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Abstract. Edge (or Nédélec) finite elements are theoretically sound and widely used
by the computational electromagnetics community. However, its implementation, espe-
cially for high order methods, is not trivial, since it involves many technicalities that are
not properly described in the literature. To fill this gap, we provide a comprehensive
description of a general implementation of edge elements of first kind within the scien-
tific software project FEMPAR . We cover into detail how to implement arbitrary order
(i.e., p-adaptive) elements on hexahedral and tetrahedral meshes. First, we set the three
classical ingredients of the finite element definition by Ciarlet, both in the reference and
the physical space: cell topologies, polynomial spaces and moments. With these ingre-
dients, shape functions are automatically implemented by defining a judiciously chosen
polynomial pre-basis that spans the local finite element space combined with a change
of basis to automatically obtain a canonical basis with respect to the moments at hand.
Next, we discuss global finite element spaces putting emphasis on the construction of
global shape functions through oriented meshes, appropriate geometrical mappings, and
equivalence classes of moments, in order to preserve the inter-element continuity of tan-
gential components of the magnetic field. Finally, we extend the proposed methodology
to generate global curl-conforming spaces on non-conforming hierarchically refined (i.e.,
h-adaptive) meshes with arbitrary order finite elements. Numerical results include ex-
perimental convergence rates to test the proposed implementation.

Keywords: edge finite elements, curl-conforming spaces, adaptive mesh refinement, im-
plementation

1. Introduction

Edge elements were originally proposed in the seminal work by Nédélec [1]. They are
a natural choice in electromagnetic finite element (FE) simulations due to their sound
mathematical structure [2]. In short, edge FE spaces represent curl-conforming fields with
continuous tangential components and discontinuous normal components. It is recognized
to be their greatest advantage against Lagrangian FEs [3].1 The curl operator has null
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Spain. ‡ Universitat Politècnica de Catalunya, Jordi Girona 1-3, Edifici C1, E-08034 Barcelona, Spain.
MO gratefully acknowledges the support received from the Catalan Government through the FI-AGAUR
grant. SB gratefully acknowledges the support received from the Catalan Government through the ICREA
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1There are different approaches to design discretizations of the Maxwell equations that rely on La-
grangian FEs and can theoretically converge to singular solutions (see, e.g., [4]). However, these methods
are not robust for complex electromagnetic problems. In our experience [5], the usage of edge elements is
of imperative importance in the modelling of fields near singularities by allowing normal components to
jump across interfaces between two different media with highly contrasting properties.
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space, the gradient of any scalar field. To remove its kernel, one needs to include a zero-
order term, a transient problem or a divergence-free constraint over the magnetic field
times resistivity2 (also known as Coulomb gauge) [6].

The edge FE method has the status of the method of choice in the computational elec-
tromagnetics community. Nevertheless, other discretization techniques are available for
electromagnetic problems. Apart from the aforementioned nodal FEs [4], nodal discon-
tinuous Galerkin methods [7, 8] and isogeometric analysis [9] have also been considered
for the Maxwell problem. Furthermore, the virtual element method (VEM) [10], which is
designed to handle meshes consisting of arbitrary polygonal or polyhedral elements, has
also been defined for curl-conforming spaces [11]. Local edge VEM spaces [11] rely on
a space formulated on the boundary of the element, thus they naturally allow to design
adaptive methods with conforming, arbitrary meshes.

Edge FEs are widespread in the computational electromagnetics community, mainly for
the lowest order case. In fact, they receive the name of edge elements because for first
order approximations each degree of freedom (DoF) is associated with an edge of the mesh,
and DoFs can be understood as circulations along edges. However, its implementation,
especially for high order, is not a trivial task and involves many technicalities. On the
other hand, there are few works addressing the implementation details of arbitrary-order
edge FE schemes.

The construction of local bases for edge elements has been addressed by few authors.
A basis for high order methods, expressed in terms of the (barycentric) affine coordinates
of the simplex (i.e., tetrahedra) is described in [12, 13], including also implementation
details in [14]. The definition of affine-related coordinates is used to define expressions
for the bases in tetrahedra, prisms and pyramids in [15]. Furthermore, hierarchical bases of
functions can be computed for hexahedra by tensor product of 1D Legendre polynomials
and the so-called 1D H(curl)-shape functions [16, 17], which are in turn obtained by
differentiation of the former ones. Nevertheless, we prefer to rely on the FE definition by
Ciarlet, which induces the basis of shape functions as the dual basis with respect to suitable
edge DoFs [18, 19]. In this work, arbitrary order edge basis functions are automatically
implemented by defining polynomial pre-bases that span the local finite element spaces
combined with a change of basis.

Better documented is the construction of global curl-conforming spaces [20, 21], which
relies on the Piola mapping to achieve the global continuity of the tangent components by
using moments defined in the reference cell. In the case of unstructured hexahedral meshes,
where non-affine geometrical mappings must be used in general, optimal convergence of
standard edge elements in the H(curl) norm cannot be achieved [22]. Complex geometries
can still be considered using, e.g., unfitted FE techniques [23] on octree background meshes
to avoid non-affine mappings.

Special care has to be taken in the definition of edge DoFs to enforce the right conti-
nuity across cells. To prevent the so-called sign conflict, different alternatives have been
proposed. A simple sign flip [24] can assure consistency, i.e., all local DoFs shared by two
or more tetrahedra represent the same global DoF, for first order 3D FEs only. For higher
order methods, a remedy can be based on the construction of all possible shape func-
tions combined with a permutation that depends on local edge/face orientations [15, 25].
Our preferred solution, for simplicity and ease of implementation, is to orient tetrahedral
meshes, requiring that local nodes numbering within every element are always sorted based
on their global indices [21]. On the other hand, although there are hexahedral meshes that
cannot be oriented in 3D [26], we restrict ourselves to forest-of-octrees meshes [27] such
that that the initial coarse mesh can be oriented, e.g., a uniform, structured mesh.

2Edge FEs provide solutions that are pointwise divergence-free in the element interiors. However, the
normal component of the field can freely jump across inter-element faces. The zero inter-element jump
constraint has to be enforced by a Lagrange multiplier [4] to eliminate the kernel.
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Few open source FE software projects include the implementation of edge FEs of ar-
bitrary order. FEniCS supports arbitrary order FEs [28], but is restricted to tetrahedra
and has its own domain specific language for weak forms to automatically generate the
corresponding FE code, which may prevent hp-adaptivity. On the other hand, the deal.ii
library also provides arbitrary order edge FEs [29, 30], even on h-adaptive meshes, but it is
restricted to hexahedral meshes. Recently, a C++ plugin that defines high order edge FE
ingredients [14] has been developed for the FreeFEM++ library [31], but it is restricted
to up to third order and tetrahedral meshes. As far as we know, the most complete ap-
proaches in the literature are the implementations in MFEM [32], Netgen/NGSolve [33, 34]
and hp2D [16]/hp3D [17]. MFEM provides arbitrary order tetrahedral/hexhahedral edge
FEs and h-adaptivity on non-conforming hexahedral meshes. Netgen/NGSolve and hp3D
implement arbitrary order edge prism and pyramidal FEs, besides the tetrahedral and hex-
ahedral ones, and hp3D provides the hp-adaptive method on non-conforming hexahedral
meshes.

The usage of non-nodal based (compatible or structure-preserving) FEs, especially in
multi-physics applications in combination with incompressible fluid and solid mechanics
[35, 36, 37], is still scarce. It is motivated by the fact that most codes in computational
mechanics are designed from inception for being used with nodal FEs, and the extension
to other types of FEs seems to be a highly demanding task. Although non-nodal based
FEs are theoretically well known, the poor, fractioned, and spread information on key
implementation issues does not contribute to its greater diffusion in the computational
mechanics community.

The motivation of this work is to provide a comprehensive description of a novel and
general implementation of edge FEs of arbitrary order on tetrahedral and hexahedral3

non-conforming meshes, confronted with typical hard-coded implementations of the shape
functions that preclude high order methods. With this aim, we will address three critical
points that are especially complex in the construction of arbitrary order edge FEs: 1) an
automatic manner of generating the associated polynomial spaces; 2) a general solution
for the so-called sign conflict; and 3) a construction of the discrete H(curl)-conforming FE
spaces atop non-conforming meshes. With regard to 1), we generate arbitrary order edge
FE shape functions in a simple but extensible manner. First, we propose a pre-basis of
vector-valued polynomial functions spanning arbitrary order local edge FE spaces for both
tetrahedral and hexahedral topologies; see [39] for a related approach on tetrahedra. Next,
we compute a change of basis from the pre-basis to the canonical basis with respect to the
edge FE DoFs, i.e., the basis of shape functions. To address 2) and properly determine
the inter-element continuity, we rely on oriented meshes. Finally, in order to address 3),
we combine a standard adaptive mesh refinement (AMR) nodal-based implementation
of constraints on non-conforming geometrical objects (a.k.a. as hanging) [40] with the
relation between a Lagrangian pre-basis and the edge basis, to avoid the evaluation of
edge moments on the refined cells. Besides, the same machinery can also be applied to
other polynomial based FEs, like Raviart-Thomas FEs, Brezzi-Douglas-Marini FEs [41],
second kind edge FEs [42], or recent divergence-free FEs [43]. An alternative approach,
more suitable for hierarchical bases of functions, is to compute the constraints on non-
conforming objects by comparison of the two representations of a function (atop the coarse
or the refined cell) at uniformly distributed collocation points [16].

