/c mass range Model (MUSD), from [25]

10–100 C = 0.0008 x2.2459

100–500 C = 1.2899 x0.6395

Γi j = Ai j Ci j Γ
′
i j = Ai j Ci j

√
1

NK

∑
k

Γ2
i jk

(1)

CTotal = CunitN
1−Lc

units with Lc =
ln(1.25)

ln(2)
(2)

The term Ai j alters the value of figures of merit based on an assessment of their qualitative attributes; the so-called

ilities of a system. The ONION Architectural Selection Framework proposed up to 9 ilities to assess relevant system

characteristics. Five of these qualitative modifiers were finally modeled and used in the optimization process. The list205

below summarizes the qualitative modifiers, their meaning and how their values can be obtained during an architecture

evaluation. For more details, the reader is directed to a publication of the authors which expands on the methodology

and modeling of attributes [24].

• Criticality (αC): given that the use-case definition identifies four high-priority parameters, namelyK1, K2, K3 and K4,

the number and quality of the provided data for this four critical measurement will determine the criticality of an210

architecture.

• Practicality (αP): the need to process large volumes of data can be detrimental (or even unfeasible in a timely

manner) at some point. This attribute assesses the aggregated throughput generated by constellations and reduces

their figures of merit if the data volume and their processing at the ground segment is deemed impractical. This

modifier essentially aims at quantifying the data-efficiency of the system and to account for the performance215

degradation that large volumes of data would incur on the system (especially in the case of unprocessed SAR data.)

Practicality is computed with the aggregated throughput of an architecture, normalized with global minimum and

maximum values.

• Data relevance (αR): The World Meteorological Organization’s Observing Systems Capability Analysis and

Review (OSCAR) database∗ provides expert assessments on the availability and relevance of the various instruments220

to fulfill particular missions, or for measuring particular variables. This is given in the form of a relevance index

R ∈ {1, 2, 3, 4, 5} that is used in OASF to compute the relevance of an architecture. While the data from some

instruments allows to infer the measured parameters directly (R = 5), other parameters may be indirectly inferred

or estimated through models of limited reliability (R = 1). Essentially, the relevance index gives an indication of

the quality of the measurement when its computed with the data generated by a given instrument. In addition to225

that, OSCAR also defines operational constraints (e.g. lighting conditions and cloud coverage are critical factors

for optical imagers) that can limit the actual performance of instruments. Leveraging on these two characteristics,
∗https://www.wmo-sat.info/oscar/
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the factor αR of an architecture is computed by averaging the relevance indexes of its embarked instruments.

• Versatility (αV ): highly versatile architectures are those presenting high instrument- and platform-agnostic scores.

Given that a constellation configuration (i.e. number of planes and orbital slots per plane) may be shared across230

some architectures, versatility is computed by aggregating figures of merit of architectures that belong to the same

constellation configuration. Thus, versatility is assigned to families of architectures, rather than on an individual

basis.

• Maturity (αM ): assessed based on the number of emerging sensing technologies (e.g. GNSS-R) embarked in the

nodes of each architecture.235

The aggregation of qualitative attributes shown in (4) is performed after the application of the exponential weighting

function in (3). This weighting function takes as inputs the normalized value for a given ility a, and its weight b. For all

the modeled ilities, their resulting normalized value an takes 1 for the best case, and 0 for the worst case. Likewise,

ilities for which their weight bn takes lower values (i.e. closer to 0) will hardly influence the value of the figure-of-merit,

whereas ilities with higher weights (i.e. closer to 1) are strongly affecting the final score of architectures.240

α = f (a, b) = (1 − b)(1−a) with b ∈ (0, 1] (3)

A =
∏
n

αn (4)

Assigning different weights for each qualitative attribute, allows ranking architectures based on subjective or strategic

criteria. While several weighting vectors have been studied and presented in [24], the results presented below correspond

to the weighting vector b = {bC, bD, bV , bP, bM }, the values of which are explained below:

• Architectures are forced to measure the four critical parameters (i.e. criticality is very high, bc = 0.5);

• Solutions need to be capable of producing data of very high quality (i.e. very high relevance, br = 0.5);245

