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Abstract: In this paper we consider the one-dimensional type III thermoelastic
theory with voids. We prove that generically we have exponential stability of the
solutions. This is a striking fact if one compares it with the behavior in the case
of the thermoelastic theory based on the classical Fourier law for which the decay
is generically slower.
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1. Introduction

In the last �fty years a big interest has been developed to propose alternative theories to the
heat conduction, as the classical one violates the principle of causality. It is suitable to recall the
theories of Green and Lindsay [12] or Lord and Shulman [20] which are based on the Cattaneo-
Maxwell heat conduction equation [4] or the ones proposed by Gurtin and co-workers [5, 6, 7, 16].
In the 1990's Green and Nagdhi proposed three other thermoelastic theories in which the heat
conduction proposes an innovation. They named them type I, II and III, respectively [13, 14, 15].
The linear version of the �rst one coincides with the classical theory based on the Fourier law. The
second one is known as thermoelasticity without energy dissipation because the heat equation is
not a dissipative process in that case. The third one is the most general and it contains the former
two as limit cases. The main innovation of the types II and III theories consist in considering the
thermal displacement between the independent variables. Therefore, these new theories suggest
new systems of equations to study and understand. In fact these new theories have been also
considered in the study of di�erent problems [24, 25, 26].

We believe that an important aspect to study in continuum thermomechanics is to distinguish
the di�erent consequences of the several theories. Our note is addressed to this objective. In fact,
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we will see that the asymptotic behavior of the solutions for the type III theory is di�erent from
the one obtained for the classical theory of Fourier whenever we take into account the e�ects of
the voids of the material. This is because in the type III theory new coupling terms are present
which do not appear in the case of the classical theory. In this sense our work tries to show how
new e�ects hold for the type II, III theories which are not present in the classical theory [18].

To clarify the di�erences, we want to point out in this paper that it is suitable to recall the theory
of elasticity with voids proposed by Nunziato and Cowin [8, 9, 28]. In this theory the materials
have a microstructure such that the mass in each point can be obtained as the product of the
mass density by the volume fraction. The applications of these materials are relevant for solids
with small distributed porous as rocks, soils, woods, ceramics, pressed powders or biological
materials such as bones.

The study of the damping of the thermoelastic perturbations of materials with voids started
in [32]. There, the author showed that generically the porous dissipation is not strong enough
to guarantee the exponential decay of the solutions for a porous elastic structure. From this
contribution a big quantity of contributions have been developed to clarify the decay of the
thermomechanical perturbations for elastic solids with voids when di�erent e�ects are taken into
account [1, 3, 10, 11, 18, 21, 27, 29, 30, 33]. It is accepted that generically we would need two
dissipative mechanisms to guarantee the exponential decay of solutions. To be more precise,
it is needed that one of the mechanisms acts on the macrostructures of the material and the
other on the microstructures. The time decay of the solutions of the problem corresponding to
a thermoelastic material with voids based on the classical Fourier law was studied by Casas and
Quintanilla [2]. There the authors proved the slow decay of solutions in the sense that the rate of
decay cannot be controlled by an exponential. It was possible to obtain the exponential stability
when some other dissipative mechanisms were also present as well as the microtemperatures [2]
or the porous dissipation [3]. In fact Muñoz-Rivera and Quintanilla [27] proved the polynomial
decay under suitable conditions on the coe�cients and very recently new results for this problem
have been obtained [33]. That is, in general the thermal e�ects (based on the classical Fourier
law) are not strong enough to bring all the system to the exponential stability.

In this work we want to study the same problem, but in the context of the type III thermoelas-
ticity and we will prove that generically the exponential stability is obtained. This is because in
the context of the type III theory new and di�erent couplings are present and in that case the
heat conduction is strongly coupled with the macrostructures and the microstructures of the ma-
terial. We want to emphasize that some new and di�erent e�ects of this kind have been recently
proved in the case of the thermoelasticity of type III with microtemperatures [22, 23] for the
three-dimensional case. The present work tries to illustrate another aspect of these di�erences.
We will consider the one-dimensioinal case, but we do not assume that the microtemperature
e�ects are present.

