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Abstract—Machine Learning (ML) is making a strong resur-
gence in tune with the massive generation of unstructured data
which in turn requires massive computational resources. Due to
the inherently compute- and power-intensive structure of Neural
Networks (NNs), hardware accelerators emerge as a promising
solution. However, with technology node scaling below 10nm,
hardware accelerators become more susceptible to faults, which
in turn can impact the NN accuracy. In this paper, we study the
resilience aspects of Register-Transfer Level (RTL) model of NN
accelerators, in particular, fault characterization and mitigation.
By following a High-Level Synthesis (HLS) approach, first, we
characterize the vulnerability of various components of RTL
NN. We observed that the severity of faults depends on both i)
application-level specifications, i.e., NN data (inputs, weights, or
intermediate) and NN layers and ii) architectural-level specifica-
tions, i.e., data representation model and the parallelism degree of
the underlying accelerator. Second, motivated by characterization
results, we present a low-overhead fault mitigation technique that
can efficiently correct bit flips, by 47.3% better than state-of-the-
art methods.

I. INTRODUCTION

Machine learning models and in particular Neural Networks
(NNs) are increasingly being used in the context of nonlinear
”cognitive” problems, such as natural language processing and
computer vision. These models can learn from a dataset in the
training phase and make predictions on a new, previously un-
seen data in the inference/prediction/classification phase with
ever-increasing accuracy. However, the compute- and power-
intensive nature of NNs prevents their effective deployment in
resource-constrained environments, such as mobile scenarios.
Hardware acceleration on Application Specific Integrated Cir-
cuits (ASICs) or Field Programmable Gate Arrays (FPGAs)
offers a roadmap for enabling NNs in these scenarios [1], [2],
[3], [4]. However, similar to general purpose devices, hardware
accelerators are also susceptible to faults (permanent/hard and
transient/soft), as a consequence of Single Event Upset (SEU),
manufacturing defects, and below safe-voltage operations [5],
[6]. The ever-increasing rate of these faults in nano-scale
technology nodes, can directly impact the accuracy of NNs.

Traditionally, to perform early studies and apply fur-
ther optimizations, application-specific hardware designs are
modeled in different abstraction levels before the final in-
silicon implementation. For instance, a hardware design can
be modeled in, e.g., software-level behavioral simulator,
functional level, Transaction-Level Model (TLM), Register-

Transfer Level (RTL), and transistor-level. Among them,
thanks to the evolution of High-Level Synthesis (HLS) tools to
abstract low-level complexities of the hardware [7], the RTL
model has received significant attention. This approach can
lead to a decreased development time with early evaluation
of the final design while conforming to final power, energy,
performance, and resilience goals in comparison to the in-
silicon ASIC/FPGA implementation. For instance, an HLS-
based approach has been used in recent research to study the
resilience of accelerators [8], [9], [10], [11]. In this paper,
we also use an HLS-based approach to study accelerator
resilience. However, we use the HLS approach to study
the fault characterization and mitigation of the RTL model
of NNs. Understanding this resilience behavior can provide
an opportunity for the further resilience studies on the in-
silicon NN accelerators. Main contributions of this work are
summarized as follows:

• Fault Characterization: We perform an in-depth vulnera-
bility study in the various components of the RTL NN
accelerators against permanent and transient faults.

• Fault Mitigation: Motivated by the fault characterization
experimental results, we present a low-overhead tech-
nique to mitigate faults by recovering corrupted bits,
without any need for redundant data. The efficiency of
the proposed method is by 47.3% better than the state-
of-the-art methods.

The rest of the paper is organized as follows. In Section II,
the overall methodology, i.e., the RTL NN and fault model, is
introduced. The fault characterization and mitigation studies
are discussed in Section III, and Section IV, respectively. We
review the previous work in Section V, and finally, the paper
is summarized and concluded in Section VI.

II. INTRODUCING THE OVERALL METHODOLOGY

This section presents our methodology to conduct the re-
silience study, i.e., the architecture of the RTL NN accelerator
and fault model.