• Versatile architectures are prioritized (i.e. high versatility, bv = 0.35);

• The generation of impractical volumes of data is considered but does not have a strong effect in architectural

scores (i.e. moderate practicality, bp = 0.25); and

• The use of emerging technologies (i.e. GNSS-R) is possible and hardly affects the scores (i.e. very low maturity,

bm = 0.05).250

V. Detailed Analysis for Pre-selected Architectures
Once the ranking of architectures based on coarse performance analysis is completed, a set of candidate architectures

are pre-selected and analyzed in detail. These best-ranked architectures have been subject to a comprehensive chain of

analyses that employ refined models and re-evaluate their performance metrics. In addition to this, on-board memory

evolution and power budget for each individual satellite in the constellation is simulated and assessed for feasibility. The255

workflow followed for this detailed analysis is summarized in Fig. 2, where the analyses are represented by red circles,

the inputs are in blue and the most important outputs are depicted in green.
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Fig. 2 Detailed Analysis for Pre-Selected Architecture Workflow.

The first stage of the detailed analysis is the ground station contact. In order to minimize the data latency, the

ground station (GS) network, composed for this use-case of Svalbard and Inuvik GS’s, has been chosen to guarantee

one contact per orbit for all the considered orbital altitudes. This analysis defines the ground station contact intervals260

used in inter-satellite links (ISL), data flow and power budget analyses, and Sub-Satellite Point (SSP) data latency. ISL

analysis is devoted to establish unidirectional communications between pairs of platforms in order to reduce the data

latency of the sending satellite when the receiving one is in contact with a ground station. In addition to that temporal

restriction, the inter-satellite link is also constrained by visibility (considering maximum distance constraints for each

platform type and minimum grazing altitude) and platform restrictions (the two platforms must have compatible and265

available links). The ISL analysis produces as output the ISL sending and receiving time events, used in the data flow

analysis, and the SSP latency with ISL, used to estimate the overall data latency. The coverage analysis computes the
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Fig. 3 Pareto front with Unmodified Figure-of-Merit vs. Cost.

revisit time and the data latency for each measurement. This computation is based on the instrument’s characteristics

and on the area of interest.

Knowing the intervals of instrument activity coming from the coverage analysis, the ground station contacts and ISL270

connections, it becomes possible to estimate the mass-memory evolution profile for each platform and to assess its

feasibility in terms of data accumulation and maximum memory needed. Finally, the last stage of the detailed analysis is

the power budget, which computes the platform power demand profile considering stand-by consumption, payloads

acquisition intervals, GS contact and ISL communications in order to compare it with the power production profile and

retrieve the battery depth of discharge (DoD) evolution.275

VI. Results
The complete design-space for the marine weather forecast use-case resulted in a set of 5586 architectures generated

from 204 archetypal constellation configurations. The remainder of this paper is devoted to the analysis of results, both

the ones obtained from coarse simulations and from high-fidelity performance analyses. All the plots presented below

compare the architectures using their computed figures-of-merit, which encapsulate information about the architecture280

performances as well as high-level qualities and cost. Aside from the domains in which those figures of merit are

represented in the plots, the color of each point in the series provides additional information about a certain characteristic:

the distribution of small-, medium- and heavy-platforms within the architecture. Platform distribution is encoded with

the three primary colors: red for heavy platforms, green for medium ones, and blue for small spacecraft. The additive

combination of these, in the exact same proportion that is present in the architectures, will yield a particular color code.285

Thus, red-shaded points correspond to platforms with a large number of heavy platforms, while blue and green ones will

correspond to higher percentage of small and medium platforms, respectively.
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A. Results based on coarse performance analysis

Exploring the results, the Pareto front in Fig. 3 shows the relative score of each architecture with respect to the

cost. The Y-axis corresponds to the unmodified figure-of-merit (Γi j), i.e. the aggregation of weighted performance290

metrics. Costs in the scoring methodology are mostly affected by the number of nodes, and the platform class (with

heavy platforms presenting notoriously higher development and launch costs.) If one only looks at performance metrics,

many ONION architectures are scarcely improved by adding more nodes. The increase in costs does not seem to

translate into meaningful improvements in score as long as the architectures satisfy the minimum use-case requirements.

