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Explicit inverse of nonsingular Jacobi matrices

A.M. Encinas and M.J. Jiménez

Departament de Matemàtiques, UPC, BarcelonaTech, Spain

Abstract

We present here the necessary and sufficient conditions for the invertibility of

tridiagonal matrices, commonly named Jacobi matrices, and explicitly compute

their inverse. The techniques we use are related with the solution of Sturm–

Liouville boundary value problems associated to second order linear difference

equations. These boundary value problems can be expressed throughout a dis-

crete Schrödinger operator and their solutions can be computed using recent

advances in the study of linear difference equations. The conditions that ensure

the uniqueness solution of the boundary value problem lead us to the invert-

ibility conditions for the matrix, whereas the solutions of the boundary value

problems provides the entries of the inverse matrix.

Keywords: tridiagonal matrices, second order linear difference equations,

Sturm–Liouville boundary value problems, discrete Schrödinger operator,

Chebyshev functions and polinomyals

2010 MSC: 15B99, 31E05, 39A06

1. Preliminaries

If we consider n ∈ N \ {0}, the setMn(R) of real matrices of size n×n, and

the sequences a = {a(k)}n+1
k=0 ⊂ R, b = {b(k)}n+1

k=0 ⊂ R, and c = {c(k)}n+1
k=0 ⊂ R,

then the Jacobi matrix associated with a, b and c is J(a, b, c) ∈Mn+2(R) given
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by

J(a, b, c) =



b(0) −a(0) 0 · · · 0 0

−c(0) b(1) −a(1) · · · 0 0

0 −c(1) b(2) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · b(n) −a(n)

0 0 0 · · · −c(n) b(n+ 1)


(1)

Jacobi matrices appear frequently in both general Mathematics and Applied

Mathematics, see [1]. As in this reference, we have chosen to write down the

coefficients outside the main diagonal with negative sign. This is only a suitable

convention, motivated by the existing relationship between Jacobi matrices and5

Schrödinger operators on a path, that we will use to analyze the invertibility of

the Jacobi matrix. We must make also some assumptions about the coefficients

of the matrix to avoid trivial situations or problems reducible to others with a

minor order. Therefore, we will require a(k) 6= 0 and c(k) 6= 0, k = 0, . . . , n;

since, in other case, J(a, b, c) is a reducible matrix and hence the inversion10

problem leads to the invertibility of a matrix of lower size. Moreover, the values

of the coefficients for the sequences a and c at n + 1 have no influence in the

analysis of the matrix (1), since these coefficients do not appear in it. So,

without loss of generality, we can impose a(n+ 1) = c(n) and c(n+ 1) = a(n).

In the sequel, we also assume that 00 = 1 and the usual convention that empty15

sums and empty products are defined as 0 and 1, respectively.

The matrix J(a, b, c) is invertible if and only if for each f ∈ Rn+2 there exists

u ∈ Rn+2 such that J(a, b, c)u = f; which is equivalent to
b(0)u(0)− a(0)u(1) = f(0),

−a(k)u(k + 1) + b(k)u(k)− c(k − 1)u(k − 1) = f(k), k = 1, . . . , n,

−c(n)u(n) + b(n+ 1)u(n+ 1) = f(n+ 1).

(2)

Moreover, when this happens u is the unique solution of (2). We can rec-

ognize in the previous equations the structure of a boundary value problem

associated with a second order linear difference equation with coefficients a, b, c

2



and data f or, equivalently, with a Schrödinger operator Lq with potential q on

the path I = {0, . . . , n+ 1}. Specifically, if
◦
I = {1, . . . , n}, δ(I) = {0, n+ 1} and

C(I) is the vector space of real functions defined on I, the Schrödinger operator

with potential q ∈ C(I) on the path I is the linear operator Lq : C(I) −→ C(I)

defined as

Lq(u)(0) = a(0)
(
u(0)− u(1)

)
+ q(0)u(0),

Lq(u)(k) = a(k)
(
u(k)− u(k + 1)

)
+ c(k − 1)

(
u(k)− u(k − 1)

)
+ q(k)u(k), k ∈

◦
I,

Lq(u)(n+ 1) = c(n)
(
u(n+ 1)− u(n)

)
+ q(n+ 1)u(n+ 1),


where q ∈ C(I) is defined as q(0) = b(0) − a(0), q(k) = b(k) − a(k) − c(k − 1),

k ∈
◦
I and q(n+ 1) = b(n+ 1)− c(n). Identifying C(I) with Rn+2, and using this

functional notation, Equation (2) is equivalent to the equation Lq(u) = f on I;

that is, to the Sturm–Liouville value problem

Lq(u) = f on
◦
I, Lq(u)(0) = f(0) and Lq(u)(n+ 1) = f(n+ 1), (3)

where the identities Lq(u) = f on δ(I) play the role of boundary conditions,

whereas the equation Lq(u) = f on
◦
I is named the Schrödinger equation on

◦
I

with data f .

