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Decomposition spaces and restriction species

Imma Gálvez-Carrillo, Joachim Kock, and Andrew Tonks

Abstract. We show that Schmitt’s restriction species (such as graphs, matroids, posets, etc.)
naturally induce decomposition spaces (a.k.a. unital 2-Segal spaces), and that their associated
coalgebras are an instance of the general construction of incidence coalgebras of decomposition
spaces. We introduce directed restriction species that subsume Schmitt’s restriction species
and also induce decomposition spaces. Whereas ordinary restriction species are presheaves
on the category of finite sets and injections, directed restriction species are presheaves on the
category of finite posets and convex maps. We also introduce the notion of monoidal (directed)
restriction species, which induce monoidal decomposition spaces and hence bialgebras, most
often Hopf algebras. Examples of this notion include rooted forests, directed graphs, posets,
double posets, and many related structures. A prominent instance of a resulting incidence
bialgebra is the Butcher–Connes–Kreimer Hopf algebra of rooted trees. Both ordinary and
directed restriction species are shown to be examples of a construction of decomposition spaces
from certain cocartesian fibrations over the category of finite ordinals that are also cartesian
over convex maps. The proofs rely on some beautiful simplicial combinatorics, where the
notion of convexity plays a key role. The methods developed are of independent interest as
techniques for constructing decomposition spaces.
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0. Introduction

The notion of decomposition space was introduced in [19] as a very general framework
for incidence (co)algebras and Möbius inversion. Let us briefly recount the abstraction
steps that led to this notion, taking as starting point the classical theory of incidence
algebras of locally finite posets. More extensive introductions can be found in [19] and in
[22]. A very different motivation and formulation of the notion is due to Dyckerhoff and
Kapranov [11].

The first step is the observation, due to Leroux [39], that the Möbius inversion princi-
ple for incidence algebras of both locally finite posets (Rota et. al [28, 48]) and monoids
with the finite decomposition property (Cartier–Foata [6]) has a common generalisation to
the notion of Möbius category, and that this setting allows for good functorial properties.

The next step is to observe that in many examples where symmetries play a role, a more
elegant treatment can be achieved by considering groupoid-enriched categories instead
of plain (set-enriched) categories, as illustrated in [16]. This involves a homotopical
viewpoint, in which the algebraic identities arise as homotopy cardinality of equivalences
of groupoids, rather than just ordinary cardinality of bijections of sets. At the same time it
becomes clear that the algebraic structures can actually be defined and manipulated at the
objective level, postponing the act of taking cardinality, and that structural phenomena
can be seen at this level which are not visible at the usual ‘numerical’ level. For example,
at this level of abstraction one can view the algebra of species under the Cauchy tensor
product as the incidence algebra of the symmetric monoidal category of finite sets and
bijections [22]. (The homotopy viewpoint induces one to consider even∞-groupoids [18,
19], but this is not important in the present contribution.)

Finally, considering groupoid-enriched categories as simplicial groupoids via the nerve
construction led to the discovery [19] that the Segal condition, which essentially char-
acterises category objects among simplicial groupoids, is not actually needed, and that
a weaker notion suffices for the theory of incidence (co)algebras and Möbius inversion:
this is the notion of decomposition space, which can be seen as the systematic theory of
decompositions, where categories are the systematic theory of compositions.

While many coalgebras and bialgebras in combinatorics do arise from (groupoid-
enriched) categories, there are also many examples that can easily be seen not to arise from
such categories. Two prominent examples are the Schmitt Hopf algebra of graphs [50]
(also called the chromatic Hopf algebra [1]), and the Butcher–Connes–Kreimer Hopf al-
gebra of rooted trees (see [9] and [7]). These two examples are reviewed below, where
we shall see that they cannot possibly arise directly from categories, but that they do
naturally come from decomposition spaces, cf. [19, 20, 22]. (They can be obtained indi-
rectly from certain auxiliary categories, by means of a reduction step, cf. Dür [9], whose
construction we subsume as a decalage, in Example 7.16.)

The aim of the present paper is to fit these two examples into a large class of decom-
position spaces. One may say there are two large classes of decomposition spaces, but
the first can be regarded as a special case of the second. The first is the class of decom-
position spaces coming from Schmitt’s restriction species [49]—Schmitt already showed
that the Hopf algebra of graphs comes from a restriction species. While restriction species
are presheaves on the category of finite sets and injections, expressing the ability to de-
compose combinatorial structures, the new notion of directed restriction species expresses
decompositions compatible with an underlying partial order:
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Definition. A directed restriction species is a presheaf on the category of finite posets and
convex maps.

Ordinary restriction species can be regarded as directed restriction species supported on
discrete posets.

We show that every directed restriction species defines a decomposition space, and
hence a coalgebra. Instead of constructing these simplicial objects by hand, we found it
worth taking a slight detour through some more abstract constructions. On one hand,
this serves to exhibit the general principles behind the results, and on the other to develop
machinery of independent interest for the sake of constructing decomposition spaces. We
route the construction through certain sesquicartesian fibrations over ∆ (the category of
finite ordinals, including the empty ordinal): they are cocartesian fibrations which are
furthermore cartesian over convex maps, satisfying Beck–Chevalley, and subject to one
further condition which we refer to as the iesq (for ‘identity-extension-square’) condition.

The main results can now be organised as follows:

Theorem. (Proposition 10.6 and Corollary 10.8.) Restriction species and directed re-
striction species naturally induce iesq sesquicartesian fibrations.

Theorem 9.7. Iesq sesquicartesian fibrations naturally induce decomposition spaces.

Together, and more precisely:

Theorem. (Theorems 11.4 and 11.5.) There is a functor from restriction species to
decomposition spaces CULF over I, and this functor is fully faithful. Similarly there is a
functor from directed restriction species to decomposition spaces CULF over C, also fully
faithful.

Here I is a certain decomposition space of layered finite sets (§4), and C is a certain
decomposition space of layered finite posets (§6). For CULF functors, see 1.9 below.

Many combinatorial structures which form (directed) restriction species are closed
under taking disjoint union in a way compatible with restrictions. We capture this through
the notion of monoidal directed restriction species (7.8), and show:

Proposition 7.9. Monoidal directed restriction species naturally induce monoidal de-
composition spaces and hence bialgebras.

Examples of this notion include rooted forests, directed graphs, posets, double posets,
and many related structures. A prominent instance of a resulting incidence bialgebra is
the Butcher–Connes–Kreimer Hopf algebra of rooted trees.

Note. This paper was originally posted as Section 6 of the long manuscript Decomposition
spaces, incidence algebras and Möbius inversion [17], which has now been split into six
papers, the first five being [18, 19, 20, 21, 22]. The relevant definitions and results from
these papers (mostly [19]) are reviewed below as needed, to render the paper reasonably
self-contained.

Acknowledgments. We wish to thank André Joyal and Mark Weber for some very
pertinent remarks, and apologise for not being able to follow them through to their full
depth in the present contribution. We also thank Louis Carlier for feedback, and the
anonymous referee for suggestions that led to improved exposition.
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1. Decomposition spaces

In this section we briefly recall and motivate the notion of decomposition space.