This insensibility to costs is actually justified by the metric normalization function, which assigns the same maximum295

value to those performance metrics that are equal or exceed the optimal requirements [24]. However, when qualitative

modifiers are also considered, the ranking changes and clusters data into two separate groups. Figure 4a shows the

same solution space and Pareto front and plots the overall score that does include the above-mentioned aggregated

architectural qualities (Ai j · Γ
′
i j). In this case, architectures that do not encompass a SAR-X instrument (i.e. do not

have heavy nodes) are not capable of providing data for all the use-case measurements (points labeled "A" in Fig. 4a).300

Although this effect was also reflected in their unmodified score, it is here emphasized due to the fact that some of

their unsatisfied measurements are identified as critical in the use-case specification. As a result, the criticality of these

architectures is much more reduced and their scores decrease dramatically.

On the other hand, Fig. 4b shows the relative ranking for the architectures with highest scores. The plot sorts

architectures with their overall figures of merit (i.e. including the effects of cost, qualitative modifiers and performance305

metrics), and displays the best 100 solutions (labeled "B" in Fig. 4a.) In this case, one can observe that, while the

number of nodes is not always constant, the distribution of platforms only presents three cases. These three platform

distributions are identified in Fig. 4b with three distinctive colors. Constellations for the most optimal architectures are

A
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Fig. 4 Architecture scores.

14



(a) (b)

(c)

(d)

(e)

Γ Γ Γ

Γ

0

0.1

0.2

0.3

0.4

0.5

0.6

bC bP bM bR bV

Weighting vector (b)

bC bP bM bR bV

Fig. 5 Performance trends in the space Nodes-Planes.
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Fig. 6 Influence to the number of platforms of a given class.

designed with 2 or 4 heavy nodes plus 2 or 4 medium nodes. Their size is always 4 or 8 nodes and are distributed in 2 or

4 planes (points colored in ochre). However, architectures that replace medium nodes by small, CubeSat-like ones also310

constitute highly optimal solutions in this scenario (displayed in violet). These two configuration options dominate most

of the architectures in the ranking in Fig. 4b. Designs lacking medium nodes are possible owing to the payload mass

capacity of heavy nodes, which can host both the SAR-X instrument and the optical imager at the same time. When

medium platforms (which host optical imagers and GNSS-R instruments) are replaced by small platforms, the optical

imager tends to be allocated to the heavy platforms. This notwithstanding, within the first hundred solutions, one can315

also observe the presence of designs with 2 heavy nodes, 2 medium nodes and 6 small nodes. Distributed in 2 planes,

these architectures could still be considered optimal, since they are within the best 1.8% design solutions.

Observing the performance trends in the space Nodes-Planes also provides additional insight about the design-space

for this use-case. Fig. 5a depicts figure of merit values in the Z-axis as a surface generated from the maximum values of

each point. Contour curves for this surface have been superimposed in the 2D plane (at z = 0) to identify regions with320

similar scores. In the plot, one can find valleys in constellation configurations that yield poorer performance (i.e. 6 or
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Fig. 7 Pareto frontier for partial trade spaces comprising cost, unmodified figures of merit (Γ′) and a single
qualitative attribute: a) data relevance, αR; b) practicality, αP; and c) versatility, αV .

16 nodes seem to be a detrimental design choice). Counterintuitively, adding more nodes is not always a good choice,

highlighting that, apart from the orbital configuration (either Walker Delta or Star patterns), constellation sizes and plane

distribution do influence revisit times and latencies. Ultimately, it is also worth noting that the scores of architectures

that are largely populated by heavy nodes (red-shaded points) tend to fall to lower parts of the plot as the number325

of nodes increases (Figs. 5c and 5d.) This effect of the cost model, which is much less intense in architectures with

medium nodes and almost imperceptible in small nodes, causes large architectures (e.g. 40 or 48 nodes) to be effectively

impractical, given that SAR-X nodes are essential for the use-case and they cannot be hosted in smaller platforms.

