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Abstract: The main purpose of this paper is to develop a reliable method based on a three-dimensional (3D) 
finite-element (FE) model to simulate the constitutive behaviour of reinforced concrete structures 
strengthened with post-tensioned or pre-stressed tendons well beyond the elastic domain. The post-
tensioned concrete is modelled as a composite material whose behaviour is described with the serial-
parallel rule of mixtures (S-P RoM) [1-3] and the nonlinear behaviour of each component is accounted 
for by means of plasticity and damage models. 3D FE models were used, where the nonlinear material 
behaviour and geometrical analysis based on incremental–iterative load methods were adopted. Sever-
al examples are shown where the capabilities of the method on large scale structures are exhibited tak-
ing into account the self-weight, the post-tension load and different pressure loads. A new metric for 
computing the crack opening displacement inside a finite element is proposed. 
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1. Introduction and state of the art 
The work presented from here on is based on the innovative methodology proposed in [4] for the nu-
merical analysis of pre-stressed and post-tensioned structures. In the aforementioned paper several 
different techniques have been mentioned as being habitually used when numerically calculating pre-
stressed concrete structures.  

In this paper the focus resides on these types of structures being taken well into the nonlinear domain 
due to failure either in the concrete or the steel tendons, or both. From this point of view, the model 
described by Rabczuk and Eibl [5] proposed a coupled element free Galerkin method to analyse 
prestrsessed concrete beams under quasi-static loading. The constitutive law governing the concrete 
medium was based on a coupled damage-plasticity model. The reinforcement was modelled as discrete 
beam elements so that the interaction between concrete and reinforcement can be modelled. The bond 
model included two modes of failure: pullout failure, and splitting failure. The formulation of the bond 
model was based on the radial stress–radial strain relation with three distinct domains: the nonlinear 
material behaviour including the initiation and propagation of cracks, linear softening, and residual 
strength. 

More recently, Ayoub and Filippou proposed a nonlinear model for simulation of the pretensioned 
prestressed concrete girders [6]. The modelling approach consisted of three main components: con-
crete girder simulated as a beam–column, prestressing strands modelled as truss elements, and a bond 
element to model the prestress transfer between the concrete and strands. The constitutive laws gov-
erning the nonlinear response of concrete and strands were based on discretization of the media into 
fibers with uniaxial hysteric models. The bond model at the interface between the concrete and strand 
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was formulated using special bond stress–slip relations.  

Bílý and Kohoutková [7][8] conducted several studies on the effect of the steel liner on the ultimate 
bearing capacity of a prestressed concrete containment. Mechanical behaviour of concrete was mod-
elled using a model that combines constitutive models for tensile (fracturing) and compressive (plas-
tic) behaviour. The fracture model was based on the classical orthotropic smeared crack formulation 
and crack band model employing a Rankine failure criterion. The linear elements representing the 
tendons and the bars were embedded in concrete. Perfect bond between the concrete and these ele-
ments was considered. 

The previous method can describe the behaviour of the composite material but, implicitly, the finite 
element mesh is strongly dependent on the trajectory of the steel tendons since they connect pair of 
nodes of the finite element. This means that in zones with high curvatures of the tendons a high densi-
ty of finite elements has to be used, with the consequent increase of the computational cost. In addi-
tion, the friction or debonding effects between the concrete and steel cannot be easily included.  

Alternatively, the formulation proposed in this article only requires a finite element mesh of any type 
and any spatial discretization and a linear description of the steel tendons. The pre-tensioned concrete 
is modelled as a composite material whose behaviour is described with the serial-parallel rule of mix-
tures (S/P RoM). The effective pre-tensioning stress is applied as an initial strain imposition only in 
the steel material used to model the tendons [9]. By means of the S-P RoM [1,2] equilibrium is 
reached at each integration point between the passive and active steel and concrete and the strain ten-
sor of the steel is updated with the contribution of the concrete. An important advantage of applying 
the proposed methodology is that one can assume that each material behaves following its own consti-
tutive law (elasticity, damage, plasticity, viscoelasticity, etc.). Next, the displacement field is updated 
until the global convergence of forces is achieved. The methodology is valid for both straight and cur-
vilinear steel tendons and examples of both cases will be shown. 
For the concrete an isotropic scalar damage model has been used together with a new metric for com-
puting the crack opening displacement inside a finite element that the authors propose for the first time 
in this work. The model is described in detail in Section 3.1. The post-tensioned steel is modelled with 
an isotropic hardening-softening plasticity law, described in detail in Section 3.2.  
Regarding the actual strain imposed on the steel material in those elements that contain a steel tendon, 
the losses due to friction induce a variation of the post-tensing force along the longitudinal axis of the 
tendon. In the proposed formulation, constant stress distributions is applied. In order to overcome this 
discrepancy, the force distribution obtained from the regulatory guide [10] can be integrated obtaining 
an “average” force, which is the one that should be imposed in the active steel of the composite mate-
rial. For this, the averaged stress is divided by the Young modulus of the material obtaining therefore 
the imposed post-tensing strain. 
 

2. Constitutive modelling of pre-stressed reinforced concrete with the Serial-Parallel rule of mix-
tures 
 

The Serial-Parallel rule of mixtures (S-P RoM) defines two different compatibility conditions between 
the strains and stress states of the composite constituent materials: it formulates an iso-strain condition 
on the parallel direction, usually the fibre direction, and it defines an iso-stress condition on the serial 
direction, usually the remaining directions. Using these compatibility equations in a composite made 
of matrix and fibre, if the matrix structural capacity is lost due to excessive shear stresses, the iso-
stress condition also reduces the shear capacity of fibre, and, consequently, the composite serial 
strength is also reduced. 
The extended formulation for the S-P RoM can be found in [4], together with its algorithm. It is inter-
esting to summarize here the main hypothesis for the numerical formulation: 

1. The composite is composed by only two components: fibre and matrix  
2. Component materials have the same strain in parallel (fibre) direction.  
3. Component materials have the same stress in serial direction.  