In the course of an hp−adaptive finite element procedure, an error estimator indicates
at which mesh cells the error of the computed FE solution is higher, which will be potential
candidates to be refined. For curl-conforming problems, several types of a posteriori error

3Although this work is restricted to hexahedra and tetrahedra, one can also find definitions for prism
and pyramid edge elements [38] with optimal rates of convergence of the numerical solution towards the
exact solution in the H(curl,Ω) norm.
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estimators have been developed and analyzed. Efficient and reliable residual-based error
estimators were introduced in [44] and have been further developed and analyzed in [45, 46].
Among others, we also find hierarchical error estimators [47], equilibrated estimators [48]
or recovery-based estimators [49].

The proposed approach is the result of the experience gained by the authors after the im-
plementation in FEMPAR [50, 51], a scientific software project for the simulation of problems
governed by partial differential equations (PDEs). In any case, we present an automatic,
comprehensive strategy rather than focusing on a particular software implementation.
Consequently, thorough definitions and examples will be provided, but the exact software
implementation will not be shown. The reader is directed to [50] for code details, where
an exhaustive introduction to the software abstractions of FEMPAR is presented.

The text is organized as follows. In Sect. 2, we introduce some notation and a gen-
eral problem with the curl-curl formulation. In Sect. 3, we will cover the definition and
construction of the edge FE of arbitrary order, focusing on an straightforward manner of
generating the involved polynomial spaces. Sect. 4 is devoted to the construction of global
curl-conforming FE spaces. In Sect. 5, a strategy to deal with h-adaptive spaces with the
edge element will be described. Finally, in Sect. 6, we will show some convergence results,
which will validate the implementation of the edge elements.

2. Problem statement

2.1. Notation. In this section, we introduce the model problem to be solved and some
mathematical notation. Bold characters will be used to describe vector functions or ten-
sors, while regular ones will determine scalar functions or values. No difference is intended
by using upper-case or lower-case letters for functions.

Let Ω ⊂ Rd be a bounded domain with d = 2, 3 the space dimension. In 3D, the rotation
operator of a vector field v is defined as:

∇× v =

∂2v3 − ∂3v2

∂3v1 − ∂1v3

∂1v2 − ∂2v1

 .
We use the standard multi-index notation for derivatives, with α := (α1, . . . , αd)

T ∈ Zd+
and |α|1 =

∑d
i=1 |αi|. Let us define the spaces

Hr(Ω) := {v ∈ L2(Ω) | ∂αv ∈ L2(Ω) for all |α|1 ≤ r},(1)

Hr(curl,Ω) := {v ∈ Hr(Ω)d | ∇× v ∈ Hr(Ω)d}.(2)

The space H0(curl,Ω) is represented with H(curl,Ω). We also consider the subspaces

H1
0 (Ω) := {v ∈ H1(Ω) | v = 0 in ∂Ω},(3)

H0(curl,Ω) := {v ∈ H(curl,Ω) | n× v = 0 in ∂Ω},(4)

where n denotes the outward unit normal to the boundary of the domain Ω. The space
H(curl,Ω) in (2) is equipped with the norm

‖u‖H(curl,Ω) :=
(
‖u‖2L2(Ω)d + ‖∇× u‖2L2(Ω)d

) 1
2
.

In 2D, a scalar version of the curl operator can be defined as curl(v)
.
= ∂1v2 − ∂2v1. We

can similarly define Hr(curl,Ω) and its related subspaces. In the following, we consider
the notation for the 3D case.
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2.2. Formulation. The model problem consists in finding a vector field u (magnetic field)
solution of

∇× α∇× u+ βu = f in Ω,(5)

where f is a given source term. Problem parameters α, β can range from scalar, positive
values for isotropic materials to positive definite tensors for anisotropic materials. Be-
sides, (5) needs to be supplied with appropriate boundary conditions. The boundary of
the domain ∂Ω is divided into its Dirichlet boundary part, i.e., ∂ΩD, and its Neumann
boundary part, i.e., ∂ΩN , such that ∂ΩD∪∂ΩN = ∂Ω and ∂ΩD∩ΩN = ∅. Then, boundary
conditions for the problem at hand read

u× n = gD on ∂ΩD,

n× (α∇× u) = gN on ∂ΩN ,

where n is a unit normal to the boundary. Dirichlet (essential) boundary conditions
prescribe the tangent component of the field u on the boundary of the domain. On the
other hand, Neumann (natural) boundary conditions arise in the integration by parts of
the curl-curl term∫

Ω
(∇× α∇× u) · v =

∫
Ω

(α∇× u) · (∇× v)−
∫

ΩN

(α∇× u) · (n× v).(6)

Consider now two different non-overlapping regions on the domain Ω corresponding to two
different media (usual case in electromagnetic simulations), namely Ω1 and Ω2, such that
Ω1 ∪Ω2 = Ω, and let us define the interface as Γ := Ω1 ∩Ω2. Let us denote by n1,n2 the
unit normal pointing outwards of Ω1 and Ω2 on Γ, resp. The transmission conditions (in
absence of other sources) for (5) are stated as follows:

n× (α1∇× u1 − α2∇× u2) = 0 on Γ,

where n can, e.g., be n1 = −n2. For the sake of simplicity in the presentation (not in the
implementation), let us consider ∂ΩD = ∂Ω, so that the Neumann boundary term (6) can
be removed from the weak form, and homogeneous Dirichlet boundary conditions. Hence,
the variational form of the double curl formulation (5) reads: find u ∈ H0(curl,Ω) such
that

(α∇× u,∇× v) + (βu,v) = (f ,v), ∀v ∈ H0(curl,Ω).(7)

3. Edge FEs

Let Th be a quasi-uniform partition of Ω into a set of hexahedra (quadrilaterals in 2D)
or tetrahedra (triangles in 2D) geometrical cells K. For every K ∈ Th, we denote by hK
its diameter and set the characteristic mesh size as h = maxK∈Th hK . Let us denote by
v ∈ N , e ∈ E and f ∈ F the components and global sets of vertices, edges and faces of
Th, with cardinality nN , nE and nF , resp. Using Ciarlet’s definition, a FE is represented
by the triplet {K,V,Σ}, where V is the space of functions on K and Σ is a set of linear
functionals on V. The elements of Σ are called DoFs (moments) of the FE. We will
denote the number of functionals on the cell as nΣ, and Σ

.
= {σa}nΣ

a=1. Σ is a basis for V ′,
which is dual to the so-called basis of shape functions {φa}nΣ

a=1 for V, i.e., σa(φ
b) = δab,

∀a, b ∈ {1, . . . , nΣ}.
At this point, we must distinguish between the reference FE, built on a reference cell,

and the FE in the physical space. Our implementation of the space of functions and
moments is based on a unique reference FE {K̂, V̂, Σ̂}. Then, in the physical space, the
FE triplet on a cell K relies on its reference FE, a geometrical mapping ΦK such that
K = Φ(K̂) and a linear bijective function mapping Ψ̂K : V̂ → V̂. It is well known that
quadrilateral FEs may result in a loss of accuracy on general meshes, e.g., when elements
are given as images of hexahedra under invertible bilinear maps, in comparison with the
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accuracy achieved with squares or cubes [52]. In this work, hexahedra in the physical
space are obtained with affine transformations from the reference square or cube, thus
optimal convergence properties are guaranteed. Nevertheless, this fact does not restrict
the simulations to simple geometries, since unfitted approaches [53] may be employed to
model complex geometries with structured background meshes. Let us denote by JK the
Jacobian of the geometrical mapping, i.e., JK

.
= ∂ΦK

∂x . The functional space is defined

as V .
= {Ψ̂K(v̂) ◦ Φ−1

K : v̂ ∈ V̂}; we will also use the mapping ΨK : V̂ → V defined

as ΨK(v̂)
.
= Ψ̂K(v̂) ◦ Φ−1

K . Finally, the set of DoFs on the physical FE is defined as

Σ
.
= {σ̂ ◦ Ψ−1

K : σ̂ ∈ Σ̂} from the set of the reference FE linear functionals. In the
following subsections, we go into detail into these concepts and provide some practical
examples.