2. Statement of the problem and well-posedness

In the context of the one-dimensional type III thermoelasticity with voids the system of �eld
equations are determined by the evolution equations

(2.1) ρü = tx,

(2.2) Jφ̈ = hx + g,



Exponential stability in type III thermoelasticity with voids 3

(2.3) ρη̇ = qx,

and the constitutive equations

(2.4) t = µux + γφ− βθ,

(2.5) h = bφx +mψx,

(2.6) g = −γux + dθ − ξφ,

(2.7) ρη = βux + aθ + dφ,

(2.8) q = kψx +mφx + k∗θx.

Here ρ is the mass density, J is the product of the mass density by the equilibrated inertia, t
is the stress, h is the equilibrated stress, g is the equilibrated body force, q is the heat �ux, η
is the entropy and the variables u, φ, ψ and θ are the displacement, the volume fraction, the
thermal displacement and the temperature, respectively. It is worth recalling that the thermal
displacement is given by

ψ(x, t) =

∫ t

0
θ(x, s)ds+ ψ0(x).

We also note that for the type I theory the thermal displacement is not present and therefore
the parameters m and k vanish, meanwhile for the type II theory the parameter k∗ vanishes. For
the generic case of the type III thermoelasticity these three parameters are di�erent from zero.

If we substitute the constitutive equations into the evolution equations, we obtain the �eld
equations for the one-dimensional problem

(2.9)


ρü = µuxx + γφx − βψ̇x
Jφ̈ = bφxx +mψxx − ξφ+ dψ̇ − γux
aψ̈ = kψxx +mφxx − dφ̇− βu̇x + k∗θxx

The parameters proposed in the system are related with the properties of the material. From
now on, we assume that

(2.10) b > 0, J > 0, µ > 0, a > 0, ρ > 0, µξ > γ2, bk > m2, k∗ > 0.

Our assumptions agree with the thermomechanical axioms and empirical experiences. We want
to emphasize that the condition on µ, ξ, b, k,m and γ can be interpreted with the help of the
elastic stability. The condition on the thermal conductivity k∗ is a consequence of the axioms
of thermomechanics. The assumptions concerning mass density, the thermal capacity and the
parameter J are also obvious.

We want to emphasize that the parameter β relates the displacement and the temperature.
Furthermorem relates the thermal displacement with the volume fraction. These two parameters,
jointly with γ, are responsible for the strong coupling between the variables. We will prove that
if the coupling is strong enough, the thermal dissipation brings our system to the exponential
stability.

To have the problem determined, we need to impose boundary and initial conditions. Thus, we
assume that the solutions satisfy the boundary conditions

(2.11) u(0, t) = u(π, t) = φx(0, t) = φx(π, t) = ψx(0, t) = ψx(π, t) = 0 for t > 0,
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and the initial conditions

(2.12)
u(x, 0) = u0(x), u̇(x, 0) = v0(x), φ(x, 0) = φ0(x), φ̇(x, 0) = ϕ0(x),

ψ(x, 0) = ψ0(x), ψ̇(x, 0) = θ0(x) for x ∈ [0, π].

The aim of this paper is to determine the asymptotic behavior in time of the solutions of the
problem given by system (2.9), boundary conditions (2.11) and initial conditions (2.12).

First, we note that there are solutions (uniform in the variable x) that do not decay. To avoid
these cases, we will also assume that

(2.13)

∫ π

0
φ0(x) dx =

∫ π

0
ϕ0(x) dx =

∫ π

0
ψ0(x) dx =

∫ π

0
θ0(x) dx = 0.

We consider the Hilbert space

H =
{

(u, v, φ, ϕ, ψ, θ) ∈ H1
0 × L2 ×H1

∗ × L2
∗ ×H1

∗ × L2
∗
}
,(2.14)

where

L2
∗ = {f ∈ L2,

∫ π

0
f(x)dx = 0} and H1

∗ = L1
∗ ∩H1.