  

4. Composite material response is in direct relation with the volume fractions of compounding 
materials. 
5. Homogeneous distribution of phases is considered in the composite.  
6. Perfect bounding between components is considered. 
 

2.1. Singularities of the imposed strain procedure 

The previous numerical formulation is capable of simulating the behaviour of reinforced concrete as a 
composite material composed by concrete and passive steel. If one wants to take into account the case 
of the active steel, both for the pre and the post-tensioned case, it is necessary to rewrite the compati-
bility condition of the S-P RoM. Essentially, the perfect adherence between the two materials cannot 
be achieved since the compatibility is not ensured.  

Referring to the hypothesis 6 of the S-P RoM, now it must be rewritten as: Relative movement be-
tween the components is allowed if and only if an imposed strain condition exists over one of them.  

 
Therefore, loss of adherence is allowed only in the presence of the imposed strain loading, a peculiar 
load due to the fact that it is applied only on a component of the composite material. This implies that 
its contribution is not quantified in the external forces vector and it is an auto balanced load. 

In the first iteration of the S-P RoM algorithm, the parallel component of the strain tensor of the active 
steel is fixed to the imposed pre-stress value. Knowing the composite stress tensor and the parallel 
component of the strain of the fibre, one can obtain the total strain tensor of the fibre and, depending 
on the desired fibre constitutive model, the integrated stress tensor is computed. 

The algorithm of the S-P RoM equilibrates the serial components at each integration point and with 
the integrated stresses the internal forces vector is assembled. At this point of the problem, the parallel 
component of the fibre stresses has still to be balanced. Its effect is quantified in the system of equa-
tions in the residual forces computed at the end of the first global iteration of the problem. 
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The residual forces computed from the unbalanced internal forces vector are used to update the nodal 
displacements and the composite strains at each integration point. In the second global iteration of the 
structure, the parallel component of the strains at layer level (that is the input of the S-P RoM) is equal 
to the matrix strain needed to accommodate the imposed fibre strain. 

Therefore, in the first global iteration the active steel has its parallel strain component fixed at the level 
of strain associated to the desired pre-stressing force, while in the second iteration the fibre strain is 
balanced by the resulting compression in the concrete. 

2.2. Differences between numerical modelling of pre-stressed and post-tensioned concrete.  

The two different types of enhancing the stiffness and strength of concrete can each be taken into ac-
count by the proposed methodology. The post-tensioning of steel is modelled by considering the three 
transversal modulus of the steel close to 0 and therefore allowing the steel to glide without friction 
inside the concrete. In order to fully allow deformation of the steel in a decoupled way from the con-
crete, its Poisson coefficients are set to 0, which allows the complete description of the post-tensioning 
process. 

Pre-stressing, on the other hand, is reproduced by considering both the transversal modulus and the 



  

Poisson coefficients for steel at their habitual value found in literature.    

For both procedures, the elements that have a determined participation of active steel have a linear 
elastic behaviour for the concrete that belongs to that same layer as the active steel. This is necessary 
due to the very high value of the pre-stressing load. If a damage behaviour were to be assumed for the 
concrete in those same elements, then the concrete material would be fully damaged only by applying 
the pre/post-tension load which would difficult the convergence in the Newton –Raphson algorithm of 
the S-P RoM. While this is a natural consequence of the pre-stressing procedure, in the numerical 
analysis, global convergence of the problem would be difficult to achieve due to this highly localized 
effect and therefore the non-linear behaviour of real-life structures would be impossible to capture.  

The authors consider this a reasonable simplification that enables us to follow the large-scale behav-
iour of structures well past the elastic domain.  

3. Component constitutive models  
 

3.1. Isotropic damage model 

During the last years, the constitutive models known as continuous damage models have been widely 
accepted for the simulation of the complex constitutive behavior of many materials used in engineer-
ing. 
Kachanov [11] introduced the concept of effective stresses to carry out fracture simulations by viscous 
phenomena. It is also used for the representation of fatigue, fracture in ductile and fragile materials, 
etc. [12]. 
The isotropic damage model is widely known and therefore only some brief explanations will be given 
from here on. The readers can find the complete formulation in references [13][14]. 
For the isotropic damage model, the material degradation is developed in all directions alike and only 
depends on one scalar damage variable d, and the equation of isotropic damage is then 

𝝈𝝈𝟎𝟎 =
𝝈𝝈

1 − 𝑑𝑑
 (2)  

Where d is the internal damage variable, σ is Cauchy’s stress tensor and σ0 is the effective Cauchy’s 
stress tensor measured in the “non-damaged” space. The relation between the real damaged space and 
the non-damaged one can be seen in a schematic way in Figure 1. This internal variable is a measure 
of the material stiffness loss and its higher or lower limits are given by 0 ≤ 𝑑𝑑 ≤ 1 where d = 1 is a 
state of the material completely damaged that defines the complete local fracture, and d = 0 is a non-
damaged material. 