3.1. Reference cell. A polytope is mathematically defined as the convex hull of a finite
set of points (vertices). The concept of polytope may be of practical importance, because
it allows one to develop codes that can be applied to any topology of arbitrary dimension
that fits into the framework, see [50] for a thorough exposition. For the sake of ease,
we restrict ourselves to two possible polytopes: d-cubes and d-simplices (with d = 2, 3),
defined as the convex hull of a set of nv = 2d and nv = d+ 1 geometrically distinct points,
respectively. An ordered set of vertices {v1, . . . ,vnv} not only defines the topology of

the cell K̂ but an orientation. Edges and faces are polytopes of lower dimension, and an
ordered set of their vertices also defines their orientation. For the sake of illustration, the
local indexing at the cell level is depicted in Figs. 1a and 2a for a 3-cube and a 3-simplex,
resp. The 2D cases follow by simply considering the restriction of the 3D cell to one of its
faces.

3.2. Polynomial spaces. Local FE spaces are usually spanned by polynomial functions.
Let us start by defining basic polynomial spaces that will be needed in the forthcoming
definitions. We define here all polynomial spaces in an arbitrary polytope K, but they
will only be used for the reference cell in the next sections. The space of polynomials
of degree less than or equal to k > 0 in all the variables {xi}di=1 is denoted by Qk(K).
Analogously, we can define the space of polynomials of degree less than or equal to {ki}di=1

for the variable {xi}di=1, denoted by Qk(K), with k = [k1, . . . , kd]. Clearly, the dimension

of this space, denoted by dim(Qk(K)), is
∏d
i=1(ki+1). Let us also define the corresponding

truncated polynomial space Pk(K) as the span of the monomials with degree less than or
equal to k. To determine the dimension of the truncated space, we note that the number
of components can be expressed with the triangular or tetrahedral number T dn , d = {2, 3},
such that

dim(Pk(K)) = T dk+1, T dn =

∏d
i=1(n+ i− 1)

d!
.(8)

3.2.1. Construction of polynomial spaces. Given an order k, it is trivial to form the set of
monomials qk = {xi}ki=0, that spans the 1D space Qk(K). We construct a basis spanning
the multi-dimensional space Qk(K) with a Cartesian product of the monomials for each

dimension, i.e., {qk1
1 × . . . × q

kd
d }, thus we have Qk(K) = span{

∏d
i=1 x

αi
i s.t. αi ≤ ki}.

Let us denote by |α| the summation of the exponents for a given monomial. Then, the

multi-dimensional truncated space is defined as Pk(K) = span{
∏d
i=1 x

αi
i s.t. |α| ≤ k}.

Let us also define Lagrangian polynomials spanning Qk(K), which will be used in the
definition of moments in Sect. 3.3. Given an order k and a set Nk of different nodes in R,
usually equidistant in the interval [x0, xk], we can define the set of Lagrangian polynomials
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{`i}ki=0 as,

`i :=

∏
n∈Nk\i(x− xn)∏
n∈Nk\i(xi − xn)

,(9)

where we indistinctly represent nodes by their index i or its position xi. The set of all
polynomials {`ki }ki=0 defines the Lagrangian basis Lk. In the grad-conforming (Lagrangian)
FE, the definition of moments {σa}ka=1 simply consists in the evaluation of the functions
on the given points x ∈ Nk. Clearly, polynomials in (9) evaluated at points xa satisfy
the duality σa(`i) = `i(xa) = δai for every a, i ∈ {0, . . . k}, i.e., they are shape functions.
For multi-dimensional spaces, we define the set of nodes as the Cartesian product of 1D
nodes. Given a d-dimensional space of order k = [k1, . . . , kd], the set of nodes is defined
as N k = N k1 × . . .×N kd .

3.2.2. Hexahedra. The space of functions on the cell Vk(K) for this sort of elements is
defined as the space of gradients for the scalar polynomial space Qk(K), i.e.,

Vk(K) := {Qk−1,k(K)×Qk,k−1(K)},(10)

Vk(K) := {Qk−1,k,k(K)×Qk,k−1,k(K)×Qk,k,k−1(K)},(11)

in 2D and 3D, resp. Let us illustrate the polynomial space with a couple of examples.

Example 3.1. The polynomial space for the lowest order (k = 1) edge hexahedral element
is defined as

Vk(K) = {Q0,1,1(K)×Q1,0,1(K)×Q1,1,0(K)}
which can be represented as the span of the set of vector-valued functions
1

0
0

 ,
x2

0
0

 ,
x3

0
0

 ,
x2x3

0
0

 ,
0

1
0

 ,
 0
x1

0

 ,
 0
x3

0

 ,
 0
x1x3

0

 ,
0

0
1

 ,
 0

0
x1

 ,
 0

0
x2

 ,
 0

0
x1x2

 .

Example 3.2. The polynomial space for the second order quadrilateral element is defined
as

Vk(K) = {Q1,2(K)×Q2,1(K)},
which can be represented by the spanning set{[

1
0

]
,

[
x1

0

]
,

[
x2

0

]
,

[
x1x2

0

]
,

[
x2

2

0

]
,

[
x1x

2
2

0

]
,

[
0
1

]
,

[
0
x1

]
,

[
0
x2

1

]
,

[
0
x2

]
,

[
0

x1x2

]
,

[
0

x2
1x2

]}
.

3.2.3. Tetrahedra. The polynomial space for tetrahedral elements is slightly more involved.
For the sake of brevity, let us omit the cell (i.e., K) in the notation for the local FE spaces.

Let us start by defining the homogeneous polynomial space [P̃k]d := [Pk]d \ [Pk−1]d, where

[Pk]2 = Pk × Pk and [Pk]3 = Pk × Pk × Pk. The space [P̃k]d has dimension d · dim(P̃k),
and using (8) we have:

dim(P̃k) = dim(Pk)− dim(Pk−1) = T dk+1 − T dk = T d−1
k+1 .

The function space of order k on a tetrahedron is then defined as

Vk(K) = [Pk−1]d ⊕ Sk,(12)

where Sk is the space of polynomials

Sk := {p(x) ∈ [P̃k]d such that p(x) · x = 0}.

Note that if p(x) ∈ [P̃k]d, then p · x ∈ P̃k+1 and any polynomial in P̃k+1 may be written
in this way. The dimension of the space Sk is

dim(Sk) = d · dim(P̃k)− dim(P̃k+1),(13)
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which leads to (k+2)k in 3D and k in 2D, resp. Among all the possible forms of representing
the space Sk in 3D, we consider the following spanning set

Sk = span


k⋃

β=1

k+1−β⋃
α=1

−xα−1
1 xk−α−β+2

2 xβ−1
3

xα1x
k−α−β+1
2 xβ−1

3
0

 ,
−xk−α−β+1

1 xβ−1
2 xα3

0

xk−α−β+2
1 xβ−1

2 xα−1
3

 ,(14a)

k⋃
α=1

 0

−x0
1x
α−1
2 xk−α+1

3

x0
1x
α
2x

k−α
3

 .(14b)

Proposition 3.1. The set of vector functions defined in (14) forms a basis of the space
Sk.

Proof. First, we note that the proposed basis contains {pi(x)}(k+2)k
i=1 vector functions.

Clearly, the total degree of the monomials found on each component for all functions is
k, thus S ⊂ P̃dk . Further, it is easy to check that pi(x) · x = 0 for any pi(x) ∈ S. The
proof is completed by showing that all the functions are linearly independent. It is trivial
to see that all the functions in the first set of functions are indeed linearly independent;
the two sets have different non-zero components. Finally, vector functions from the last
subset (14b) are independent of x1, whereas all functions in the previous subset in (14a)
do depend on x1 and are linearly independent among them. �

In two dimensions, the analytical expression of the spanning set simply reduces to

Sk = span

{
k⋃

α=1

[
−xα−1

1 xk−α+1
2

xα1x
k−α
2

]}
.

The dimension of the space Vk(K) for tetrahedra can be obtained by adding (8) and
(13),

dim(Vk(K)) =
k
∏d
i=2(k + i)

(d− 1)!
.(15)

Let us give some examples of polynomial bases for tetrahedral edge elements spanning the
requested spaces.

Example 3.3. A set of polynomial spanning V1(K) = [P0]3⊕S1 (i.e., lowest order tetra-
hedral element) is 

1
0
0

 ,
0

1
0

 ,
0

0
1

 ,
−x2

x1

0

 ,
−x3

0
x1

 ,
 0
−x3

x2

 .

Example 3.4. A polynomial base spanning V2(K) = [P1]2 ⊕ S2 (i.e., second-order trian-
gular element) is{[

1
0

]
,

[
x1

0

]
,

[
x2

0

]
,

[
0
1

]
,

[
0
x1

]
,

[
0
x2

]
,

[
−x2

2

x1x2

]
,

[
−x1x2

x2
1

]}
.

In both cases, vector functions that span the subspaces [Pk−1]d ⊂ Vk(K) and Sk ⊂
Vk(K) can easily be identified from the full sets of vector-valued functions in Exs. 3.3 and
3.4.