Therefore, the Jacobi matrix J(a, b, c) is invertible if and only if the linear20

operator Lq is invertible. In terms of the boundary value problem, the invert-

ibility conditions for J(a, b, c) are exactly the same conditions to ensure that

the boundary value problem is regular; that is, it has a unique solution for each

given data and, hence, the computation of the inverse of J(a, b, c) can be re-

duced to the calculus of this solution. Implicitly or explicitly, determining the25

solutions for initial or final value problems for the Schrödinger equation is the

strategy followed to achieve the inversion of tridiagonal matrices, see for instance

[2, 3, 4, 5, 6, 7, 8, 9]; but either the general case is not analyzed, the explicit

expressions of these solutions are not obtained, or the expressions obtained are

excessively cumbersome.30
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2. Initial value problems

It is well-known that every initial value problem for the Schrödinger equation

on
◦
I has a unique solution. Specifically, given f ∈ C(I) and m = 0, . . . , n, for

any α, β ∈ R there exists a unique u ∈ C(I) satisfying

Lq(u) = f on
◦
I and u(m) = α, u(m+ 1) = β.

In particular, when m = n, the above problem is also known as final value

problem.

If S denotes the set of solutions of the homogeneous Schrödinger equation

on
◦
I - that is Lq(u) = 0 on

◦
I - then S is a vector space such that dimS = 2;35

while for any f ∈ C(I), the set S(f) of solutions of the Schrödinger equation on
◦
I with data f satisfies S(f) 6= ∅ and given u ∈ S(f), it is verified S(f) = u+ S.

Given u, v ∈ C(I), their Wronskian or Casoratian, see [10], is w[u, v] ∈ C(I)

defined as

w[u, v](k) = det

 u(k) v(k)

u(k + 1) v(k + 1)

 = u(k)v(k+1)−v(k)u(k+1), 0 ≤ k ≤ n,

and as w[u, v](n+ 1) = w[u, v](n). The Wronskian is a skew–symmetric bilinear

form and and given u, v ∈ S, either w[u, v] = 0 or w[u, v] 6= 0 for any k ∈
◦
I∪{0}.

Moreover, u and v are linearly independent if and only if their Wronskian is non40

null and then {u, v} form a basis of S.

The Green’s function of the Schrödinger equation on
◦
I is the function

g ∈ C(I × I), defined for any s ∈ I as g(·, s), the unique solution of the ini-

tial value problem with conditions g(s, s) = 0 and g(s + 1, s) = − 1

a(s)
, when

0 ≤ s ≤ n, and as the unique solution of the initial value problem with condi-

tions g(n + 1, n + 1) = 0 and g(n, n + 1) =
1

a(n+ 1)
when s = n + 1. Notice

that g(s, s + 1) =
1

c(s)
for any s = 0, . . . , n. Therefore, if for any s = 0, . . . , n

we consider u = g(·, s) and v = g(·, s+ 1), then

w[u, v](s) = g(s, s)g(s+ 1, s+ 1)− g(s+ 1, s)g(s, s+ 1) =
1

a(s)c(s)
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which implies that {g(·, s), g(·, s+1)} is a basis of S. Moreover, for any f ∈ C(I)

and m = 0, . . . , n, the function u ∈ C(I) given by

u(k) =

max{k,m}∑
s=min{k,m}+1

g(k, s)f(s), k ∈ I

is the unique solution of the initial value problem Lq(u) = f on
◦
I, and u(m) =

u(m+ 1) = 0.

It will be very useful to introduce the companion function defined as

ρ(k) =
k−1∏
s=0

a(s)

c(s)
, k = 0, . . . , n+ 1.

Notice that ρ(0) = 1.

Remembering the assumption a(k), c(k) 6= 0, 0 ≤ k ≤ n, it is easy to prove45

that ρ(k)a(k) = ρ(k + 1)c(k). Moreover, the companion function verifies the

following meaningful result.