1.1. Incidence coalgebras of locally finite categories. Recall from Leroux [39] that
the incidence coalgebra of a locally finite category C has underlying vector space spanned
by the arrows of C and comultiplication given by

(1) ∆(f) =
∑

b◦a=f

a⊗ b.

Local finiteness ensures the sum is finite, and coassociativity follows from associativity of
composition of arrows. If the category is just a poset or a monoid, this is the classical
notion of incidence coalgebra of Rota et al. [28, 48] or of Cartier and Foata [6] respectively.

1.2. Groupoids, fat nerves, and homotopy viewpoints. In practice one is often
interested in combinatorial objects up to isomorphism, while keeping track of automor-
phisms. This can be accomplished elegantly by replacing C with its fat nerve, the sim-
plicial groupoid X = NC : ∆

op → Grpd defined formally by

Xn = Map([n],C ),

the groupoid whose objects are functors [n] → C (i.e. sequences of n arrows) and whose
morphisms are invertible natural transformations between them. Hence X0 is the groupoid
of all objects, X1 is the groupoid of all arrows, and X2 is the groupoid of composable pairs
of arrows. An up-to-isomorphism-but-keeping-track-of-automorphisms version of (1) is
encoded by the canonical span of groupoids

X1
d1←− X2

(d2,d0)
−→ X1 × X1.

The fibre of d1 over a given arrow f ∈ X1 is the groupoid of composable pairs with
composite f , and (d2, d0) then returns the two component arrows (a, b). For the best
interpretation of this, one works homotopically as long as possible, in the slice category
Grpd/X1

, before taking homotopy cardinality to arrive at the vector space Qπ0X1
. Thus

all notions must be homotopy notions, invariant under equivalences of groupoids, and
hence well-behaved when taking homotopy cardinality (cf. 1.8 below).

Throughout, when we say pullback (resp. fibre), we refer to the homotopy
pullback (resp. homotopy fibre).

Strict pullbacks are not in general homotopy invariant, except if one of the maps pulled
back along is an iso-fibration; this will be exploited occasionally. Similarly when we talk
about simplicial groupoids we may allow pseudo-functors ∆

op → Grpd, not just strict
functors, since this is the homotopy invariant notion. Most of the simplicial groupoids of
the present paper can be arranged to be strict, though (cf. §12).

The comultiplication formula resulting from the span construction now concerns iso-
classes of arrows, and the sum is over isoclasses of factorisations. In practice this is
precisely what one wants. For example, if C is the category of finite sets and surjections,
the incidence coalgebra resulting from the fat nerve is the Faà di Bruno coalgebra [29].

1.3. From Segal spaces to decomposition spaces. Fat nerves of categories can be
characterised (in part) by the Segal condition, which is the pullback condition Xp+q ≃



DECOMPOSITION SPACES AND RESTRICTION SPECIES 5

Xp ×X0
Xq. The first instance is the pullback square

(2)

X2
❴
✤

d0 //

d2
��

X1

d1
��

X1
d0

// X0

which says that X2 can be identified with the groupoid X1 ×X0
X1 of composable pairs of

arrows. The Segal condition thus expresses the ability to compose.
The decomposition-space axiom, which is weaker, stipulates that certain other squares

are (homotopy) pullbacks, the most important cases being

X3
❴
✤

d2 //

d0
��

X2

d0
��

X2
d1

// X1

X3
❴
✤

d1 //

d3
��

X2

d2
��

X2
d1

// X1.

This axiom can be interpreted as the expression of the ability to decompose (cf. [19]).
To define more formally what a decomposition space is—and to construct them—we

need the notions of active and inert maps:

1.4. Active and inert maps (generic and free maps). The category ∆ of nonempty
finite ordinals [n] = {0, 1, . . . , n} and monotone maps has a so-called active-inert factori-
sation system. An arrow a : [m]→ [n] in ∆ is active (also called generic) when it preserves
end-points, a(0) = 0 and a(m) = n; we use the special arrow symbol →\ to denote active
maps. An arrow a : [m] → [n] in ∆ is inert (also called free) if it is distance preserving,
a(i + 1) = a(i) + 1 for 0 ≤ i ≤ m − 1; we use the special arrow symbol . The active
maps are generated by the codegeneracy maps si : [n+1] → [n] and by the inner coface
maps di : [n−1] → [n], 0 < i < n, while the inert maps are generated by the outer
coface maps d⊥ := d0 and d⊤ := dn. Every morphism in ∆ factors uniquely as an active
map followed by an inert map. Furthermore, it is a basic fact [19] that active and inert
maps in ∆ admit pushouts along each other, and the resulting maps are again active and
inert. (The notions of generic and free maps are general categorical notions, important in
monad theory [54, 55]. We have adopted the more recent ‘active/inert’ terminology, due
to Lurie [40], which seems more suggestive of the role the two classes of maps play.)

1.5. Decomposition spaces [19]. A simplicial groupoid X : ∆
op → Grpd is called a

decomposition space when it takes active-inert pushouts in ∆ to pullbacks. The notion of
decomposition space is equivalent to the unital 2-Segal spaces of Dyckerhoff and Kapra-
nov [11], formulated in terms of triangulations of polygons. Their work shows that the
notion is of interest well beyond combinatorics.

The fat nerve of a category is always a decomposition space [19, Proposition 3.7].

The following result is the main motivation for the notion of decomposition space.

Theorem 1.6. [19] If X : ∆
op → Grpd is a decomposition space, the slice category

Grpd/X1
acquires the structure of a coassociative and counital coalgebra (up to coherent

equivalence), with comultiplication and counit

∆ : Grpd/X1
→ Grpd/X1

⊗Grpd/X1
, ε : Grpd/X1

→ Grpd
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defined by the spans

X1
d1←− X2

(d2,d0)
−→ X1 × X1, X1

s0←− X0 −→ 1.

Upon taking homotopy cardinality (in suitably finite situations, cf. 1.7 below), this yields
a coalgebra in the classical sense.

1.7. Finiteness conditions (cf. [20]). Various finiteness conditions are important for
various reasons. They tend to be satisfied in examples coming from combinatorics, and
we shall establish them for all restriction species and directed restriction species.

In order to be able to take homotopy cardinality to get a coalgebra in vector spaces,
it is necessary to assume that X is locally finite (cf. [20, §7]). This means first of all that
X1 is a locally finite groupoid (i.e. has finite automorphism groups), and second that each
active map is a finite map (i.e. has finite fibres). For a decomposition space X, this can
be measured on the two maps

X0
s0−→ X1

d1←− X2.

For the comultiplication formula to be free of denominators, another condition is
required, namely that X must be locally discrete (cf. [22, §1]), which for a decomposition
space amounts to the two displayed maps having discrete fibres.

In order to have a Möbius inversion formula, yet another finiteness condition is needed,
which refers to a notion of non-degeneracy which is meaningful for complete decomposition
spaces (cf. [20, §2]), i.e. those for which s0 is mono. The condition is to have locally finite
length, and it means (cf. [20, §6]) that for each a ∈ X1 there is an upper bound on the
n for which the map Xn → X1 has non-degenerate elements in the fibre. See op cit. for
precision—the upshot is that there are only finitely many ways of splitting an object into
non-degenerate pieces.

