
April 2018

Feature-Tree Labeling
for Case Base Maintenance

Nariman NAKHJIRI a,1, Maria SALAMÓ a and Miquel SÀNCHEZ-MARRÈ b

a Facultat de Matemàtiques i Informàtica,
Universitat de Barcelona Institute of Complex Systems (UBICS),

Universitat de Barcelona (UB)
b Knowledge Engineering and Machine Learning Group (KEMLG-UPC)

Intelligent Data Science and Artificial Intelligence Research Centre (IDEAI-UPC)
Dept. of Computer Science

Universitat Politècnica de Catalunya (UPC)

Abstract. Case Base Maintenance (CBM) algorithms update the content of the case
base with the aim of improving the case-based reasoner performance. In this paper,
we introduce a novel CBM method called Feature-Tree Labeling (FTL) with the
focus on increasing the general accuracy of a Case-Based Reasoning (CBR) system.
The proposed FTL algorithm is designed to detect and remove noisy cases from the
case base, based on value distribution of individual features in the available data.
The competence of the FTL method has been compared with well-known state-of-
the-art CBM algorithms. The tests have been done on 25 datasets selected from the
UCI repository. The results show that FTL obtains higher accuracy than some of
the state-of-the-art methods and CBR, with a statistically significant degree.

Keywords. Case-Based Reasoning, Case Base Maintenance, Decision Tree,

1. Introduction

The competence of a Case-Based Reasoning (CBR) [12] system can be measured ac-
cording to two aspects. First the general accuracy and second the size of the case base. In
the field of Case Base Maintenance (CBM) [9], methods that aimed to increase the accu-
racy of prediction are referred to Competence Enhancement [3] algorithms, and methods
that are focused on reducing the size of the case base while keeping the accuracy at the
same level are called Competence Preservation [15] algorithms.

As the classification of new instances in a CBR system heavily depends on individ-
ual instances in the case base, in order to increase the average classification accuracy of
data, it is important to define a model to distinguish and remove noisy cases from the case
base. The model can be built based on inter-relations among instances in the case base.
In this paper, we propose the Feature-Tree Labeling (FTL) algorithm. It is a Competence
Enhancement Case Base Maintenance algorithm that looks into the value distribution of
each feature in the training data. The FTL competence model contains a decision tree

1Corresponding Author: University of Barcelona, Spain; E-mail: nnakhjna21@alumnes.ub.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/195706443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


April 2018

classifier for each feature, which has been built with the CART [2] technique. The eval-
uation of FTL algorithm demonstrates that it is able to achieve higher average accuracy
in comparison to well-known state-of-the-art methods. The basic model of CBR along
with four state-of-the-art CBM methods have been tested to put the FTL performance
into perspective. To analyze its performance, we have chosen 25 datasets from the UCI
[7] repository. The results show a statistical significant improvement in accuracy made
by FTL compared to the baseline CBR and some of the state-of-the-art methods.

The structure for the rest of this paper is as follows. First, Section 2 presents the
related work in Case Base Maintenance and use of decision trees with a CBR system.
Section 3 details the proposed method and Section 4 discusses its performance. Finally,
Section 5 is devoted to the conclusions and future work.

2. Related work

In the literature, Case Base Maintenance refers to algorithms applied on the case base
of a Case-Based Reasoning system, to remove harmful content and improve its perfor-
mance. One of the early attempts for CBM in Competence Enhancement category was
Wilson’s Edited Nearest Neighbors (ENN) [14]. ENN is a decremental algorithm that
considers cases from case base which are misclassified by their k-nearest neighbors as
noise. Thus it removes them. ENN was an inspiration for many later research. Tomek’s
method of Repeated Edited Nearest Neighbors (RENN) [13], takes ENN strategy and
applies it multiple times on the case base until no further noises could be detected. A
branch of CBM algorithms build their competence models on property sets of cases in
case base. Blame-Based Noise Reduction (BBNR) [6] technique introduced by Delany,
uses a Liability set to determine the competence of instances. Delany later expands her
work with four property sets of Reachability, Dissimilarity, Coverage, and Liability with
RDCL [5] method. RDCL categorizes cases in the case base into eight profiles based on
their performance in a leave-one-out test of the case base.