Proposition 2.1. Given u, v ∈ C(I), then

a(k)w[u, v](k) = c(k − 1)w[u, v](k − 1) for any k ∈
◦
I .

Therefore, the multiplication of functions ρaw[u, v] is constant in I and is zero

if and only if u and v are linearly dependent.

3. Regular Sturm–Liouville boundary value problems50

A boundary condition at 0 is a linear function c : C(I) −→ R of the form

c(u) = αu(0)+βu(1)+γu(n)+δu(n+1), and a boundary condition at n+1 is a

linear function d : C(I) −→ R of the form d(u) = α̂u(0)+β̂u(1)+γ̂u(n)+δ̂u(n+1).

The pair (c, d) is named Sturm–Liouville conditions if γ = δ = α̂ = β̂ = 0, see

[11]. Therefore, defining the pair of Sturm–Liouville conditions (c1, c2) as

c1(u) = Lq(u)(0) = b(0)u(0)− a(0)u(1),

c2(u) = Lq(u)(n+ 1) = −c(n)u(n) + b(n+ 1)u(n+ 1),

5



and according to Equation (3), we must consider the Sturm–Liouville boundary

value problem (Lq, c1, c2); that is, for any f ∈ C(I), we should determine if there

exists u ∈ C(I) such that

Lq(u) = f on
◦
I, c1(u) = f(0) and c2(u) = f(n+ 1).

The boundary value problem (Lq, c1, c2) is called homogeneous when f = 0.

We are only interested in regular problems; that is, in those boundary value

problems with a unique solution. For the resolution of this sort of boundary

value problems, we use the so–called resolvent kernel, see [12, Sections 2 and

3], and the process of determining the resolvent kernel always depends on an55

appropriate choice of solutions of the corresponding homogeneous Schrödinger

equation. We reproduce here some of the main results of the above–mentioned

work of the authors, essential for the main result developed in the next section.

Therefore, for more details or to check out proofs that are not included on the

present section, see [12].60

If g is the Green function of the Schrödinger equation on
◦
I, the value

Da,b,c = c1
(
g(·, 0)

)
c2
(
g(·, 1)

)
− c2

(
g(·, 0)

)
c1
(
g(·, 1)

)
encompasses information of both the Schrödinger equation on

◦
I and the pair of

boundary conditions (c1, c2). In fact, we next show that it plays a fundamental

role in the analysis of the Sturm–Liouville problem.

Definition 3.1. The boundary value problem (Lq, c1, c2) is called regular if the

solution of the corresponding homogeneous problem is unique, and so the null65

one.

Proposition 3.2. The following assertions are equivalent:

(i) The boundary value problem (Lq, c1, c2) is regular.

(ii) For any f ∈ C(I) the corresponding boundary value problem has a solution

(and hence a unique solution).70

(iii) Da,b,c 6= 0.
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Proof. If z1 = g(·, 0) and z2 = g(·, 1), then {z1, z2} form a basis of solutions

of the homogeneous Schrödinger equation Lq(u) = 0 on
◦
I. If given f ∈ C(I)

we consider a solution y of the Schrödinger equation with data f on
◦
I, the

expression u = αz1 +βz2 +y where α, β ∈ R, determines all the solutions of the

Schrödinger equation on
◦
I. Therefore, u = αz1 + βz2 + y denotes a solution of

the boundary value problem

Lq(u) = f on
◦
I, c1(u) = f(0) and c2(u) = f(n+ 1),

if and only if α and β are solutions of the linear system c1(z1) c1(z2)

c2(z1) c2(z2)

 α

β

 =

 f(0)− c1(y)

f(n+ 1)− c2(y)

 .
When f goes over C(I), then the right term of the previous system goes over the

whole R2. Therefore, the system has a solution for any f ∈ C(I) if and only if the

coefficient matrix is non–singular and, hence, the system has a unique solution.

As the homogeneous system associated with the previous one determines the75

solutions of the homogeneous boundary value problem, the problem is regular if

the homogeneous system has as its unique solution the null one. Therefore, (i)

and (ii) are equivalent and, in addition, the coefficient matrix is non–singular

and it implies that its determinant is different from 0. Hence, (i) and (iii) are

equivalent.80

In the sequel, for any s ∈ I, we denote by εs ∈ C(I) the Dirac function at s.

Therefore εs(s) = 1 and εs(k) = 0, when k 6= s.