A. The Architecture of RTL NN Accelerator

Specifications of the experimented RTL NN with a baseline
configuration is summarized in TABLE I. Our study features
a typical fully-connected NN that is also widely used in
the structure of other NN models [2]. Our study targets the
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Fig. 1: The overall methodology to resilience study of the RTL NN accelerator.

inference phase of NN since training is normally a one-time
process; additionally, the inference is repeatedly performed
to classify unknown data. As can be seen in Fig. 1(a), this
NN model is composed of input, hidden, and output layers,
where all adjacent layers are fully connected to each other. The
first/last layer is the input/output layer and has one neuron
for each component in the input/output vector. Between the
input and output layers, there are single/multiple hidden layers.
The interconnection between neurons of adjacent layers is
determined based on a collection of weights and biases, whose
values are tuned in the training phase. Each NN neuron uses
an activation function to determine its output. Finally, in the
output layer, a softmax function generates the final output
of the NN. We perform our experiments on a 6-layer NN,
i.e., ({Li, i ∈ [0, 5]}), one input, four hidden, and one output
layer(s). The four hidden layer sizes are fixed at 1024, 512,
256, 128 while input and output layer sizes are benchmark-
dependent (784, 54 and 2437 for input while 10, 8 and 52
for output layers for the three NN applications studied in
this paper, i.e., MNIST [12], Forest [13], and Reuters [14],
respectively.). Thus, there are five matrix multipliers among
adjacent layers, i.e., ({Layerj , j ∈ [0, 4]}), where Layerj
refers to the matrix multiplication of Lj and Lj+1. Among
benchmarks, MNIST is a set of black and white digitized
handwritten digits, each image composed of 784*8-bit pixels,
the output infers the number from 0 to 9 (10 output classes),
with 60000 training- and 10000 inference images. MNIST
is the most widely-used by the ML community to evaluate
the efficiency of novel NN methods. Hence, we use MNIST
as the main benchmark to evaluate our resilience studies. To
demonstrate the generality of experimental observations, we
briefly present results for Forest and Reuters, as well.

We build the RTL NN leveraging Bluespec [15]. As can be
seen in Fig. 1(b), our RTL design is composed of i) on-chip
memories to accommodate weights, ii) different set of registers
to latch data during the inference, iii) a set of multiplier-adder
processing elements (PEs) and an adder-tree to perform the
required matrix multiplications, and iv) a piece-wise linear
model of the activation function. The explained model above
is a typical model of NN accelerators, as surveyed in [16]
for ASICs and in [17] for FPGAs. On this setup, input
data are streamed through PEs in parallel to perform matrix

TABLE I: Detailed specifications of the baseline RTL NN.

Neural Network (NN)
Type Fully-Connected Classifier
Topology (number of layers) 6L (1L input, 4L hidden, 1L output)
Per Layer Size (number of neurons) (784, 1024, 512, 256, 128, 10)= 2714
Total Number of Weights ∼1.5 million
Activation Function Logarithmic Sigmoid (logsig)

Major Benchmark
Name-Type MNIST [12]- Handwritten Digits
Number of Images Training: 60000, Inference: 10000
Number of Pixels per Image 28*28= 784
Number of Output Classes 10

Additional Benchmarks
1. Forest [13]
2. Reuters [14]

Data Representation Model
Type 16-bits Fixed-Point (FP)
Precision Min sign and digit per layer (Fig. 2)

An Example Synthesize of RTL NN on FPGA
FPGA Platform-Chip VC707-Virtex7
Operating Frequency 100Mhz
BRAM Usage (Total: 2060) 70.8%
DSP Usage (Total: 2800) 8.6%
FF Usage (Total: 303,600) 3.8%
LUT Usage (Total: 607,200) 4.9%
Number of PEs 64

multiplications in pipeline. Number of clock cycles to classify
an input object item can be computed as a function of |Li|
and the number of PEs, as shown in Eq. 1.1

T =

∑Nl−2
i=0 |Li| ∗ |Li+1|

#PEs
(1)

It is important to note that our design is fully parameter-
izable on the number and size of NN layer and the number
of PEs; also, it is fully synthesizable. For instance, the area
utilization of synthesizing it on VC707, a Xilinx Virtex7
technology is shown in Table I. Furthermore, among pipeline
stages of the RTL design, various registers are exploited to
latch different types of NN data. At each cycle, a different data
item is latched to these registers. As can be seen in Fig. 1(b),
there are three types of registers, i.e., input registers (IRs),

1For instance, T of our baseline can be computed as: T =
784∗1024+1024∗512+512∗256+256∗128+128∗10

64
= 1490944.



