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Eskisehir Technical University, Turkey

*Correspondence:

Mariano Angelo Zanini

marianoangelo.zanini@dicea.unipd.it

Specialty section:

This article was submitted to

Bridge Engineering,

a section of the journal

Frontiers in Built Environment

Received: 14 May 2018

Accepted: 13 February 2019

Published: 13 March 2019

Citation:

Zanini MA, Faleschini F and Casas JR

(2019) State-Of-Research on

Performance Indicators for Bridge

Quality Control and Management.

Front. Built Environ. 5:22.

doi: 10.3389/fbuil.2019.00022

State-Of-Research on Performance
Indicators for Bridge Quality Control
and Management

Mariano Angelo Zanini 1*, Flora Faleschini 1,2 and Joan Ramon Casas 3

1Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy, 2Department of

Industrial Engineering, University of Padova, Padova, Italy, 3Department of Civil and Environmental Engineering, Technical

University of Catalonia, BarcelonaTech, Barcelona, Spain

The present study provides a review of the most diffused technical and non-technical

performance indicators adopted worldwide by infrastructure owners. This work,

developed within the European COST Action TU 1406—“Quality specifications for

roadway bridges, standardization at a European level,” aims to summarize the

state-of-art maintenance scheduling practices adopted by bridge owners, mainly

focusing on the identification and classification of the most diffused performance

indicators (PIs). PIs are subdivided in technical and non-technical ones: for this latter

subclass, PIs are classified in environmental, social and economic-targeted. The study

aims to be a reference for researchers dealing with performance-based assessments

and bridge maintenance and management practices.

Keywords: bridge maintenance, infrastructure planning, management methods, performance indicators,

quality control

INTRODUCTION

Roadway infrastructure asset management aims at define the optimal maintenance strategies
required in order to ensure the fulfillment of a desired performance level, thus achieving a pre-
defined performance goal. Performance levels are usually assessed with the so-called performance
indicators (PIs), representing an objective technical-based metric wherewith a rational ranking
of maintenance intervention needs can be derived. PIs can be currently derived from visual
examination, or based on results coming from the execution of non-destructive tests or the
installation of temporary/permanent monitoring systems. In addition, PIs can be defined at
different levels (i.e., component, system and network level) and can be classified in qualitative- or
quantitative-based.

Once a PI has been assessed, it has to be subsequently compared with its related performance
goal (PG), to evaluate if, for the analyzed bridge, the quality control (QC) plan is accomplished.
Different approaches for the quantification and use of PIs are currently adopted in European
countries regarding the quality control plans for roadway bridges. For this reason, the main aim
of COST TU 1406 Action is to develop an overall homogenization among Countries, bringing
together research and practicing communities, to establish a unified European guideline in
this field.
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Hence, the present study provides an extensive review about
operational PIs currently in use for bridges, and research PIs
under investigation by several research groups worldwide, that
may have a feasible application for developing QC plans of
roadway administrators in the next future. In particular, a special
focus is given to not-purely technical PIs (e.g., environmental,
social, economic) that might be considered in the development
of a sustainable QC plan. Figure 1 shows how this paper is
organized, where red text and numbers indicate the section
and subsection labels. A total of 263 were surveyed to extract
key information used to depict the present state-of-research:
Table 1 lists the subdivision of documents by type, showing how
more than two thirds of references come from international
journal papers.

The first part of the work is devoted to describe tools currently
used to quantify the technical PIs for existing bridges. The second
part deals with a comprehensive review of the technical and non-
technical PIs, used both in practical and research activities. Lastly,
an overview of decision-making approaches currently in use for
handling different types of PIs is detailed, and a discussion on
present literature gaps and future developments in this field of
research is addressed.

PERFORMANCE INDICATORS’
ASSESSMENT TOOLS

As we are mainly interested at reviewing those PIs that can be
objectively quantified, it is first necessary to give some insights
on the tools currently adopted for the assessment of technical
PIs for bridge management. Four different macro groups can
be identified: visual surveys, probing, non-destructive techniques
(NDTs) and structural health monitoring (SHM). Figure 2 shows
a sketch of the four categories of NDTs that may be used for
assessing technical PIs of existing bridges.

Visual Surveys
The use of visual surveys is the most diffused method for
assessing structural damage among Bridge Management Systems
(BMSs). Indeed, traditional BMSs are based on condition rating
systems combining information from visual inspections on
bridge components into overall bridge condition rates. Usually,
trained technicians carry out inspections, compiling handwritten
records during field surveys.

As reported in Moore et al. (2001), Caner et al. (2008),
Avsar et al. (2012), and Tenzera et al. (2012), visual inspections
suffer for important variability in the results due to subjectivity.
Subjectivity in visual inspection outcomes may be mainly
attributed to different experience levels among trained inspectors
that lead to varying perception of the severity of an observed
damage. In addition, environmental conditions that can be
present at the time of the survey execution may also affect its
outcomes, e.g., due to differences in light intensity and visual
resolution of different colors.

Some efforts were carried out in this context to improve
the effectiveness and accuracy of visual inspections. Sunkpho
and Garrett (2003) illustrated the benefits coming from the use

of speech recognition in the execution of visual inspections in
snowy cold regions, instead of classic handwriting on paper,
showing how it may reduce the risk that inspectors will meet
with accidents. Kim et al. (2008) proposed other robotic solutions
for damage detection, also with the combined use of wall-
climbing and flying robots: such techniques allow carrying out
safer damage detection operations, and are powerful tools when
dealing with large bridges and hardly accessible viaducts. Oh
et al. (2009) presented an interesting application of a robotic
system able to detect automatically cracks, demonstrating the
effectiveness of this solution able to overpass the problem of
subjectivity of bridge inspectors. Koch et al. (2015) and Omar
and Nehdi (2017) detailed interesting and up-to-date review of
computer vision-based defect detection techniques for bridges.

Probing
Probing is required when a quantitative characterization of main
material properties is required, and it commonly consists in
the extraction of samples, to be subsequently characterized via
laboratory tests (e.g., when dealing with the characterization
of steel or concrete stress-strain curves) or with in-situ tests
(e.g., single-double flat jack systems, see Pellegrino et al., 2014).
Depending on the material of each structural element, different
types of probing should be carried out. Reinforced concrete
members may be investigated with pull-out tests, with concrete
cover removal to check the presence of corrosion on steel
reinforcement rebars, with concrete coring for assessing both
mechanical and durability-related properties, and extraction
of steel rebars. Masonry bridges can be investigated via the
execution of mortar penetration tests, in-situ single/double flat
jacks, and endoscopic tests. Probing for existing steel bridges
consists in the extraction of dog-bone samples from steel profiles,
and the removal of bolts to be further tested with laboratory tests.