1.8. Homotopy cardinality. Assuming local finiteness, the groupoid-level incidence
coalgebra yields a vector-space level coalgebra by taking homotopy cardinality. We refer
to [18] for the full story (in the setting of∞-groupoids) and to [22] for some introduction
geared towards combinatorics. Very briefly, the homotopy cardinality of a groupoid X

is defined to be |X| :=
∑

x∈π0X
1

|Aut(x)|
. The groupoid slice Grpd/B is the objective

counterpart of the vector space Qπ0B spanned by the symbols δb denoting isoclasses of
objects in B. The homotopy cardinality of an object X → B is then the formal linear

combination
∑

b∈π0B
|Xb|

|Aut(b)|
δb, where |Xb| is the homotopy cardinality of the (homotopy)

fibre Xb.
If the groupoids involved are just sets, the automorphism groups are trivial, and

the notion reduces to ordinary cardinality. Building the automorphism groups into the
definition ensures it behaves well with respect to all the important operations, such as
products and sums, (homotopy) pullbacks and (homotopy) fibres, etc.

1.9. CULF functors. For the present purposes, the relevant notion of morphism between
decomposition spaces is that of CULF functor [19]: CULF functors between decompo-
sition spaces induce coalgebra homomorphisms. A simplicial map is called ULF (unique
lifting of factorisations) if it is cartesian on active coface maps, and it is called conserva-
tive if cartesian on codegeneracy maps. We say CULF for conservative and ULF, that is,
cartesian on all active maps.

Since CULFness is defined in terms of pullbacks, the following useful lemma is imme-
diate from the analogous property of pullbacks.
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Lemma 1.10. Given simplicial maps X
f
−→ Y

g
−→ Z, if g and g ◦ f are CULF then so is f.

Since CULFness refers to active maps, just as the finiteness conditions in 1.7, we have
the following useful result.

Lemma 1.11. Let P denote a property of decomposition spaces which is measured on
active maps (such as being complete, locally discrete, or of locally finite length). Then if
f : Y → X is CULF and X has property P , then also Y has property P . This is also the
case for the property of being locally finite, except we must check additionally that Y1 is
locally finite.

In fact, also:

Lemma 1.12. A simplicial groupoid CULF over a decomposition space is itself a decom-
position space.

1.13. Monoidal decomposition spaces and bialgebras. There is a natural notion
of monoidal decomposition space [19], leading to bialgebras. Briefly, it is a decomposition
space X equipped with a functor ⊗ : X× X→ X required to be a monoidal structure and
to be CULF. The homotopy cardinality of this monoidal structure is an algebra structure,
and the CULF condition ensures the compatibility with the coalgebra structure to result
altogether in a bialgebra. This is important in most applications to combinatorics, where
almost always this monoidal structure, and hence the algebra structure, is given by disjoint
union. In the present contribution we focus mostly on the comultiplication, but comment
on monoidal structure in 5.14–5.15 and 7.8–7.9.

1.14. Remark. There is another strategy for getting bialgebras from decomposition
spaces, namely simply to define the multiplication by reading the comultiplication span
backwards. It is rarely the case that this gives a bialgebra directly (in general it gives only
a lax bialgebra [47]), but sometimes the discrepancy amounts to a symmetry factor, which
can be absorbed into the multiplication (Green’s theorem) to get an honest bialgebra, as
explained in detail by Dyckerhoff [10]. Such ‘twisted’ bialgebra structures are typical for
linear contexts (representation theory), where there is no notion of disjoint union (as in
combinatorics).

1.15. Decalage. (See [27].) Given a simplicial groupoid X the lower Dec, Dec⊥X, is a
new simplicial groupoid obtained by deleting X0 and shifting everything one place down,
deleting also all d0 face maps and all s0 degeneracy maps. It comes equipped with a
simplicial map, called the dec map, d⊥ : Dec⊥X→ X given by the original d0.

In the present contribution, we shall exploit decalage to relate the fat nerve of the
Grothendieck construction of a restriction species with its associated decomposition space
(Proposition 11.1 and Corollary 11.3).

1.16. Right fibrations and left fibrations. (See [19].) A simplicial map f : Y → X is
called a right fibration if it is cartesian on all bottom face maps d⊥. This implies that it
is also cartesian on all active maps (i.e. is CULF). Similarly, f is called a left fibration if
it is cartesian on d⊤ (and consequently on all active maps also).

Lemma 1.17. If f : Y → X is a CULF functor between decomposition spaces, then
Dec⊥(f) : Dec⊥Y → Dec⊥X is a right fibration of Segal spaces. Similarly, Dec⊤(f) :
Dec⊤Y → Dec⊤X is a left fibration.
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2. Two motivating examples and two basic examples

While many important examples of coalgebras in combinatorics come from decom-
position spaces which are just (fat nerves of) categories, there are also many examples
which do not (directly) come from a category. (Sometimes, a construction can be made,
involving a reduction procedure [9].)

In this section we first explain the two examples that triggered the present investiga-
tions, and then explain the most basic example from the two families they belong to. The
first example, Schmitt’s Hopf algebra of graphs, is an example of a restriction species.
The terminal restriction species is that of finite sets. The second example, the Butcher–
Connes–Kreimer Hopf algebra, is an example of a new notion we introduce, directed
restriction species, and the terminal such is the example of finite posets.

2.1. The chromatic Hopf algebra (of graphs). The following Hopf algebra of graphs
was first studied by Schmitt [50]; see also [1] and [26]. For a graph G with vertex set
V , and a subset U ⊂ V , define G|U to be the graph whose vertex set is U , and whose
graph structure is induced by restriction (that is, the edges of G|U are those edges of G
both of whose incident vertices belong to U). On the vector space spanned by isoclasses
of graphs, define a comultiplication by the rule

∆(G) =
∑

A+B=V

G|A⊗G|B.

This coalgebra is the cardinality of the coalgebra of a decomposition space but not
directly of a category. Indeed, define a simplicial groupoid G : ∆

op → Grpd with G1

the groupoid of graphs, and more generally Gk the groupoid of graphs with an ordered
partition of the vertex set V into k parts (possibly empty), i.e. a function V → k—this
is what we shall call a layering of the graph (4.1). In particular, G0 is the contractible
groupoid consisting only of the empty graph. The outer face maps delete the first or
last layer, and the inner face maps join adjacent layers. The degeneracy maps insert an
empty layer. It is clear that this is not a Segal space (as Square (2) is not a pullback):
a graph structure on a given 2-layered set cannot be reconstructed from knowledge of
the graph structure of the two layers individually, since this gives no information about
the edges connecting the layers. One can easily check that it is a decomposition space,
hence induces a coalgebra. The operation of taking disjoint union makes this a bialgebra,
in fact a Hopf algebra, which is precisely Schmitt’s chromatic Hopf algebra. (A picture
illustrating the decomposition-space axiom in this case can be found in [20].)

2.2. Butcher–Connes–Kreimer Hopf algebra. The Butcher–Connes–Kreimer Hopf
algebra of rooted trees [7] is the free algebra on the set of isoclasses of rooted trees, with
comultiplication defined by summing over certain admissible cuts c:

∆(T ) =
∑

c∈adm.cuts(T )

Pc ⊗Rc.