It is also worth pointing out how the number of nodes of a given platform class affects the figures of merit of

architectures. Fig. 6 shows the overall figure of merit (i.e. with cost and qualitative modifiers applied) and displays330

the solutions with respect to the number of heavy (6a), medium (6b) and small (6c) platforms. The same conclusions

observed at the beginning of this section can be clearly observed in Fig. 6a: architectures need at least 2 SAR-X

instruments to become valuable solutions. Regardless of the fact that having a single heavy platform is not possible

(because the minimum number of planes is 2, and they are forced to be homogeneous in number and type of their nodes),

a specific revisit time analysis also confirmed that at least 2 SAR-X instruments were required to fulfill the requirements335

of the use-case.

B. Values from qualitative evaluation

Section IV.C briefly introduced the list of qualitative modifiers implemented for the architecture evaluation process.

These can be understood as attributes of the tradespace exploration (i.e. optimization variables) and can also be

represented in Pareto plots. Three quality attributes are plotted independently in Fig. 7 to illustrate the assessment of340

some of the considered ilities. The evaluation of data relevance, practicality and versatility are shown along architectural

costs and unmodified figures of merit in Fig. 7a, 7b, and 7c, respectively. Note that, since the vertical axis only

corresponds to the aggregation of performance metrics (Γ′), it is easy to compare qualitative attributes (i.e. α-values)

with the two quantitative ones (i.e. cost and aggregated metrics). Like in [18], a Joint Pareto Set of designs exists along a
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surface that only includes Pareto-optimal designs (with trade-offs for three attributes rather than just two.) The complete345

tradespace simply cannot be represented for all the attributes at the same time, yet the individual representations in

Fig. 7 still provide insight of qualitative trends for this use-case.

Arguably, three-dimensional data structures are difficult to appreciate in two-dimensional projections. The authors

of [18] also proposed alternative two-dimensional representations for the same type of plots. In their case, plots showed

utility, survivability, and cost. The former attribute could, in their case, be represented with a color code to allow for an350

easier interpretation of the results. This practice has not been applied in this case given that color codes are already

indicative of some of the design decisions (i.e. platform size, instruments embarked) in this case. Noteworthy, plotting

independent quality attributes allowed to understand their coupling both to quantitative attributes and to other ilities.

Take for example the values of practicality and versatility (αP): while an increase in cost seems to yield architectures

with worse practicality, the designs presenting lower costs are also those with lower versatility. At the same time, these355

representations allow to identify different sensitivities to design choices: marker bands forming in Fig. 7a are indicative

of an insensitivity to cost for data relevances, which is not the case for the other two qualities.

C. Results from detailed architectural analysis

The first assessment of architecture performances and their ilities allowed to select a small set of 28 candidate

architectures. It is important to note that this selection process was very much influenced by the weights assigned to each360

of the ilities and that different needs would have triggered the selection of a completely different set. Fig. 8 compares the

actual value given to each ility (in blue) with the resulting figure when the weighting function (3) is applied (in orange).

Preliminary analyses yielded a reduced solution space. A final detailed analysis of architecture capabilities provided

new performance metrics for the architectures, computed from refined spacecraft and payload models. This latter

performance assessment did consider power and storage constraints in spacecraft, modeled inter-satellite links with365

platform-specific consumptions, datarates and antenna visibility constraints. For each platform type, the solar array

areas and battery capacities were designed such that all the architectures could operate in nominal conditions (i.e.

0.00
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Critical
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Practicality Maturity Data relevance Versatility

Qualitative modifiers

Exponent (a) Modifier value (α)

Fig. 8 Evaluation of quality attributes for the optimal architecture. Value frommodel (blue, a) and result after
weighting function (orange, α.)
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Table 4 Results of the coarse performance analysis, for the optimal architecture.

Coarse performance metrics Value

Revisit time (GNSS-R) [h] 3.917

Revisit time (Optical imager) [h] 3.050

Revisit time (SAR-X) [h] 1.417

Latency [min] 31.866

Initial unmodified figure of merit 0.94801

positive power budgets for each node). Similarly, the local time of the ascending node (LTAN) for each plane in the

constellation was computed such that it maintained the configuration imposed by the decision variables and it provided

the best power generation scenario. Noteworthy, selecting LTAN for each plane was not trivial in architectures in which370

heavy nodes encompassed, simultaneously, both the SAR-X instrument and the optical imager. This situation owed

to the fact that optical instruments require specific lighting conditions that, in some cases, conflicted with the power

requirements of SAR-X instruments.