Non-destructive Techniques
Non-destructive techniques (NDTs) are another tool that can
be used for the detection of cracks and deterioration from
steel corrosion, providing information that cannot be derived
with a simple visual examination of the structural elements.
Nevertheless, they are usually less adopted, since they are more
cost- and time-consuming with respect to visual inspections,
especially due to the need of lane closures (Hiasa et al., 2017). In
addition, sometimes difficulties may arise in data interpretation
as evidenced in Kee and Gukunski (2016). More in general,
it is of crucial importance to know the implicit uncertainties
in the implementation of NDTs, since such issue can severely
impact on a reliability of a risk-based inspection plan (see
Hesse et al., 2015). In few countries, existing bridge condition
assessment procedures include NDT surveys, but their periodical
execution is still rare. NDTs results are generally used to assess
in a more reliable way the most suitable condition state of a
deteriorated component (Pushpakumara et al., 2017). In this
regard, Gucunski et al. (2012), evidenced how NDTs can be
used for a proper segmentation of a bridge structure in subparts
characterized by similar condition states, with the final aim of
helping inspectors to make a more objective rating. Omar et al.
(2017a) presented an interesting study providing a procedure
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FIGURE 1 | Workflow of the presented review on PIs for bridge QC and management.

TABLE 1 | Type of sources analyzed in the present review.

Type International

journal

papers

International

conference

papers

Reports Books/Book

chapters

Technical

standards

Total

Number 196 36 19 10 2 263

for an integrated defect-based condition rating procedure for
RC bridges able to integrate information derived from the
implementation of NDTs in terms of extent and severity of
damage into a rating system via the use of a fuzzy approach.

However, NDTs are often badly correlated with material
properties (like in the case of probing), and therefore their
outcomes cannot be easily used in a further quantitative
reliability assessment (Breysse et al., 2011; Breysse, 2012; Sbartai
et al., 2012). A review ofNDTs and strategies for the optimization
of their implementation in BMS can be found in the results of the
EC funded project “Sustainable Bridges” with particular emphasis
to automatized solutions (Sustainable Bridges, 2007). In Jensen

et al. (2006), a general discussion with possible implementation
of NDTs in the framework of principal, general and special
inspections was presented. In recent literature, Rehman et al.
(2016) presented an interesting review of existing NDTs applied
for defect detection in reinforced concrete bridges. Several
comparative studies were conducted to emphasize merits and
drawbacks of alternative NDTs. Among others, Yehia et al.
(2007) conducted comparative tests on specimens using the
three most commonly diffused NDTs in United States [i.e.,
Ground Penetrating Radar (GPR), Impact Echo (IE) and Infrared
Thermography (IT)] evidencing how GPR seemed to be the most
promising technique in terms of accuracy and time consumption.
Oh et al. (2013) illustrated the results of an overpass condition
assessment via the use of three NDTs (i.e., IE, IT, and chain
drag) with the aim to compare their practicality and ability in
detecting shallow lamination. Omar et al. (2017b) proposed a
fuzzy methodology for assisting bridge stakeholders in a rational
appraising of the most suitable NDT to be used given time-
and cost-constraints. Some efforts were recently oriented in the
development of automatized solutions. The US Federal Highway
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FIGURE 2 | Sketch of the tools currently in use for the assessment of technical PIs.

Administration in the framework of its Long Term Bridge
Performance (LTBP) Program, developed a robotic assisted
bridge inspection tool called RABIT (Gucunski et al., 2015), able
to provide a comprehensive condition assessment of concrete
bridge decks via the adoption of different NDTs integrated into
a robotic platform.

Structural Health Monitoring
Structural Health Monitoring (SHM) is the most advanced
type of NDT and it is usually implemented with the aim to
characterize the main modal parameters, that will be following
linked to a structural model in order to assess the safety
level of an existing bridge against static and dynamic loading
(Tecchio et al., 2013; Morbin et al., 2014; Prendergast et al.,
2018). Extensive literature on SHM techniques and related
algorithms can be found with reference to damage detection
for bridges. Salawu (1997) presented a first review of existing
SHM methods, followed by other state-of-art works (Carden
and Fanning, 2004): among others, Hsieh et al. (2006) and
Fan and Qiao (2011) reviewed different types of vibration
sources and damage identification methods discussing in detail
merits and drawbacks. Farrar and Jauregui (1998) compared the
use of five alternative damage identification algorithms for a
bridge case study. Over the last decade, a significant number
of innovative sensors were introduced in civil engineering
applications in order to implement continuous monitoring and
real-time assessment of bridge performances. Among others,

Nair and Cai (2010), Elfergani et al. (2013), and Behnia
et al. (2014) illustrated the state-of-art on acoustic emission
monitoring of bridges. Lopez-Higuera et al. (2011) and Ye et al.
(2014) presented comprehensive reviews in the use of fiber optic-
based sensors in SHM systems, Casas and Cruz (2003) described
the application of intensity modulated and spectrometric fiber
optic sensors for monitoring temperature, load measurements,
as well as strain, corrosion and cracking of a pre-stressed
bridge case study. Barrias et al. (2016) reviewed the current
applications of distributed fiber optics for bridges and civil
engineering structures. Lynch and Kenneth (2006) presented a
review of different wireless sensors adopted in civil engineering
applications. Digital image correlation (DIC) can also be used
as alternative to traditional sensors in SHM applications, and
consists in an optical measurement technique able to record
tridimensional deformation via digital photography. One of
the main advantages of DIC is that it does not require any
equipment for the installation of components as well as wirings
like in traditional SHM systems. Some applications of DIC in
SHM applications can be found in Stephen et al. (1993), Bell
et al. (2012), Nonis et al. (2013), Dworakowski et al. (2015),
and Pan et al. (2016).

However, SHM systems are often costly, and therefore their
application has to be carefully designed and justified in case of
strategic bridges: in this regard, Guo et al. (2004) illustrated a
possible use of genetic algorithms for the definition of the optimal
placement of sensors in SHM applications. In addition, modern
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long-term SHM systems collect huge amounts of data that
have to be adequately post-processed (Soyoz and Feng, 2009):
the development of fast algorithms and new metrics represents
therefore a relevant topic of research for advancing in this
field. Among others, genetic algorithms and machine learning
techniques (Nick et al., 2015; Liang et al., 2016) can be used to
handle huge amount of data deriving from long-term SHMs, also
taking into account effects of incomplete measurements (Marano
et al., 2011) and operational/environmental variability over time
(Figueiredo et al., 2011). Results of SHM are usually too linked
to quantitative condition assessment: in this regard, interesting
case study applications were presented by Catbas et al. (2008),
Frangopol et al. (2008), Orcesi and Frangopol (2010), Liu et al.
(2010), Orcesi et al. (2010) considering the reliability index as
quantitative measure to be linked with monitoring data.