An admissible cut c is a splitting of the set of nodes into two subsets, such that the second
forms a subtree Rc containing the root node (or is the empty forest); the first subset, the
complement ‘crown’, then forms a subforest Pc, regarded as a monomial of trees. Note
that compared to the arbitrary splitting allowed in Schmitt’s Hopf algebra of graphs, the
admissible cuts are thus required to be compatible with the partial order underlying trees
and forests.
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We can obtain the Butcher–Connes–Kreimer coalgebra from a decomposition space as
follows (cf. also [19]): let H1 denote the groupoid of forests, and let H2 denote the groupoid
of forests with an admissible cut. More generally, H0 is defined to be a point, and Hk is
the groupoid of forests with k − 1 compatible admissible cuts. These form a simplicial
groupoid H in which the inner face maps forget a cut, and the outer face maps project
away either the crown or the bottom layer (the part of the forest below the bottom cut).
It is clear that H is not a Segal space: a tree with a cut cannot be reconstructed from its
crown and its bottom tree, which is to say that H2 is not equivalent to H1 ×H0

H1. It is
straightforward to check that it is a decomposition space, and that its incidence coalgebra
is precisely the Butcher–Connes–Kreimer coalgebra. As in the graph example, disjoint
union makes this coalgebra into a bialgebra, in fact a Hopf algebra. For comparison with
the construction of Dür [9], see 7.16 below.

2.3. Getting decomposition spaces from restriction species and directed re-
striction species. The graph example is just one in a large family of coalgebras (and
bialgebras) constructed by Schmitt [49], namely coalgebras induced by restriction species
(see also [2]). We shall show, first of all, that restriction species in the sense of Schmitt [49]
are examples of decomposition spaces, and that they and their associated coalgebras ex-
emplify the general construction (Proposition 5.13). The example with trees does not
come from a restriction species, but we introduce the notion of directed restriction species
(§7), which covers this examples and many others, and which also define decomposition
spaces.

The next two examples are the basic ones.

2.4. The binomial Hopf algebra. Define a comultiplication on the vector space
spanned by isoclasses of finite sets by

∆(A) =
∑

A1+A2=A

A1 ⊗ A2.

Here the sum is over all pairs of subsets of A whose union is A and whose intersection is
empty. We shall realise this from a decomposition space I of layered finite sets (§4).

2.5. The Hopf algebra of finite posets. Define a comultiplication on the vector space
spanned by isoclasses of finite posets by

∆(P ) =
∑

c∈cuts(P )

Dc ⊗ Uc.

Here the sum is over all admissible cuts of P ; an admissible cut c = (Dc, Uc) is by definition
a way of writing P as the set-theoretic disjoint union of a lower-set Dc and an upper-
set Uc. This coalgebra was studied by Aguiar–Bergeron–Sottile [1], who trace its origins
back to Gessel [24]. See also Figueroa–Gracia-Bond́ıa [12]. We shall realise this from a
decomposition space C of layered finite posets (§6).

3. Simplicial preliminaries

A key ingredient in our constructions is the beautiful interplay between the topologist’s
Delta and the algebraist’s Delta. After setting up the notation, we establish a certain
correspondence between squares in the two categories.
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3.1. ‘Topologist’s Delta’. The category ∆ is the skeleton of the category of non-empty
finite ordered sets and monotone maps.
Notation: its objects are

[n] := {0, 1, . . . , n}, n ≥ 0.

The monotone maps are generated by

• sk : [n+1]→ [n] that repeats the element k ∈ [n],
• dk : [n]→ [n+1] that skips the element k ∈ [n+1].

Note that [0] is terminal. We denote by ∆act and ∆inert the subcategories with all the
objects and the active or inert maps respectively.

3.2. ‘Algebraist’s Delta’. The category ∆ is the skeleton of the category of finite
ordered sets (including the empty set) and monotone maps.
Notation: its objects are

n := {1, . . . , n}, n ≥ 0.

The monotone maps are generated by

• sk : n+1→ n that repeats the element k + 1 ∈ n, (0 ≤ k ≤ n− 1),

• dk : n→ n+1 that skips the element k + 1 ∈ n+1, (0 ≤ k ≤ n).

Note that 1 is terminal, 0 is initial, and the only map with target 0 is the identity.

There is a full inclusion ∆ → ∆ which on objects sends [n] = {0, . . . , n} to n+1 =
{1, . . . , n + 1}. On maps it just does nothing, up to the canonical relabelling of the
elements, [n] ∼= n+1. Thus it sends dk to dk and sk to sk.

More important is the following duality, which is standard [30].

Lemma 3.3. There is a canonical isomorphism of categories

∆
op
act
∼= ∆,

• n corresponds to [n],
• dk : n→ n+1 corresponds to sk : [n+1]→ [n],
• sk : n+1→ n corresponds to the inner coface map dk+1 : [n]→ [n+1].

The following graphical representation may be helpful. In ∆, draw the elements in
n as n dots, and in ∆act draw the elements in [n] as n + 1 walls. A map operates as a
function on the set of dots when considered a map in ∆ while it operates as a function on
the walls when considered a map in ∆act. Here is a picture of a certain map 5 → 4 in ∆

and of the corresponding map [5]← [4] in ∆act.

3.4. Ordinal sum. The ordinal sum monoidal structure (∆,+, 0) gives a monoidal
structure (∆act,∨, [0]), via Lemma 3.3. The inert maps [n] [n′] in ∆ may be expressed
uniquely as [n] [a] ∨ [n] ∨ [b].
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3.5. Pullbacks in ∆. We shall need the following lemmas, whose proofs are straightfor-
ward.

Lemma 3.6. For each 0 ≤ k ≤ n, the following square is a pullback in ∆:

n

=

��

❴
✤

dk
// n+1

dk
// n+2

sk

��
n

dk
// n+1.

Lemma 3.7. For each 0 ≤ k ≤ n, the following square is a pullback in ∆:

n

=

��

❴
✤

= // n

dk

��
n

dk
// n+1.

Lemma 3.8. For 0 < k < n and all j the following squares are pullbacks

n
❴
✤

d⊤
//

dk

��

n+1

dk

��
n+1

d⊤
// n+2

n
❴
✤

d⊤
//

sj

��

n+1

sj

��
n−1

d⊤
// n

n
❴
✤

d⊥
//

dk

��

n+1

dk+1

��
n+1

d⊥
// n+2

n
❴
✤

d⊥
//

sj

��

n+1

sj+1

��
n−1

d⊥
// n.

3.9. Convex maps. A map j in ∆ is called convex and written j : n  n′ if it is
distance-preserving: j(x + 1) = j(x) + 1, for all x ∈ n. (In the subcategory ∆ ⊂ ∆ we
called these ‘inert maps’. We prefer to use different names since they play a different role
in the two categories.) Observe that the convex maps are just the canonical inclusions

j : n a+ n+ b,

and that, for k > 0, there is a canonical bijection

∆convex(k, n)
∼= ∆convex(k+1, n+1).

Here ∆convex denotes the subcategory of ∆ with all the objects and the convex maps. In
combination with the full inclusion ∆ ⊂ ∆, we get

Lemma 3.10. For k > 0, there is a canonical isomorphism

∆
≥1
inert

∼= ∆
≥1
convex, [k] 7→ k (k ≥ 1).