While the coarse performance analysis provided revisit times for each individual instrument type, the refined

simulation and analysis tool produced individual metrics for each measurement of the use-case. For both the revisit375

time and latency, both the maximum value and the mean one were computed by the analysis tool. Finally, the use

of resources of each architecture was also reported in the form of battery depth-of-discharge (DoD) and data storage

requirements (Table 4). While the latter was unconstrained and was not deemed critical for the selection, battery DoD

was an important parameter to take into account. Also in this case, two figures were generated: the maximum DoD

found all nodes (i.e. the global maximum DoD) and the average of all the individual DoD’s. With all these figures, the380

most optimal architecture could ultimately be selected.

In general, the data flow and on-board data handling is not a critical point in any of the ONION pre-selected

architectures because the area of interest is not very vast, the ground station contacts are frequent enough (once per orbit)

and the platform’s download data rates guarantee that no data is accumulated on-board. Due to ISL range limitations on

small platforms (set to 400 km distance between the communicating platforms) and to the reduced available time to385

perform it (the receiving platform must be in contact with a ground station), the connectivity of the constellations is

poor most of the time. Due to these communication constraints, the ISL does not improve the maximum data latency,

which is around one orbital period, but the average data latency does benefit from it.

The coverage analysis has shown that when the requiredmaximum revisit time goes below few hours, few architectures

are able to fulfill it. In order to improve it, the number of instruments able to provide data for the more demanding390

measures should be increased. Nevertheless, the most critical aspect is the power budget, due to the varying illumination

conditions along the different orbital planes of the same constellation, which highlights that a single design for the

power subsystem is, most of the time, unable to provide enough power to all the spacecraft.

The selected architecture was configured in a Walker delta constellation orbiting at 807 km. It was composed of 16

nodes, distributed in 8 planes equally spaced in LTAN around 360º (Fig. 9). Four of these planes encompassed heavy395
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Fig. 9 Graphical representation of the optimal architecture.

Table 5 Resource assessment for the optimal architecture.

Resource Variable Value

Power (Depth of Discharge)
Max. global [%] 10.1%

Avg. of max. values [%] 4.9%

Data storage
Max. global [MB] 1009

Avg. of max. values [MB] 516

platforms with both SAR-X and optical imager, while the other four allocated small nodes with GNSS-R instruments.

These two types of planes were alternatively distributed in the constellation. Inevitably, the design of this architecture is

similar to that of the other candidates, given that they had been pre-selected from an initial analysis that already yielded

a narrow solution space. For this architecture, the remainder of this section details the values of this final performance

analysis.400

Table 5 starts by gathering the computed metrics from the coarse analysis. These figures can be compared with

those of Table 6, which encompasses mean and maximum figures for the same metrics, albeit the latter are individually

computed for each measurement. Noteworthy, some of them differ (e.g. revisit times are actually higher) due to all

the constraints enforced during the simulation and as a result of accurate payload modeling. The rightmost column in

Table 6 (titled “W”) corresponds to the normalized value, after the weighting function is applied to metrics. These same405

values are graphically represented in Figs. 10a and 10b, showing that this architecture is capable of satisfying revisit

times for all measurements. However, data access latencies are only guaranteed for two measurements of this use-case.

This situation is, for this use-case, strongly influenced by the use-case specifications and the location of ground stations.

On the one hand, this use-case is focused on data products for Polar Regions, forcing datatakes to be performed in higher

latitudes. In order to minimize latency, and with the constellation deployed as a set of polar orbits, the network of ground410
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Fig. 10 Refined performance metrics for the optimal architecture. Bars correspond to the normalized values;
blue circle markers represent values after the weighting process.

stations is located also at higher latitudes. This forces data capture processes to be done while satellites are also in

contact with ground segment. Thus, if inter-satellite links are only enabled when the receiver has established a link with

ground, architectures either download their data at the Earth poles (directly or indirectly through ISL), or need to wait

an orbital period until their ISL’s can be enabled again. In the second case, the latency increases and is approximately 87

min. Certainly, this situation can only be observed in maximum figures of latency, while average latencies are always415

satisfied. Regardless of this situation, which is also reproduced in all the other candidate architectures, the selected

design exhibited high scores in its worst-case figure-of-merit (computed with maximum values instead of average ones).