Fig. 2: Minimum precision to represent data of RTL NN, i.e.,
Weighs (WRs) and Intermediate (IMRs) Registers. (IRs are
composed of only fraction components since input data are in
[0,1) range.)

weight registers (WRs), and intermediate registers (IMRs),
which are leveraged to latch input, weights, and intermediate
data, respectively.

For experiments, we first export weights and biases of the
trained NN that is performed off-line using a MATLAB im-
plementation, initialize on-chip memories of the RTL design,
and then start streaming 10000 input images to perform the
inference. Also, for representing data, we use the fixed-point
low-precision model. Note that lowering the precision of data
is a common technique for applications in the approximate
computing domain, in particular for NNs performing infer-
ence [18], to achieve power and performance efficiency with
negligible accuracy loss. Following this approach, we use
a per-layer minimum precision fixed-point model. The bit-
width of data (input, weights, and intermediate) fixes to 16-
bits, composed of the sign, digit, and fraction components.
Toward this goal, with a pre-processing analysis, we extract
the minimum bit-widths of the sign and digit components per
layer, and the fraction component fills the rest of 16 bits.
As we experimentally observed, this quantification does not
lead to any considerable accuracy loss in comparison to a
full-precision data model. Details of the number of bits per-
layer are summarized in Fig. 2. Also, by following the default
internal approach of Bluespec FixedPoint (FP) library, negative
numbers (< 0) are represented in two’s complement model.

B. Fault Model

As can be seen in Fig. 1, the fault injection unit is developed
on top of the RTL NN classifier to manage fault injection into
registers, i.e., IRs, WRs, and IMRs. It is important to note,
other components of the RTL NN, e.g., on-chip memory and
computing PEs are also susceptible to faults. However, many
resilience solutions have been developed for these components,
such as Error Correction Code (ECC) for memories [19] and
time-staggered Razor shadow latches for PEs [20]; thus, we
perform this study by fault injecting in registers, the main
state-holding elements in the RTL design.

(a) Permanent Faults.

(b) Transient Faults.

Fig. 3: Repeating trials to achieve statistically significant
results. (Shows results of single-bit fault trials)

1) When, Where, and How frequently are Faults Injected?:
Our fault injection unit supports permanent (stuck-at-0 and
stuck-at-1) and transient faults. Permanent faults can cause bits
to permanently get stuck at 0 or 1, such as faults stemming
from extremely low-voltage operation [21]. Thus, they result
in bit flips, if and only if logical values of faulty bits are
different than the values at which the physical bits are stuck. In
contrast, transient faults such as radiation-induced faults [22],
flip contents of bits for a few cycles (typically one cycle).
Also, note that we evaluate the effect of both single-(single
fault within a register) and multiple-bit (several faults within
a register) faults to cover different fault rates. In short, we
consider the following:

• When? Permanent faults are stuck at 0 or 1 for the whole
inference cycles (T as defined in Eq. 1), from first to the
last. In contrast, transient faults occur in a single random
cycle within inference T cycles.

• Where? We inject faults into a randomly-selected set of
bits of a register of the RTL NN.

• How frequently? To comprehensively study the impact of
faults in the inference error, we repeat the fault injection
for each input data item (for instance each image in
MNIST). In other words, we generate a fault, and while
input data is streaming into the classifier one-by-one, we
inject the generated fault for each of the input data items,
individually. This accelerated fault injection campaign
allows us to quickly evaluate the impact of faults on all



(a) NN Data: stuck-at-0 (b) NN Data: stuck-at-1 (c) NN Data: transient

(d) NN Layers: stuck-at-0 (e) NN Layers: stuck-at-1 (f) NN Layers: transient

(g) FP Components: stuck-at-0 (h) FP Components: stuck-at-1 (i) FP Components: transient

(j) Number of PEs: stuck-at-0 (k) Number of PEs: stuck-at-1 (l) Number of PEs: transient

(m) Datasets: stuck-at-0 (n) Datasets: stuck-at-1 (o) Datasets: transient

Fig. 4: Fault characterization in RTL NN accelerator. (Different scales in the y-axis.)

input data items.