TECHNICAL PERFORMANCE INDICATORS

Once classified tools available for assessing bridge condition,
a detailed overview on existing technical PIs is presented. In
the framework of a modern BMS, one of the key steps is
damage assessment: usually it is expressed adopting suitable
technical PIs, a metric for defining a qualitative/quantitative
judgment via the use of the abovementioned tools on the bridge
component/system condition state. In general terms, technical
PIs can be subdivided in two main categories: operational
and research indicators. While operational technical PIs are
commonly used in practice by engineers of road agencies dealing
with large stocks of bridges, research technical PIs are more
refined metrics developed by academics, and whose practical
application is still ongoing. Patidar et al. (1991) first gave a clear
definition of technical PI in BMS applications, highlighting how
it should have the following properties:

• Appropriateness: PI “should be an adequate reflection of at least
one agency goal or objective” (Patidar et al., 1991);

• Comprehensible and defensible: PI “should be clear, simple,
and concise in its definition” (Patidar et al., 1991) as well as in
its method of computation;

• Comprehensive: PI levels “should cover the full range of possible
consequences” (Patidar et al., 1991);

• Dimensionality: PI “should be able to capture the required level
of each dimension associated with the decision-making problem,
and it should be comparable across different time periods or
geographic regions” (Patidar et al., 1991);

• Measurability: PI should be objectively measured;
• Predictable: it “should be possible to reliably determine

future PI levels” (Patidar et al., 1991) like with the use of
forecasting models;

• Realistic and operational: PI should be reliably measured
without excessive effort or time;

• Unambiguous: PIs should be clearly defined and their metric
should be directly related to the consequences.

A detailed overview of the operational and research technical PIs
actually available is reported in the following, describing in detail
all PIs reported in Figure 3.

Operational Technical Performance
Indicators
Regarding operational technical PIs, the most commonly
adopted PI is a qualitative condition rating (also called condition
state or condition value, in a numerical scale, e.g., 0–5 or
0–9), and usually assigned during a visual survey (Gattulli
and Chiaramonte, 2005). Several BMSs, like BRIME in Europe
or PONTIS and BRIDGIT in the United States, were thus
developed in past decades based on data mainly collected
during visual surveys and adopting mathematical and statistical
forecasting models for maintenance planning (Austroads, 2002).
Several researchers (e.g., Catbas and Aktan, 2002; Mishalani
and Madanat, 2002; Suksuwan and Hadikusumo, 2010; Adey
and Hajdin, 2011; Aflatooni et al., 2013; Fernando et al., 2013;
Nasrollahi and Washer, 2015; Denysiuk et al., 2016; Zanini et al.,
2016a, 2017a; Quirk et al., 2017) proposed frameworks for the
optimal maintenance planning on the basis of visual-inspection
data, mainly considering environmental deterioration, and in
some cases also consequences of natural hazards (e.g., Valenzuela
et al., 2010; Fernando et al., 2015). Critical issues of condition
rating-based BMSs are represented by the subjectivity in the
judgments provided by the inspectors, non-linear relationships
in damage progression over time, unbalanced availability of
records, missing data. Visual inspections are highly subjective as
noted by Tenzera et al. (2012), who pointed out that inspectors
with different expertise levels can label the same bridge with a
different rating. Hence, this implies that the same judgment from
different bridge inspectors may result in a significant dispersion
of condition rating results. Moore et al. (2001) analyzed this
aspect, i.e., the reliability of visual inspection methods in
USA, highlighting how external environmental aspects (e.g.,
presence of traffic, accessibility of the bridge members and
connections, wind speed) can significantly affect dispersion in
condition ratings. These observations highlight the need for
improving inspector training programs and condition rating
procedures. In addition, as explained in Wang et al. (2007),
even with perfectly trained inspectors, different assessments
can be obtained depending on weather conditions (inspection
performed during sunny, cloud or rainy days). In this regard,
Vanderzee (2004) evidenced how future BMS will tend to
substitute a subjective process with an objective one, by
switching the assessment tools from the classical visual survey
to more sophisticated mixed NDT/SHM solutions. The use of
probabilistic approaches (Zambon et al., 2017), also able to link
the probability of damage detection with a certain condition
rating (Frangopol et al., 1997; Kim et al., 2013), might represent
viable solutions for properly handling such type of uncertainties.
In this context, the implementation of fuzzy-logic tools (Zhao
and Chen, 2002; Kawamura and Miyamoto, 2003; Sasmal et al.,
2006; Pan, 2007; Sasmal and Ramanjaneyulu, 2008; Tarighat
and Miyamoto, 2009; Liu et al., 2017) or evidential reasoning
approaches (Wang and Elhag, 2008; Ayati et al., 2012; Bolar
et al., 2013) were also explored in recent scientific literature, as
alternative approaches for accounting uncertainties in a simpler
way than via fully probabilistic analyses. Li and Burgueno (2010)
presented and interesting study where different soft computing
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FIGURE 3 | Sketch of the investigated technical PIs.

methods were applied to visual surveys, in order to reduce
uncertainties and thus calibrating reliable deterioration forecast
models. In addition, condition-rating systems cannot provide a
clear structural safety judgment, since no quantitative evaluation
is done both from resistance and loading sides. For this reason,
it should be necessary to couple them with safety indicators in a
process of multi-variate optimization, as proposed in Neves and
Frangopol (2005).

Research Technical Performance
Indicators
Several research technical PIs were proposed in the last decades,
with the aim to optimize maintenance planning of aging bridges,
mainly based on the quantitative evaluation of the structural
safety, usually expressed in terms of probability of failure for a
given limit state function, considering both load and resistance
characteristics. Saydam and Frangopol (2011) and Zhu and
Frangopol (2012) proposed reviews of the most valuable research
technical PIs, also taking into account their time-dependency.
Among the various proposals, main research technical PIs are:

• Structural reliability: it is one of the most common
research technical PIs, quantifying the probability of failure
for an investigated component/system (Tabsh and Nowak,
1991; Estes and Frangopol, 1998; Frangopol et al., 2001).
Reliability can quantitatively take into account load models
and resistance of structural elements, also considering
deterioration phenomena that may affect safety over time
(Val and Melchers, 1997; Stewart and Rosowsky, 1998; Vu
and Stewart, 2000; Kong and Frangopol, 2003). Reliability
can also be adopted when dealing with natural hazards like
earthquakes (Choi et al., 2004; Duenas-Osorio and Padgett,

2011), flooding (Johnson and Ayyub, 1992; Muzzammil et al.,
2008), hurricanes (Padgett et al., 2012; Ataei and Padgett,
2013). A comprehensive review of the reliability-based PIs is
provided by Ghosn et al. (2016a);

• Cumulative probability of failure: a PI that quantifies the
probability that the time to failure of a component is less than
a generic time interval value t, and is calculated starting from
the probability density function of the time to failure (Hoyland
and Rausand, 1994; Okasha and Frangopol, 2010a);

• Survivor function: this PI estimates the complement of the
cumulative probability of failure, and provides an estimation
of the availability, i.e., the value of the probability that
a component will not fail before a generic time instant
t (Leemis, 1995);

• Hazard rate function: a PI providing a measure of the
instantaneous failure rate of a structural component
(Ramakumar, 1993), defined as the conditional probability
that the component will fail in a future time interval, given
the fact that it has survived until the present time instant
(Mauch and Madanat, 2001);

• Structural redundancy: this PI represents an estimate of
warning prior to system collapse (Okasha and Frangopol,
2010a), or in other terms, the ability of a structural system
to continue carrying load after the failure of one structural
component, e.g., like a column (Frangopol et al., 1992).
Several literature works presented formulations for assessing
redundancy, but no agreement has been reached in the
most suitable metric to be used for such PI. Frangopol
and Curley (1987) first proposed to adopt reliability metric
for quantifying redundancy. Hendawi and Frangopol (1994)
defined redundancy as the ratio between the reliability index
of the intact system in a generic time instant and the
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difference of reliability indexes calculated for the intact and
damaged system at the same time instant (see also Okasha
and Frangopol, 2009, 2010b). Such difference can be seen as
a measure of the availability of system warning before the
entire structural system failure (Anitori et al., 2013). Ghosn
et al. (2016b) extended the field of application of structural
redundancy also at the network-level;