VII. Next steps
OASF has been presented as a methodology to explore design trends and optimize architecture selection for

distributed Earth-observing satellite systems. The results have shown how the application of this methodology can yield420

a selection based on both qualitative and quantitative criteria. This selection process is coupled to several simulation

and estimation tools, namely: a simulator to obtain coarse performance metrics; a launch cost estimator (not addressed

in this paper); and a tool to obtain refined performance metrics and carry out analysis of resource budgets. Similarly, the

methodology instance applied to marine weather use-case was tied to five models to evaluate qualitative properties.

Some of the next steps of OASF concern improvements on the tool suite, and others suggest future strands of work in425

the modeling of qualitative modifiers.

A set of five ilities were required for the study conducted under the ONION project. One of such ilities was maturity,

which quantified the presence of emergent instrument techniques among early design decisions. The model essentially

aggregated binary labels that were assigned to each instrument (i.e. either mature or not.) This simplification was

supported by the assumption that platforms or spacecraft technologies should not contribute to this assessment, implying430

that maturity only referred to the system’s functional capacities. However, this assumption could preclude OASF

from generating meaningful designs at short term (i.e. because immature technologies have been assumed but are not

currently plausible at an acceptable risk.) One of such technologies is related to inter-satellite communications in small
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Table 6 Refined performance metrics for the optimal architecture.

Use-case
parameter

Performance metrics Value Norm. W Use-case
parameter

Performance metrics Value Norm. W

Ocean
surface
currents

Max. Revisit time [h] 7.017 0.991 0.997

Surface
temperature

Max. Revisit time [h] 10.672 0.906 0.968
Avg. Revisit time [h] 2.110 1.000 1.000 Avg. Revisit time [h] 0.454 1.000 1.000
Max. Latency [min] 0.000 1.000 1.000 Max. Latency [min] 83.050 0.100 0.464
Avg. Latency [min] 2 · 10−5 1.000 1.000 Avg. Latency [min] 3.7 · 10−4 1.000 1.000

Wind speed
over sea
surface

Max. Revisit time [h] 2.533 1.000 1.000

Atmospheric
pressure

Max. Revisit time [h] 10.672 0.906 0.968
Avg. Revisit time [h] 0.670 1.000 1.000 Avg. Revisit time [h] 0.454 1.000 1.000

Max. Latency [min] 87.820 0.100 0.464 Max. Latency [min] 83.050 0.100 0.464
Avg. Latency [min] 1.083 1.000 1.000 Avg. Latency [min] 3.7 · 10−4 1.000 1.000

Significant
wave height

Max. Revisit time [h] 2.533 1.000 1.000

Sea-ice cover

Max. Revisit time [h] 2.533 1.000 1.000

Avg. Revisit time [h] 0.670 1.000 1.000 Avg. Revisit time [h] 0.414 1.000 1.000
Max. Latency [min] 87.820 0.100 0.464 Max. Latency [min] 87.820 0.100 0.464
Avg. Latency [min] 1.083 1.000 1.000 Avg. Latency [min] 0.481 1.000 1.000

Dominant
wave
direction

Max. Revisit time [h] 7.017 0.867 0.954
Avg. Revisit time [h] 2.110 1.000 1.000
Max. Latency [min] 0.000 1.000 1.000

Avg. Latency [min] 2 · 10−5 1.000 1.000

spacecraft. Recent advances seem to suggest the feasibility of ISL between small-spacecraft†. Similarly, the feasibility

of optical inter-satellite links for small spacecraft has been partially demonstrated in a recent experimental setup [26].435

The work presents a practical implementation of an adaptive, high-speed, optical link that could be suitable for small

satellite applications. Nevertheless, as promising as the results are, this technology still presents a design uncertainty

that can be modeled through the maturity modifier. In addition to consider such design characteristics in the maturity

model, their evaluation would also benefit from the use of TRL descriptors. Relying upon TRL would improve the

granularity of the attribute and would allow for a forward-looking assessment in which estimated TRL levels could be440

considered for systems planned for future horizons.

