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Abstract. An equivalent explicit formula for the Shapley value is pro-
vided, its equivalence with the classical one is proven by double induc-
tion. The importance of this new formula, in contrast to the classical one,
is its capability of being extended to more general classes of games, in
particular to j-cooperative games or multichoice games, in which players
choose among different levels of participation in the game.
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1 Introduction

The Shapley value, see [Shapley(1953)] and [Shapley(1962)], admits a clear for-
mulation in terms of marginal contributions. As Shapley described, his value is
based on the following model: (1) starting with a single member, the coalition
adds one player at a time until everyone has been admitted; (2) the order in which
the players are to join is determined by chance, with all arrangements equally
probable; (3) each player, on her admission, demands and is promised the amount
which her adherence contributes to the value of the coalition as determined by
the characteristic function, i.e., the marginal contribution. Such model was crit-
icized by several authors as highly artificial (see e.g. [Luce and Raiffa(1957)]
and [Brams(1975)] among others).

Instead, step (3) could be replaced by the following ones:

(3.1) In her turn, each player decides whether to cooperate or not in forming a
proposed coalition.

(3.2) If in her turn the player has decided to cooperate, then she receives the
marginal contribution of the coalition formed by those players preceding her
that decided to cooperate.

(3.3) If in her turn the player has decided not to cooperate, then she receives the
marginal contribution of the coalition formed by those players preceding her
that decided to cooperate and all those subsequent players in the queue.

That is, the player in her turn has the choice to cooperate or not to do it.
The first choice is rewarded to her by her gain capacity in the game, while in
the second she is rewarded by her blocking capacity.



Thus, not only the n! orderings of a queue need to be considered, also the
two choices for players need to be considered. This brings us to a more general
model of n! · 2n equally likely queues versus binary choices for the n players.
The probabilistic model associated to this procedure is the discrete uniform
distribution for all the n! · 2n roll-calls, i.e., pairs formed by a permutation and
a vector for players which determines if each player decides to cooperate or not.

In [Bernardi and Freixas(2018)] we already proposed this new formulation
and did a detailed analysis for it. The main proof of the coincidence of our
formula with the well-known formula by [Shapley(1953)] was proven by using
power series and generating functions. This allowed us to give a succinct but
perhaps not very intuitive prove. The main purpose of this work is to prove it
with a more intuitive procedure based on a simpler technique: induction.

The new explicit formula for the Shapley value is of great interest. The main
reason is its capability to be extended to more general contexts than coopera-
tive or simple games. [Felsenthal and Machover(1997)] naturally extended simple
games to ternary games, i.e., simple games in which voters are allowed to ab-
stain as an intermediate option to vote favorably or against the issue at hand.
They defined for this class of games a new value, with the same flavor of the
Shapley value, based on what they call the ternary space of roll-calls. In terms
of [Freixas and Zwicker(2003),Freixas and Zwicker(2009)] ternary games are a
particular case of (3, 2)-simple games, which extend to (j, 2)-simple games, i.e.,
games in which players can choose among several ordered levels of approval and
the output is binary. The natural extension of (j, 2)-simple games to the TU
cooperative context is that of j-cooperative games, considered in [Freixas(2018)]
in which players choose among different levels of activity and the characteristic
function is defined on partitions capturing the choices of the players. The class
of j-cooperative games is a bit more general than that of multichoice cooperative
games, see [Hsiao and Raghavan(1993)].

The work in [Freixas(2018)] extends the formula we propose in this paper to
j-cooperative games, and more particularly to: multichoice cooperative games,
(j, 2)-simple games, and ternary games. Of course, when j = 2 the formula
reduces to the formula (3) we propose in this paper.

But, as far as we know, it does not exist any explicit formula in these fur-
ther contexts by using the original Shapley probabilistic scheme based only on
queues and assuming that in her turn each player agrees to cooperate with her
predecessors.

The setup of the rest of the paper is as follows. Section 2 includes some
necessary preliminaries on the Shapley value. Section 3 is devoted to demonstrate
the main result. The conclusions end the work in Section 4.

2 Preliminaries

Let N be a finite fixed set of cardinality n. The elements of N are called players,
while a subset of N is called coalition. A TU-cooperative game is a function



v : 2N → IR such that v(∅) = 0. The cardinality of a coalition S is denoted by
s. Let CGN be the set of all TU-cooperative games on N .

The Shapley value is a function φ : CGN → IRn, that assigns to each player
a real number φa(v). [Shapley(1953)] and [Shapley(1962)] defined this function
following a deductive procedure, by showing that it is uniquely characterized by
the axioms of: efficiency, null player, symmetry and additivity.