 
Figure 1. Schematic representation of the equivalence between the real and undamaged space 

 
3.1.1. Damage threshold criterion 
The damage criterion makes a distinction between an elastic behavior inside the domain delimited by 
the damage function and another domain in which the degradation process of the material properties is 
verified. This criterion depends on the type of material and is defined in the same way as for plasticity 
problems, 



  

Ϝ(𝝈𝝈𝟎𝟎;𝒒𝒒) = 𝑓𝑓(𝝈𝝈𝟎𝟎) − 𝑐𝑐(𝑑𝑑)  ,   𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝒒𝒒 ≡ 𝑑𝑑  (3)  

where 𝑓𝑓(𝝈𝝈𝟎𝟎) is a function of the stress tensor 𝝈𝝈𝟎𝟎 = 𝑪𝑪𝒐𝒐: 𝜺𝜺  and c(d) is the function defining the damage 
threshold position. This function establishes the onset of the nonlinear damage behavior and addition-
ally defines the loading, unloading and reloading states. The initial value of the damage threshold 
𝑐𝑐(𝑑𝑑0) = 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 is a property of the material and is related to its strength in compression de-
pending on the damage threshold function chosen. The damage in the material is verified when the 
value of 𝑓𝑓(𝝈𝝈𝟎𝟎) is equal or greater than 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 for the first time. 
 
3.1.2. Evolution law of the internal damage variable 
The scalar function G[χ] defining the evolution of the damage threshold must be monotonous and with 
a value ranging from 0 to 1. In various publications about the scalar damage problem, the stress behav-
iour with softening is represented in a variety of forms. Particularly, in Oliver’s et al. [13] work the 
following function is proposed, 

𝐺𝐺�𝑐𝑐(𝑑𝑑)� = 1 −
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐(𝑑𝑑)
𝑒𝑒𝐴𝐴(1− 𝑐𝑐(𝑑𝑑)

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚) (4)  

Or it can be expressed as, 

𝐺𝐺�𝑓𝑓(𝝈𝝈𝟎𝟎)� = 1 −
𝑓𝑓0(𝝈𝝈𝟎𝟎)
𝑓𝑓(𝝈𝝈𝟎𝟎) 𝑒𝑒

𝐴𝐴(1− 𝑓𝑓(𝝈𝝈𝟎𝟎)
𝑓𝑓0(𝝈𝝈𝟎𝟎))

 (5)  

where A is a parameter that depends on the fracture energy of the material. In the following table, the 
algorithm of this already integrated model is presented. It is easier to use but less general because only 
exponential softening is used. 

 

Table 1. Algorithm for obtaining the stress of the damage model 

 



  

3.1.3. Evaluation of the crack opening 
The scalar damage model computes a damage variable that quantifies the damaged volumetric per-
centage of the finite element. However, this variable does not take into account the effect caused by 
the opening and closing of cracks.  
 
In order to take this into consideration a crack displacement is computed inside the finite element code 
at each integration point as: 

𝑢𝑢𝑐𝑐𝑐𝑐 = �𝑑𝑑 ·  𝜀𝜀𝑒𝑒𝑒𝑒� · 𝑙𝑙𝑓𝑓 (6)  

 
Where 𝜀𝜀𝑒𝑒𝑒𝑒 is the equivalent strain of the Gauss point and 𝑙𝑙𝑓𝑓 is the characteristic length of the element.  
 
The equivalent strain is computed as: 

𝜀𝜀𝑒𝑒𝑒𝑒 =
𝝈𝝈: 𝜺𝜺
𝑓𝑓(𝝈𝝈)

 

 
(7)  

Where 𝑓𝑓(𝝈𝝈) is the uniaxial equivalent stress. This ensures that when an element is unloaded its crack 
displacement can tend to 0 (that crack is closing), even though in that material volume, degradation 
has been previously recorded (d > 0).  
 

3.2. Plasticity model 

The limit between the elastic and the plastic areas is set through the yield surface or discontinuity sur-
face, and from such limit, this surface can move in the stress space, follow the evolution of the plastic 
process and transform itself into the so called plastic loading surface. This function representing the 
plastic loading surface is simply the discontinuity or yield limit function updated for each of the inter-
nal variable value q at every moment of the pseudo time t of the elasto-plastic process. The phenome-
non governing this yield surface change of position in the stress space is known as plastic hardening. 
This hardening behavior in this case is isotropic or kinematic and will be presented below. 
 
A simple way of introducing the elasto-plastic behavior hardening is through the plastic loading func-
tion Ϝ(𝝈𝝈 ;𝒒𝒒) = 0. This is defined as a scalar tensor and homogenous function of first degree in the 
stresses. 

Ϝ(𝝈𝝈 ;𝒒𝒒) = 𝑓𝑓(𝝈𝝈) − Κ = 0 (8) 
Thus, the stress function f (σ) is set to translate from a stress tensor state into another equivalent scalar. 
This scalar is compared to the evolution of the plastic hardening K, which is related to the evolution of 
the equivalent uniaxial stress. 
 
3.2.1.  Isotropic hardening 
It is said that there is an isotropic hardening when there is a homothetic movement of the plastic load-
ing surface. This movement can be: 

• Positive: when the homothetic movement of the plastic loading surface is an expansion 
movement; it is said that it is an isotropic hardening elasto-plastic process. 

• Null: when there is no evolution of the plastic loading surface during the elasto-plastic pro-
cess, it is said that this is an isotropic perfectly elasto-plastic process. 

• Negative: when there is a contraction homothetic movement on the plastic loading surface, 
it is said that this is an isotropic softening elasto-plastic process 

 
The isotropic hardening, the homothetic movement of the plastic loading function, is controlled by the 
evolution of the plastic hardening function K, which is generally defined as an internal variable q. The 
evolution of this internal variable depends on the mechanical process. 