Tree classifiers are one of the common tools for classification. Although they tend
to not have the highest accuracy among other methods, but there are several reasons for
their popularity such as an easy interpretation of structure, low time consumption for
train/test and ability to handle both numeric and nominal attributes. Numerous studies
have tried to synthesize decision trees (DT) with CBR from different aspects, but none of
them had been done on CBM of the system. We can mention Richardson and Warren’s
work [1] on using decision trees to add weights to the features and Chang and Fan’s im-
plementation [4] of a hybrid method of CBR, decision trees and genetic algorithms on a
medical domain, as some of the approaches with successful results. Several experiments
have also done with combination of DT and CBR with a Data Mining (DM) structure.
With increased interest in DM, many researchers turned their focus to embed those tech-
niques in a CBR system in order to retrieve better information and improve performance
of a case based reasoner. Among these studies, experimenting DTs with a CBR system,
it is interesting, the work of Huang, Chen and Lee [8] on a CBR data-mining system
for disease diagnosis. And finally, we can mention Perner’s work [11], that has focused
on data-mining for CBR on sparse data with a decision tree. As mentioned, the area of
using decision trees for maintenance of a CBR system has not been fully covered and the
proposed FTL method can opens a new path for Case Base Maintenance.



April 2018

3. Method

The proposed Feature-Tree Labeling (FTL) is a CBM algorithm that uses decision tree
classifiers to create a reformed version of the case base, which will be used in detection
of noisy cases.

3.1. Introduction to Feature-Tree Labeling

Noisy and harmful cases detection requires a competence model. On general data without
expert advice or specific rules to point them out, our only source is the data itself along
its distribution and interrelations. The goal of FTL is to discover additional information
from the distribution of each feature. This extra knowledge helps the proposed method
to distinguish between regular and irregular cases in case base. The FTL labels features
of cases in case base with the common class of their locality. Labeled representation of
data help us to detect suspicious cases and to decide which ones should be removed.

In a dataset with n attributes, the process of FTL can be summarized into four steps:

1. Constructor: Train a decision tree on every feature with a total of n trees.
The values of the trees come from the cases in the case base.

2. Labeler: Build a reformed version of the case base with the n trained deci-
sion trees.

3. Hamming Nearest Neighbors: Run a modified version of the Nearest Neigh-
bor classifier on the reformed case base.

4. Removal: Remove those cases that do not have the same class as their neigh-
borhood’s majority.

These four steps of the FTL algorithm can also be categorized into two phases of the
procedure. The first two steps belong to the data preparation phase, where we create
a reformed case base, and two later steps define the maintenance cycle, in which FTL
detects and removes noisy cases. Algorithm and functions presented in this paper use CB
as the notation for the case base with n attributes, which consists of cases like C ∈CB :
C = {c1,c2, ...,cn,Lc}, where ci is the value of ith attribute and Lc is the class label in the
case C.

Algorithm 1 FTL
Input: The case base CB with n attributes.
Output: The maintained version of the case base, CBedited .
// Phase 1: Data preparation
T =Constructor(CB) . Step 1.
CBlbd = Labeler(CB,T ) . Step 2.
// Phase 2: Maintenance cycle
CBedited =∅
for Clbd ∈CBlbd do

CBtest =CBlbd−{Clbd}
neighbors = Hamming_Nearest_Neighbours(CBtest ,Clbd) . Step 3.
predicted_class = Ma jority_Vote(neighbors)
if predicted_class == actual class of Clbd then

CBedited .append(C) . Step 4.

return CBedited



April 2018

The Algorithm 1 is the pseudo-code of the FTL method. The first phase of the algo-
rithm consists of the Constructor and the Labeler functions. These functions are detailed
in Section 3.2. The second phase of the FTL which includes step 3 and step 4, takes place
in a loop for leave-one-out test of the cases in the reformed case base (CBlbd). A case C
in step 4, which is added to the CBedited , is the corresponding case in raw data to Clbd
from CBlbd . Further explanations of this second phase of FTL are described in Section
3.3.

3.2. Data preparation

The first phase of the FTL method is data preparation. In this phase a reformed version
of the case base will be produced (CBlbd). This phase consists of step 1 the Constructor,
explained in Section 3.2.1, and step 2 the Labeler, detailed in Section 3.2.2.