To generate faults, we use the pseudo-random number gen-
erator library of Bluespec, i.e., Randomize, to select a random
register, a random set of bits, and at a randomly-selected cycle
(in the transient case). Later on, we inject the generated fault in
the corresponding locations/cycles, while streaming the input
data into the classifier, allow the completion of the inference
for all input data, and finally, compute the inference error by
comparing classified against the golden output data provided
by the benchmark suite.

2) Statistical Fault Injection Methodology: To achieve sta-
tistically significant results, we repeat experiments multiple
times. In each trial, a different fault (a random register, set
of bits, and cycle in the transient case) is randomly generated
and injected. Finally, after repeating the injection for multiple
times, the final inference error is calculated as the median of all
these trials. If trials are repeated for significantly enough times,
this statistical fault injection approach [23] can lead to accurate
results in comparison to the deterministic approach where all
possible locations/cycles permutations are considered for the
faults injection. Note that the deterministic approach is in



(a) Statistical sparsity analysis of Inputs (IRs), Weights
(WRs), and Intermediate (IMRs) Registers.

(b) The statistical analysis in ranges of Input Registers
(IRs) values.

Fig. 5: Histograms to show the sparsity of data of MNIST,
used to justify; (a) why stuck-at-1 faults cause higher inference
errors than stuck-at-0 faults, and (b) why IMRs are more
vulnerable than WRs.

practice hard to follow since there is billions of possibilities of
faults generation. To find enough number of trials note that it
can be tuned according to the expected confidence level- the
probability that the exact value is within a predefined error
margin. Experimental results for an example single-bit fault
injection case are shown in Fig. 3, in terms of the aggregated
median error rate of RTL NN in the y-axis and the number
of trials in the x-axis (up to 1000). As can be seen, with
error margin 1%, 1000 trails lead to an acceptable confidence-
level (∼90%) with a negligible standard deviation. Hence, we
perform all our experiments 1000 times and use the median
of these trials to report in this paper.

III. FAULT CHARACTERIZATION

In this section, we evaluate the sensitivity of various com-
ponents of our RTL NN against faults; i.e., application-level
components (NN data and NN layers) and architectural-level
components (data representation model and the number of
PEs). Toward this goal, we inject faults in these components,
individually, by varying corresponding parameters of the base-
line configuration as detailed in TABLE I. Experimental results
of the fault characterization are shown in Fig. 4. In this figure,
the x-axis represents the number of injected faults per input
object (image in MNIST), which varies from 0 for the fault-
free NN case, to 16 for the case where all bits of the NN
register are faulty.

A. Overall Effect of Different Fault Types in RTL NN

We conduct the RTL NN fault characterization study in
terms of the following fault categories:

• Permanent vs. Transient: As expected, permanent faults
cause higher NN errors than transient faults. This obser-
vation is due to the persistence of permanent faults for
the whole computation cycles (T as explained in Eq. 1),
while transient faults manifest themselves for a single
cycle within T cycles.

• Stuck-at-1 vs. Stuck-at-0: The permanent faults can be
further categorized as being Stuck-at-1 or Stuck-at-0. As
can be seen in Fig. 4, stuck-at-1 faults cause higher NN
errors than stuck-at-0 faults. This observation is due to
the sparsity of NN data, i.e., more ’0’ than ’1’ bits in the
NN RTL registers, by on average 6.5X as can be seen in
Fig. 5a.

B. Application-Level Fault Analysis

1) NN Data: The sensitivity of various NN data, i.e., inputs,
weights, and intermediate data is evaluated by injecting faults
in corresponding registers individually, i.e., IRs, WRs, and
IMRs. Experimental results are shown in Fig. 4a, 4b, and 4c,
for stuck-at-0, stuck-at-1, and transient cases, respectively. We
observe that:

• IRs: Faults injection in IRs causes the relatively lowest
inference error since they are composed of only fraction
component.