Note that local spaces Vk(K) lie between the full polynomial spaces of order k−1 and k,
i.e., [Qk−1(K)]d ⊂ Vk(K) ⊂ [Qk(K)]d, [Pk−1(K)]d ⊂ Vk(K) ⊂ [Pk(K)]d for hexahedra and
tetrahedra, resp. This kind of elements are called edge FEs of the first kind [1]. Another
edge FE, the so-called second kind, was introduced also by Nédélec in [42]. It follows
similar ideas but considers full polynomial spaces, i.e., [Qk(K)]d or [Pk(K)]d, instead
of anisotropic polynomial spaces (see (11)) or incomplete polynomial spaces (see (12))
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for hexahedra and tetrahedra, resp., which clearly simplifies the implementation of the
polynomial spaces. Edge elements of the second kind offer better constants in the error
estimates at the cost of increasing the number of DoFs (see detailed definitions in [54, Ch.
2]).

3.3. Edge moments in the reference element. In order to complete the definition of
edge FEs, it remains to define a set of (linearly independent) functionals to be applied

on Vk(K̂). Edge moments are integral quantities over geometrical sub-entities of the cell
against some test functions. These moments involve directions in 1D entities (edges) and
orientations in 2D (faces) or 3D (volumes). Thus, we need to define local orientations for
the lower dimension geometrical entities of the reference cell, see Figs. 1a and 2a. Let us
distinguish between three different subsets of moments Σ̂, namely DoFs related to edges
σê, to faces σf̂ and volume σK̂ such that Σ̂ = σê ∪ σf̂ ∪ σK̂ .

3.3.1. Hexahedra. The set of functionals, for the reference element, that form the basis in
two dimensions reads ([2, Ch. 6]):

σê(ûh) :=

∫
ê
(ûh · τ̂ )q̂ ∀q̂ ∈ Pk−1(ê), ∀ê ∈ K̂,(16a)

σK̂(ûh) :=

∫
K̂
ûh · q̂ ∀q̂ ∈ Qk−1,k−2(K̂)×Qk−2,k−1(K̂).(16b)

We will have 4k DoFs associated to edges and 2k(k − 1) inner DoFs. Therefore, the
complete set of functionals has cardinality nΣ̂ = 2k(k+ 1). In the case of k = 1, only edge
DoFs σê appear. In three dimensions the set is defined as

σê(ûh) :=

∫
ê
(ûh · τ̂ )q̂ ∀q̂ ∈ Pk−1(ê), ∀ê ∈ K̂(17a)

σf̂ (ûh) :=

∫
F̂

(ûh × n̂) · q̂ ∀q̂ ∈ Qk−2,k−1(F̂)×Qk−1,k−2(F̂), ∀F̂ ∈ K̂(17b)

σK̂(ûh) :=

∫
K̂
ûh · q̂ ∀q̂ ∈ Qk−1,k−2,k−2(K̂)×Qk−2,k−1,k−2(K̂)×

Qk−2,k−2,k−1(K̂),

where τ̂ is the unit vector along the edge and n̂ the unit normal to the face. In this case,
we have 12k DoFs associated to edges, 6 · 2k(k − 1) DoFs associated to the 6 faces of the
cell and 3k(k − 1)2 inner DoFs. We have a total number of nΣ̂ = 3k(k + 1)2 DoFs. Note
that in the case of the lowest order elements, i.e., k = 1, only DoFs associated to edges
appear. For higher order elements, i.e., k ≥ 2, all kinds of DoFs occur in both dimensions.

DoFs are labelled in the reference cell as follows. First, for every DoF, we can determine
the geometrical entity that owns it, e.g., an edge of the reference FE in (17a). Within
every geometrical entity, there is a one-to-one map between DoFs and test functions. Thus,
we can number DoFs by the numbering of the test functions in the test space, e.g., the
test functions in Pk−1(ê) for the DoFs in (17a). We note that all the test spaces in the
DoF definitions can be built using a nodal-based (Lagrangian) basis, and thus, every DoF
in a geometrical object can be conceptually associated to one and only one node. The
numbering of the nodes in the geometrical object is determined by its orientation in the
reference FE. The composition of a geometrical object numbering (see Figs. 1–2) and the
object-local node numbering provides the local numbering of DoFs within the reference
cell.
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(a) Oriented cell geometry. (b) Lowest order DoFs. (c) Second order DoFs. Face
DoFs depicted in blue, inner
DoFs depicted in red.

Figure 1. 3D hexahedral reference FE.

3.3.2. Tetrahedra. The set of functionals described in this section follows [2, Ch. 5]. In
the 2D case, the set of moments for the reference FE is defined as

σê(ûh) :=

∫
ê
(ûh · τ̂ )q̂ ∀q̂ ∈ Pk−1(ê), ∀ê ∈ K̂(18a)

σK̂(ûh) :=

∫
K̂
ûh · q̂ ∀q̂ ∈ [Pk−2(K̂)]2.(18b)

Clearly, we have 3k edge DoFs and k(k − 1) inner DoFs, which lead to a total number of

nΣ̂ = k(k + 2) DoFs. In three dimensions, the set Σ̂ is defined as

σê(ûh) :=

∫
ê
(ûh · τ̂ )q̂ ∀q̂ ∈ Pk−1(ê), ∀ê ∈ K̂(19a)

σf̂ (ûh) :=
1

‖F̂‖

∫
F̂
ûh · q̂ ∀q̂ ∈ [Pk−2(K̂)]3 s.t. q̂ · n̂ = 0, ∀f̂ ∈ K̂(19b)

σK̂(ûh) :=

∫
K̂
ûh · q̂ ∀q̂ ∈ [Pk−3(K̂)]3,(19c)

where n̂ in (19b) is the unit normal to the face. The set of moments (19) contains 6k

edge DoFs, 4k(k − 1) face DoFs and k(k−1)(k−2)
2 inner DoFs. Therefore, the tetrahedral

edge element has a total number of nΣ̂ = k(k2+5k+6)
2 DoFs. The local numbering of DoFs

is analogous as for the hexahedral case.

Remark 3.1. The face moments in the definition (19b) seem to differ from the rest of
definitions in (19), which are not scaled with a geometrical entity measure. We follow
here [2, Ch. 5], where this expression of face moments is used to prove affine equivalence,
i.e., proving that DoFs are affine invariant under the transformation from the reference
to the physical element.

Note that in the case of the lowest order elements, i.e., k = 1, only DoFs associated
to edges occur. For second order elements, i.e., k = 2, we also find DoFs related to faces
(inner DoFs in 2D), and it is in orders higher than two where all kinds of DoFs occur. Note
that vector-valued test functions q̂ involved in (18b), (19b) and (19c) can be understood as
products between linearly independent vectors {τ̂ i}d1 that form a basis in the geometrical
entity of dimension d and scalar polynomials q̂ ∈ Pk−d.

3.4. Construction of edge shape functions. Usually, low order edge elements are
implemented via hard-coded expressions of their respective shape functions. However,
such an approach is not suitable for high order edge FEs, which involve complex analytical
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(a) Oriented cell geometry. (b) Lowest order DoFs. (c) Second order DoFs. Face
DoFs depicted in blue.

Figure 2. 3D tetrahedral reference FE.

expressions of the shape functions. In this section, we provide an automatic generator of
arbitrary order shape functions.

The definition of the moments for the edge FE (in (16a,16b), (17a,17b,??) or (18a,18b),
(19a-19c) for hexahedra and tetrahedra, resp) requires the selection of functions spanning
the requested polynomial space in each case. First, we generate a pre-basis {ϕa}nΣ

a=1 that

spans the local FE space Vk(K̂). To this end, we consider the tensor product of Lagrangian
polynomial basis (see Sect. 3.2.1) for hexahedra or the combination of a Lagrangian basis
of one order less in (12) plus the based of monomials in (14) for tetrahedra. Our goal
is to build another (canonical) basis {φa}nΣ

a=1 that spans the same space and additionally
satisfies σa(φ

b) = δab for a, b ∈ {1, . . . , nΣ}, i.e., the basis of shape functions for the edge
element. Thus, we are interested in obtaining a linear combination of the functions of the
pre-basis such that the duality between moments and functions is satisfied. As a result, an
edge shape function φa can be written as φa =

∑nΣ
b=1Qabϕ

b. Let us make use of Einstein’s
notation to provide the definition of the change of basis between the two of them. We
have:

φb = Qbcϕ
c, σa(φ

b) = σa(Qbcϕ
c), δab = σa(ϕ

c)Qbc,(20)

or in compact form I = CQT , thus QT = C−1. As a result, the edge shape functions are
obtained as φa = Qabϕ

b = C−1
ba ϕ

b. For the sake of illustration, we provide some examples
of full sets of edge shape functions for different orders. To make the visualization easy,
we provide only 2D examples for first and second order square (Figs. 3 and 4) and
triangular elements (Figs. 5 and 6). In these figures, we put a circle on top of the node
corresponding to the DoF dual to the shape function. The superscript indicates the local
moment numbering on the particular geometrical entity.