Note that this does not extend to k ≥ 0 (since 0 is initial but [0] is not).

Lemma 3.11. Convex maps in ∆ admit pullback along any map: given the solid cospan
consisting of g and i, with i convex,

n′

g

��

n
✤
❴

f

��✤
✤
✤

oojoo❴ ❴ ❴

k′ k ,oo
i

oo

the pullback exists and j is again convex.
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Proposition 3.12. For k > 0, there is a bijection between the set of pullback squares
along convex maps in ∆ and the set of commutative squares of active against inert maps
in ∆















n′

��

noooo
✤
❴

��
k′ koooo

in ∆















=















[n′] [n]oooo

[k′]

❴OO

[k]oooo

❴OO

in ∆















.
The bijection is given by Lemma 3.3 on the vertical maps, and by Lemma 3.10 on the
bottom horizontal map.

In the case k = 0, we necessarily have n = 0 and n′ = k′, but there is not even a bijection
on the bottom arrows in this case.

Proof. The bijection is the composite of the three bijections














n′

��

noooo
✤
❴

��
k′ koooo















=















n′

��

k′ koooo















=















[n′]

[k′]

❴OO

[k]oooo















=















[n′] [n]oooo

[k′]

❴OO

[k]oooo

❴OO















where the first bijection is by existence of pullbacks along convex maps (Lemma 3.11),
the second is by Lemmas 3.3 and 3.10 (here we use that k > 0), and the third is by unique
active-inert factorisation of the composite [k]  [k′] →\ [n′]. It can be checked that the
bijection between the right-hand arrows is again that of Lemma 3.3. In fact, the bijection
is















a1 + n+ a2

g
1
+f+g

2

��

noooo
✤
❴

f

��
b1 + k + b2 koooo















=















[a1] ∨ [n] ∨ [a2] [n]oooo

[b1] ∨ [k] ∨ [b2]

g1∨f∨g2

❴OO

[k]oooo

f

❴OO















.
�

3.13. Identity-extension squares. A square in ∆ is called an identity-extension square
(iesq) if is it of the form

(3)

a+ n+ b

ida +f+idb
��

noo
joo

f

��
a+ k + b k ,oo

i
oo

where i and j are convex. Note that an iesq is both a pullback and a pushout.

Lemma 3.14. Under the correspondence of Proposition 3.12, identity-extension squares
in ∆ correspond to active-inert pushouts in ∆.

4. The decomposition space I of layered finite sets

Let I be the category of finite sets and injections. We define and study the monoidal
decomposition space I of layered finite sets: finite sets with an ordered partition into any
number of possibly empty layers. It is equivalent to the monoidal nerve of the monoidal
groupoid of finite sets and bijections, but the layering viewpoint will generalise nicely to
the directed case (§6).
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4.1. The groupoid of n-layered finite sets. An n-layering, or just a layering, of a
finite set A is a function p : A → n. We refer to the fibres Ai = p−1(i), i ∈ n, as layers.
Layers may be empty. We consider the groupoid In := Iiso/n of all n-layerings of finite sets,
whose arrows are commutative triangles,

A

��✺
✺✺

✺✺
✺✺

≃ // A′

��✟✟
✟✟
✟✟
✟

n.

4.2. The simplicial groupoid of layered finite sets. We now assemble the groupoids
of layered finite sets into a simplicial groupoid, exploiting the active-inert factorisation
system on ∆. For an active map g : [n]→\ [m] of ∆, consider the map g∗ : Iiso/m → Iiso/n given
by postcomposition with the corresponding map g : m→ n of ∆ under the correspondence
of Lemma 3.3,

g∗ := g
!
: Iiso/m → Iiso/n , (A→m) 7→ (A→m

g
→n).

To define the outer face maps d⊥, d⊤ : Iiso/k → Iiso/k−1, we take A→k to the pullbacks

A′

❴
✤

�

� //

d⊥(a):=d⊥∗(a)
��

A

a

��
k−1

d⊥
// k,

A′

❴
✤

�

� //

d⊤(a):=d⊤∗(a)
��

A

a

��
k−1

d⊤
// k,

projecting away the first or the last layer. We make the specific choice that the pullbacks
are given by subsets; this will ensure that the simplicial object we are defining is strict.
More abstractly, for an inert map f : [n] → [m] of ∆, the map f∗ : Iiso/m → Iiso/n is defined
by pullback along the corresponding convex map f : n→ m in ∆, given for n ≥ 1 by the
correspondence of Lemma 3.10 between inert maps in ∆ and convex maps in ∆. Note that
all maps [0]→ [n] correspond to the unique map 0→ n.

Proposition 4.3. The groupoids In and the maps g∗, f∗ above form a simplicial groupoid
I : ∆

op → Grpd, which is a Segal space, and hence a decomposition space.

Proof. The active-active simplicial identities are already known to hold by construction,
because they correspond under ∆

op
act ≃ ∆ to identities in ∆.

We need to check the following nine simplicial identities involving outer face maps:

d⊤ ◦ d⊥ = d⊥ ◦ d⊤

d⊥ ◦ d⊥ = d⊥ ◦ d1 d⊤ ◦ d⊤ = d⊤ ◦ d⊤−1

d⊥ ◦ s⊥ = id d⊤ ◦ s⊤ = id

sk ◦ d⊥ = d⊥ ◦ sk+1 sk ◦ d⊤ = d⊤ ◦ sk

dk ◦ d⊥ = d⊥ ◦ dk+1 dk ◦ d⊤ = d⊤ ◦ dk.
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These relations, according to the definitions we have given of outer face maps in I, translate
into the following relations between pullback (upperstar) and postcomposition (lower-
shriek) operations, using the dictionary compiled in Lemma 3.3.

d⊤∗ ◦ d⊥∗ = d⊥∗ ◦ d⊤∗

id! ◦ d
⊥∗ ◦ d⊥∗ = d⊥

∗
◦ s⊥! id! ◦ d

⊤∗ ◦ d⊤∗ = d⊤
∗
◦ s⊤!

d⊥
∗
◦ d⊥! = id! ◦ id∗ d⊤

∗
◦ d⊤! = id! ◦ id∗

dk ! ◦ d
⊥∗ = d⊥

∗
◦ dk+1

! dk ! ◦ d
⊤∗ = d⊤

∗
◦ dk !

sk−1
! ◦ d

⊥∗ = d⊥
∗
◦ sk ! sk−1

! ◦ d
⊤∗ = d⊤

∗
◦ sk−1

!.

The first of these is induced from a commutative square in ∆. The other eight hold by
Beck–Chevalley, since the squares in ∆ are pullbacks by Lemmas 3.6–3.8.

The simplicial identities can be arranged to hold on the nose: the only subtlety is the
pullback construction involved in defining the outer face maps, but these pullbacks can
all be chosen to be always actual subset inclusions.

Finally, since Iiso/0 ≃ 1, the Segal condition says (for each m,n) the projection map

Iiso/m+n → Iiso/m × Iiso/n must be an equivalence (Cf. 1.3). But this is clear, since an inverse is

given by sending (A→m,B→n) to A+B → m+n. �

Lemma 4.4. The decomposition space I is complete, locally finite, locally discrete, and of
locally finite length.