  

This internal variable evolution depends on its own mechanical process and the latter is conditioned by 
an evolution rule whose formulation must adapt itself to the solid behaviour. In the classic plasticity, 
the internal variable of the plastic hardening is usually expressed as a plastic hardening function 
𝐾𝐾(κ𝑝𝑝  ), which, in turn, depends on the internal variable of plastic hardening κ𝑝𝑝.  
 
By defining the hardening function as an internal variable of the plastic process, a more general formu-
lation arises, so there are greater possibilities to represent the behaviour of a large variety of solids. 
 

κ̇𝑝𝑝 = λ̇𝐻𝐻𝑘𝑘(𝝈𝝈 ;𝒒𝒒) = λ̇  �𝒉𝒉𝑘𝑘(𝝈𝝈 ;𝒒𝒒):
𝜕𝜕𝜕𝜕
𝜕𝜕𝝈𝝈
� 

(9) 

𝐾̇𝐾𝑝𝑝 = λ̇𝐻𝐻𝑘𝑘(𝝈𝝈 ;𝒒𝒒) = λ̇ [ℎ𝑘𝑘(𝝈𝝈 ;𝒒𝒒)κ̇𝑝𝑝] (10) 

  
  

where the tensor function 𝒉𝒉𝑘𝑘(𝝈𝝈 ;𝒒𝒒) and the scalar function ℎ𝑘𝑘(𝝈𝝈 ;𝒒𝒒) depend on the updated tensor 
state and the internal variables.  

 
In the Barcelona model defined in Lubliner et al.[15], the laws defined are driven by the fracture ener-
gy of the material. This work presents a new law that has been designed to reproduce their hardening 
and softening performance under monotonic and cyclic loading conditions. This law also depends on 
the fracture energy of the material and is derived from the hardening softening law presented in [16] 
and [17]. 

 
3.2.2. Fracture Energy 
Classical fracture mechanics defines the fracture energy of a material as the energy that has to be dis-
sipated to open a fracture in a unitary area of the material. This energy is defined as: 
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where fW  is the energy dissipated by the fracture at the end of the process, and fA  is the area of the 

surface fractured. The total fracture energy dissipated, fW , in the fracture process can be used to de-

fine a fracture energy by unit volume, fg , required in a continuum mechanics formulation: 
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This last equation allows establishing the relation between the fracture energy defined as a material 
property, fG , and the maximum energy per unit volume fg :  
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Where fW  is the total fracture energy dissipated, 𝑉𝑉𝑓𝑓 is the volume of the finite element, fA  is the 
area of the surface fractured and 𝑙𝑙𝑓𝑓is the characteristic finite element length.  
Thus, the fracture energy per unit volume is obtained as the fracture energy of the material divided by 
the fracture length. This fracture length corresponds to the distance, perpendicular to the fracture area, 
in which this fracture propagates.  



  

In a real section, this length tends to be infinitesimal. However, in a finite element simulation, in 
which continuum mechanics is applied to a discrete medium, this length corresponds to the smallest 
value in which the structure is discretized: the length represented by a gauss point.  
Therefore, in order to have a finite element formulation consistent and mesh independent, it is neces-
sary to define the hardening law in function of the fracture energy per unit volume [15]. This value is 
obtained from the fracture energy of the material, fG , and the size of the finite element in which the 
structure is discretized. 
 
3.2.3. Hardening Function and Hardening Internal Variable 
The hardening function defines the stress of the material when it is in the non-linear range. There are 
many possible definitions that can be used to fulfil the rate equations for the plastic strength threshold. 
Here the use of a function that describes the evolution of an equivalent uniaxial stress state is pro-
posed, like the one shown in Figure 2.  

 

Figure 2. Evolution of the equivalent stress 

The equivalent stress state shown in Figure 2 has been defined to match the uniaxial stress evolution 
described by most metallic materials.  
The first region is defined as a linear curve. The second region is defined with an exponential function 
to simulate softening. The function starts with a null slope that becomes negative as the equivalent 
plastic strains increase. The exact geometry of this last region depends on the fracture energy of the 
material.  
The hardening internal variable, pκ , accounts for the evolution of the plastic hardening function, K . 
In current formulation pκ  is defined as a normalized scalar parameter that takes into account the 
amount of volumetric fracture energy dissipated by the material in the actual strain-stress state. This is: 
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Where fg  is the total available energy per unit volume, 𝑆𝑆 is the stress tensor and 𝐸𝐸𝑝̇𝑝 is the rate of 
plastic strain.  
Using the definition of the hardening internal variable defined in equation (13), it is possible to define 
the expression of the hardening function as: 

)( peqSK κ=  (14) 

Where 𝑆𝑆𝑒𝑒𝑒𝑒  is the equivalent stress tensor whose expression depends on the region of the constitutive 
law. It can be easily proven that the hardening function and internal variable defined in equations (13) 



  

and (14) fulfil the rate equations (9) and (10). And the kh  and kh  functions defined in this expression 
become:  
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3.2.4. Expressions of the hardening function 
In this section, the exact numerical expressions used to define the new hardening law are discussed. 
This law is a simplified version of the one presented in Barbu et al [17].   

Region 1: Linear curve 

The threshold function is obtained taking into account the following considerations:  
• The initial equivalent stress value is defined by the equivalent stress reached at the end of 

the elastic domain, the material strength 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙,𝑒𝑒𝑒𝑒.  

• The slope of the function, u, is user defined, 𝑢𝑢 = 𝜎𝜎1
𝑒𝑒𝑒𝑒−𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑒𝑒𝑒𝑒

𝜀𝜀1
𝑝𝑝 . 