4. Global FE spaces and conformity

A FE space is H(curl)-conforming if the tangential components at the interface between
elements are continuous, i.e., they do not have to satisfy normal continuity over element
faces. The discrete global FE space where the magnetic field solution uh lies is defined as

NDk(Ω) = {vh ∈ H(curl,Ω) such that vh|K ∈ Vk(K)∀K ∈ Th},
where Vk has been defined for the hexahedral and tetrahedral edge FEs in Sect. 3.2.

4.1. Moments in the physical space and the Piola map. In this section we define
a set of DoFs (moments) in the physical space that allow one to interpolate analytical
functions onto the edge FE space, e.g., to enforce Dirichlet data. One can check that
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(a) φe1 (b) φe2 (c) φe3 (d) φe4

Figure 3. Vector-field plots of the shape functions in the lowest order 2D
hexahedra. The indices of edges follow the geometrical entities indices for
the reference hexahedron in Fig. 1a restricted to the plane z = 0. Auxiliary
circles denote the geometrical entity where the moment is defined.

(a) φ1e1 (b) φ2e1 (c) φ1e2 (d) φ1e2

(e) φ1e3 (f) φ2e3 (g) φ1e4 (h) φ2e4

(i) φ1K (j) φ2K (k) φ3K (l) φ4K

Figure 4. Vector-field plots of the shape functions in the second order
hexahedral edge element. The indices of edges follow the geometrical enti-
ties indices for the reference hexahedron in Fig. 1a restricted to the plane
z = 0. Auxiliary circles denote the geometrical entity where the moment
is defined.

the continuity of those DoFs which lay at the boundary between cells provides the desired
continuity of the tangential component. On top of that, using the so-called covariant Piola
mapping ΨK(v̂)

.
= Ψ̂K(v̂) ◦Φ−1

K , where

Ψ̂K(v̂)
.
= J−TK v̂,

it can be checked that a DoF in the reference space of a function v̂ on K̂ is equal to
the corresponding DoF in the physical space for ΨK(v̂) on K (see [2, Ch. 5] for details).
Thus, the Piola mapping, which preserves tangential traces of vector fields [21], is the key
to achieve a curl-conforming global space by using a FE space relying on a reference FE
definition.
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(a) φe1 (b) φe2 (c) φe3

Figure 5. Vector-field plots of the shape functions in the lowest order
tetrahedral element. The indices of edges follow the geometrical entities
indices for the reference tetrahedron in Fig. 2a restricted to the plane z = 0.
Auxiliary circles denote the geometrical entity where the moment is defined.

(a) φ1e1 (b) φ2e1 (c) φ1e2 (d) φ2e2

(e) φ1e3 (f) φ2e3 (g) φ1K (h) φ2K

Figure 6. Vector-field plots of the shape functions in the second order
edge element. The indices of edges follow the geometrical entities indices for
the reference tetrahedron in Fig. 2a restricted to the plane z = 0. Auxiliary
circles denote the geometrical entity where the moment is defined.

4.1.1. Hexahedra. Let us now define the moments for a curl-conforming FE defined on a
general hexahedron. Given an integer k ≥ 1, the set of functionals that forms the basis in
two dimensions reads:

σe(uh) :=

∫
e
(uh · τ )q ∀q ∈ Pk−1(e), ∀e ∈ K,

σK(uh) :=

∫
K
uh · q, ∀q obtained by mapping q =

(
1

det(JK)

)
JK q̂,

q̂ ∈ Qk−1,k−2(K̂)×Qk−2,k−1(K̂),
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where τ is the unit vector along the edge. In 3D, the set of functionals reads

σe(uh) :=

∫
e
(uh · τ )q ∀q ∈ Pk−1(e), ∀e ∈ K

σf (uh) :=

∫
F

(uh × n) · q ∀q obtained by mapping q = J−TK (J f̂ q̂),

q̂ ∈ Qk−2,k−1(F̂)×Qk−1,k−2(F̂), ∀F ∈ K

σK(uh) :=

∫
K
uh · q ∀q obtained by mapping q =

(
1

det(JK)

)
JK q̂,

q̂ ∈ Qk−1,k−2,k−2(K̂)×Qk−2,k−1,k−2(K̂)×Qk−2,k−2,k−1(K̂)

where n is the unit normal to the face. The definition of the face moments in (??) requires
to transfer either the 3D vector (uh × n) to the face F or the vector q̂, contained in a
reference face, to the 3D physical cell. We choose this latter option, which implies the

transformation of the vector q̂ to the reference cell through the face Jacobian J f̂ =
∂ΦK̂
∂xf̂

.

4.1.2. Tetrahedra. On a general tetrahedronK, we define the moments for a curl-conforming
FE as follows. Given an integer k ≥ 1, the set of functionals that forms the basis in two
dimensions reads

σe(uh) :=

∫
e
(uh · τ )q ∀q ∈ Pk−1(e), ∀e ∈ K

σK(uh) :=

∫
K
uh · q ∀q obtained by mapping

q =

(
1

det(JK)

)
JK q̂, q̂ ∈ [Pk−2(K̂)]2.

Clearly, we have 3k edge DoFs and k(k − 1) inner DoFs, which lead to a total number of
nΣ = k(k + 2) DoFs. In three dimensions the set Σ is defined as

σe(uh) :=

∫
e
(uh · τ )q ∀q ∈ Pk−1(e), ∀e ∈ K

σf (uh) :=
1

‖F‖

∫
F
uh · q ∀q = JK q̂ s.t. q̂ · n̂ = 0,

q̂ ∈ [Pk−2(f̂)]3 ∀f ∈ K

σK(uh) :=

∫
K
uh · q ∀q obtained by mapping

q =

(
1

det(JK)

)
JK q̂, q̂ ∈ [Pk−3(K̂)]3.

4.2. Nedelec interpolator. The space of edge FE functions can be represented as the
range of an interpolation operator πh that is well defined for sufficiently smooth functions
u ∈ H(curl,Ω) by

πh(u) :=
∑
a

ua(u)φa(25)

where ua(u) = σa(u) are the evaluation of the moments for the function u described for
the hexahedra and tetrahedra cases in Sect. 4.1 for all e ∈ E , F ∈ F and K ∈ Th. Note
that Dirichlet boundary conditions can be strongly imposed in the resulting system (usual
implementation in FE codes) by evaluating the moments corresponding to edges and/or
faces on the Dirichlet boundary given the analytical expression of the tangential trace.
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Figure 7. Oriented mesh. Global information (left) and its local, oriented,
counterpart (right) for two elements Ki and Kj . Common edges for two
adjacent tetrahedra will always agree in its direction, as well as chosen
tangent vectors τ1 and τ2 to the common face.

4.3. Global DoFs. In order to guarantee global inter-element continuity with Piola-
mapped elements, special care has to be taken with regard to the orientation of edges and
faces at the cell level. Let us consider a global numbering for the vertices in a mesh and
a local numbering at the cell level. Given an edge/face, sorting its vertices with respect
to the local (resp. global) index of their vertices, one determines the local (resp. global)
orientation of the edge/face. A mesh in which the local and global orientation of all its
edges and faces coincide is called an oriented mesh. For oriented meshes, common edges
or faces for two adjacent tetrahedra will always agree in its orientation, thus represent the
same global DoF. Tetrahedral meshes are oriented with a simple local renumbering [21],
and we restrict ourselves to hexahedral octree meshes that are oriented by construction.

Local DoFs are uniquely determined by the cell in which they are defined, the geomet-
rical entity within the reference cell that owns them and the local numbering of DoFs
within the geometrical entity (see Sect. 3.3.1). The local numbering only depends on the
orientation of the geometrical entity through the ordering of its vertices.

Global DoFs are defined as an equivalence class over the union of the local DoFs for
all cells. Two local DoFs are the same global DoF if and only if they belong to the
same geometrical object and the same local numbering within the geometrical object in
their respective cells. The previous equivalence class leads to a curl-conforming FE space if
local orientations of geometrical objects coincide with a global orientation, i.e., on oriented
meshes only.

For the sake of illustration, see the simple mesh depicted in Fig. 7, composed by two
tetrahedra defined by the global vertices v1, v2, v3, v4 and v5. The two elements share
a common face, defined by 3 vertices that have different local indices for all vi ∈ Ki

and vj ∈ Kj . The ordering convention, local indexing according to ascending global
indices, ensures that both triangles agree on the direction of the common edges and the
common face. Note that the Jacobian of the transformation may become negative with
the orientation procedure. We only need to make sure that the absolute value of the
Jacobian is taken whenever the measure of the change of basis is applied. The situation
is much more involved for general hexahedral meshes. In any case, our implementation
of hexahedral meshes relies on octree meshes, where consistency is ensured. It is easy to
check that an octree mesh in which a cell inherits the orientation of its parent is oriented
by construction.
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5. Edge FEs in h-adaptive meshes

In this section, we expose an implementation procedure for non-conforming meshes
and edge FEs of arbitrary order. In the following, we restrict ourselves to hexahedral
meshes, even though the extension to tetrahedral meshes is straightforward. Our procedure
can also be readily extended to any FE space that relies on a pre-basis of Lagrangian
polynomial spaces plus a change of basis, e.g., Raviart-Thomas FEs.