Proof. The checks are straightforward verifications. (Some indications can be found in
the similar Lemma 6.13.) �

Proposition 4.5. There are natural (levelwise) equivalences

Dec⊥I ≃ NI Dec⊤I ≃ NIop.

The first equivalence identifies a map A→ k with the string of k − 1 injections

A1 →֒ A1 + A2 →֒ . . . →֒ A1 + · · ·+ Ak−1 →֒ A1 + · · ·+ Ak.

Proof. This is a straightforward verification, easier than the analogous arguments in
the proof of Proposition 6.11, where the case of posets is treated. In fact the current
proposition can be deduced from the poset case by Proposition 11.1, using the fact 7.3
that I is a directed restriction species (see Remark 7.15). �

Lemma 4.6. I is a monoidal decomposition space under disjoint union.

Proof. As the proof of Lemma 6.14, but changing C to I and C to I everywhere. �

5. Restriction species

5.1. Schmitt’s restriction species. Recall that I denotes the category of finite sets
and injections. Schmitt [49] defines restriction species to be presheaves on I,

R : Iop −→ Set

A 7−→ R[A].

An element X of R[A] is called an R-structure on the set A. Compared to a classical
species [29], a restriction species R is thus functorial not only in bijections but also in
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injections, meaning that an R-structure on a set A induces also such a structure on every
subset B ⊂ A (denoted with a restriction bar):

R[A] −→ R[B]

X 7−→ X|B.

A morphism of restriction species is just a natural transformation R⇒ R′ of functors
Iop → Set, i.e. for each finite set A a map R[A]→ R′[A], natural in A.

5.2. Schmitt construction. The Schmitt construction [49] associates to a restriction
species R : Iop → Set a (cocommutative) coalgebra structure on the vector space spanned
by the isoclasses of R-structures: the comultiplication is

∆(X) =
∑

A1+A2=A

X|A1 ⊗X|A2, X ∈ R[A],

and the counit sends X ∈ R[∅] to 1 and other structures to 0.
If u : R′ ⇒ R is a morphism of restriction species, the assignment (A,X ′) 7→

(A, uA(X
′)) defines a linear map between the vector spaces underlying the incidence

coalgebras, and since the summation in the comultiplication formula only involves the
underlying sets, it is clear that this linear map is a coalgebra homomorphism.

A great many (cocommutative) combinatorial coalgebras can be realised by the Schmitt
construction (see [49] and also [2]). For example, graphs (2.1), matroids, simplicial com-
plexes, posets, categories, etc., form restriction species and hence coalgebras. In many
cases, disjoint union furthermore defines an algebra structure, and altogether a bialgebra.
Finally, in most cases, R[∅] is singleton. This implies that the bialgebra is connected
and hence a Hopf algebra. Schmitt actually includes this condition in his definition of
restriction species. In the present work, we shall not assume R[∅] singleton.

5.3. Groupoid-valued species. In line with our general philosophy, we shall work with
groupoids rather than sets, aspiring to a native treatment of symmetries. Groupoid-valued
species were first advocated by Baez and Dolan [3] (who called them stuff types, as opposed
to structure types, their translation of Joyal’s espèces de structures [29]), for the sake of
dealing with symmetries of Feynman diagrams. They showed also that over groupoids
(but not over sets), the generating function of a species is the homotopy cardinality
of its associated analytic functor. Furthermore, over groupoids, analytic functors are
polynomial [32], [23], meaning that they are given by pullback functors and their adjoints.
Since the decomposition-space machinery is based on homotopy pullbacks and homotopy
cardinality, we may as well consider groupoid-valued species, which we do from now on.

For the sake of taking homotopy cardinality, it is furthermore natural to require the
groupoid values to be locally finite. This means that every object has finite automorphism
group. This is usually the case of combinatorial objects. In particular, every set (finite
or not) is locally finite. So a classical species is always locally finite.

5.4. Restriction species. A restriction species is a groupoid-valued presheaf on I,

R : Iop −→ Grpd

A 7−→ R[A].

A morphism of restriction species is a natural transformation. We actually allow pseudo-
functors and pseudo-natural transformations, but make some remarks on the strict case
in §12. This defines the category RSp of restriction species.
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A restriction species corresponds, by the Grothendieck construction, to a right fibra-
tion (i.e. a cartesian fibration with groupoid fibres)

R→ I.

Here R is the category of elements of R, whose objects are R-structures and whose arrows
are structure-preserving injections. More precisely, an object is a pair (A,X) where A is
a finite set and X ∈ R[A], and a morphism (A′, X ′) → (A,X) is an injection A′ → A in
I and an arrow X ′ ∼→ X|A′ in the groupoid R[A′]. The category of restriction species is
canonically equivalent to the categories of groupoid-valued presheaves on I, and of right
fibrations over I:

RSp ≃ GrpdIop ≃ RFib/I.

It is sometimes more informative to describe a restriction species by describing the right
fibration R→ I rather than describing the functor R : Iop → Grpd, because the descrip-
tion of the category R already has the specifics about the restrictions, encoded in the
arrows of the category. We shall see this in the examples.

We make the standing assumption that restriction species take values in locally finite
groupoids.

5.5. Examples of restriction species. (See [49] for these and more examples.)
(1) Graphs. The species of finite graphs is a restriction species, cf. Example 2.1. It is

fruitful to look at it also as a right fibration G→ I: the category G is then the category
whose objects are finite graphs, and whose morphisms are full graph inclusions. Full
means that if two vertices x and y are in the subgraph then all edges between x and y

must also be included. (Allowing non-full inclusions, such as →֒ , would prevent
G→ I from being a right fibration.)

(2) Matroids. (See Oxley [46] for definitions.) The species of matroids is a restric-
tion species [49]. Many important classes of matroids are stable under restriction and
are therefore also restriction species. For example, transversal matroids, representable
matroids, regular matroids, graphic matroids, bond matroids, planar matroids, and so
on.

(3) Posets. The species of posets is a restriction species. The corresponding right
fibration is P → I, where P is the category of finite posets and full poset inclusions
F →֒ P . ‘Full’ means that for two elements x, y in F we have x ≤F y if and only if
x ≤P y.

In §7 we shall introduce directed restriction species, based on a different category of
posets, namely the category C of finite posets and convex maps. The forgetful functor
C→ I is not a right fibration: there is no convex lift of the set inclusion {0, 2} →֒ {0, 1, 2}
to the linear order {0 ≤ 1 ≤ 2}.

(4) Categories. The species of finite categories assigns to a finite set the groupoid
of all finite-category structures on that set of objects. In this case the right fibration is
F→ I, where F is the category of finite categories and full subcategory inclusions (or more
precisely, injective-on-objects fully faithful functors). The underlying-set functor F → I

is a right fibration because clearly any subset of the object set of a category determines
uniquely a full subcategory.

Note: in the examples of graphs and categories we stress the word ‘finite’: if we allowed
an infinite number of edges/arrows between two elements, an infinite automorphism group
would result, violating the standing local finiteness assumption (made in 5.4).