• Structural robustness: PI quantifying the ability of a structural
system to suffer damage induced by the occurrence of an
extreme action (Ghosn and Moses, 1998; Liu et al., 2000;
Saydam and Frangopol, 2011; Sorensen et al., 2012). Starossek
and Haberland (2011), Anitori et al. (2013) and Cavaco
et al. (2013) summarized different measures (deterministic,
probabilistic and risk-based) for this indicator. Recently the
concept of robustness has been extended to the case of
systems under deterioration occurring progressively due to
aging and environmental effects (Baker et al., 2008). For
instance, Biondini (2009) proposed a time-dependent measure
of robustness intended to quantify the susceptibility to damage
increases at during the service-life of a structural system. On
the other hand, Cavaco et al. (2013, 2017, 2018) proposed
a time-independent measure of robustness with the aim to
quantify the susceptibility to damage in the whole service
life of the structure. According to Maes et al. (2006) present
three robustness measures: one related to the residual system
strength, one to the residual structural reliability and the
third one taking into account the risks of all the system
consequences of failure. A practical application of the first
approach considering the system capacity as the performance
objective to the case of a railway bridge is presented
in Wisniewski et al. (2006);

• Structural vulnerability: this PI is a key-measure used to define
the susceptibility of a structural component or a system to
some external natural or man-made action (Agarwal et al.,
2003; Haimes, 2006). Different approaches for quantifying
this PI were proposed in literature: Lind (1995) proposed
a structural vulnerability index based on the ratio between
the failure probability of the damaged system and the failure
probability of the intact system; The concept of vulnerability
is often treated in literature studies focusing on the structural
response of bridges subject to natural hazardous actions
like floods, earthquakes, hurricanes (e.g., see Morbin et al.,
2015; Zampieri et al., 2016). Some research in this field was
oriented on the assessment of the interaction between natural
aging and structural vulnerability, with the aim to quantify
the increase of vulnerability related to the development of
natural deterioration phenomena (Choe et al., 2009; Ghosh
and Padgett, 2010; Simon et al., 2010; Choine et al., 2012;
Zanini et al., 2013; Kumar and Gardoni, 2014);

• Structural risk: a PI quantifying the combined effect of actions,
probability of failures and related consequences or disaster
in a given context (Adey et al., 2003; Ellis et al., 2016).
Saydam et al. (2013) presented a risk-based methodology able
to take into account direct and indirect losses for highway
bridges considering a Markov model for the prediction of
bridge performances over time. Many efforts were done in
recent years in assessing risk for bridges, in particular with

reference to the occurrence of natural hazardous actions.
As examples, considering seismic events, Ghosh and Padgett
(2011), Alipour and Shafei (2016) and Zanini et al. (2016b,
2017b) investigated the time-dependent variation of structural
risk due to seismic actions;

• Structural resilience: this PI estimates the ability of a system
to recover its original functionality after the occurrence of
a hazardous event. With specific reference to seismic events,
Bruneau et al. (2003) defined seismic resilience as “the ability
of social units (e.g., organizations, communities) to mitigate
hazards, contain the effects of disasters when they occur, and
carry out recovery activities in ways that minimize social
disruption and mitigate the effects of future earthquakes,”
illustrating also a framework for quantitatively assessing it.
Other approaches to quantify resilience can be found in
Cimellaro et al. (2010), Zobel (2011), and Bocchini et al.
(2013). Recently, Zhang et al. (2017) have proposed two
resilience metrics, namely the total recovery time (TRT)
representing the rapidity of the restoration process and the
skew of the recovery trajectory (SRT), directly linked to the
efficiency of the restoration process. The latter aims to capture
the characteristics of the recovery trajectory that relates
to the efficiency of those restoration strategies considered.
Based on them, the optimal restoration schedules of a
bridge network following extreme events are decided. It is
worth mentioning that not only the total time to recover
is important, but also the sequence of recovering activities
that should prioritize the repair and, hence, put into service
the critical nodes of the network at the early stages after the
extreme event.

Also for research technical PIs, probabilistic approaches are
required for accounting uncertainties in the definition of
the main input parameters. Several researchers stressed the
importance of using a probabilistic approach when dealing
with the assessment of bridge performances: among others,
Ellingwood (2005) highlighted how probabilistic risk analysis
methods allow estimating and thus managing uncertainties when
dealing with structural safety. Knowledge of the probability of
satisfactory performance over a certain time interval is a key PI,
and it needs to be compared with some performance objectives.
However, the definition of acceptance criteria is still not
adequately investigated, since also performance goals have to be
expressed in terms of probabilities, losses, or some combinations
of these metrics. In this regard, an interesting fully probabilistic
reliability analysis taking into account also deterioration
forecasts and synthetizing results in terms of different reliability
indexes through the use of radar charts was carried out
by Strauss et al. (2014).

Correlation Between Different Technical
Performance Indicators
Given the substantial differences between operational and
research technical indicators, many researchers tried to find
correlations between them. Anitori et al. (2014), as example,
analyzed potential relationships between robustness and
condition ratings of existing bridges, with the aim to correct
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rating with data derived by robustness assessment to make
it dependent on the system behavior. Deco and Frangopol
(2010) proposed a condition-based approach describing lifetime
deterioration of reinforced concrete (RC) bridge decks. The
study evidenced how the combined use of condition and
reliability indices is a powerful tool, especially when it is
applied to RC bridge decks under corrosion. Furthermore,
in the case of RC decks under corrosion, the correlation
between condition and reliability was demonstrated. Load
rating factor is also a commonly used operational performance
indicator for bridge capacity and not only condition. Estes and
Frangopol (2005) performed both a load rating analysis and
a reliability analysis on the same highway bridge, concluding
how a direct correlation between the two methods is lacking,
since reliabilities are strongly dependent by assumed failure
modes and load models, whereas load ratings do not account
for redundancy in a structure or correlation between failure
modes. In the research presented in Estes and Frangopol
(2003), it was shown how routine visual information related to
condition rating of composite highway bridges and used in the
PONTIS bridge management system can be used to update the
reliability of these bridges subject to corrosion, demonstrating
a clear interaction between operational and research
performance indicators.