5.1. Hierarchical AMR on octree-based meshes. The AMR generation relies on
hierarchically refined octree-based hexahedral meshes [55] and the p4est [27] library is
used for such purpose. In this method, one must enforce constraints to ensure the
conformity of the global FE space, which amounts to compute constraints between coarser
and refined geometrical entities shared by two cells with different level of refinement [16].
For Lagrangian elements, restriction operators in geometrical sub-entities are generally
obtained by evaluating the shape functions associated with the coarse side of the face at
the interpolation points of the shape functions on the refined side of the face [40]. The idea
is conceptually equivalent for edge elements but considerably more complex to implement
because DoFs do not represent nodal values but moments on top of geometrical entities.
In this work, we follow an approach based on the relation between a Lagrangian pre-basis,
where moments are trivial to evaluate, and the edge basis, so we can avoid the evaluation
of edge moments on the refined cell to compute constraints.

Let T ′
h be a conforming partition of Ω into a set of hexahedra (quadrilateral in 2D)

geometrical cells K. T ′
h can, e.g., be as simple as a single quadrilateral or hexahedron.

Starting from T ′
h , hierarchical AMR is a multi-step process in which at each step, some cells

of the input mesh are marked for refinement. A cell marked for refinement is partitioned
into four (2D) or eight (3D) children cells by bisecting all cell edges EK . Let us denote by
Th the resulting partition of Ω. Th can be thought as a collection of quads (2D) or octrees

(3D) where the cells of T ′
h are the roots of these trees, and children cells branch off their

parent cells. The leaf cells in this hierarchy form the mesh in the usual meaning, i.e., Th.
Thus, for every cell K ∈ Th we can define `(K) as the level of K in the aforementioned
hierarchy, where `(K) = 0 for the root cells, and `(K) = `(parent(K)) + 1 for any other
cell. Clearly, the cells in Th can be at different levels of refinement. Thus, these meshes
are non-conforming. In order to complete the definition of Th, let us introduce the concept
of hanging geometrical entities. For every cell K ∈ Th, consider its set of vertices NK ,
edges EK and faces FK . We can represent the set of geometrical entities that have lower
dimension than the cell by GK = NK ∪ EK ∪ FK . Its global counterpart is defined as
GT = ∪K∈ThGK . For every geometrical entity s ∈ GT , we can represent by Ts the set of

cells K ∈ Th such that s ∈ GK . Additionally, T̃s is defined as the set of cells K ∈ Th such
that s ( s′ for some s′ ⊂ GK . Roughly speaking, one set contains all the cells where the
geometrical entity is found while the other set contains all the cells where the geometrical
entity is a strict subset of a coarser geometrical entity. A geometrical entity s ∈ GT is
hanging (or improper) if and only if there exists at least one neighbouring cell in T̃s. We

represent the set of hanging geometrical entities with Ghg
T . The definition of the proposed

AMR approach is completed by imposing the so-called 2:1 balance restriction, which is
used in mesh adaptive methods by a majority of authors as a reasonable trade-off between
performance gain and complexity of implementation [55, 27, 16].

Definition 5.1. A d-tree (d = {2, 3}) is 2:1 k-balanced if and only if, for any cell K ∈ Th
there is no s ∈ GK of dimension m ∈ [k, d) having non-empty intersection with the closed

domain of another finer cell K ′ ∈ T̃h such that `(K ′)− `(K) > 1.

For edge FEs it is enough to consider 1-balance since vertices do not contain any associ-
ated DoF. For the sake of clarity, in Figs. 8a and 8b, allowed hanging geometrical entities
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(a) Hanging enti-
ties marked in red.

(b) Not permit-
ted hanging entities
marked in blue.

(c) Centered re-
finement pattern.
` ∈ {2, 3, 4} from
clearest to darkest.

Figure 8. h-adaptive refined (single octree) non-conforming meshes.

are depicted in red, whereas in Fig. 8b, not allowed ones are shown in blue. Clearly, the
latter mesh is the result of a refinement process that does not accomplish the 2:1 balance,
thus not permitted in our AMR approach. Note that in order to enforce the 2:1 balance in
the situation depicted in Fig. 8b, one would need to apply additional refinement to some
cells with lower values for `(K) until the restriction (5.1) is satisfied.

5.2. Conformity of the global FE space. In order to preserve the conformity of the
FE space NDk(Ω), we cannot allow an arbitrary value for DoFs placed on top of hanging
geometrical entities, which will be denoted by hanging DoFs. Our approach is to eliminate
the hanging DoFs of the global system by defining a set of constraints such that curl-
conformity is preserved. We propose an algorithm that computes the edge FE constraints
by relying on the ones of Lagrangian FEs and the change of basis in Sect. 3.4. This way,
one can reuse existing ingredients in a nodal-based AMR code and work already required
to define the edge FE shape functions.

The computation of constraints requires some preliminary work at the geometrical level,
i.e., independent of the FE space being used. Let us first compute the set of hanging

geometrical entities Ghg
T . For every g ∈ Ghg

T , let us compute the coarser geometrical entity

G(g) ∈ G\Ghg
T that contains it. Let us assign to every g ∈ GT one cell such that K(g) ∈ Tg.

With this information, for every g ∈ Ghg
T , we can extract the fine cell Kh ≡ K(g) and the

coarse cell K2h ≡ K(G(g)) (see Fig. 9a).
The coarse cell K2h can be refined (once) to meet the level of refinement of Kh. (The

coarse cell is only refined for the computation of constraints so the original mesh is not

affected.) Let us consider its children cells {Ks
h}2

d

s=1 obtained after isotropic refinement by
the procedure exposed in Sect. 5.1, see Fig. 9b. We represent the patch of subcells with

K̃h =
⋃2d

i=1K
s
h. We can determine a subcell index s(g) such that g ∈ G

K
s(g)
h

; s(g) is not

unique in general, see Fig. 9b.

5.2.1. Constraints for Lagrangian FEs. In this section, we compute the constraints for
Lagrangian FE spaces. Using the geometrical information above, given a hanging geomet-
rical entity g, let us consider the Lagrangian FE spaces Lk(K2h), Lk(K̃h) and Lk(Ks

h)
(see Sect. 4 for the definitions, Figs. 10a and 10b for an illustration). The objective is

to compute the constraints over DoFs on g ∈ Ghg
T that enforce global continuity. This

continuity is enforced by evaluating the coarse cell K2h shape functions on the fine cell
Kh nodes (DoFs) on g. Since both cells share the FE order, such set of constraints leads
to full continuity across g [56, Ch. 3]. Let us explain the steps followed to compute these
constraints.

Clearly, Lk(K2h) ⊂ Lk(K̃h), so we can apply the Lagrangian interpolant to inject

u2h ∈ Lk(K2h) into Lk(K̃h). For this purpose, consider the set of original Lagrangian
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(a) Fine cell Kh ≡ K(g) and
coarse cell K2h ≡ K(G(g)).

(b) Coarse cell refined into
children cells {Ks

h}4s=1. In
this example, s(g) = 2.

Figure 9. The coarse cell K2h is refined in order to meet the highest level
of refinement. Then, the index s(g) can be determined.

(a) FE spaces represen-
tation.

(b) A function in the coarse cell
injected in the refined space or
its restriction to a subcell (de-
noted in blue).

(c) DoFs identification
as conforming meshes.

Figure 10. Scheme for enforcing continuity at common entities for two
cells with different level of refinement with second order Lagrangian FEs.

basis functions {ϕj}nk
j=1 spanning Lk(K2h), which has cardinality nk =

∏d
i (ki + 1) (see

Sect. 3.2 for details). Further, consider the set of moments {σi}ñk
i=1 uniquely defining a

solution in Lk(K̃h), which has cardinality ñk =
∏d
i (2ki + 1) (see Sect. 3.2.1). Given the

vector of DoF values of u2h, the restriction operator R : Lk(K2h)′ → Lk(K̃h)′

Rij
.
= σi(ϕ

j), i = 1, . . . , ñk, j = 1, . . . , nk,

provides the DoFs of the interpolated function. Further, note that given a hanging DoF
uh,i on top of g, it is easy to check that Rij = 0 if DoF u2h,j is not on G(g).

For every subcell Ks
h one can readily determine the map ws(·) such that, given the

local cell index i ∈ {1, . . . , nk} for moments defined on Lk(Ks
h)′ (s ∈ {1, . . . , 2d}), returns

a global moment index i′ ∈ {1, . . . , ñk} in the space Lk(K̃h)′. It leads to the subcell
restriction operator (of DoF values) Rs : Lk(K2h)′ → Lk(Ks

h)′ defined as

Rsij
.
= Rws(i)j i = 1, . . . , nk, j = 1, . . . , nk.

A representation of the action of R and Rs can be seen in Fig. 10b. Note that they are
independent of the level of refinement and the cell in the physical space; they are computed
only once at the reference cell.