Taking into account that u̇ = v, φ̇ = ϕ and ψ̇ = θ and writing D = d
dx , we can restate system

(2.9) in the following way:

(2.15)



u̇ = v

v̇ =
1

ρ

(
µD2u+ γDφ− βDθ

)
φ̇ = ϕ

ϕ̇ =
1

J

(
bD2φ+mD2ψ − ξφ+ dθ − γDu

)
ψ̇ = θ

θ̇ =
1

a

(
kD2ψ +mD2φ− dϕ− βDv + k∗θxx

)
Moreover, if U = (u, v, φ, ϕ, ψ, θ), then our initial-boundary value problem can be written as

dU

dt
= AU, U0 = (u0, v0, φ0, ϕ0, ψ0, θ0),

where A is the following 6× 6-matrix

(2.16) A =



0 I 0 0 0 0
µ
ρD

2 0 γ
ρD 0 0 −β

ρD

0 0 0 I 0 0

− γ
JD 0 bD2−ξ

J 0 m
J D

2 d
J

0 0 0 0 0 I

0 −β
aD

m
aD

2 −d
a

k
aD

2 k∗

a D
2


and I is the identity operator. We note that D(A) is dense in H.
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If U∗ = (u∗, v∗, φ∗, ϕ∗, ψ∗, θ∗), then

〈U,U∗〉H =
1

2

∫ π

0

(
ρvv̄∗ + Jϕϕ̄∗ + aθθ̄∗ + µuxū

∗
x + bφxφ̄

∗
x + ξφφ̄∗ + γ(φū∗x + φ̄∗ux)

+ kψxψ̄
∗
x +m(φxψ̄

∗
x + φ̄∗xψx)

)
dx.

(2.17)

Here a superposed bar denotes the conjugate complex number. It is worth mentioning that this
product is equivalent to the usual product in the Hilbert space H.

Lemma 2.1. For every U ∈ D(A), we have

Re〈AU,U〉H ≤ 0.

Proof. If we consider the inner product, we can see

〈AU,U〉H = −1

2

∫ π

0
k∗|θx|2dx.

As we assume that k∗ is positive the lemma is proved. �

Lemma 2.2. 0 belongs to the resolvent of A (in short, 0 ∈ ρ(A)).

Proof. The proof of this lemma is standard. It can be done (for instance) in a similar way as
lemma 3.1 of [18] �

In view of these two lemmas and the fact that the domain of the operator is dense we can recall
the Lumer-Phillips corollary to the Hille-Yosida theorem to conclude.

Theorem 2.3. The operator given by matrix A generates a contraction C0-semigroup S(t) =
{eAt}t≥0 in H.

3. Exponential decay of the solutions

In this section we will prove the exponential decay of the solutions of our problem. Apart from
the assumptions proposed above on the constitutive coe�cients, from now on we also impose
that m 6= 0, β 6= 0 and γ 6= 0. These new assumptions say that the coupling between the three
components of the problem is strong. In particular we note that for the classical theory the
parameter m is not present.

Before proving the main result of this section, we recall the characterization stated in the book
of Liu and Zheng that ensures the exponential decay (see [17], [19] or [31]).

Theorem 3.1. Let S(t) = {eAt}t≥0 be a C0-semigroup of contractions on a Hilbert space. Then
S(t) is exponentially stable if and only if the following two conditions are satis�ed:

(i) iR ⊂ ρ(A),
(ii) lim

|λ|→∞
‖(iλI − A)−1‖L(H) <∞.

Lemma 3.2. The operator A de�ned in (2.16) satis�es iR ⊂ ρ(A).

Proof. Following the arguments given by Liu and Zheng ([19], page 25), the proof consists of the
following three steps:



6 ALAIN MIRANVILLE1,2,3 AND RAMÓN QUINTANILLA4

(i) Since 0 is in the resolvent of A, using the Neumann series argument, we see that for any
real λ such that |λ| < ||A−1||−1, the operator iλI − A = A(iλA−1 − I) is invertible. Moreover,
||(iλI − A)−1|| is a continuous function of λ in the interval (−||A−1||−1, ||A−1||−1).
(ii) If sup{||(iλI − A)−1||, |λ| < ||A−1||−1} = M < ∞, then by the contraction theorem, the
operator

iλI − A = (iλ0I − A)
(
I + i(λ− λ0)(iλ0I − A)−1

)
,

is invertible for |λ−λ0| < M−1. It turns out that, by choosing λ0 ∈ ρ(A) as close to ||A−1||−1 as
we can, the set {λ, |λ| < ||A−1||−1 +M−1} is contained in the resolvent of A and ||(iλI −A)−1||
is a continuous function of λ in the interval (−||A−1||−1 −M−1, ||A−1||−1 +M−1).