Other Technical Performance Indicators
Other types of technical PIs could be mentioned as not fully
belonging to operational/scientific subclasses, rather mainly
based on statistical theories applied on pure operational/scientific
technical PIs. Among others, condition indexing based on the
concept of apparent age can be associated with operational
technical PIs, whereas the credibility index can be proposed
on the research technical PIs. The condition index based
on the concept of the apparent age was proposed by Zonta
et al. (2008), based on the underlying theory that “the
apparent age of a standard element is the most likely age of
the element given its condition state, assuming theoretical age
distributions that are consistent with the normal deterioration
model adopted for the element.” Biondini et al. (2010) proposed
the adaptation of a statistical estimator called “credibility
indicator,” and originally proposed by Grandori et al. (1998),
to the case of the deterioration modeling of bridge structures.
In particular, the effect of the epistemic uncertainty associated
with deterioration modeling on the bridge service life prediction
was evaluated through the calculation of the credibility indicator,
comparing two models (quantitative and qualitative) and
identifying the most reliable one. Avsar et al. (2012) proposed
a prioritization index based on the combination of visual
inspection results and vulnerability estimates. Lastly, McCarten
(2016) presented a review of bridge failures, showing how
risk events whether by natural causes or man-made have
the greatest impact on bridge performance and highlighting
the need to have risk-based indicators as well as condition
indicators: the study proposed a Bridge Critically Indicator (BCI)
reflecting four basic indicators: risk, robustness, redundancy,
and resilience.

NON-TECHNICAL PERFORMANCE
INDICATORS

Technical PIs are also considered for the prediction of
deterioration over time and thus plan future restoration
interventions and their effectiveness over time (Zhu et al.,
2017). Given a certain observed/predicted condition, the owner
can define the optimal restoration strategy to be implemented.
Technical PIs allow quantifying the effectiveness of a restoration
strategy: however, its implementation involves a series of
social, environmental and economic consequences that may
significantly affect the decision-making process. In addition,
more solutions can be developed (e.g., with different techniques,
materials, costs, Gantt charts), and thus there is the need of
identifying the best one, not only focusing on technical PIs, but
analyzing also a set of non-technical PIs to rationally find the
best restoration strategy. In the following, an extensive review of
non-technical PIs retrievable in literature is provided. Figure 4
illustrates a sketch of the investigated environmental, social and
economic PIs currently retrievable in scientific literature.

Environmental Performance Indicators
Regarding environmental PIs, many parameters, including
energy consumption, use of non-renewable resources, traffic
disruption, durability and the reuse or recycling of components
and materials have to be considered (Wallbank et al., 1999).
In order to make sense of all these different factors, Life
Cycle Assessment (LCA) was defined as a methodology for
quantifying environmental impacts and burdens associated with
an item over its entire life (ISO, 2006a,b). Depending on the
systems boundaries, analyses may be carried with a cradle-to-
gate or cradle-to-cradle approach, thus integrating all the life
phases of the structure, i.e., material manufacture, construction,
maintenance and operation, and lastly the end of life, with
its alternative solutions being dismantling and landfilling
or materials recovery and recycling. LCA concentrates on
environmental aspects—resource use, ecological consequences
and human health—and does not normally address economic or
most social aspects (Klöpffer and Grahl, 2009). Rodrigues et al.
(2017) presented an application to evaluate the environmental
friendliness of TCC bridges with respect to traditional solutions.
Pang et al. (2015), Penadés-Plà et al. (2016), and Dabous
et al. (2017) presented comparative LCA analyses between
alternative bridge maintenance scenarios. Some researchers
proposed probabilistic LCA approaches able to account for
uncertainties in main input parameters (Shen and Lepech,
2017). Regarding reinforced concrete systems, some studies were
also conducted with the aim to highlight the sustainability
potential paying attention to the composition of the mix-
design and its environmental implications (Hammervold et al.,
2013; Hooton and Bickley, 2014; Muller et al., 2014; Ali et al.,
2015) performed LCA on Norway bridge types highlighting
how main environmental impacts can be related to the
production of materials for bridge decks and abutments, as these
components require large quantities of materials. The following
environmental indicators, that practically cover some of the main
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FIGURE 4 | Sketch of the investigated non-technical PIs.

mid-point indicators of the CML2002 method (Guinée et al.,
2002) and energy demand, were proposed:

• Primary Energy Demand: a PI quantifying the amount of
energy directly withdrawn from the hydrosphere, atmosphere
or geosphere (Keoleian et al., 2005a), that derive from the CED
(cumulative energy method) method (Boustead and Hancock,
1979). It is distinguished from non-renewable and renewable
resources: for the former (i.e., fossil fuels and uranium), the
amount is expressed in MJ- equivalents, whereas in case of
the latter it is quantified in biomass kg- equivalents. For
hydropower, Primary Energy is instead assessed as the amount
of energy needed for an equivalent change in the potential
energy of the water (Kreißig and Kümmel, 1999). According
to Du et al. (2014), it has been shown that CED is largely
dominated by the material manufacture phase, regardless of
the structural type analyzed, and it is responsible for 68–
80% of the overall energy demand during bridge life cycle.
Maintenance phase instead is highly dependent on the bridge
type, given the same deteriorating scenario;

• Abiotic depletion: this PI represents one of the most discussed
impact categories since currently a reliable method for its
assessment is still lacking (van Oers and Guinee, 2016). The
issue of depletion of abiotic resources can be viewed as a
decrease of the resource itself, or, an incremental change in
the environmental impact of extraction processes at some
point in the future (Heijungs et al., 1997; Guinée et al.,
2002). The impact category of “abiotic depletion” is measured
in kg Sb-equivalents/kg extraction, and is estimated as the
product between the amount of extractions/fossil fuels and
some characterization factors (ADPs). It is worth recalling that
this indicator is mostly used to evaluate mineral resources,
whereas it still do not find large applications when dealing
with the extraction of virgin bulk resources, e.g., aggregates
used for concrete manufacture (Habert et al., 2010). For the
above reasons, it is not typically included in LCA analysis when
dealing with RC structures analysis. Recently, this indicator
has been used as a basis to capture also the influences on
land occupation and transformation, associated to degradation
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problems related to soil depletion, topography alteration and
visual damage to landscape (Milà i Canals et al., 2007);

• Global Warming Potential: this PI is probably the most well-
known, on which the communities and hence decision makers
put more attention, and it describes the mechanism of the
greenhouse effect, measured in kg CO2- equivalents (Padgett
and Tapia, 2013; Mara et al., 2014). Greenhouse gases that are
considered to be caused or increased anthropogenically are for
example carbon dioxide, methane, and chlorofluorocarbons
(CFCs), which are converted into equivalent of CO2 by well-
known conversion factors, e.g., 1 kg CH4 = 25 kg CO2. For a
bridge 320m long and 22.5m wide, carrying two traffic lanes
in each direction located in Västra Götaland, Sweden, Du et al.
(2014) have analyzed five alternatives realized with steel box
girder composite bridge, a steel I-girder composite bridge, two
solutions with post-tensioned concrete box girder bridges, and
a balanced cantilever concrete box girder bridge. In all the
cases, the order of magnitude of GWP indicator was about 6
× 106 kg CO2−eq, along the whole service life of the structure.
Particularly, the maintenance operations are responsible for
<10% of such emissions, whereas material production still
remains by far the main contribution, in a range between 72
and 94%, depending on the analyzed solution;

• Ozone Depletion Potential: this PI quantifies anthropogenic
emissions, such as fluorine-chlorine-hydrocarbons (CFCs)
and nitrogen oxides (NOX), and it is measured in kg R11-
equivalents. These emissions are considered responsible of
potential ozone depletion, and main factors of the increase of
the hole in the stratosphere layer (Habert et al., 2012). For the
above case-studies, Du et al. (2014) have estimated that a range
between 2 and 3× 10−1 kg CFC-11eq may be produced during
the entire life cycle of a structure;