We can identify every DoF i ∈ Lk(Kh)′|g with a DoF i′ ∈ Lk(K
s(g)
h )′|g as for conforming

Lagrangian meshes; two local DoF values must be identical if their corresponding nodes
are located at the same position (see Fig. 10c). Finally, the DoF value i ∈ Lk(Kh)′|g is

constrained by the DoF values of the coarse cell through the row i′ of Rs(g).
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(a) FE spaces representa-
tion.

(b) Restriction of a function in-
jected in the refined space to a sub-
cell.

(c) DoFs identification as
conforming meshes.

Figure 11. Scheme for enforcing continuity at common entities for two
cells with different level of refinement with second order edge FEs.

5.2.2. Constraints for edge FEs. In order to compute the constraints for edge FEs one
could follow a similar procedure as the one above, see Fig. 11 for an illustration. Never-
theless, we propose a different approach for the implementation of restriction operator in
edge FEs (see Fig. 11b), which allows us to reuse the restriction operator defined for nodal
FEs and avoids the evaluation of edge moments in subcells. Besides, our approach for
computing the edge FE constraints is applicable to any FE space that relies on a pre-basis
of Lagrangian polynomials plus a change of basis (e.g., Raviart-Thomas FEs) without any
additional implementation effort.

The idea is to build the restriction operator for edge FEs as a composition of operators.
We recall the change of basis matrix Q : Lk(K) → NDk(K) between Lagrangian and
edge FE basis functions (see Sect. 3.4). It leads to the adjoint operator QT : NDk(K)′ →
Lk(K)′ and its inverse Q−T : Lk(K)′ → NDk(K)′. As a result, given a subcell Ks

h, we

can define the restriction operator R̂
s .

= Q−TRsQT : NDk(K2h)′ → NDk(Ks
h)′ that takes

the edge FE DoF values in the coarse cell K2h and provides the ones of the interpolated

function (see (25)) in Ks
h. Again, R̂

s
can be computed once at the reference cell. An

illustration of the sequence of spaces is shown in Fig. 12.

Given a hanging edge/face g ∈ Ghg
T (vertices do not have associated DoFs for edge

FEs), the constraints of its DoFs are computed as follows. We can identify every DoF i ∈
NDk(Kh)′|g with a DoF i′ ∈ NDk(K

s(g)
h )′|g as for conforming meshes (see the equivalence

class in Sect. 4.3 and Fig. 11c). As a result, the DoF value i ∈ NDk(Kh)′|g is constrained

by the DoF values of the coarse cell through the row i′ of R̂
s(g)

.

5.2.3. Global assembly for non-conforming meshes. The definition of the constraints is
used in the assembly of the linear system as follows. First of all, let us write the problem
(7) in algebraic form. The solution u ∈ NDk(Ω) is expanded by {φa}na=1. The elemental
matrices are defined as Mij =

∫
K βφ

j · φi and Kij =
∫
K(α∇ × φj) · (∇ × φi), whereas

the elemental right-hand side is the discrete vector f i =
∫
K fK · φ

i for i, j ∈ {1, . . . , n}.
The usual assembly for every K ∈ Th is performed to obtain the global matrix and array,
hence the algebraic form reads Au = f , where A = K + M. Let us now distinguish
between the set of conforming DoFs uc and the set of non-conforming DoFs unc, whose
cardinalities are nc + nnc = n. One can write the constraints that unc must satisfy in
compact form, unc = Guc, where the entries of G (of dimension nnc×nc) are given by the
described procedure for obtaining the constraining factors between the constrained and
the constraining part. Then, the solution uh, expressed in terms of both types of DoFs
can be written as

uh =

[
uc
unc

]
=

[
I
G

]
uc = Puc,(26)



20 M. OLM, S. BADIA, AND A. F. MARTÍN

Figure 12. Sequence of spaces in order to compute the restriction opera-
tor entries for K2

h with second order edge FEs. Representation of edge and
inner DoFs by arrows and nodes, resp.

and we can write the constrained problem only in terms of the conforming DoFs uc as

Āuc = f̄ ,(27)

where Ā = P TAP and f̄ = P Tf . Our implementation directly builds the constrained
operator Ā by locally applying the constraints to eliminate unc DoFs using the constraints
given by G in the assembly process (see [57] for further details). Once the solution for
conforming DoFs is obtained, hanging DoF values are recovered by (26) as a postprocess.

6. Numerical experiments

In this section, we test the implementation of edge elements and H(curl)-conforming
spaces in FEMPAR [51], a general purpose, parallel scientific software for the FE simula-
tion of complex multiphysics problems governed by PDEs written in Fortran200X follow-
ing object-oriented principles. It supports several computing and programming environ-
ments, such as, e.g., multi-threading via OpenMP for moderate scale problems and hybrid
MPI/OpenMP for HPC clusters. See [50] for a thorough coverage of the software archi-
tecture of FEMPAR , which is distributed as open source software under the terms of the
GNU GPLv3 license. Regarding the content of this document, FEMPAR supports arbitrary
order edge FEs on both hexahedra and tetrahedra, on either structured and unstructured
conforming meshes, and also mesh generation by adaptation using hierarchically refined
octree-based meshes. In order to test our implementation, we will compare both theoreti-
cal and experimental convergence rates. Generally, log-log plots of the computed error in
the considered norms (L2-norm or H(curl)-norm) against different values of h or number
of DoFs will be shown. Let us first cite some a priori error estimates for edge FEs of the
first kind. In the H(curl)-norm, we find the following optimal estimate, presented in [58]:

Theorem 6.1. If Th is a regular family of triangulations on Ω for h > 0, then there exists
a constant C > 0 such that

‖v − πkhv‖H(curl) ≤ Ch
min{r,k}‖v‖Hr(curl),(28)

for all v ∈ Hr(curl), where r > 1
2 determines the regularity of the function v, which is

valid for H(curl)-conforming elements. If the function v is smooth enough to have bounded
derivatives such that s > k, then the estimate states that superlinear convergence can be
achieved as we increase the polynomial order k.
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(a) Analytical function u∗ in the 2D case. (b) Analytical function u∗ in the 3D case.

Figure 13. Analytical functions.

For the L2(Ω) approximation, the following convergence rate can be expected [1].

Theorem 6.2. If Th is a regular family of triangulations on Ω for h > 0, then there exists
a constant C > 0 such that

‖v − πkhv‖L2(Ω) ≤ Ch
k‖v‖Hk(Ω).(29)

In general, we choose analytical functions that do not belong to the FE space. We
show convergence plots with respect to the mesh size for uniform mesh refinement or the
number of DoFs for h-adaptive mesh refinement. In all cases, we will solve the reference
problem (5) with homogeneous, scalar parameters α = β = 1. Unless otherwise stated,
the results are computed in the unit box domain Ω := [0, 1]d. We utilize the method of
manufactured solutions, i.e., to plug an analytical function u∗ in the exact form of the
problem and obtain the corresponding source term that verifies the equation. Then, one
can solve the problem for the unknown u so that the computed solution must converge to
the exact solution with mesh refinement.

6.1. Uniform mesh refinement. In this section, the experimental rate of convergence
will be numerically included in the legend as the value for the slope computed with the
two last available data points in each plot. We will make use of the following analytical
function and source term for all the 2D cases presented in this section:

u∗ =

[
cos(πx1) cos(πx2)
sin(πx1) sin(πx2)

]
, f = (2π2 + 1)u∗,

whereas in 3D cases the analytical function and corresponding source term are given by

u∗ =

cos(πx1) cos(πx2)
sin(πx2) sin(πx3)
cos(πx1) cos(πx3)

 , f = (π2 + 1)u∗ + π2

sin(πx1) sin(πx3)
sin(πx1) sin(πx2)
cos(πx2) cos(πx3)

 .
Dirichlet boundary conditions are strongly imposed over the entire boundary, i.e., ∂ΩD :=
∂Ω, where we enforce the tangent component of the analytical function u∗τ .

6.1.1. Hexahedral meshes. Structured simulations are performed with a structured mesh
on the unit box domain with the same number of elements nK in each direction. Figs. 14
and 15 show the convergence rates with the order of the element k for 2D and 3D cases,
resp. In all cases, the expected convergence ratio (see (28) and (29)) is achieved, presented
up to k = 6 in 2D and k = 4 in 3D.

6.1.2. Tetrahedral meshes. Edge FEs are tested in this section with tetrahedral mesh par-
titions of the domain Ω. Consider a family of tetrahedral meshes {Tm}Mm=1, obtained by
structured, hexahedral meshes plus triangulation of hexahedral cells. Here the element
size denotes the usual definition h = maxK∈Tm hK , being hK the diameter of the largest
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Figure 14. Error norms for different orders 2D hexahedral edge FEs.
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Figure 15. Error norms for different orders 3D hexahedral edge FEs.
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Figure 16. Error norms for different orders 2D tetrahedral edge FEs.

circumference or sphere containing K for 2D and 3D, resp. Convergence results in Figs.
16 and 17 are computed with this family of meshes. In all cases, computed convergence
ratios are consistent with the estimates in (28) and (29).