Definition 3.3. Let (Lq, c1, c2) be a regular boundary value problem. We call

resolvent kernel of the boundary value problem to Ra,b,c : I× I −→ R charac-

terized by

Lq
(
Ra,b,c(·, s)

)
= εs on

◦
I, c1

(
Ra,b,c(·, s)

)
= εs(0), c2

(
Ra,b,c(·, s)

)
= εs(n+ 1)

for any s ∈ I.

Notice that for any s ∈ I, Ra,b,c(·, s) is the unique solution of the Sturm-

Liouville problem for the data εs and hence it makes sense when the boundary85
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value problem is regular. The role of the resolvent kernel is showed in the

following result.

Proposition 3.4. If the boundary value problem (Lq, c1, c2) is regular and Ra,b,c

is the resolvent kernel, then for any f ∈ C(I) the function

u(k) =
∑
s∈I

Ra,b,c(k, s) f(s), k ∈ I,

is the unique solution of the boundary value problem with data f , i.e.

Lq(u) = f on
◦
I, c1(u) = f(0), c2(u) = f(n+ 1).

Definition 3.5. We call fundamental solutions of the homogeneous Schrödinger

equation on
◦
I, related to the boundary conditions c1 and c2 or, simply, funda-

mental solutions, to Φa,b,c,Ψa,b,c ∈ C(I), the unique solutions of the homoge-

neous Schrödinger equation on
◦
I determined respectively by the conditions

Φa,b,c(0) = a(0), Φa,b,c(1) = b(0),

Ψa,b,c(n) = b(n+ 1), Ψa,b,c(n+ 1) = c(n).

Notice that Φa,b,c is the solution of a initial value problem, whereas Ψa,b,c is90

the solution of a final value problem. The reason to choose these definitions for

the fundamental solutions is shown in the following result.

Proposition 3.6. If Φa,b,c and Ψa,b,c are the fundamental solutions of the ho-

mogeneous Schrödinger equation on
◦
I, related to the boundary conditions c1 and

c2, then c1(Φa,b,c) = c2(Ψa,b,c) = 0, c2(Φa,b,c) = a(0)c(0)Da,b,c. Moreover,

c1(Ψa,b,c) = c(0)a(n)ρ(n)Da,b,c = w[Ψa,b,c,Φa,b,c](0).

Proof. Consider {u, v} the basis of solutions of the homogeneous Schrödinger

equation satisfying u(0) = 1, u(1) = 0, v(0) = 0 and v(1) = 1; that is,

u = c(0)g(·, 1) and v = −a(0)g(·, 0). Moreover, w[u, v](0) = 1.95

If we prove that

Φa,b,c = c1(u)v − c1(v)u and Ψa,b,c = a(0)−1a(n)ρ(n)
(
c2(v)u− c2(u)v

)
,
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then, clearly, c1(Φa,b,c) = c2(Ψa,b,c) = 0, c2(Φa,b,c) = a(0)c(0)Da,b,c and

c1(Ψa,b,c) = a(0)−1a(n)ρ(n)c2(Φa,b,c) = c(0)a(n)ρ(n)Da,b,c.

Moreover,

w[Φa,b,c,Ψa,b,c](0) = a(0)−1a(n)ρ(n)
(
c1(v)c2(u)− c1(u)c2(v)

)
= −c(0)a(n)ρ(n)Da,b,c.

To end the proof, let us consider the functions

z = c1(u)v − c1(v)u and ẑ = a(0)−1a(n)ρ(n)
(
c2(v)u− c2(u)v

)
.

Then z(0) = −c1(v) = a(0), z(1) = c1(u) = b(0) and on the other hand,

ẑ(n) = a(0)−1a(n)ρ(n)
(
c2(v)u(n)− c2(u)v(n)

)
= b(n+ 1)a(0)−1a(n)ρ(n)w[u, v](n)

= b(n+ 1)a(0)−1a(0)ρ(0)w[u, v](0) = b(n+ 1),

ẑ(n+ 1) = a(0)−1a(n)ρ(n)
(
c2(v)u(n+ 1)− c2(u)v(n+ 1)

)
= c(n)a(0)−1a(n)ρ(n)w[u, v](n)

= c(n)a(0)−1a(0)ρ(0)w[u, v](0) = c(n).

The uniqueness of the solution of any initial value problem concludes that

z = Φa,b,c and ẑ = Ψa,b,c.