The Shapley value has an explicit expression, in terms of the marginal con-
tributions of the characteristic function, which is widely used to compute it:

φa(v) =
∑

S⊆(N\{a})

ρn(s)[v(S ∪ {a})− v(S)], (1)

where s = |S| and

ρn(s) =
s!(n− s− 1)!

n!
. (2)

The coefficient ρn(s), for each coalition S ⊆ (N \ {a}), is the proportion of
permutations in which player a is occupying the (s + 1)-position in the queue,
where the preceding players are those in coalition S, no matter in which ordering,
and the remaining players are occupying positions after s + 1 in the queue, no
matter in which ordering. Figures 1 and 2 schematically represents it.
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Fig. 1. Standard scheme for the classical Shapley value: “y” means that players choose
forming part of the coalition.

The marginal contribution of a is weighted by a coefficient that counts all
possible orderings of players before and after a as schematically described in
Figure 2.

3 The alternative explicit formula for the Shapley value

The alternative explicit formula following the more detailed model of roll-calls
takes into account that in her turn, player a can decide either to cooperate or
not.

Φa(v) =
∑

S⊆(N\{a})

Γn(s)[v(S ∪ {a})− v(S)], (3)
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Fig. 2. Standard scheme for the classical Shapley value: counting all orderings.

where s = |S| and for any s = 0, . . . , n− 1:

Γn(s) =
s!

2nn!

s∑
k=0

(n− k − 1)!

(s− k)!
2k +

(n− s− 1)!

2nn!

n−s−1∑
k=0

(n− k − 1)!

(n− s− 1− k)!
2k. (4)

As we will see later Φ and φ coincide. The new formula is based on the following
assumptions (see Theorem 4 in [Bernardi and Freixas(2018)]):

1. Players act in a randomly chosen order and all n! orderings are equally likely.

2. In her turn, each player decides whether to cooperate or not in forming a
coalition by either gaining collective value of blocking collective gain.

3. If in her turn the player has decided to cooperate, then she receives the
marginal contribution of the coalition formed by those players preceding her
that decided to cooperate.

4. If in her turn the player has decided not to cooperate, then she receives the
marginal contribution of the coalition formed by those players preceding her
that decided to cooperate and all those subsequent players to a in the queue.

According to the third item, player a receives the direct gain of joining to the
coalition (say R) of members who decided to cooperate and preceded her in the
queue. According to the fourth item, player a receives the indirect gain, i.e. the
gain due to her blocking capacity, of joining to the coalition (say T ) of members
who decided to cooperate and preceded her in the queue (those in R) and all
those players who follow her in the queue. The reason for the addition of the
subsequent players to a in the queue is because we are assuming that in their
turn they will decide to cooperate, which is the worst scenario for the capacity
of player a to block gain.

Note that the expression in (3) is referenced to an arbitrary coalition S that
does not contain player a as well as for the coefficients in (4). Thus, we need to
consider R = S when computing the direct gain, while for the indirect gain S is
then the union of those who decided to cooperate and preceded player a in the
queue and all those players who follow her in the queue. See Figures 3 and 4.
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Fig. 3. Scheme for direct gain: “×” means that players preceding a already decided to
cooperate (y) or not (n). No matter if players after a are going to cooperate or not,
which is represented by “·”. Thus, coalition S is formed by those with × = y.
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Fig. 4. Scheme for indirect gain: “×” means that players preceding a already decided
to cooperate (y) or not (n). For measuring a’s blocking gain capacity it is needed to
assume that all players after a will choose to cooperate “y”. Thus, coalition S is formed
by those with × = y union all those after a in the queue.

Theorem 1. The values Φ and φ for TU-cooperative games coincide.

Proof. To prove Theorem 1 it is enough to deduce the equality of the coefficients
ρn(s) and Γn(s) for all positive integers n and 0 ≤ s ≤ n− 1. Thus we need to
prove that for any n and any s = 0, . . . , n− 1, it holds

s!(n− s− 1)!

n!
=

s!

2nn!

s∑
k=0

(n− k − 1)!

(s− k)!
2k+

(n− s− 1)!

2nn!

n−s−1∑
k=0

(n− k − 1)!

(n− s− 1− k)!
2k.

By simplifying the identity, the previous equality is equivalent to the following
equation

s!(n−s−1)!2n = s!

s∑
k=0

2k
(n− k − 1)!

(s− k)!
+(n−s−1)!

n−s−1∑
k=0

2k
(n− k − 1)!

(n− s− k − 1)!
(5)

for all n and any s = 0, . . . , n− 1.
Observe that if n = 1, then s = 0, then this equality reduces to 2 = 1 + 1,

that is trivially true. Since we are dealing with voting games, we assume that
there is not only one player and so n ≥ 2.
We proceed in proving (5) using induction on n.

If n = 2 and s = 0 we have 22 = 1 + 1 + 2. If n = 2 and s = 1 we have
22 = 1 + 2 + 1. So the thesis is true for n = 2.