• The volumetric fracture energy dissipated in this region is 𝑔𝑔𝑡𝑡1 = �𝜎𝜎1
𝑒𝑒𝑒𝑒 + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙,𝑒𝑒𝑒𝑒� ∙ 𝜀𝜀1

𝑝𝑝 ∙ 0.5. 

With these considerations in mind, the resulting equation that relates the equivalent stress with the 
plastic strain is:  

𝜎𝜎𝑒𝑒𝑒𝑒(𝜀𝜀𝑝𝑝) = 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙,𝑒𝑒𝑒𝑒 + 𝑢𝑢 ∙ 𝜀𝜀𝑝𝑝 (17) 

The expression of the equivalent stress as a function of the hardening variable is obtained: 

𝜎𝜎𝑒𝑒𝑒𝑒(𝑘𝑘𝑝𝑝) = �𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙,𝑒𝑒𝑒𝑒
2 + 2 ∙ 𝑢𝑢 ∙ 𝑔𝑔𝑡𝑡 ∙ 𝑘𝑘𝑝𝑝 (18) 

Expression (18) is valid for values of pκ  that are comprehended between 0 and 𝑘𝑘1
𝑝𝑝 = 𝑔𝑔𝑡𝑡1 𝑔𝑔𝑡𝑡⁄ . The 

value of the upper limit of the internal variable shows that it is necessary define a value for the volu-
metric fracture energy of the material larger than 𝑔𝑔𝑡𝑡1. If the value defined is lower, the material will 
not be able to reach its ultimate stress as this will imply having a fracture internal variable larger than

0.1 . 

Region 2: Exponential softening  

When the plastic internal variable reaches the volumetric plastic energy available in the first region: 
𝑘𝑘𝑝𝑝 = 𝑘𝑘1

𝑝𝑝. At this point, isotropic hardening is defined by region two. Its function is obtained with the 
following parameters:  

• The initial equivalent stress value is defined by the equivalent stress reached at the end of 
the first region (𝜎𝜎1

𝑒𝑒𝑒𝑒).  
• The initial slope of the function is zero.  
• The volumetric fracture energy dissipated in this region is the remaining energy in the ma-

terial: 𝑔𝑔𝑡𝑡2 = 𝑔𝑔𝑡𝑡 − 𝑔𝑔𝑡𝑡1 



  

With these considerations in mind, the governing equations are the same as in Barbu et al [17].  
The constitutive laws described in this section have been implemented in the in-house code PLCd 
[18].  The code was programmed to allow OpenMP parallelization, which greatly reduced the compu-
tational cost of the large scale FE simulations. 

4. Large scale non-linear analysis of pre-stressed and post-tensioned structures 

In this section, two different large-scale structures that have steel tendons embedded in the concrete 
structure can be seen. Their elastic behaviour has been shown in [4] and here the nonlinear behaviour 
will be presented. For the steel tendons, a plasticity model with isotropic hardening has been used 
while for the concrete an isotropic scalar damage model was chosen. Both structures presented in this 
section have three different loading cases. First, the self-weight load is applied. Afterwards, the 
pre/post-tensioning load is applied and finally a distributed load is applied monotonically until the 
structure is considered to have failed completely. A component is considered to have failed when ei-
ther its damage variable has reached a level of 0.9 or more (in the case of concrete), or its normalized 
plastic dissipation has reached a similar value for the steel.  
 
4.1. Linear beam with two linear steel tendons 
 
In this case, a linear 1.5 m length beam with a typical industrial cross section has been analysed. There 
are two linear steel tendons embedded in the concrete pre-stressed up to 1092.84 MPa which corre-
sponds to a strain equal to 0.0056. The Young modulus of the steel has been considered equal to 
195150 MPa and for the concrete is equal to 40200 MPa. The Poisson ratio is equal to 0.3 for the steel 
and 0.2 for the concrete.  
The geometry of the beam and its cross section can be seen in the Figs. 3 and 4. 

 
Figure 3. Geometry of the beam, dimensions in m. 

Concrete has been modelled with the constitutive model described in Section 3, using the Mohr-
Coulomb failure surface described in [14] and an exponential softening law. The compressive strength 
of concrete is 48.7 MPa and the scaling factor between the compressive and tensile strength is 11.2, 
leading to a tensile strength of 4,34MPa. The tensile fracture energy considered for concrete is 
400MN/m. For steel, an elastic limit of 1000MPa has been considered together with a Von Mises yield 
surface and a Von Mises potential criterion. The fracture energy considered is 1000N/m and the plastic 
strain at which softening is set to start is 0.001. This parameter is necessary for the constitutive law, as 
explained in Section 3. 



  

 

Figure 4. Cross section of the beam, dimensions in m. 

The structured finite element mesh can be seen in the Fig. 5. This mesh is composed of 12750 linear 
hexahedral finite elements and 16308 nodes. The finite elements intersected by the steel tendons can 
be seen in Fig.6. For this simple case, only two composite materials were generated, since the entrance 
angle and volumetric participation along the finite elements intersected by each tendon is constant. 
This means that each finite element intersected by the steel tendon has a certain volumetric participa-
tion of active steel, on which the imposed strain procedure (see section 2.1) is going to be applied. 
 
 
 
 

 
Figure 5. Finite element mesh used (12750 finite elements) 

 



  

 

 
Figure 6. Finite elements intersected by the steel tendon 

 
First, the self weight load has been applied. To demonstrate the versatility of the pre-stressing proce-
dure only one of the steel tendons has been pre-stressed. The strain imposed was 0.0056 for the active 
steel contained in those finite elements that were intersected by the first tendon. Afterwards, a pressure 
of 0.535bars has been applied incrementally.  
In Figure 7, the displacement field as resulting from the self-weight load can be seen, while in the 
figures 8 to 11 the structure is described after the pre-stress load has been applied. It can be seen by 
comparing Figures 7 and 8 that the pre-stressing of the steel tendons compensates the curvature in-
duced by the self-weight loading. 
 