Corollary 3.7. The boundary value problem (Lq, c1, c2) is regular if and only if

the fundamental solutions are a basis of solutions of the homogeneous Schrödinger

equation on
◦
I.100

The next step in this section is to obtain the resolvent kernel for a reg-

ular boundary value problem with Sturm-Liouville conditions in terms of the

fundamental solutions, see [12] for its proof.

Theorem 3.8. The Sturm–Liouville boundary value problem (Lq, c1, c2) is regu-

lar if and only if b(0)Ψa,b,c(0) 6= a(0)Ψa,b,c(1) or, equivalently, iff c(n)Φa,b,c(n) 6=

b(n+ 1)Φa,b,c(n+ 1) and its resolvent kernel is determined by

Ra,b,c(k, s) =
Φa,b,c(min{k, s})Ψa,b,c(max{k, s})
a(0)

[
b(0)Ψa,b,c(0)− a(0)Ψa,b,c(1)

]ρ(s),

9



for any k, s = 0, . . . , n+ 1.

Finally, let us remind that the boundary conditions associated with the105

Jacobi matrix were c1(u) = Lq(u)(0) and c2(u) = Lq(u)(n+1), so the boundary

value problem (Lq, c1, c2) associated with the inversion of that matrix is the

Poisson equation Lq(u) = f on I. Applying now Theorem 3.8 to this equation,

we obtain the fundamental result for the inversion of Jacobi matrices.

Corollary 3.9. The Schrödinger operator Lq is invertible if and only if

b(0)Ψa,b,c(0) 6= a(0)Ψa,b,c(1) and, moreover, given f ∈ C(I),

(Lq)−1(f)(k) =
∑
s∈I

Φa,b,c(min{k, s})Ψa,b,c(max{k, s})

a(0)
[
b(0)Ψa,b,c(0)− a(0)Ψa,b,c(1)

] ρ(s)f(s),

for any k = 0, . . . , n+ 1.110

4. The inverse of a Jacobi matrix

The invertibility conditions of the Jacobi matrix J(a, b, c) described in Equa-

tion (1), as well as determining its inverse J−1 = R = (rij) in terms of the

solutions Φa,b,c and Ψa,b,c of the Schrödinger equation, are described in Corol-

lary 3.9. So, to obtain the explicit values of the entries of R, the next step is

to compute explicitly the functions Φa,b,c and Ψa,b,c, that can be seen as the

solutions of an initial and a final value problem respectively, associated with

the second order linear difference equation with coefficients a, b and c that cor-

responds to the Schrödinger equation. To compute these solutions we will use

recent advances in the study of difference equations developed by the authors in

[13]. In particular, in Section 7 of this work it has been proved that the solution

of any initial value problem for a second order difference equation with any data

f , can be expressed as a linear combination of the functions Pk(x, y) called k-th

Chebyshev functions and defined for any x, y ∈ C(Z) as

P0(x, y) = 1, P−1(x, y) = 0 and Pk(x, y) =

b k2 c∑
m=0

(−1)m
∑
α∈`mk

xᾱyα, k ≥ 1. (4)

10



We reproduce here some brief explanations about the notation involved in Equa-

tion (4), for the sake of completeness. The parameter α = (α1, . . . , αp) is a

binary multi–index of order p; i.e. α is a p–tuple α = (α1, . . . , αp) ∈ {0, 1}p,

and its length is defined as |α| =
p∑
j=1

αj ≤ p. Given α ∈ {0, 1}p and a func-115

tion a ∈ C(Z), we consider the value aα =
p∏
j=1

a(j)αj . Given p ∈ N \ {0}, we

denote by i1, . . . , im the indices such that 1 ≤ i1 < · · · < im ≤ p and αij = 1,

j = 1, . . . ,m. We just need to consider the binary multi–indexes α of order p in

the set `p defined as

(i) `0p = {α : |α| = 0} = {(0, . . . , 0)}, for p ∈ N \ {0},120

(ii) `1p = {α : αp = 0 and |α| = 1}, for p ≥ 2,

(iii) `mp = {α : αp = 0, |α| = m and ij+1 − ij ≥ 2, j = 1, . . . ,m − 1}, for

p ≥ 4 and m = 2, . . . , bp2c.

Finally, ᾱ is the binary multi–index of the same order as α defined by

ᾱij = ᾱij+1 = 0, j = 1, . . . ,m, and ᾱi = 1 otherwise.