Data preparation in FTL uses decision tree classifiers built on Breiman’s Classifica-
tion and Regression Tree (CART) [2] technique. CART allows us to create a tree clas-
sifier on every feature of data independently of being a numeric or a nominal attribute.
Gini impurity is used as the measure to split the nodes of the trees. It is worth mentioning
that, as tree classifiers in FTL are built on one feature of the data, there is no need for the
dependent attribute selection for the splits. This improves the construction time of each
tree in the algorithm compared to more complex trees built on several features.

3.2.1. Constructor

The Constructor function presented in Algorithm 2 is devoted to train n tree classifiers
with feature values of the cases in case base. The output of Constructor function is the
set T = {t1, t2, t3, ..., tn}, where ti is a decision tree classifier trained on values of ith
attribute from the cases in the case base. According to Algorithm 2, the training set for
the decision tree classifier of ti contains partial cases of instances in the case base. Each
partial case of an instance C, consists of a single feature value of ci and the class label of
C.

Algorithm 2 CONSTRUCTOR

Input: CB: The case base with n attributes.
Output: Set T = {t1, t2, t3, ..., tn}.
T =∅
for i ∈ {1,2, ...,n} do

train_set =∅
for C ∈CB do

partial_case = {ci,Lc}
train_set.append(partial_case)

ti = DecisionTree.train(train_set)
T.append(ti)

return T

The DecisionTree.train used in Algorithm 2, calls the training routine of the decision
tree in CART with a train_set data and returns a decision tree classifier.



April 2018

3.2.2. Labeler

The next step after training the decision trees in Constructor, is to use these classifiers to
build a reformed case base. Labeler function is designed to replace the feature values of
the cases in the case base with their classification results produced by their attribute tree.
According to Algorithm 3, the feature value of ci for every case in the case base, calls
the prediction routine of the tree classifiers (ti.predict). The result would be a label in the
domain of data class labels, L. This label value would replace ci in the labeled case base
(CBlbd).

Algorithm 3 LABELER

Input: CB: The case base with n attributes, T: the set T produced by Constructor func-
tion. A is the set of attributes in CB.

Output: CBlbd : The labeled version of the case base.
CBlbd =∅ . labeled case base

for C ∈CB do
Clbd =∅ . labeled case

for i ∈ A do
label = ti.predict(ci)
Clbd .append(label)

CBlbd .append(Clbd)

return CBlbd

To give a better understanding we show an example of FTL data transformation
in iris dataset. Instances in this small dataset are the variations of iris flower. In iris
dataset, A = {sepallength, sepalwidth, petallength, petalwidth} and L = {Setosa ,Versicolour,
Virginica}. The case C = {4.7,3.2,1.3,0.2} with class label of LC = {Setosa}, under
FTL process will be transformed into Clbd = {Versicolour,Setosa,Virginica,Setosa}.

3.3. Maintenance cycle

The second phase of the FTL method uses a leave-one-out test on the labeled case base
produced in data preparation. Leave-one-out test allows us to retrieve neighbors of every
case (step 3) and test for their competence (step 4). See Section 3.3.1 and Section 3.3.2,
respectively.

3.3.1. Hamming Nearest Neighbors

Algorithm 4 implements a modified version of the k-NN classifier, suitable for CBlbd ,
to retrieve the nearest neighbors of a given case. There are two differences between the
k-NN classifier and the Hamming Nearest Neighbors (HNN) used in the FTL. The first
difference lies in the metrics that HNN uses. As the name suggests Hamming distance is
the chosen metric for the FTL.Duo to the fact that CBlbd contains only nominal features,
the Hamming distance is a reasonable option for the distance comparison.

The second difference between HNN and k-NN is between the number of neighbors
that each method retrieve. While k-NN classifier returns the constant number of cases (k)
on each cycle, HNN retrieves all the cases in the CBlbd with the minimum distance to the
target instance. With only nominal features in CBlbd and applying the Hamming metric,



April 2018

possible outcomes for distances between cases can range only between {1,2,3, ...,n},
where n represents the number of features in data. The limited outcome for the distances
situates many cases in the same position in a nearest neighbors classification procedure.
Also some cases that are different in their original feature values, may have similar repre-
sentation in the CBlbd . With having many cases with a same distance to another choosing
a constant number of ’k’ from them will be undependable as we have to choose randomly
if cases with similar distance exceed the number of cases we want to retrieve. Algorithm
4 details the procedure of Hamming Nearest Neighbors.