DECOMPOSITION SPACES AND RESTRICTION SPECIES 17

5.6. Slices of examples. Recall that for any object x in a category C , the domain
projection C/x → C is a right fibration. In particular, if R→ I is a restriction species, for
any R-structureX, the slice category R/X is again a restriction species. It is the restriction
species of R-substructures of X. See Bergner et al. [5] for examples of slices of the
decomposition space of graphs. The fact that slicing a restriction species produces again
restriction species reflects the local nature of coalgebras: every element in a coalgebra
generates a subcoalgebra.

5.7. Restriction species as decomposition spaces over I. From a restriction species
R, or a right fibration R → I, we shall construct a simplicial groupoid R of layered
R-structures, together with a CULF functor R→ I.

As in §4, the subtlety is that the obvious functoriality is in ∆ ≃ ∆
op
act, not in all of ∆

op.
Consider first the functor Iiso/− : ∆→ Grpd and form the pullbacks

Rk = Iiso/k ×Iiso
/1

Riso

along the functor Riso → Iiso = Iiso/1 . Thus Rk is the groupoid of R-structures with a

k-layering of the underlying sets. This defines a diagram of shape ∆ = ∆
op
act:

Ract : ∆→ Grpd.

The pullback construction also shows that forgetting the R-structure and retaining only
the layering of the underlying set provides a cartesian natural transformation (of ∆

op
act-

diagrams)

Ract → Iact.

So far the construction works for any species, not necessarily restriction species. To
define also the inert maps (i.e. outer face maps) we need the restriction structure on R,
which allows us to lift the outer face maps we constructed for I. Recall that the outer
face map d⊥ : Iiso/k → Iiso/k−1 is defined by sending A→k to the pullback

A′

��

❴
✤

⊂ // A

��
k−1

d
⊥

// k.

Since A′ →֒ A is an injection, we can use functoriality of R (the fact that R is a restriction
species) to get also the face map for Rk: for example,

d⊥ : Rk → Rk−1

is defined as
(

A→k, X
)

7→
(

d∗⊥A→k−1, X|d∗⊥A
)

.

We see that the point is to be covariantly functorial in all maps in ∆ and to be
contravariantly functorial in convex maps. To establish the simplicial identities is to
exhibit a certain compatibility between these two functorialities. These conditions are
precisely condensed in the notion of sesquicartesian fibration which we introduce in §9
below.

Theorem 5.8. Given a restriction species R, the above construction defines a simplicial
groupoid R, which is a decomposition space. Furthermore, a morphism of restriction
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species R′ → R induces a CULF functor R′ → R. These assignments define a functor
from the category of restriction species to that of decomposition spaces and CULF functors.

Proof. The simplicial identities in R can be checked by hand, arguing along the lines of
the proof of Proposition 4.3. (Later we will give a more elegant proof using the machinery
introduced in Sections 8–10 and there will be no need for ad hoc arguments). Since by
construction the simplicial groupoid R is CULF over a decomposition space I, it is itself
a decomposition space (by Lemma 1.12).

A morphism f : R′ → R amounts to a morphism of right fibrations

R′

��✹
✹✹

✹✹
✹

// R

��☞☞
☞☞
☞☞

I

inducing simplicial maps

R′

��✹
✹✹

✹✹
✹

f // R

��☛☛
☛☛
☛☛

I.

Indeed, at level n, the morphism of groupoids R′
n → Rn is induced from R′ → R, since

the layering only affects the underlying set which does not change. Finally, since the
projection maps to I are CULF, also f is CULF, by Lemma 1.10. �

5.9. Decalage. The decomposition space R constructed from the restriction species R

can be seen as an ‘un-decking’: we have

Dec⊥R ≃ NR, Dec⊤R ≃ NRop.

We postpone the proof until 11.3.

Lemma 5.10. The groupoid R1 = Riso is locally finite.

Proof. For each n ∈ Iiso we have a fibre sequence (homotopy pullback)

R[n]
❴
✤

//

��

Riso

��

1
pnq

// Iiso.

Since Iiso is locally finite, and since R[n] is locally finite by our standing assumption (see
5.4), also Riso is locally finite. �

Proposition 5.11. The decomposition space R is complete, locally finite, locally discrete,
and locally of finite length.

Proof. R1 is locally finite by Lemma 5.10. The remaining finiteness properties and the
discreteness property follow from Lemmas 1.11 and 4.4 since R is CULF over I. �

5.12. Coalgebras. (See [19] and [20].) For any decomposition space X, there is induced
a coalgebra structure on the slice category Grpd/X1

, as stated in Theorem 1.6 (for details,
see [19, Theorem 7.4]). The comultiplication is the linear functor

∆ : Grpd/X1

(d2,d0)!◦d1∗
−−−−−−−→ Grpd/X1×X1

,
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defined by the span

(4) X1
d1←− X2

(d2,d0)
−→ X1 × X1

(and the counit is the linear functor ε : Grpd/X1
−→ Grpd defined by X1

s0←− X0 −→ 1.)
From an abstract viewpoint, ‘linear’ means to preserve homotopy sums [18]. From a

practical viewpoint, it means to be given by a span, thought of as a matrix. The upshot is
that under suitable finiteness conditions, one can take homotopy cardinality of these linear
functors to obtain linear maps between vector spaces, to obtain a coalgebra structure on
the vector space Qπ0X1

, the free vector space spanned by iso-classes of 1-cells of X. We
refer to [20, §7] for the details.

Similarly a CULF functor f : X′ → X induces a coalgebra homomorphism Grpd/X′

1
→

Grpd/X1
([19, Lemma 8.2]), given simply by post-composition with f1.

The following proposition is the motivation for channelling the Schmitt construction
through decomposition spaces.

Proposition 5.13. For R a restriction species, the Schmitt coalgebra of R is the homotopy
cardinality of the incidence coalgebra of the associated decomposition space R. For a
morphism of restriction species f : R′ → R, Schmitt’s coalgebra homomorphism is the
homotopy cardinality of the associated CULF functor f : R′ → R.

Proof. At the objective level, the comultiplication is given by pullback along d1 : R2 →
R1, followed by composing with (d2, d0), with reference to the span (4) for R. For a given
R-structure X, viewed as a morphism pXq : 1→ R1, the pullback is the d1-fibre over X,
that is the groupoid (R2)X of all 2-layerings on the R-structure X. This is a groupoid
over R1 × R1 by composing with (d2, d0), which amounts to returning the restriction of
X to each of the two layers. To recover the formula in 5.2, it remains to take homotopy
cardinality of this groupoid, relative to R1×R1. This is meaningful since R is locally finite
by Proposition 5.11. There are general formulae for this in [22], but in the present case
it is straightforward: since R is locally discrete by Proposition 5.11, the groupoid (R2)X
is discrete, and hence homotopy cardinality amounts to counting isomorphism classes,
yielding Schmitt’s formula in 5.2.