In addition to that, further qualitative aspects could be modeled which have not been addressed in the current

application of the OASF methodology. Modifiers concerned with life-cycle perturbations, such as design robustness (i.e.

sensitivity to changes in context or needs) or functional robustness (i.e. performance degradation) would be beneficial to

some case studies. Moreover, optimizing architectures based on the dynamic nature of the design can also be interesting445

in DSS, given the obvious likelihood of incremental deployment schemes. Incorporating evolvability in the vector of

quality attributes, could enhance the design decisions by finding systems that either maximize early value (i.e. as the

system is deployed) or maintain an acceptable merit as the system is decommissioned (i.e. graceful degradation.)

In regards to the tool suite, further strands of work are considering the development of an integral architecting,

analysis and simulation tool that implements OASF in its core but which is also capable of automatically identifying450

suitable instrument technologies and design rules. This very aspect should enhance the applicability of OASF to
†In 2017, Sky and Space Global Ltd. reported their successful in-orbit test of ISL between nano-satellites at 2 mega-symbols per second.

The note can be read at: http://www.proactiveinvestors.com.au/companies/news/180937/sky-and-space-global-ltd-achieves-
inter-satellite-communication-milestone-180937.html
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general-purpose cases or future user needs. Despite OASF has also been tested under different EO uses-cases that

required distributed satellite constellations in ONION, the instrument selection and the set of feasible combinations and

their constrains has been solved during preliminary analyses. Deriving suitable and optimal instruments by considering

densely populated knowledge bases (e.g. OSCAR) is a complex endeavor that needs further exploration beyond the455

current state-of-the-art.

Finally, the authors also acknowledge the lack of a CER capable of delivering reliable costs for small spacecraft

platforms. Albeit the purpose of this work was not to derive new and improved CERs, future applications of this or

similar frameworks should be aware of the need of improvements in these regards.

VIII. Conclusions460

This paper presented the results of an architectural selection framework that was specifically designed to return

the most optimal DSS architecture for a given Earth observation application. Based on an exhaustive exploration of

the design space, this design-oriented methodology has been able to find the optimal constellation configuration that

satisfies the user requirements and presents some qualities. Architecture designs are characterized by their altitude,

number of nodes, distribution in planes and a given Walker pattern. In addition, the architecture generation process also465

assigns a set of relevant instruments to each node (i.e. satellite in the network). Based on the required mass capacity,

each node is implemented with a platform of a different class: heavy, medium or small (CubeSat-like). Thus, the

architecture optimization not only deals with architectures with constellations of heterogeneous instrument technologies,

but it also considers architectures composed of heterogeneous satellite platforms that share the same mission goals and

engage in a distributed and networked data acquisition process. Finally, the methodology summarized in this paper470

assesses the goodness of solutions based upon an aggregated figure of merit that encompasses architecture performances,

development and launch costs and system-wide quality attributes (i.e. ilities)

The results of this methodology and assessment have been explored in this paper from two different standpoints. On

the one hand, the exploration of the design space has been analyzed in its completeness to understand the effects of

some decision variables. In order to understand their influence, all the solutions have been studied by comparing their475

individual figures of merit. The design space showed a clear improvement in architecture scores for those architectures

composed mainly of 2, 4 or 8 heavy platforms and complemented by a similar number of medium or small platforms. The

ilities of the generated architectures have been quantified and their strong influence in the scores has been emphasized in

this paper. Ultimately, this optimization framework has been capable of narrowing the solution space to a small set of

architectures not only by selecting designs with higher performances and lowest costs, but also by adjusting the impact480

of some ilities over the others.

On the other hand, this paper also presented the results of a detailed performance analysis that was performed for the

reduced set of candidate architectures, pre-selected in the previous exploration. This second analysis provided finer

metrics and an insight on the resource consumption for the candidate architectures (i.e. battery Depth-of-Discharge and

accumulated data storage on-board), and ultimately allowed to choose the most optimal design.485
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