• WRs and IMRs: In RTL NN, IMRs are the most
vulnerable registers, due to two reasons; first, as can be
seen in Fig. 2, IMRs have relatively the longest digit
component, which is significantly sensitive against faults.
Second, IMRs are used in the adder tree to maintain
results of multipliers, as can be seen in Fig. 1. Therefore,
any faults in IMRs is propagated to the next level of the
adder tree without any coefficient. In contrast, WRs are
inputs of multipliers and any fault in WRs is multiplied
by IRs and then propagated. Nevertheless, however, IRs
accommodate minimal values; as can be seen in Fig. 5a,
84.5% of them are in the [0, 0.1] range, which limits the
fault propagation in WRs.

2) NN Layers: The sensitivity of NN layers, i.e.,
{Layerj , j ∈ [0, 4]} is evaluated by injecting faults in registers
of these layers, individually. Experimental results are shown
in Fig. 4d, 4e, and 4f, for stuck-at-0, stuck-at-1, and transient
cases, respectively. We observe that:

• Permanent Faults: Permanent faults in inner layers of the
RTL NN, i.e., closer to the output layer, cause relatively
lower inference error. Due to the persistence of permanent
faults for the whole per-layer cycles, this observation is
the consequence of relatively less cycles in inner layers,
proportional to layer sizes, as detailed in Table I.

• Transient Faults: In contrast, transient faults in inner
layers have relatively more impact on the inference error,
since, first, sizes of NN layers do not play any role for
transient faults with momentary behavior, and second,



faults in inner layers have relatively less probability to
be masked through the thresholding in the activation
functions of earlier layers.

C. Architectural-Level Fault Analysis

1) Different Components of Data Representation Model:
The sensitivity of various components of fixed-point data
representation mode, i.e., sign, digit, and fraction is evaluated
by injecting faults in corresponding components individually.
Experimental results are shown in Fig. 4g, 4h, and 4i, for
stuck-at-0, stuck-at-1, and transient cases, respectively. Note
that for each component, the maximum number of injected
faults is equal to the maximum bit-width of the corresponding
components, as detailed in Fig. 2. We observe that sign,
digit, and fraction components are in order, relatively more
vulnerable, proportional to their positional significance, as
expected.

2) Parallelism Degree (Number of PEs): The number of
PEs can impact the fault propagation behavior, since with
respect to Eq. 1, it inversely affects the number of inference
cycles (T ). T determines the data reuse degree, i.e., the number
of registers reloads to accomplish the inference, which can
be directly translated to the persistence of permanent faults.
To empirically perform this experiment, we repeat the fault
injection for the different number of PEs, i.e., 64, 256,
and 1024. Fig. 4j, 4k, and 4l show experimental results in
the presence of stuck-at-0, stuck-at-1, and transient faults,
respectively. We observe that:

• Permanent Faults: In the presence of permanent faults,
a relatively more PEs corresponds to proportionally
reduced inference error. As said, it is the result of a
relatively fewer number of clock cycles (T ) and in turn,
less persistence of permanent faults.

• Transient Faults: In contrast, in the presence of transient
faults, the number of PEs does not play any role, due to
the momentary behavior of transient faults.

D. Fault Characterization of Other NN Benchamrks

We repeat the fault characterization study in Forest and
Reuters benchmarks, as well, by following the similar exper-
imental methodology explained in Section II. We observed
that a vast majority of observations on MNIST, as discussed
in Sections III-A and III-B, is staying valid for Forest and
Reuters, as well. Experimental results of the fault propagation
in those datasets are shown in Fig. 4m, 4n, and 4o for
stuck-at-0, stuck-at-1, and transient cases, respectively. Due
to our experimental observations, the most important points
are highlighted as follows:

• In our NN, the inherent fault-free inference error rate of
MNIST, Forest, and Reuters are 2.56%, 38.7%, and 8.9%,
respectively, very close to the state-of-the-art implemen-
tation [2].

• The rate of NN inference error increase of Reuter dataset
in presence of additional permanent faults, is relatively
more significant, since the size of the input layer of
Reuter is considerably larger (2837 vs. 52/784), which

List 1: Pseudo-code of proposed fault mitigation technique.