The name of Chebyshev function for (4) is justified due to its relation with

the usual Chebyshev polynomials of second kind, since Pk(x, y) can be identified

with them when x and y are constant sequences. In that case, P0(x, y) = 1 and

P−1(x, y) = 0 and moreover, since #`mk =
(
k−m
m

)
for any k ∈ N∗, we obtain that

Pk(x, y) =

b k2 c∑
m=0

(−1)m
(
k −m
m

)
xk−2mym.

Clearly, for any k ≥ −1 and any constant sequence x, we have

Uk(x) = Pk(2x, 1) =

b k2 c∑
m=0

(−1)m
(
k −m
m

)
(2x)k−2m,

that is known as the standard k–th Chebyshev polynomial of second kind, see

[14] and also [11, 15]. Definitely, for constant sequences x and y, it is satisfied

Pk(x, y) = y
k
2

b k2 c∑
m=0

(−1)m
(
k −m
m

)(
x
√
y

)k−2m

= y
k
2Uk

(
x

2
√
y

)
, k ≥ 1.
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Now we are ready to compute the basis of solutions {Φa,b,c(k),Ψa,b,c(k)}

of the homogeneous Schrödinger equation Lq(u) = 0 on I applying the results

showed in [13] on second order difference equations, that is through a linear

combination of the Chebyshev functions Pk(b, ac) and Pk(bm, amcm), where

a, b, c ∈ C(I) are the coefficients of the second order difference equation associ-

ated to the Schrödinger equation, and given a ∈ C(Z) and m ∈ N, the function

am corresponds to the m–shift of a, so am = a(k + m). We must consider, for

this first result and most of those that will appear from now on, the functions

Φ
J
,Ψ

J
∈ C(I) defined as

Φ
J
(0) = 1,

Φ
J
(k) = b(0)Pk−1(b, ac)− a(0)c(0)Pk−2(b1, a1c1), k = 1 . . . , n+ 1,

Ψ
J
(k) = b(n+ 1)Pn−k(bk, akck)− a(n)c(n)Pn−k−1(bk, akck), k = 0, . . . , n,

Ψ
J
(n+ 1) = 1,

and the value

D
J

= b(0)
[
b(n+ 1)Pn(b, ac)− a(n)c(n)Pn−1(b, ac)

]
− a(0)c(0)

[
b(n+ 1)Pn−1(b1, a1c1)− a(n)c(n)Pn−2(b1, a1c1)

]
.

Lemma 4.1. For any k = 0, . . . , n+ 1, it is satisfied that

Φa,b,c(k) = a(0)
( k−1∏
s=0

a(s)
)−1

Φ
J
(k) and Ψa,b,c(k) = c(n)

( n∏
s=k

c(s)
)−1

Ψ
J
(k)

and, moreover,

b(0)Ψa,b,c(0)− a(0)Ψa,b,c(1) = D
J

( n−1∏
s=0

c(s)
)−1

.

Proof. Applying [13, Theorems 4.3 and 7.4], we have that Φa,b,c is a linear

combination of the Chebyshev functions {Pk−2(b, ac), Pk−1(b1, a1c1)} and, in

addition, Ψa,b,c is a linear combination of {Pn−k−1(bk, akck), Pn−k(bk, akck)}.

To obtain all the results, we must just to impose the conditions

Φa,b,c(0) = a(0), Φa,b,c(1) = b(0), Ψa,b,c(n) = b(n+ 1), Ψa,b,c(n+ 1) = c(n).
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Before showing the main result for the explicit inversion of a Jacobi matrix,125

we add a previous result extracted from [7, Theorem 3.3], that allow us to

compute also the determinant of the inverse matrix.

Lemma 4.2. If R = (rij) ∈Mm(R) is an irreducible and invertible matrix, the

following statements are equivalents:

(i) There exists a diagonal and invertible matrix H = (hj) such that RH−1

is a Green’s matrix; that is, there exist v,w, h ∈ Rm, where hj 6= 0,

j = 1, . . . ,m, such that

rij = hjvmin{i,j}wmax{i,j} =


viwjhj , si i ≤ j,

vjhjwi; si i ≥ j,

that is,

R =



v1 v1 v1 · · · v1

h1v1 v2 v2 · · · v2

h1v1 h2v2 v3 · · · v2

...
...

...
. . .

...

h1v1 h2v2 h3v3 · · · vm


◦



h1w1 h2w2 h3w3 · · · hnwn

w2 h2w2 h3w3 · · · hmwm

w3 w2 h3w3 · · · hmwm
...