Algorithm 4 HAMMING NEAREST NEIGHBORS

Input: CBlbd : The reformed case base, Ctest : the labeled case under the test,
Ctest = {c′1,c′2,c′3, ...,c′n,Lc′}
Output: Neighbors: The set of closest instances in CBlbd to Ctest
Distances =∅
for C ∈CB do

distanceC = 0
for i ∈ A do

if c′i == ci then
distanceC+= 0

else
distanceC+= 1

Distances.append(distanceC)

distancemin = minimum(Distances)
neighbors =∅
for C ∈CB do

if distanceC == distancemin then
neighbors.append(C)

return neighbors

3.3.2. Removal

The rationale behind the removal policy of FTL is that irregular cases that do not have
common values in their features according to their class membership can not represent
their class well in future classifications. The final step of the FTL method as described in
Algorithm 1, computes the majority class of the retrieved neighbors from HNN for each
case. If the predicted class for the labeled version of a case C is different from its actual
class, then the case C had some irregular feature values and would be categorized as
noise. Cases with the same predicted and actual class will find their way to the maintained
case base and will be returned as the final output of the FTL algorithm.

4. Evaluation

For the evaluation of FTL method, 25 datasets from the UCI [7] repository have been
selected for testing. For the purpose of comparison, four well-known state of the art
algorithms are also implemented in tests. These algorithms are, ENN [14], RENN [13],
BBNR [6], and RDCL [5]. The RDCL method used in the evaluation is set to remove



April 2018

cases from case base with ’DL’ and ’DCL’ profiles. All the methods in the evaluation use
a 10-fold cross validation, a 1NN classifier and a heterogeneous metric (Euclidean for
numerical and Hamming for nominal values) in the CBR system.

4.1. Datasets

Table 1 shows the details of these datasets where the first column represents the acronym
for the dataset, the second column reflects their full name. The columns tagged with
#num and #nom represent the number of numeric and nominal attributes of the dataset.
Presence of missing values in datasets is shown in fifth column of Table 1, and the sixth
one is dedicated to the number of classes. The last column shows the population percent-
age of the most crowded class to the rarest one.

Dataset # # missing # class ratio
num nom values class (most/least)

BL bal 4 0 No 3 46.1% /7.8%
BI biopsies 24 0 No 2 51.6% / 48.4%
BR breast-w 9 0 Yes 2 65.5% / 34.5%
BP bupa 6 0 No 2 58.0% / 42.0%
CM cmc 2 7 No 3 42.7% / 22.6%
CO colic 7 15 Yes 2 63.0% / 37.0%
CR credit-a 6 9 Yes 2 55.5% / 44.5%
FI fis 21 0 No 2 56.0% / 44.0%
GL glass 9 0 No 6 35.5% / 4.2%
GR grid 2 0 No 2 50.0% / 50.0%
HC heart-c 6 7 Yes 2 54.5% / 45.5%
HH heart-h 6 7 Yes 2 63.9% / 36.1%
HS heart-statlog 13 0 No 2 55.6% / 44.4%
HP hepatitis 6 13 Yes 2 79.4% / 20.6%
IO ionosphere 34 0 No 2 64.1% / 35.9%
IR iris 4 0 No 3 33.3% / 33.3%
LB labor 8 8 Yes 2 64.9% / 35.1%
MX mx 0 11 No 2 50.0% / 50.0%
PI pima-indians 8 0 No 2 65.1% / 34.9%
SG segment 19 0 No 7 14.3% / 14.3%
SN sonar 60 0 No 2 53.4% / 46.6%
SB soybean 0 35 Yes 19 13.5% / 1.2%
VE vehicle 18 0 No 4 25.8% / 23.5%
WI wine 13 0 No 3 39.9% / 27.0%
ZO zoo 1 16 No 7 40.6% / 4.0%

Table 1. Datasets details

4.2. Results

Table 2 presents the average accuracy of 10-fold cross validation obtained by the FTL
and four well-known state-of-the-art methods on every dataset. The last two rows of the
Table 2 show the overall average accuracy and case base reduction rate of each method.