1: if (reg[N-1] & reg[N-2] are flipped) reg <= 0;
// WORD MASKING

2: else begin
3: if (reg[N-1] is flipped) reg[N-1] <= reg[N-2];

// SIGN-BIT MASKING WITH MSB
4: for(i in [N-2, 0]) if (reg[i] is flipped) reg[i] <= reg[N-1];

// BIT MASKING
5: end

in turn, leads to more persistence of permanent faults
during the clock cycles (T ).

IV. FAULT MITIGATION

In this section, we introduce and evaluate an efficient and
low-overhead fault mitigation technique in RTL NN, relying
on the fault characterization results. The aim is to recover from
faults without leveraging any redundant bits as is common for
traditional fault correction mechanisms such as Triple Modular
Redundancy (TMR) [26]. The proposed technique relies on the
sparsity of NN data and accordingly, targets to mask faulty
bits. This technique combines three individual mechanisms,
i.e., first, Word Masking to set all bits of the corrupted register
to ’0’, second, Bit Masking to mask faulty bit with the sign-
bit within the faulty register, and third, Sign-bit Masking to
mask the sign-bit with the Most Significant Bit (MSB). Among
them, Word- and Bit Masking techniques are proposed the
first time in Minerva [2]; however, they are used individually
and with a poor efficiency to protect the sign-bit, which in
fact is relatively the most vulnerable component. To alleviate
this issue, we propose to mask the sign-bit with the MSB,
since through a statistical analysis we observed that with the
probability of 99,9% the sign-bit and MSB have the same
logic value. This observation is the consequence of near-zero
NN data and also two’s complement data representation model,
which finally leads to sign bit = MSB=’0’ for positive (> 0)
and sign bit = MSB =’1’ for negative near-zero data (< 0).

It is important to note that about the fault detection we
follow same assumptions with Minerva, i.e., there is no
limit on the number of faults that can be detected and also,
information is available on which bits are affected. To achieve
these assumptions, in Minerva, Razor shadow latches [40] are
simulated that can detect faults by monitoring circuit delays.
ASIC [2] and FPGA [39] implementation of Razor report 0.3%
and 2.6% of area overheads, respectively; which shows the
feasibility of exploiting this method in the synthesized version
of our RTL NN, as well.

The pseudo-code of the proposed fault mitigation technique
is shown in List. 1. In this pseudo-code, the bit-width of the
register (reg) is assumed to be N, [N-1, 0], where reg[N-1] and
reg[N-2] are referring to the sign-bit and MSB, respectively.
As can be seen, the proposed technique is composed of three
sub-methods:

• Sign-Bit Masking with MSB: We use MSB as the mask
of the sign-bit since through an experimental analysis we



(a) Evaluating different fault mitigation techniques (on
MNIST).

(b) Enhanced hybrid technique on different datasets.

Fig. 6: Evaluating fault mitigation techniques (shown for
stuck-at-0 case as similar efficiency observed for other types).

observed these bits have same logic, with the probability
of 99.9%.

• Bit Masking: Then, we apply the Bit Masking technique
to recover non-sign-bit flips, by using sign-bit as the
mask.

• Word Masking: And finally, if MSB is itself also flipped,
we reset the register to ’0’.

We evaluate the proposed technique in our RTL NN and
compare it with the individual Word- and Bit Masking tech-
niques. Experimental results of the evaluation of these fault
mitigation techniques are shown in Fig. 6a. As can be seen:

• Minerva Bit Masking: The efficiency of this technique is
relatively the worst, since not only it does not have any
mechanism to protect the sign-bit but also masks other
faulty bits with sign-bit, which can be faulty.

• Minerva Word Masking: This technique leads to a con-
stant inference error, independent of the number of de-
tected faults since the faulty register is reset to ’0’, when
at least one fault is detected.

• Proposed Enhanced Hybrid Technique: This technique
shows relatively the best performance to correct faulty
bits and achieve the lowest inference error since it takes
the advantage of both Bit- and Word Masking techniques
and also, complement it by using MSB to mask the sign-
bit faults.

In short, our Enhanced Hybrid Technique mitigates faults
and achieve by 47.3% and 44.1% lower NN inference error
than Minerva Bit- and Word Masking techniques, respectively.