  
Figure 7. Displacement field after self-weight, shown on the deformed shape (x1000) 

 



  

 
Figure 8. Displacement field at the end of the pre-stress load, shown on the deformed shape (x500) 

 
Figures 9 and 10 show the distribution of the plasticity and damage internal variables in the steel and 
concrete, respectively. Both results are shown on the deformed shape of the beam with a scaling factor 
of 500. It can be seen that at the end of the pre-stressing stage the steel has dissipated at its most ten-
sioned point 36.8% of its internal energy. Concrete, on the other hand, exhibits degradation in those 
elements that are closest to the pre-stressed steel tendon, as can be seen in Figure 10. This is to be 
expected, due to the high strains introduced by the pre-stressing of the steel tendon and due to the per-
fect adherence considered between the two materials.  

 
Figure 9. Normalized plastic dissipation for the steel at the end of the pre-stressing load (CAPAP = pκ ) 

 

 
Figure 10. Damage distribution in the concrete at the end of the pre-stressing load (DEGMA = d ) 

 

 



  

 
Figure 11. Crack opening distribution in the concrete at the end of the pre-stressing load (m) 

Figure 11 shows that micro cracks have appeared in the concrete with a maximum opening of 
0.0039mm. These cracks are situated in the closest elements that are aligned to the trajectory of the 
steel tendon. The crack opening has been calculated for each finite element according to the procedure 
described in Section 3.1.3. 

 
Figure 12. Displacement field at the end of the pressure load, shown on the deformed shape (x30) 

After applying the pre-stressing load, a distributed load has been applied incrementally on the upper 
surface of the beam in order to take the structure further into the nonlinear field. The load has been 
applied as a monotonically increasing pressure up to a maximum level of 53500Pa (0.535bar). Figure 
12 shows the displacement field on the deformed shape of the structure at the end of the pressure 
stage. It can be seen that the curvature of the beam has been inverted due to the applied load that gen-
erated a maximum displacement of 2.98mm in the center of the structure.  

 
Figure 13. Normalized plastic dissipation for the steel at the end of the pressure load (CAPAP = pκ ) 

In Figure 13 the distribution of the normalized plastic dissipation parameter can be seen. As expected 
the elements where the steel reaches its maximum dissipation are situated in the central area of the 



  

beam, in accordance to the deformed shape caused by the applied loading. The most stressed elements 
that contain the steel tendon have dissipated 97% of the internal energy available for the steel material. 
 
The evolution of the Von Mises equivalent stress with the equivalent strain can be seen in Figure 14 
for the integration point where the maximum level of energy is dissipated. Convergence in the numeri-
cal simulation has been lost in the first increment where softening has begun because only 3% of the 
internal energy is available for the softening zone. This indicates that the slope of the strain-stress 
curve once this point has been reached is very high leading to a fragile behaviour.     

 
Figure 14. Stress-strain evolution for steel at the integration point that has the maximum normalized plastic 

dissipation 

Regarding the nonlinear behaviour of concrete, Figure 15 exhibits the distribution of the damage pa-
rameter. It can be seen that degradation appears in the concrete in the traction area generated due to the 
flexion of the beam, as expected.  

 
Figure 15. Damage distribution in the concrete at the end of the pressure load (DEGMA = d ) 

In Figure 16 the equivalent stress as calculated with the Mohr-Coulomb failure criterion versus the 
equivalent strain can be seen. As expected, the slope of the stress-strain curve in the nonlinear domain 
is approximately 0 due to the very high amount of internal energy given to the concrete material. This 
has been done in order to ensure convergence in the numerical simulation so that the steel could be 



  

taken to very high dissipation levels. The main objective of the simulation is therefore to show how 
the proposed formulation is capable of taking into account advanced nonlinear behaviour in both com-
ponents of the structure, steel and concrete.  

 
Figure 16. Stress-strain evolution for concrete at the integration point where the maximum value for the damage 

parameter is recorded 

Figure 17 shows the distribution of the cracks in the geometry in function of the crack opening. The 
maximum crack opening recorded at the end of the simulation is 0.00576 mm, showing therefore that 
a micro cracking process has occurred in the concrete due to the traction introduced by the applied 
pressure. There is loss of symmetry in the crack opening distribution, which is believed to occur due to 
numerical rounding in the computation of the equivalent strain. 

 
Figure 17. Crack opening distribution in the concrete at the end of the pressure load (m) 

Figure 18 shows the evolution of the plasticity and damage internal variables with the applied pres-
sure, at the integration points where their maximum value is recorded at the end of the analysis. It 
should be specified that the values are located in two different integration points belonging to two 
different elements and situated each in the area most damaged  (according to Figure 15) or with the 
highest plastic dissipation (in accordance with Figure 13). It is interesting to see that plastic effects 
have already occurred in the steel prior to the application of the pressure load. Damage appears, on the 



  

other hand, in the area undergoing tensile stresses due to flexion only when the pressure applied ex-
ceeds approximately 26000Pa (0.26bar). 