(iii) Let us assume that the intersection of the imaginary axis and the spectrum is nonempty.
Then there exists a real number $ with ||A−1||−1 ≤ |$| <∞ such that the set {iλ, |λ| < |$|} is
in the resolvent ofA and sup{||(iλI−A)−1||, |λ| < |$|} =∞. Therefore, there exist a sequence of
real numbers λn with λn → $, |λn| < |$| and a sequence of vectors Un = (un, vn, ϕn, φn, ψn, θn)
in the domain of the operator A and with unit norm such that

(3.1) ‖(iλnI − A)Un‖ → 0.

Writing this condition term by term we get

(3.2) iλnun − vn → 0 in H1,

(3.3) iλnvn −
1

ρ

(
µD2un + γDφn − βDθn

)
→ 0 in L2,

(3.4) iλnφn − ϕn → 0 in H1,

(3.5) iλnϕn −
1

J

(
− γDun + bD2φn − ξφn +mD2ψn + dθn

)
→ 0 in L2,

(3.6) iλnψn − θn → 0 in H1,

(3.7) iλnθn −
1

a

(
−βDvn +mD2φn − dϕn + kD2ψn + k∗D2θn

)
→ 0 in L2.

In view of the dissipative term for the operator, we see that

(3.8) θn → 0 in H1.

Then λnψn also tends to zero in H1. Now, we multiply (3.7) by φn. We obtain that

〈iaλnθn, φn〉+ β〈Dvn, φn〉+m||Dφn||2 + d〈ϕn, φn〉 → 0.

We note that
〈iaλnθn, φn〉 = 〈iaθn, λnφn〉 → 0,

because λnφn is bounded. Next,

iβλn〈Dun, φn〉+m||Dφn||2 + d〈ϕn, φn〉 → 0.

Therefore
iβλn〈Dun, φn〉+m||Dφn||2 + iλnd||φn||2 → 0.

We now want to prove that Dφn tends to zero. It will be su�cient to show that 〈Dun, φn〉 tends
to a real number. From (3.5) and after a multiplication by φn we see that

〈iJλnϕn, φn〉+ γ〈Dun, φn〉+ b||Dφn||2 + ξ||φn||2 → 0.
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But

〈iJλnϕn, φn〉 → −J ||ϕn||2

which is a real number. Thus, we have proved that 〈Dun, φn〉 tends to a real number and
||Dφn|| → 0.

We then consider (3.7) after a multiplication by λ−1n Dun. We �nd

β||Dun||2 −m〈Dφn, λ−1n D2un〉 − k〈Dψn, λ−1n D2un〉 − k∗〈Dθn, λ−1n D2un〉 → 0.

But λ−1n D2un is bounded in view of (3.3). Thus we also see that ||Dun|| → 0. If we multiply
(3.3) by un and (3.5) by φn we also conclude that vn and ϕn tend to zero. We have thus obtained
a contradiction and the lemma is proved.

�

Lemma 3.3. The operator A satis�es

lim
|λ|→∞

‖(iλI − A)−1‖L(H) <∞.

Proof. We can also prove this lemma by a contradiction argument. Suppose that the thesis of
the lemma is not true. Then, there exists a sequence λn with |λn| → ∞ and a sequence of vectors
Un in the domain of the operator A with unit norm and such that (3.1) holds. We obtain again
(3.2)-(3.7) and repeat the arguments proposed in the proof of the previous lemma since the key
point in the proof is that λn does not converge to zero. �

Theorem 3.4. The C0-semigroup S(t) = {eAt}t≥0 is exponentially stable. That is, there exist
two positive constants M and α such that ‖S(t)‖ ≤M‖S(0)‖e−αt.

Proof. The proof is a direct consequence of Lemma 3.2, Lemma 3.3 and Theorem 3.1. �

It is worth noting that the behavior of the solutions for this model completely di�ers from
the behavior in the one-dimensional classical thermoelasticity with voids, where slow decay is
observed. The exponential stability obtained in our case is a consequence of the strong coupling
between the porosity and the temperature. This coupling is not present in the classical model.
This behavior is another striking e�ect of the type III thermoelasticity.

4. Conclusion

In this paper we have proved that, under suitable hypotheses on the di�erent constitutive pa-
rameters, the solutions of the system of equations that models the type III thermoelasticity
with voids decay exponentially. This behavior di�ers signi�cantly from the one obtained for the
classical theory.
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