...
...

. . .
...

wm wm wm · · · hmwm


.

(ii) R−1 is a tridiagonal and irreducible matrix.130

Moreover,

detR = h1v1wm

m∏
s=2

hs(vsws−1 − vs−1ws).

Theorem 4.3. The matrix J(a, b, c) is invertible if and only if D
J
6= 0, and in

that case, the entries of its inverse R are explicitly given by

rks =
1

D
J



( s−1∏
j=k

a(j)
)

Φ
J
(k)Ψ

J
(s), if 0 ≤ k ≤ s ≤ n+ 1,

( k−1∏
j=s

c(j)
)

Φ
J
(s)Ψ

J
(k), if 0 ≤ s ≤ k ≤ n+ 1.

Moreover,

detR = −D−1
J
.
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Proof. The first part is consequence of Corollary 3.9 and taking into account

the identities from Lemma 4.1. Then, for any k, s = 0, . . . , n+ 1, we obtain

ρ(s)
( n−1∏
s=0

c(s)
)

a(0)
(min{k,s}−1∏

s=1
a(s)

)( n−1∏
s=max{k,s}

c(s)
) =


s−1∏
j=k

a(j), si k ≤ s,

k−1∏
j=s

c(j), si k ≥ s.

To prove the formula for the determinant of R, we apply Lemma 4.2 with

hj = hρ(j), h = a(0)−1D−1
J

n−1∏
s=0

c(s), vj = Φa,b,cc1,c2(j) and wj = Ψa,b,c
c1,c2(j), which

implies

hs(vsws−1 − vs−1ws) = −hρa,c(s)w[Φa,b,cc1,c2 ,Ψ
a,b,c
c1,c2 ](s− 1)

= −hc(s− 1)−1a(s− 1)ρa,c(s− 1)w[Φa,b,cc1,c2 ,Ψ
a,b,c
c1,c2 ](s− 1)

= −hc(s− 1)−1a(0)w[Φa,b,cc1,c2 ,Ψ
a,b,c
c1,c2 ](0)

= hc(s− 1)−1a(0)D
J

( n−1∏
s=0

c(s)
)−1

= c(s− 1)−1,

for any s = 1, . . . , n+ 1. Therefore

detR = h0v0wn+1

n+1∏
s=1

c(s− 1)−1 = −D−1
J
.

Although the expression of the inverse of J(a, b, c) in terms of solutions of

initial and final value problems is well known, see [3, 6], the above–explained

proposal has the novelty of computing such solutions explicitly. On the other

hand, the formula for the determinant of R appears to be new, probably because135

this is the first study on the inversion of matrices from an algebraic point of

view, particularly based on the properties of difference equations.

We end this section particularizing the last results for a Jacobi matrix

J(a, b, c) with constant diagonals except for the first and the last row, that is

a(j) = α 6= 0, b(j) = β, j = 1, . . . , n, and c(j) = γ 6= 0, j = 0, . . . , n−1, and also

for the easiest case when J(a, b, c) is also a Toeplitz matrix, so then has the three

main diagonals completely constant. In both cases, the Schrödinger equation
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corresponds to a second order linear difference equation with constant coeffi-

cients (in the first case, the first and the last row are related to the boundary

conditions), so its solution can be expressed in terms of Chebyshev polynomials,

a known result that can be consulted in [14, Theorem 2.4] or [15, Theorem 2.4].

Of course, this result coincides with the one showed below when we use Cheby-

shev functions Pk(x, y) valued in constant sequences x(j) = x and y(j) = y 6= 0,

j = 1, . . . , n, so then Equation (4) become Chebyshev polynomials of second

kind,

P−1(x, y) = 0, P0(x, y) = 1 and Pk(x, y) = y
k
2Uk

( x

2
√
y

)
.

If we consider q =
β

2
√
αγ

, then

ΦJ(0) = 1,

ΦJ(k) = (
√
αγ)k−2

[
b(0)
√
αγ Uk−1(q)− a(0)γUk−2(q)

]
, k = 1 . . . , n+ 1,

ΨJ(k) = (
√
αγ)n−k−1

[
b(n+ 1)

√
αγ Un−k(q)− c(n)αUn−k−1(q)

]
, k = 0, . . . , n,

ΨJ(n+ 1) = 1,

(5)

and D
J

= dJ(
√
αγ)n−2 where

d
J

= b(0)
√
αγ
[
b(n+ 1)

√
αγ Un(q)− c(n)αUn−1(q)

]
− a(0)γ

[
b(n+ 1)

√
αγ Un−1(q)− c(n)αUn−2(q)

]
.