• Human/Terrestrial Toxicity: this PI estimates the Human
Toxicity Potential (HTP), i.e., the potential harm of a unit of
chemical released into the environment (Habert et al., 2012).
HTP includes both inherent toxicity and generic source-to-
dose relationships for pollutant emissions, and it is measured
in kg 1.4-DB equivalents. The overall HTP score of an
emissions’ profile is calculated as the sum of the release
of each chemical multiplied by the respective equivalency
factor (McKone and Hertwich, 2001). For the above case-
studies, Du et al. (2014) have estimated that a range between
1 and 2 × 106 kg DBeq may be produced during the whole
life cycle of a bridge structure, and particularly the solutions
with post-tensioned concrete box girders with a balanced
cantilever concrete box girder promote a reduction by 30%
of the impacts, due to the reduced impacts of selecting
concrete instead of steel asmain structural materials. Although
this reduction, within the whole life cycle, the impact of
maintenance operations seems still negligible if compared to
the materials manufacture phase, but it worth recalling not
negligible in terms of absolute values;

• Acidification Potential: this PI quantifies the acidification
of soils and waters originated by the transformation of air
pollutants, such as sulfur dioxide and nitrogen oxide into acids
(H2SO4 undHNO3), and it is measured in kg SO2- equivalents

(Kim et al., 2013). This leads to a decrease in the pH-value
of rainwater (i.e., “acid rain”) and fog, harming ecosystems
and causing forest dieback. As an indicative example, LCA
analysis carried out onMälkiä Canal Bridge by Rantala (2010),
one of the biggest bridge under construction in Finland at
year 2009 (a continuous composite girder bridge with steel
girders as main bearing structure and reinforced concrete
deck, with seven spans and total length of 318.8 meters), has
estimated that operation, repair and maintenance operations
will be responsible for 6.5% of whole SO2 emissions, thus
being 2,500 kg of SO2,eq. Within maintenance operations,
waterproofing renovation, zinc coating of steel girders, bearing
and expansion joints reparation and substitution are examples
of the operations that were considered;

• Eutrophication Potential: this PI describes the enrichment
of nutrients in a defined place, either aquatic or terrestrial,
and it is measured in kg PO4− equivalents (Kim et al.,
2013). It is caused by waste water, air pollutants and
fertilization in agriculture. In the analyzed case of Mälkiä
Canal Bridge by Rantala (2010), 300 kg PO−

4 eq are estimated

to be released during operation, repair and maintenance
operations, thus representing about 4% of the overall emission
within this category;

• Photochemical Ozone Creation Potential: this PI quantifies
the photochemical ozone production in the troposphere,
commonly known as summer smog, and it is measured in
kg C2H4

− equivalents (Du and Karoumi, 2013). Ground-
level ozone is produced by combination of radiation
from the sun and the presence of nitrogen oxides and
hydrocarbons. Rantala (2010) estimated that operation, repair
and maintenance may lead to 10.8% of the overall emissions
in this category for the Mälkiä Canal Bridge, being about
160 kg C2H

−

4 eq, compared to steel parts manufacturing that

are responsible for more than 30% of the emissions alone;
• Solid waste production: this PI estimates potential impacts

due to the production of construction and demolition waste
(Keoleian et al., 2005a). The value of this indicator is sensible
dependent on the end-of-life (EOL) scenario that might be
experienced by the structure. If recycling/reuse strategies are
adopted, such emissions can be highly reduced, and are caused
by the sole transportation ones. However, typical, concrete
parts might be contaminated for instance by chlorides, due
to the use of de-icing salts during winter or in cold climates;
hence, it is necessary to evaluate carefully the amount that
could not be re-used, or that should be used for low-
value applications.

Specific software programs containing suitable dataset for the
LCA analysis (e.g., SimaPro7, 2008) can be used for the
assessment of the abovementioned environmental PIs.

Social Performance Indicators
Regarding existing social PIs, they can be subdivided in
quantitative and qualitative ones. Among quantitative social
PIs, the most significant social effects associable with bridge
deterioration and consequent maintenance works and/or bridge
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failures are linked to indirect consequences like traffic delays
with related increase of traveling times for roadway users and
potential human losses due to accidents (Keoleian et al., 2005b).
Delays during maintenance works to bridges on busy roads can
be relevant, with economic impacts many times outweighing
the pure rehabilitation costs: Koch et al. (2002) estimate the
user costs due to traffic delays and lost productivity to be
more than ten times the direct cost of maintenance, repair,
and rehabilitation of bridges. For this reason, the owners
have to minimize such effects, thus reflecting in a substantial
improvement in the level of sustainability of the rehabilitation
(Wallbank et al., 1999; Wallbank, 2002; Liu and Frangopol,
2006). An interesting discussion on user cost models was
provided by Thoft-Christensen (2009), in which the author also
explained how to estimate user costs associated to the repair
activities of a deteriorated bridge structure. The quantification
of user costs is often a hard task, since in most of the cases
several aspects have to be accounted for: user costs can be
estimated as the sum of different components (Wilde et al.,
2001). Goh and Yang (2010) tried to give a categorization of
cost components via the execution of a questionnaire survey
in Australia. In general terms, three main categories can be
identified: vehicle operating costs (VOC, including the costs of
fuel, tires, engine oil, maintenance, and depreciation), traffic
delay (TD, considering speed delay, detour time and consequent
loss of opportunities) and accident costs (AC, fatal accidents,
non-fatal injury accidents, property damage accidents) (Najafi
and Soares, 2001). VOC estimation models are usually based
on the definition of main road characteristics (e.g., roughness,
geometry, traffic rates), vehicle attributes (e.g., weight, age, horse
power, price of maintenance works) and environmental climate
characteristics (Ben-Akiva and Gopinath, 1995). TD is often
the most relevant component and must be differentiated when
dealing with cars or trucks (Sobanjo and Thompson, 2004):
its estimation is based on the product between the increase in
travel time and the travel time cost per hour (Gao and Zhang,
2013). Travel time cost represents a measure of value of time to
road users, and usually it is based on average hourly wage and
income level in a city or region, with differentiated values for
passenger cars and commercial trucks (Matthews and Allouche,
2010). AC cost models try instead to capture social impact
related to the potential increase of vehicle accidents during the
period in which rehabilitation is taking place, disrupting normal
traffic flow and reducing the vehicle capacity of a bridge (Ehlen,
1997). Some studies dealt with the calibration of models taking
into account main bridge parameters: among others, Thompson
(2002) presented a user annual accident count model taking
also into account geometrical and traffic flow characteristics of
a generic road link; Lounis and Daigle (2010) considered average
accident costs and the normal accident rate taken from statistics
published by Wilson et al. (1994); Transport Canada (2006).
Considering the lack of statistical data on accident in work zones,
a rule of thumb of three times the normal accident rates is
used as suggested by Walls and Smith (1998). Bai et al. (2010)
presented a framework for comprehensive estimation of user cost
for bridge management, synthesizing the existing state of practice
of user cost estimation and techniques to address a number of

considerations in such estimation. Chen et al. (2017) recently
calibrated multivariate models able to quantify accident rates in
relation to road-surface condition state.