We apply the proposed enhance hybrid fault mitigation tech-
nique on Forest and Reuters datasets, as well. The efficiency

of the proposed fault mitigation method is shown in Fig. 6b.
By comparing these results against the default experiments
without any protection in Fig. 4m, it can be observed that the
proposed method can cover faults in all tested datasets since
the sparsity of data is an inherent feature of these benchmarks
and it is also the base of the proposed technique.

V. RELATED WORK

In this section, we review recent works on the resilience of
NNs and highlight our contributions.

A. Different Methodologies to Study NN Resilience

It has been shown that NNs are inherently resilient [27],
[28]; however, the ever-increasing fault rate in nano-scale
technology nodes necessitates further studies in this area to
explorer better trade-off of reliability, power, energy, and per-
formance. Hence, in recent years NN resilience is studied with
different approaches, e.g., software-level simulations or theo-
retical analyzes [29], [30], SPICE simulations [2], [31], [32],
[33], [34] and experimenting on the real hardware operating on
low-voltage regimes [35], [36], [37], [38]. Among them, it is
evident that software-level simulations and theoretical analyzes
lack the information of the underlying hardware platform and
are relatively less precise. In contrast, SPICE-based studies
are more precise; however, these studies require significant
circuit-level efforts. We aim to have the best of both worlds:
to have the flexibility and simplicity of software-level fault-
injection with the precision of circuit-level implementations.
Thanks to the evolution of HLS tools, the precise modeling of
the underlying hardware has been facilitated, which provides
an opportunity to perform such studies comprehensively with
an accuracy close to the real hardware. This approach is also
followed by some recent works to study the resilience of
several other applications [8], [9], [10], [11].

B. Fault Characterization on NNs

The impact of faults in different models of NNs have
been studied in a wide body of recent work as surveyed
in [27]. Among the most relevant existing works, Minerva
[2] performs a characterization on the sparsity of data and
analyzes the efficiency of leveraging fixed-point data represen-
tation model. In the same line, [28] studied the vulnerability
of various layers of NN. Also, recently [31] studied the
fault propagation in an ASIC model of NN focused on the
vulnerability of different NN layers. However, these works do
not present comprehensive characterization studies, whereas
our paper comprehensively studies the sensitivity analysis of
both application- (NN data and NN layers) and architectural-
level (parallelism degree and data representation model) com-
ponents. This comprehensiveness is the consequence of using
HLS tools to facilitate the RTL modeling of the NNs.

C. Fault Mitigation on NNs

To mitigate faults several general techniques are proposed
in different domains such as TMR [26], Razor [40], [20], ECC
using Hamming code [19], Hardware Transnational Memory



(HTM) [41], among others. These techniques can be poten-
tially customized to mitigate faults of NNs, as well; however,
with timing, area, or power costs. Also, techniques adapted
for NNs are surveyed in [42], such as explicit redundancy,
retraining, and modifying learning/inference phases. In this
paper, instead of costly fault tolerance operations, we present
application-aware fault mitigation in NNs, which does not
require to exploit any redundant data bits or considerable
additional overheads. In the same line, Minerva [2] has also
proposed two fault mitigation techniques, i.e., bit masking and
word masking, which rely on the sparsity of NN data. In
our paper, we use these techniques as baseline comparison
cases. We explored their efficiency issues when the sign-
bit is corrupted and accordingly, presented a more efficient
technique to be effective in such cases, as well.

VI. CONCLUSION AND FUTURE WORK

We empirically investigated an RTL hardware-aware de-
sign of NN accelerator from the resilience perspective, i.e.,
fault characterization and mitigation. We comprehensively
characterized the vulnerability of various components of the
design, in the presence of permanent and transient faults.
Our experiments experimentally shows the severity of RTL
NN components against different types of faults. Relying on
the characterization results, we proposed a low-overhead fault
mitigation technique to correct corrupted bits of RTL NN
efficiently. Our proposed method can mitigate faults, by 47.3%
better than state-of-the-art methods. We plan to perform fault
characterization and mitigation study on more advanced RTL
NN models, e.g., Convolutional NNs (CNNs) and Recursive
NNs (RNNs), as well.
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