(6)

The next result corresponds to the first case, a Jacobi matrix with con-

stant diagonals except for the first and the last row, and is a straightforward

consequence of Theorem 4.3 using Equations (5) and (6).140

Corollary 4.4. If a(j) = α 6= 0, b(j) = β, j = 1, . . . , n, c(j) = γ 6= 0,

j = 0, . . . , n − 1, then J(a, b, c) is invertible if and only if d
J
6= 0, and in that
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case the entries of its inverse R are explicitly given by

rks =
1

d
J
(
√
αγ)n−2



a(0)αs−1Φ
J
(0)Ψ

J
(s), si 0 = k ≤ s ≤ n+ 1,

αs−kΦ
J
(k)Ψ

J
(s), si 1 ≤ k ≤ s ≤ n+ 1,

γk−sΦ
J
(s)Ψ

J
(k), si 0 ≤ s ≤ k ≤ n,

c(n)γn−sΦ
J
(s)Ψ

J
(n+ 1), si 0 ≤ s ≤ k = n+ 1.

Moreover,

detR = − 1

d
J
(
√
αγ)n−2

.

Finally, the two last results showed above correspond to Jacobi and Toeplitz
matrices.

Corollary 4.5. If αγ 6= 0, the Jacobi and Toeplitz matrix of size n+ 2

J(α, β, γ) =



β −α 0 · · · 0 0

−γ β −α · · · 0 0

0 −γ β · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · β −α

0 0 0 · · · −γ β


is invertible if and only if

β 6= 2
√
αγ cos

(
kπ

n+ 3

)
, k = 1, . . . , n+ 2,

and then, the entries of the inverse of J(α, β, γ) are explicitly given by

rks =
1

Un+2(q)


αs−k(

√
αγ)k−s−1Uk(q)Un−s+1(q), if 0 ≤ k ≤ s ≤ n+ 1,

γk−s(
√
αγ)s−k−1Us(q)Un−k+1(q), if 0 ≤ s ≤ k ≤ n+ 1,

where q =
β

2
√
αγ

.

Moreover,

detR =
1

√
αγ)(n+2)Un+2(q)

.
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Proof. All the results are consequence of Theorem 4.3 by imposing in Equa-

tions (5) and (6) the identities

a(0) = −α, b(0) = b(n+ 1) = β, c(n) = −γ.

Then,

d
J

= −α2γ2Un+2(q),

so d
J
6= 0 if and only if q is not a zero of the polymonial Un+2(x); that is, if and

only if q 6= cos
(
kπ
n+3

)
, k = 1, . . . , n + 2, see [16]. Moreover, the expression for145

the determinant follows.

On the other hand,

Φ
J
(k) = (

√
αγ)kUk(q), Ψ

J
(k) = −(

√
αγ)n−k+1Un−k+1(q)

for any k = 0, . . . , n + 1, that leads to the given expressions for the inverse

entries.

A more detailed proof of the above result for Jacobi and Toeplitz matrices

can be consulted in [12]. Besides, the expression obtained for the matrix inverse150

of this kind of matrices coincides with that published by Fonseca and Petronilho

in [2, Corollary 4.1] and [3, Equation 4.26].

Corollary 4.6. If α 6= 0, the symmetric Jacobi and Toeplitz matrix of order

n+ 2

J(α, β) =



β −α 0 · · · 0 0

−α β −α · · · 0 0

0 −α β · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · β −α

0 0 0 · · · −α β


is invertible if and only if

β 6= 2α cos

(
kπ

n+ 3

)
, k = 1, . . . , n+ 2,
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and then, the entries of the inverse of J(α, β) are explicitly given by

rks =
Umin{k,s}

(
β
2α

)
Un−max{k,s}+1

(
β
2α

)
αUn+2

(
β
2α

) , k, s = 0, . . . , n+ 1.

Moreover,

detR =
1

α(n+2)Un+2

(
β
2α

) .
The expression for the inverse of a symmetric Jacobi and Toeplitz matrix is

well–known, see for instance [2, Corollary 4.2] and the references of this article.

This work has been partly supported by the Spanish Program I+D+i (Mi-155

nisterio de Economı́a y Competitividad) under projects MTM2014-60450-R and
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