In case of the occurrence of natural hazards like earthquakes,
tornadoes, etc., damage can affect multiple bridge structures, thus
influencing the functionality of the transportation network itself.
In such cases, social PIs that can be monitored are related to
the variation of gross domestic product due to the occurrence
of the natural hazard (Carturan et al., 2014). At the network-
level, it is also important to take into account the potential
residual functionality of the transportation network due to bridge
damage/failures and also buildings like in the case of historical
centers (Zanini et al., 2017c). In this context, connectivity indexes
are usually considered as social PIs for the evaluation of the
functionality of the infrastructure both for analyzing issues
related to the accessibility by rescuing operations and the safe
evacuation of citizens (Hadas et al., 2015; Nahum et al., 2017).

Other quantitative research-based social indicators can be
used: among others, Pandey et al. (2006) proposed the use of the
so-called Life Quality Index (LQI) as a rigorous basis for program
evaluation to assist decision-makers in directing expenditures
where they may most effective. The LQI is equivalent to a multi-
attribute utility function being consistent with the principles of
rational decision analysis. It is further refined to consider the
issues of discounting of life years, competing background risks,
and population age and mortality distribution. Rackwitz et al.
(2005) expanded the LQI framework and applied it to determine
optimal safety levels in civil engineering infrastructures. Maes
et al. (2003) applied LQI for optimizing the life-cycle cost
of structures.

The above-mentioned Social PIs requires a higher level
of analysis, moving from the so-called system-level (i.e.,
focused on the single bridge) to the network-level: such
type of analyses, allow to capture the impact of a bridge
damage/failure/restoration on the overall transportation system
accounting for reliable traffic demand models and detailed
network topology transportation graphs. In this way, it is
possible to identity those bridges that can mainly impact at the
network-level and thus give priority to them in the following
implementation of restoration/replacement actions.

With reference to qualitative social PIs, aesthetic impact,
prestige and historic value and political implications can
be evaluated. One important point is in fact that bridges
are often located directly in the urban space or are seen as
prestigious landmarks. Therefore, their aesthetic impact and
acceptance is another important performance aspect (Barelli
et al., 2006). Furthermore, historic bridges can constitute
a part of the cultural heritage and hence, preservation can
become an important aspect. Dette and Sigrist (2011) proposed
an aesthetic indicator for concrete bridges called time of
unsatisfactory appearance (RTUA), which is defined as the
fraction of the service lifetime in which the condition of
the concrete surface is below a certain aesthetic threshold
and thus the appearance is impaired. Other visual quality
characteristics can be considered as aesthetic indicators
(Smardon and Hunter, 1983; FHWA, 1988; Rahman,
1992), as:
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• Visual Pattern Elements: this PI describes “how well the bridge
fits into the overall landscape on the basis of primary visual
attributes” (Patidar et al., 1991) of objects like color, form,
line, texture;

• Scale Contrast: this PI describes “the extent to which a bridge
blends into its environment on the basis of its relative size
with respect to those of other features in its environment”
(Patidar et al., 1991);

• Spatial Dominance: this PI is similar to the previous, “but
pertains to a larger dimension; is the extent to which the bridge
elements would be dominant in views of larger landscape and
cityscape” (Patidar et al., 1991);

• Diversity: this PI describes “a function of the frequency, variety,
and intermixing of the visual pattern elements of the bridge
with its setting. Also termed as setting contrast (the extent
to which project’s visual pattern elements contrast with or
blends in with its existing natural or man-made background)”
Patidar et al. (1991);

• Continuity: this PI evaluates “the uninterrupted
flow of pattern elements in a landscape and the
maintenance of visual relationships between landscape
components that are immediately connected or
related” (Patidar et al., 1991);

• Variety: this PI estimates “the richness/diversity of physical
objects and interrelationships within the landscape”
(Patidar et al., 1991);

• Visual quality: this PI rates “the excellence of the viewing
experience. Visual quality may be assessed using one of several
approaches, e.g., via using opinion surveys of viewers, or
judgments of visual quality metrics like vividness, intactness,
unity” (Patidar et al., 1991).

From the abovementioned list of visual quality attributes, an
owner can select a set of PIs to evaluate alternative bridge projects
and rehabilitation solutions.

Regarding politics, no clear indicator was found in literature.
However, some suggestions are herein reported on how to define
it in a consistent way. In the authors’ opinion, the aim of a
political indicator is to try to measure benefits associated with
the implementation of a rehabilitation intervention on a bridge
in terms of improvement of the social consensus for a politician.
Hence, when dealing with the comparison of different solutions,
the one characterized by the highest consensus is the best one.
For the assessment of this indicator, the most suitable tool is
represented by opinion polls via interviews or other ways: the key
issue in this context is to define a proper sample of citizens to be
queried, reflecting the real distribution of population potentially
interested/afflicted in case of adoption of a specific decision.

Economic Performance Indicators
Bridge owners can also use economic PIs to assess economic
efficiency of alternative bridge projects and rehabilitation
strategies (Virtala, 1997; Pitonak and Pepucha, 2016). Among
others, Robert et al. (2004) evidenced the role of economic
analysis in engineering and political decisions regarding
transportation investments, focusing on the use of computer

systems in the execution of systematic economic analyses for
United States roadway projects. In the context of BMSs, it
seems evident that the main economic PI is the direct cost of
a rehabilitation intervention, i.e., the sum of all costs associated
with the material execution of the intervention (Zanini et al.,
2016c). Zanini et al. (2016d) presented an extensive cost analysis
for an asset of reinforced-concrete and masonry bridges with
the aim to derive some relationships between restoration and
seismic retrofitting costs with condition ratings obtainable from
visual surveys. However, when dealing with the identification of
the optimal rehabilitation strategy among different alternatives,
direct cost cannot has to be integrated also with an economic
quantification of social and environmental impacts estimated
with respective PIs, in order to obtain the total cost for a
given decision-making.

After estimating the total cost of a certain rehabilitation
strategy, other economic PIs that can be used to capture the
entire financial dimension of an investment (Valuch and Pitonak,
2015), as:

• Payback period: this PI estimates the number of years needed
for equalizing benefits and costs for restoration of bridges;

• Net present value: this PI represents the actualized difference
between social benefits and costs. In case of more sophisticated
build-operate-transfer contracts, usually developed when
dealing with the identification of the best solution among
a set of alternative projects, other additional terms related
to royalties, business income taxes and earnings must be
subtracted to the net value (Chang and Po-Han, 2001);

• Internal rate of return: this PI quantifies the value of the rate of
return required for obtaining a net present value equal to zero;

• Benefit-cost ratio: this PI compares “the economic net present
value of all the social benefits and costs of the project life
cycle and its cost of acquisition” (Chang and Po-Han, 2001),
quantifying in such a way the profitability (Hofer et al., 2018)
of a rehabilitation investment;

• Viewpoint of equity: this PI accounts for “the equity invested
in the construction period and the total net profit before
dividends are given to stockholders in the operating period. The
total net profit here comes from the statement of cash flows,
which considers financing-related items, such as loans, interest,
stocks, dividends, and so forth. In this way, the concessionaire
will know how long it will take for their investment to be
recovered with the total net profit in the operating period”
Chang and Po-Han (2001);