Now, we assume that (5) is true for n and all 0 ≤ s ≤ n− 1 and we prove it
for n+ 1 and 0 ≤ s ≤ n.



We first consider the extreme cases s = 0 and s = n and prove them directly.
Secondly, we prove the statement for each s with 0 < s < n, using the induction
hypothesis for n with s and s− 1.

First step:
For n+ 1 and s = 0 (or s = n), equality (5) becomes

2n+1n! = n! + n!

n∑
k=0

2k.

By the induction hypothesis (for n and s = 0 ) we have

2n(n− 1)! = (n− 1)! + (n− 1)!

n−1∑
k=0

2k.

Then we can write the right side of our claim as

n! + n!

n∑
k=0

2k = n! + 2nn! + n!

n−1∑
k=0

2k

= n! + 2nn! + n[2n(n− 1)!− (n− 1)!]

= n! + 2nn! + 2nn!− n! = 2n+1n!

and this proves the first part.

Second step:
We now want to prove the thesis for n + 1, thus, we have to show that the

following is true

2n+1s!(n− s)! ?
= s!

s∑
k=0

(n− k)!

(s− k)!
2k + (n− s)!

n−1∑
k=0

(n− k)!

(n− s− k)!
2k. (6)

By induction hypothesis, if we take n and s we have

s!(n−s−1)!2n = s!

s∑
k=0

2k
(n− k − 1)!

(s− k)!
+(n−s−1)!

n−s−1∑
k=0

2k
(n− k − 1)!

(n− s− k − 1)!
(7)

and if we take s− 1

(s−1)!(n−s)!2n = (s−1)!

s−1∑
k=0

2k
(n− k − 1)!

(s− 1− k)!
+(n−s)!

n−s∑
k=0

2k
(n− k − 1)!

(n− s− k)!
. (8)



We work on the right-hand side of equation (6) and rewrite each of the two
addends in the following way

s!

s∑
k=0

(n− k)!

(s− k)!
2k = s!(n− s)!2s+s!

s−1∑
k=0

(n− k)!

(s− k)!
2k

= s!(n− s)!2s+s!
s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k
n− k
s− k

,

writing
n− k
s− k

as
n− s
s− k

+ 1,

= s!(n− s)!2s+s!
s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k
(n− s
s− k

+ 1
)

= s!(n− s)!2s+s!(n− s)
s−1∑
k=0

(n− k − 1)!

(s− k)!
2k + s!

s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k,

the first term can be moved inside the sum, to get

= s!(n− s)
s∑

k=0

(n− k − 1)!

(s− k)!
2k + s!

s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k.

Analogously the second term in (6) can be written as

(n−s)!
n−s∑
k=0

(n− k)!

(n− s− k)!
2k = s(n−s)!

n−s∑
k=0

(n− k − 1)!

(n− s− k)!
2k+(n−s)!

n−s−1∑
k=0

(n− k − 1)!

(n− s− k − 1)!
2k.

If we now sum these expressions the right-hand side of (6) becomes

s

[
(s− 1)!

s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k + (n− s)!

n−s∑
k=0

(n− k − 1)!

(n− s− k)!
2k

]
+

(n− s)

[
s!

s∑
k=0

(n− k − 1)!

(s− k)!
2k + (n− s− 1)!

n−s−1∑
k=0

(n− k − 1)!

(n− s− k − 1)!
2k

]
.

Using the induction hypothesis and in particular (7) and (8) and replacing ev-
erything in the right-hand side of (6), we finally get

2n+1s!(n− s)! = s[2n(s− 1)!(n− s)!] + (n− s)[2ns!(n− s− 1)!]

= 2ns!(n− s)! + 2ns!(n− s)!
= 2n+1s!(n− s)!

4 Conclusion

A new probabilistic approach to the Shapley value for TU-cooperative games
has been proposed. Instead of just considering permutations as in the classical



approach, the model also takes into account if the player wants to cooperate or
not in her turn. From this new model we obtain a formula depending on the
marginal contributions. This formula is proven by induction, which is a bit more
transparent than using power series and generating functions as we recently did
in [Bernardi and Freixas(2018)]. This proof pretends to bring a little more light
on different formulations of the Shapley value for TU-cooperative games.

Its main importance is revealed when trying extensions of the value to fur-
ther contexts. Indeed, a natural extension of the formula (3) to the so-called
j-cooperative games, games where players can choose among different (say j)
ordered levels of activity, has been obtained in [Freixas(2018)]. Nevertheless,
as far as we know, it does not exist any formula of the value on j-cooperative
games inspired in the original probabilistic model by Shapley based on marginal
contributions on permutations.

Thus, the application potential of the model we present is enormous. All the
theory and applications of cooperative games based on the Shapley value can
be studied for the more general model of j-cooperative games, which contains
multi-choice games.
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