According to Table 2 the average accuracy obtained by FTL method on 25 datasets
is the highest value among its peers and way above the CBR. Furthermore, greatest im-
provements happened in colic (CO), bal (BL), heart-h (HH), heart-statlog (HS) and soy-
bean (SB) datasets with more than 5 percent improvement in their accuracy. In compari-
son to baseline CBR, the largest increase in accuracy belongs to colic (CO) dataset with
about 11.16%.



April 2018

Data CBR ENN RENN BBNR RDCL FTL
BL 76.16 85.13 85.28 84.01 82.9 84.64
BI 83.18 81.43 81.61 82.8 82.4 83.08
BR 95.86 96.11 96.11 96.41 96.12 96.84
BP 62.93 60.27 61.21 63.52 63.2 61.21
CM 44.4 45.61 44.52 46.97 46.9 45.95
CO 73.36 81.77 82.61 83.98 84.22 84.52
CR 81.76 85.66 85.36 85.06 85.36 85.37
FI 63.93 64.37 62.54 63.98 65.37 63.93
GL 66.31 69.22 68.7 67.6 67.26 66.05
GR 96.13 95.76 95.92 96.5 96.34 92.8
HC 74.2 80.44 80.43 76.5 76.13 79.13
HH 72.83 79 80.72 76.61 76.28 80.28
HS 74.07 77.78 77.04 78.15 76.3 79.63
HP 78 82.48 82.55 81.26 80.05 81.33
IO 86.93 84.93 84.93 88.6 87.46 86.93
IR 95.33 96 96 94 95.33 96
LB 83.38 79.71 79.71 85.38 85.38 86.48
MX 78.61 76.21 75.87 72.26 76.85 78.51
PI 70.73 75.56 75.8 72.94 74.11 71.13
SG 97.36 95.76 95.54 97.14 97.23 95.32
SN 86.84 81.57 80.71 81.68 84.56 86.84
SB 82.15 88.2 86.88 89.21 89.5 87.79
VE 69.44 67.55 67.3 67.17 67.16 68.36
WI 95.64 95.64 94.46 95.64 95.64 95.64
ZO 94.63 92.52 89.85 92.79 94.63 92.52
Acc 79.37 80.75 80.47 80.81 81.07 81.21

CB red. 0.00 20.40 22.51 15.67 9.29 15.45
Table 2. Average results of each method

The average case base reduction of the methods is shown in Table 2 (CB red.). FTL
method reduces the size of the case base by 15.45% on average. This value is in the
same range of the BBNR method and overall stands as an acceptable case base reduction
considering that FTL is a competence enhancement method.

Another aspect of CBR competence is the amount of time a case base maintenance
process would take. Table 3 reflects the computational cost of the FTL and compared
state-of-the-art methods. To compare the time aspect, two periods have been measured:
average time for preprocessing (TPreprocessing) and the time for the classification of new
cases (TClassi f ication) for 25 datasets, are shown in Table 3.

Method TPreprocessing TClassi f ication
CBR 0.0000 0.0051
ENN 1.4849 0.0040

RENN 1.8855 0.0037
BBNR 1.5832 0.0040

RDCL(DL,DCL) 1.8785 0.0043
FTL 3.5635 0.0040

Table 3. Average recorded time

As Table 3 shows, while RENN, BBNR and RDCL preprocessing times are about
the same, FTL takes twice that long. This leads the FTL to a disadvantage. However, at
the time for classification, due to case base reduction aspect of FTL it stands with the
second best time along with BBNR and ENN algorithms. Note that, all of the methods
reduced the classification time as they reduce the size of the case base and the amount of
computations required to find and retrieve neighboring cases from the case base. Methods
with the largest case base reduction have scored lowered and have better time.

Additionally, to analyze significance of the results from FTL performance, a Fried-
man [?]-Nemenyi [10] test is applied. Friedman test is a statistical test of multiple com-
parisons that gives a rank to the methods in the evaluation. The lower mean rank means a



April 2018

better performance of an algorithm. The Friedman test ranks the FTL as the best method.
Figure 1 illustrates the Friedman’s test result of the FTL and state-of-the-art algorithms
along with their significance threshold of each method provided by the Nemenyi test.

Figure 1. Friedman-Nemenyi test results for methods under analysis

The significance threshold of Nemenyi test shown in Figure 1 is set with a 95% con-
fidence. Two methods that do not overlap their boundaries, are different with a statisti-
cally significant degree. The dashed line in the Figure 1, draws the boundaries of signif-
icance threshold for FTL method. As the blue dashed lines show, average accuracies ob-
tained by FTL, are significantly better than CBR, ENN, RENN, and RDCL algorithms.
The improvements made by FTL compared to BBNR is also pretty close to significance
threshold.