• Viewpoint of dividends: this PI considers “the equity
invested in the construction period and the dividends paid
to stockholders in the operating period. This viewpoint also
provides information to stockholders about the period of
time during which the dividends given to stockholders in the
operating period can recover the equity investment in the
construction period” (Chang and Po-Han, 2001);

• Debt coverage ratio: this PI computes “the ratio between
earnings before interest and taxes (EBIT), including
depreciation. However, depreciation is not a real cash outflow.
It represents the wearing-out of the equipment. Therefore,
to present the concessionaire’s available capital to pay debt,
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depreciation is added back to EBIT. Debt coverage ratio shows
the concessionaire’s ability to pay debt. The debt coverage
ratio influences the willingness of banks to loan money to
the concessionaire” (Chang and Po-Han, 2001). Generally
speaking, a debt coverage ratio at least equal to or larger than
1.0 is acceptable (Brigham and Gapenski, 1997).

Many researchers deal with another PI called Life-Cycle Cost
(LCC) (Chang and Shinozuka, 1996; Frangopol et al., 1997,
2001; Kong and Frangopol, 2003; Soliman and Frangopol, 2014;
Wessels et al., 2014; Biondini and Frangopol, 2016; Rossi et al.,
2017), i.e., the sum of all the costs that an owner has to sustain
during the entire service-life of a bridge structure. LCC seems
to be a promising economic PI in bridge management practices,
even if some cautions have to be used when actualizing future
cash flows if the time horizon is too long.

DECISION-MAKING WITH DIFFERENT
TYPES OF PIS

As illustrated above, different types of PIs can be used in
ordinary bridge maintenance practice, each characterized by a
specific qualitative or quantitative metric. Therefore, there is
the need to rationally handle various metrics accounting for
different aspects in the identification of the optimal rehabilitation
strategy for a bridge structure. In this regard, some researchers
proposed indicators to comprehensively accounting for such
different aspects: Hendy and Petty (2012) presented the so-
called “Sustainability index” based on radar charts ranging
between 0 and 1, and used it for comparing different solutions
for a new bridge project. Radar charts are often used when
dealing with qualitative/quantitative indicators characterized
by different metrics, as in the case of sustainability analyses
(Rezayat, 2009): Umer et al. (2016) presented an index called
“Sustainometer” based on radar charts and able to incorporate
uncertainties with a fuzzy logic toolbox for the evaluation
of sustainability of roadway projects. Yadollahi et al. (2016)
presented a fuzzy factor analysis aimed at identifying the
most significant factors involved in the definition of bridge
rehabilitation projects with the aim to improve sustainability
of bridge maintenance operations. Radar charts allow also
considering the contribution of each individual impact to the
overall rating via the use of weighting systems. In general
terms, there is the need of refined decision-making approaches
in order to use a rational approach in the selection of the
optimal restoration strategy accounting for all the different
economic, social and environmental aspects. Penadés-Plà et al.
(2017) presented an interesting review of previous literature
studies dealing with the implementation of methods based on the
Multiple-Attribute-Decision-Making (MADM) for a sustainable
bridge design: among others, scoring methods (Podvezko, 2011),
distance-based methods (Tamiza et al., 1998; Ballestero, 2007),
pairwise comparison approaches like analytic hierarchy/network
processes (Gorener, 2012; Ali et al., 2015; Rashidi et al., 2016),
outranking methods (Behzadian et al., 2010; Govindan and
Jepsen, 2016; Jajac et al., 2017), multi-attribute utility/value

theory (Sarabando and Dias, 2010; Sabatino et al., 2015) can
be viable solutions for a rational decision-making process.
Recently Yoon and Hastak (2017) presented a multitiered
prioritizing method based on urgency scales able to take into
account two hierarchical selection steps based on urgency
and total prioritization scales. Another interesting work was
proposed by Lounis and McAllister (2016) that illustrated the
proposal of a risk-based decision-making framework for bridges
subject to different hazards able to account both technical and
sustainability requirements.

DISCUSSION

The issue of bridge quality control and management has been
significantly deepened in past and recent literature studies, and
has been widely addressed in the present review. Looking to the
current state-of-research on this field, some considerations can be
carried out with the aim to highlight present gaps and potential
future research developments.

In particular, significant efforts are still required in order to
try to find reliable correlations between visual inspections and
NDTs, as well as between the latter and probing outcomes. As
regards SHM techniques, one open issue is related to develop
smart algorithms able to handle big data coming from SHM
systems, and more generally, trying to reduce as possible the
amount of data collected and costs for the implementation of
SHM. Given the substantial standardization of the bridge types,
it would be desirable in the near-future to develop low-cost
and less-computationally onerous permanent SHM systems to be
directly installed at the time of construction of the bridge.

As regards technical PIs, one challenge is represented by the
conversion of the current visual-inspection based BMSs, adopted
by the majority of public/private infrastructure owners, to more
refined quantitative technical PIs, like those reported in section
Operational Technical Performance Indicators. This passage it
is not an easy task, and for this reason, scientific community
may contribute with more research activities aimed to investigate
correlations between qualitative and quantitative technical PIs.
Another relevant issue that may be addressed deals with the
integration of the existing BMSs, mainly focused on the collection
of reports on surveyed damage due to deterioration phenomena,
with PIs like vulnerability and risk that are usually related to
sudden natural or man/made events. In particular, more research
is required on the combined effect of natural aging and sudden
events in order to prevent potential relevant damage/failures.

Lastly, the field of non-technical PIs as well as that
of decision-making approaches are still little known among
infrastructure owners, and currently no relevant research
presents a detailed and comprehensive application of all
technical, socio-environmental and economic PIs to a bridge
case study. It is therefore strongly recommended to scientist
dealing with research in bridge quality control and management
to put efforts in developing case-study applications with a
multidisciplinary approach in order to allow engineers and
infrastructure owners to familiarize with such issues.
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CONCLUSIONS

This work focused on the identification and classification
of the most diffused technical, environmental, social and
economic performance indicators (PIs) adopted in existing
Bridge Management Systems, and those still under progress
and that could be eventually included in the next future.
A wide literature review was, therefore, performed, with
the aim to provide a comprehensive state of the research
actually available in the identification of PIs to be used
in the development of sustainable QC plans for roadway
administrators in the near future. First, a focus on tools
actually adopted for the quantification of PIs for existing
bridges was presented with emphasis on visual surveys, probing,
non-destructive techniques and structural health monitoring,
reporting related advantages and drawbacks. In the following, a
detailed overview of technical and non-technical PIs used both
in practical and research activities was carried out, explaining
their quantitative/qualitativemetrics, and providing references to
literature studies in which are presented realistic applications. In
the last part, a section illustrating a wide selection of decision-
making methods able to take into account different types of

PIs and related metrics is illustrated. The present work can
therefore be considered as a useful support for researchers and
practitioners involved with bridge maintenance operations and
development of QC plans, providing a global perspective to the
issue of measuring the performance of existing bridges via the
use of suitable PIs.
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