6.2. h-adaptive mesh refinement. In this section, we present results for meshes ob-
tained by adaptive refinement from an initial structured, hexahedral conforming mesh.
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Figure 17. Error norms for different orders 3D tetrahedral edge FEs.

The refinement process follows the usual steps: 1) solve the problem on a given mesh, 2)
compute an estimation of the local error contribution at every cell using the solution com-
puted at the previous step, 3) mark the cells with more error for refinement, and 4) refine
the mesh and restart the process if the stopping criterion is not fulfilled. For comparison
purposes, we will also consider a uniform mesh refinement. Then, log-log convergence
plots for the (L2 or H(curl)-) error against the number of free DoFs involved in the simu-
lation is presented for analytical solutions that contain a singularity in a re-entrant corner.
We provide numerical results for problems where the analytical solution is known a priori,
thus we can make use of the true error. In any case, the implementation of the a posteriori
error estimators enumerated in Sect. 1 does not pose any extra implementation challenge
to what it is already exposed in the paper.

Let us consider a L-shaped domain, Ω = [−1, 1]2 \([0, 1]× [−1, 0]) with Dirichlet bound-
ary conditions imposed over the entire domain boundary. The source term f is such that
the solution in polar coordinates (r, θ) is

u = ∇
(
r

2n
3 sin

(
2n

3
θ

))
.(30)

The chosen analytical function u has a singular behaviour at the origin of coordinates for
n = 1, which prevents the function to be in H1(Ω). Larger values of n lead to smoother
solutions. The regularity of the solution is well studied [59], and theoretical convergence
rates (28) are bounded by min(2n/3, k).

In Figs. 19 and 20, the theoretical convergence rates are achieved for every order of
converge. In the case n = 1, all FE orders lead to the same convergence rate since k > 2/3.
For a smoother solution, corresponding to n = 4, solutions converge to the expected order
min(k, 8/3). Next, we analyze the error with adaptive refinement. The refinement process
is such that, at every iterate, the 5% of cells with higher local contribution to the L2-error
are marked for refinement. The fraction of cells to be refined is intentionally chosen to
be small since we aim to obtain a localized refinement around the singularity. Figs. 18a
and 18c show the initial mesh and the final mesh after 18 refinement steps, resp. In Fig.
21, we plot the (L2− or H(curl)−) error against the number of DoFs. We show two plots
for each order, namely uniform refinement (solid line) and adaptive refinement (solid line
with circles). In all cases, better efficiency is achieved by adaptive meshes, i.e., less error
for a given number of DoFs.
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(a) L-shaped domain with initial mesh. (b) Analytical solution for the 2D L-shape
domain with a singularity at the corner.

(c) L-shaped domain with refined mesh after
18 iterative mesh refinements.

(d) Corner zoom of the refined mesh.

Figure 18. fichera 2D problem. At each mesh refinement step the 5% of
cells with highest local cell L2-error are refined.

10 -1

h

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

er
ro

ri
n

L
2
-n

or
m

ND1, r=-0.65

ND2, r=-0.67

ND3, r=-0.67

ND4, r=-0.67

ND5, r=-0.67

10 -2 10 -1

h

10 -10

10 -5

10 0

er
ro

ri
n

L 2
-n

or
m

ND1, r=-1.01

ND2, r=-2.00

ND3, r=-3.00

ND4, r=-4.00

ND5, r=-5.00

ND6, r=-6.00

10 -2 10 -1

h

10 -10

10 -5

10 0

er
ro

ri
n

L 2
-n

or
m

ND1, r=-1.01

ND2, r=-2.00

ND3, r=-3.00

ND4, r=-4.00

ND5, r=-5.00

ND6, r=-6.00

(a) L2-norm of the error.

10
-1

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

e
rr

o
r 

in
 H

(c
u
rl
)-

n
o
rm

ND
1
, r=-0.65

ND
2
, r=-0.67

ND
3
, r=-0.67

ND
4
, r=-0.67

ND
5
, r=-0.67

(b) H(curl)-norm of the error.

Figure 19. Error norms for the fichera 2D problem with uniform refine-
ment for n = 1.

Let us now consider the Fichera domain Ω = [−1, 1]3 \ [−1, 0]3. The source term f is
such that the solution is

u = ∇
(
r

2
3 sin

(
2t

3

))
t = arccos

(xyz
r

)
,(31)

where r is the radius in 3D polar coordinates. The analytical solution has a singular
behaviour near the origin and again u /∈ H1(Ω). We follow the same analysis to determine
the efficiency of the h-adaptive scheme.

Fig. 22 shows the error vs. the number of DoFs of the h-adaptive refinement process.
In Fig. 23, we illustrate the refinement process that takes place from an initial structured
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Figure 20. Error norms for the fichera 2D problem with uniform refine-
ment for n = 4.
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Figure 21. Error norms for the fichera 2D with n = 1 and adaptive
refinement, which at every iterate marks for refinement the 5% of cells that
show the highest local cell L2-error. Lines without markers show the error
convergence with uniform refinement process for every FE order.

mesh composed of 83 elements (see Fig. 23a). Clearly, the closer a cell K is to the corner
(see Fig. 23b), the higher the final `(K). However, Fig. 23b also shows that the refinement
is not as localized as in the 2D case, with a greater portion of the domain with higher
levels of refinement. This fact has a clear impact on the efficiency achieved by the adaptive
refinement for first order edge FEs, where the efficiency gain is mild. On the other hand,
the gain for second order FEs is noticeably higher. Finally, Figs. 23c and 23d show the
refined mesh after 12 refinement iterates and a zoom at the corner with the singularity.

7. Conclusions

In this work, we have covered in detail a general implementation of p-adaptive and
h-adaptive tetrahedral and hexahedral edge FE methods. We have implemented pre-bases
that span the local FE spaces (anisotropic polynomials) which combined with a change
of basis automatically provide the shape functions bases. It leads to a general arbitrary
order implementation, confronted with hard-coded implementations that preclude high
order methods. In order to guarantee the tangent continuity of Piola-mapped elements,
special care must be taken with the orientation of the cell geometrical entities. In the
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10
3

10
4

10
5

10
6

# DoFs

10
-3

10
-2

10
-1

10
0

e
rr

o
r

in
L

2
-n

o
rm

h-ref, ND
1

h-ref, ND
2

L
2
-n

o
rm

e
rr

o
r

in

(a) L2-norm of the error with number of
DoFs.

10
3

10
4

10
5

10
6

# DoFs

10
-3

10
-2

10
-1

10
0

e
rr

o
r 

in
 H

(c
u
rl
)-

n
o
rm

h-ref, ND
1

h-ref, ND
2

(b) H(curl)-norm of the error with number
of DoFs.

Figure 22. Error norms for the Fichera 3D problem with uniform
(straight line) and adaptive refinement. 5% of cells that have the high-
est local L2-error marked for refinement at every refinement step.

(a) Initial mesh for the Fichera cube do-
main.

(b) Analytical solution for the 3D Fichera
cube.

(c) Mesh after 12 iterative refinement steps
for the Fichera cube domain.

(d) Corner zoom for the 3D Fichera cube.

Figure 23. Adaptive meshes for the Fichera 3D problem. Cells with
highest 5% Local L2-error(K) are refined at each refinement step.

implementation, we require the local numbering of nodes within every element to rely
on sorted global indices, i.e., oriented meshes. This manner, we automatically satisfy
consistency in every geometrical entity shared by two or more FEs. Finally, we propose an
original approach to implement global curl-conforming FE space on hierarchically refined
octree-based non-conforming meshes. The strategy, which is straightforwardly extensible
to any FE based on polynomial spaces, is based on the original Lagrangian constraints
and the interplay between the sets of Lagrangian and edge basis functions. To obtain
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every constraint, a sequence of spaces can be built so as we can avoid the evaluation of
moments in the edge FE space. A detailed set of numerical experiments served to test
the implementation, where we show agreement between theoretical and numerical rates of
convergence. The proposed approach has been implemented (for first kind edge H(curl)-
conforming FE) in FEMPAR, a scientific software for the simulation of problems governed
by PDEs.

We note that this framework can be extended to other polynomial-based FEs. Cus-
tomizable ingredients are the original pre-basis of polynomials, the moments, the geomet-
rical mapping, and the equivalence class of DoFs. However, the change of basis approach
to obtain the corresponding shape functions and the enforcement of continuity for non-
conforming meshes is identical. In fact, the same machinery has already been used in
FEMPAR to implement Raviart-Thomas FEs and can straightforwardly be used to imple-
ment Brezzi-Douglas-Marini FEs [41], second kind edge FEs [42], or recent divergence-free
FEs [43].

We believe that the comprehensive description of all the implementation issues behind
edge FE method provided herein will be of high value for other researchers and devel-
opers that have to purport similar developments and increase their penetration in the
computational mechanics community.
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