 
Figure 18. Evolution of the normalized plastic dissipation (CAPAP = pκ ) and of the damage variable (DEG-

MA = d )  with the applied pressure at the integration points where their maximum values are found 

4.2. Post-tensioned cantilever with six curvilinear steel tendons 
 

A bridge in a progressive cantilever assembly is analysed. This structure has a variable height and the 
central zone is made out of massive concrete to increase its stiffness. As it can be seen in the Fig. 19, 
the central zone has a width of 1.5 m whereas the total span of the structure is 5.75 m with a minimum 
height of 1.9 m. Through the walls of the cantilever, there are 6 steel tendons (3 in each vertical wall) 
with a curvilinear shape to increase the post-tensing efficiency. All the steel tendons have a Young 
modulus equal to 195000 MPa and have been stressed up to 1092 MPa. The concrete has a Young 
modulus of 40200 MPa. The exact geometry of the beam and the volumes and surfaces that define it 
can be seen in Figures 20 and 21.  
 
Concrete has been modelled with the constitutive model described in Section 3, using the Mohr-
Coulomb failure surface described in [14] and an exponential softening law. The compressive strength 
of concrete is 48.7 MPa and the scaling factor between the compressive and tensile strength is 11.2, 
leading to a tensile strength of 4.34MPa. The tensile fracture energy considered for concrete is 
400MN/m. For steel, an elastic limit of 1000MPa has been considered together with a Von Mises yield 
surface and a Von Mises potential criterion. The fracture energy considered is 5000N/m and the plastic 
strain at which softening is set to start is 0.001. This parameter is necessary for the constitutive law, as 
explained in Section 3. 

The finite element mesh shown in Figure 22 is composed by 196928 linear hexahedra and 232557 
nodes. The thickness of the structure has been discretized with 4 or 5 finite elements (depending on the 
axis) in order to capture properly the post-tensioning effects. Regarding boundary conditions, for this 
model the lower surfaces of the central massive area have been completely restrained.   
 



  

 
Figure 19. Geometry of the cantilever, dimensions in m. 

 

 
Figure 20. Geometry of the cantilever and the steel tendons 

 

 
Figure 21. Perspective of the cantilever and the steel tendons 

 
First, the self weight load has been applied. The strain imposed was 0.0056 for the active steel con-
tained in those finite elements that were intersected by the steel tendons. Afterwards, a pressure of 
2.90bars (290000Pa) has been applied incrementally until both steel and concrete reached a level of 
plastic dissipation or damage of at least 90% at at least one integration point.  

 



  

 
Figure 22. Perspective of the finite element mesh (196,928 finite elements) 

 
After intersecting the lines that represent the steel tendons with the finite element mesh, we obtain a 
finite element discretization of the steel tendons inside the global mesh. The final result implies that 
there are some finite elements (the ones intersected by the active steel) with a certain volumetric par-
ticipation and direction of post-tensioning whereas the rest behaves as a homogeneous concrete. The 
intersected finite elements can be seen in the figures 23 and 24. Each colour symbolizes a different 
volumetric participation and/or different orientation of the local longitudinal direction. In this case, 
551 composite materials where generated due to different orientation and percentage of the two main 
composing materials, steel and concrete. 

 
 

 
Figure 23. Perspective of the finite elements intersected by the active steel 



  

 
Figure 24. x-y perspective of the finite elements intersected by the active steel 

 
The results of the computation of the structure taking into account the effect of the self-weight are 
shown below. In Figure 25 the displacement field as resulting from the self-weight load can be seen, 
while in the figures 26 to 28 the structure is described after the post-tensioning load has been applied. 
The maximum displacement caused by the self weight is 0.1438mm, recorded at the ends of the canti-
lever, as expected. It can be seen by comparing Figures 25 and 26 that the post-tensing of the steel 
tendons reduces the maximum displacement in the geometry up to a level of 0.1074mm and therefore 
has a favourable compensating effect with respect to the self-weight loading.  

 
Figure 25. Displacement field after self-weight, shown on the deformed shape (x1000) 

 

 
Figure 26. Displacement field at the end of the post-tensioning load, shown on the deformed shape (x1000) 

Figures 27 and 28 show the distribution of the plasticity and damage internal variables in the steel 
tendons and concrete, respectively. Both results are shown on the deformed shape of the cantilever 
with a scaling factor of 1000. It can be seen that at the end of the post-tensioning stage the steel has 
dissipated at its most tensioned point 53.6% of its internal energy. Concrete, on the other hand, exhib-
its very localized degradation only in those elements that are closest to the post-tensioned steel ten-
dons, without any visible degradation at a structural level, as can be seen in Figure 28.  



  

 
Figure 27. Normalized plastic dissipation for the steel at the end of the post-tensioning load (CAPAP = pκ ) 

 
Figure 28. Damage distribution in the concrete at the end of the post-tensioning load (DEGMA = d ) 

After the steel tendons have been post-tensioned a distributed load has been applied as a pressure on 
one of the sides of the cantilever incrementally until reaching a value of 290000Pa (2.9bars). Results at 
the end of the analysis are shown in Figures 29 to 37. Figure 29 exhibits the displacement field on the 
deformed shape of the geometry, with a scaling factor of 200. It can be seen how the symmetry has 
been lost due to the load applied asymmetrically and that the maximum displacement recorded is now 
6.65mm, significantly higher, as expected.  
 

 
Figure 29. Displacement field at the end of the pressure load, shown on the deformed shape (x200) 

Another view of the displacement field is given in Figure 30 so the effect of the distributed load can be 
better observed on the deformed shape of the geometry, again with a scaling factor of 200. 