5. Conclusions and future work

Feature-Tree Labeling is a case base maintenance algorithm that builds a decision tree
on each of the data attributes. These tree classifiers are used to transform the raw case
base into a new format. Under the new format every attribute of the cases in the case base
is replaced by the class label of its classification with the relative decision tree. After
labeling the instances, FTL uses the labeled case base to detect and remove instances
that can not be correctly classified by their neighbors. Labeled version of cases that
are misclassified by their labeled neighbors tend to have feature values that does not
represent their class well according to the other members in the case base. An analysis
of FTL performance shows its competence. The average accuracy obtained by FTL on
25 datasets is not only better than the baseline CBR but also above all the well-known
state-of-the-art methods that it has been compared to. The Friedman-Nemenyi test shows
a statistically significant better performance of the FTL in comparison to baseline CBR,
ENN, RENN, and RDCL algorithms.

Feature-Tree Labeling succeeds on improving the general accuracy of a CBR sys-
tem, but there is room for improving further its competence model. Here we point out
two possible future works. First, to experiment with more robust pruning policies for the
decision trees in FTL. The Second path for future work would be using the data prepa-
ration phase of the FTL with other maintenance cycle strategies. Transformation of data



April 2018

under FTL can be a model to extract more knowledge from the data space and the quality
of individual cases in future classifications.

Acknowledgements

This work has been partially supported by Spanish Ministry of Science and Innova-
tion (grant number TIN2015-71147-C2-2), by the Catalan Agency of University and Re-
search Grants Management (AGAUR) (grants number 2017 SGR 341 and 2017 SGR
574), and by Spanish Network "Learning Machines for Singular Problems and Applica-
tions (MAPAS)" (TIN2017-90567-REDT, MINECO/FEDER EU).

References

[1] J. G. Bazan. Hierarchical classifiers for complex spatio-temporal concepts. In Transactions on Rough
Sets IX, pages 474–750. Springer, 2008.

[2] L. Breiman. Classification and Regression Trees. Routledge, 1984.
[3] H. Brighton and C. Mellish. Advances in instance selection for instance-based learning algorithms.

Data mining and knowledge discovery, 6(2):153–172, 2002.
[4] P.-C. Chang, C.-Y. Fan, and W.-Y. Dzan. A cbr-based fuzzy decision tree approach for database classi-

fication. Expert Systems with Applications, 37(1):214–225, 2010.
[5] S. J. Delany. The good, the bad and the incorrectly classified: Profiling cases for case-base editing. In

International Conference on Case-Based Reasoning, pages 135–149. Springer, 2009.
[6] S. J. Delany and P. Cunningham. An analysis of case-base editing in a spam filtering system. In

European Conference on Case-Based Reasoning, pages 128–141. Springer, 2004.
[7] D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017.
[8] M.-J. Huang, M.-Y. Chen, and S.-C. Lee. Integrating data mining with case-based reasoning for chronic

diseases prognosis and diagnosis. Expert systems with applications, 32(3):856–867, 2007.
[9] D. B. Leake and D. C. Wilson. Categorizing case-base maintenance: Dimensions and directions. In

European Workshop on Advances in Case-Based Reasoning, pages 196–207. Springer, 1998.
[10] P. Nemenyi. Distribution-free multiple comparisons. In Biometrics, volume 18, page 263. INTERNA-

TIONAL BIOMETRIC SOC 1441 I ST, NW, SUITE 700, WASHINGTON, DC 20005-2210, 1962.
[11] P. Perner. Mining sparse and big data by case-based reasoning. Procedia Computer Science, 35:19–33,

2014.
[12] M. M. Richter and R. O. Weber. Case-Based Reasoning: A Textbook. Springer, 2013.
[13] I. Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions on systems, Man,

and Cybernetics, (6):448–452, 1976.
[14] D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on

Systems, Man, and Cybernetics, (3):408–421, 1972.
[15] D. R. Wilson and T. R. Martinez. Reduction techniques for instance-based learning algorithms. Machine

learning, 38(3):257–286, 2000.