  

 
Figure 30. Displacement field at the end of the pressure load, shown on the deformed shape (x200), view of the 

XOY plane 

In Figure 31 the distribution of the normalized plastic dissipation parameter can be seen. As expected 
the elements where the steel reaches its maximum dissipation are situated in the central area of the 
cantilever towards the side where the pressure is applied, in accordance to the deformed shape caused 
by the applied loading. The most stressed elements that contain the steel tendon have dissipated 98% 
of the internal energy available for the steel material. The steel tendons where the maximum dissipa-
tion is recorded are the uppermost ones situated in the area subjected to tensile stresses.  

 
Figure 31. Normalized plastic dissipation for the steel tendons at the end of the pressure load (CAPAP = pκ ) 

 
Figure 32. Stress-strain evolution for steel at the integration point that has the maximum normalized plastic 

dissipation 



  

 

The evolution of the Von Mises equivalent stress with the equivalent strain can be seen in Figure 32 
for the integration point where the maximum level of energy is dissipated. Convergence in the numeri-
cal simulation has been lost in the first increment where softening has begun because less than 2% of 
the internal energy is available for the softening zone. This indicates that the slope of the strain-stress 
curve once this point has been reached is very high leading to a fragile behaviour.     
 

 

 
Figure 33. Damage distribution in the concrete at the end of the pressure load (DEGMA = d ) 

 
Figure 34. Damage distribution in the concrete at the end of the pressure load, view on the sectioned geometry 

(DEGMA = d ) 



  

Figure 33 shows two different views of the damage variable distribution on the deformed geometry. It 
can be seen that damage concentrates in three main areas: traction area in the supports of the cantile-
ver, traction area in the upper part of the geometry where the loaded flange of the cantilever connects 
with the rigid concrete center and in the upper inner part of the closed section. All of these areas are 
subjected to tensile stresses. 
 
In Figure 34 we can see the distribution of the damage on the sectioned geometry so that the damage 
distribution throughout the thickness of the concrete wall can be better seen.   
 
In Figure 35 the equivalent stress as calculated with the Mohr-Coulomb failure criterion versus the 
equivalent strain can be seen. As expected, the slope of the stress-strain curve in the nonlinear domain 
is approximately 0 due to the very high amount of internal energy given to the concrete material. This 
has been done in order to ensure convergence in the numerical simulation so that the steel could be 
taken to very high dissipation levels. The main objective of the simulation is therefore to show how 
the proposed formulation allows advanced nonlinear behaviour in both components of the structure, 
steel and concrete.  

 
Figure 35. Stress-strain evolution for concrete at the integration point where the maximum value for the damage 

parameter is recorded 

Figure 36 shows the distribution of the cracks in the geometry in function of the crack opening. The 
maximum crack opening recorded at the end of the simulation is 0.31 mm, showing therefore that the 
cracking process is starting to be visible at the macroscale level. The largest crack opening is found at 
the constraints due to the rotation introduced by the applied pressure. Another clearly marked crack 
appears at the connection between the center area and the loaded flange where the change in stiffness 
occurs between the massive concrete center and the closed section of the wing.  
 
Figure 37 shows the evolution of the plasticity and damage internal variables with the applied pres-
sure, at the integration points where their maximum value is recorded at the end of the analysis. Again,  
it should be specified that the values are located in two different integration points belonging to two 
different elements and situated each in the area most damaged  (according to Figure 33) or with the 
highest plastic dissipation (in accordance with Figure 31). For this cantilever beam, we also have plas-



  

tic effects already in the steel prior to the application of the pressure load. As soon as the pressure is 
applied damage appears at the constraints. 

 

 

 
Figure 36. Crack opening distribution in the concrete at the end of the pressure load (m), different views 

 
Figure 37. Evolution of the normalized plastic dissipation (CAPAP = pκ ) and of the damage variable (DEG-

MA = d ) with the applied pressure at the integration points where their maximum values are found 



  

5. Conclusions 

In this paper, the innovative methodology for the numerical analysis of pre-stressed and post-tensioned 
structures developed previously has been applied in the nonlinear analysis of civil engineering struc-
tures. This method is able to account for the transmission of structural effects from one material to the 
other implicitly and allows the monitoring of the internal stress-strain state on each component materi-
al of the volume afferent to each integration point. Furthermore, its generic integration and equilibrium 
scheme allows different type of constitutive behaviour for each material that is present in the structure. 
The methodology thus is highly versatile in this respect.  

At the same time, its computational simplicity deems it adequate for performing large-scale numerical 
analysis while still counting with a significant level of information for each material at each integra-
tion point of the structure. This does not limit nor influence in any way the type of loading that can be 
applied and therefore paves the way for the simulation of complex loading combinations that include 
self-weight, concentrated loads, pressure loads, pre-stressing loads, etc.  

In this sense, this paper shows that the S-P RoM coupled with the imposed strain procedure is a valua-
ble tool for the case of advanced nonlinear behaviour in both components of a composite material. 

Two different cases have been shown, of two different structures with varying levels of complexity. 
They serve as an example of industrial application on real life structures that can be commonly found 
in the field of civil engineering. Their structural performance is analysed in detail in the nonlinear 
domain and both the evolution of the concrete and the steel is shown by means of damage and plastici-
ty models.  

A new crack opening metric is also proposed for the concrete in order to achieve a better understand-
ing of the effect of high loading levels and advanced degradation in the material from a mascroscale 
point of view.  

The examples shown also deal with different tendon trajectories thru the concrete structure and there-
fore serve as a demonstration that the methodology proposed can be applied to any steel trajectory, 
independent of its curvature.  

We can therefore conclude that the formulation is capable of simulating the effect of the pre-stressing 
of tendons in any type of structure with any shape and/or boundary condition in the advanced nonline-
ar domain.  
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