If f : R′ ⇒ R is a morphism of restriction species, the effect of Schmitt’s coalgebra
homomorphism (see 5.2) on an R-structure X with underlying set A is X 7→ fA(X). On
the other hand, Theorem 5.8 gives a CULF functor f : R′ → R, inducing the objective-level

coalgebra homomorphism Grpd/R′

1
→ Grpd/R1

that takes 1
pX′q
−→ R′

1 to 1
pX′q
−→ R′

1
f1−→ R1,

which is pfAX
′q. The cardinality of this linear functor is precisely Schmitt’s coalgebra

homomorphism. �

5.14. Monoidal restriction species. We introduce the notion of monoidal restriction
species. The idea is simply that many restriction species are ‘closed under disjoint union’,
in a way compatible with restrictions. This compatibility with restrictions ensures that
the resulting algebra structure is compatible with the coalgebra structure to result alto-
gether in a bialgebra. This bialgebra is always graded (by the number of elements in the
underlying set), and most often connected (this happens when there is only one possible
structure on the empty set), and hence a Hopf algebra. Schmitt [49] arrives at Hopf
algebras through a notion of coherent exponential restriction species. Our notion is a bit
more general, and conceptually simpler.
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The category I has a symmetric monoidal structure given by disjoint union, as already
exploited to make I a monoidal decomposition space (Lemma 4.6). We define a monoidal
restriction species to be a right fibration R→ I for which the total space R has a monoidal
structure ⊔ and the projection to I is strong monoidal.

If X1 is an R-structure with underlying set S1, and X2 is an R-structure with under-
lying set S2, and if K1 ⊂ S1 and K2 ⊂ S2 are subsets (or injective maps), then there is a
canonical isomorphism

(X1 ⊔X2) | (K1 +K2) ≃ (X1 | K1) ⊔ (X2 | K2).

This follows from unique comparison between cartesian lifts and the fact that the projec-
tion is strong monoidal. This isomorphism expresses the desired compatibility between
the monoidal structure and restrictions.

A morphism of monoidal restriction species is a strong monoidal functor which is also
a morphism of right fibrations.

Proposition 5.15. The functor of Theorem 5.8 extends to a functor from the category
of monoidal restriction species and their morphisms to that of monoidal decomposition
spaces and CULF monoidal functors.

Proof. If R is a monoidal restriction species, then the associated decomposition space R
is monoidal: in degree n, this is simply given by the monoidal structure ⊔ : R/n ×R/n →
R/n. This is well defined because the projection functor is strong monoidal. Furthermore,
this monoidal structure is CULF thanks to the above compatibility: to give a pair of
R-structures with a layering of each is the same as giving a pair of R-structures with a
layering of its disjoint union. This is to say that this square is a pullback:

Riso
/1 × Riso

/1

��

Riso
/k × Riso

/k

g×goo

��

Riso
/1 Riso

/k ,g
oo

where g is the unique active map (and k could be 0). �

It follows that every monoidal restriction species defines a bialgebra, and a morphism
of monoidal restriction species defines a bialgebra homomorphism. Furthermore, the
decomposition space of a restriction species and its associated incidence coalgebra are
canonically graded, by the number of elements in the underlying set, and for monoidal
restriction species, this grading is also compatible with the multiplication. (At the ob-
jective level, this is an instance of the general notion of length filtration [20, §6].) In the
connected case, i.e. when there is a unique R-structure on ∅, we therefore get a Hopf
algebra. (The antipode exists at the vector-space level, but not on the objective level, as
it always involves minus signs.)

5.16. Remark. There is a kind of converse to the construction R R. Namely, starting
from a decomposition space R CULF over I (and with R1 locally finite), we can take
lower dec of both and obtain a Segal space which by Lemma 1.17 is a right fibration over
Dec⊥I = NI (Proposition 4.5). In fact Dec⊥R is a Rezk-complete Segal space. Indeed,
since R is CULF over I, it is complete, locally finite, locally discrete and of locally finite
length, by Lemma 1.11. But also the dec map Dec⊥R→ R is CULF, so Dec⊥R also has all
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these properties. Since it is furthermore a Segal space, it follows from [20, Corollary 8.7]
that it is Rezk complete. Hence Dec⊥R is essentially the fat nerve of a category R (with
a right fibration over I).

6. The decomposition space C of layered finite posets

We define and study the monoidal decomposition space C of finite posets and their
‘admissible cuts’, which will play the same role for directed restriction species as I does
for plain restriction species. An important difference is that while the simplicial groupoid
I is a Segal space, C is only a decomposition space, not a Segal space.

6.1. Convex maps of posets. A subposet K of a poset P is convex if it is full and if
a ≤ x ≤ b in P and a, b ∈ K imply x ∈ K. A map of posets f : K → P is convex if for
all a, b ∈ K and fa ≤ x ≤ fb in P there is a unique k ∈ K with a ≤ k ≤ b and fk = x.
In other words, f is injective and f(K) ⊂ P is a convex subposet. We denote by C the
category of finite posets and convex maps.

Lemma 6.2. In the category of posets, convex maps are stable under pullback.

Lemma 6.3. For a subposet K ⊂ P the following are equivalent.

(1) K is convex
(2) K is the middle fibre of some monotone map P → 3
(3) K ⊂ P is a fully faithful ULF functor of categories.

6.4. Layered posets. An n-layering of a finite poset P is a monotone map ℓ : P → n.
We refer to the fibres Pi = ℓ−1(i), i ∈ n, as layers. Layers are convex subposets, by the
previous lemma, and may be empty.

For sets, considered as discrete posets, the notion of set layering from 4.1 agrees with
the notion of poset layering. Poset layering is more subtle, however, as it contains more
information than just the list of layers.

6.5. The groupoid of n-layered finite posets. Consider the groupoid Ciso
/n of n-

layerings of finite posets. That is, the objects of Ciso
/n are monotone maps ℓ : P → n, and

the morphisms are commutative triangles

P

��✺
✺✺

✺✺
✺✺

≃ // P ′

��✟✟
✟✟
✟✟
✟

n,

where P ∼→ P ′ is a monotone bijection (a poset isomorphism).

6.6. The simplicial groupoid of layered finite posets. We can define face and
degeneracy maps between the groupoids of layered finite posets to assemble them into a
simplicial groupoid C, in the same way as for layered finite sets in 4.2:

The degeneracy and the inner face maps are defined using the correspondence ∆
op
act ≃ ∆:

if g : [n] → [m] is an active map in ∆ then g∗ : Ciso
/m → Ciso

/n is given by postcomposition
with the corresponding map g : m→ n in ∆,

P→m 7→ P→m→n.
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The definition for inert maps (composites of outer face maps) is by pullback: for example,
d⊤ : Ciso

/n → Ciso
/n−1 is given by taking P ′→n to P→n−1 in the pullback square

P
❴
✤

//

��

P ′

��
n−1

d
⊤

// n.

Since d⊤ : n−1→ n is a convex map of posets, so is P → P ′. To be explicit, we can take
this convex map to be an actual subset inclusion.

Proposition 6.7. The groupoids Ciso
/n and the maps between them, defined above, form a

simplicial groupoid C.

Proof. The check may be performed in precisely the same way as done for I in Propo-
sition 4.3: one checks the constructions above are covariantly functorial in all maps in ∆

(giving the active part), contravariantly functorial in the convex maps of ∆ (giving the
inert part), and that these two functorialities are compatible. We will formalise this later
in the notions of

∆

-spaces and sesquicartesian fibrations (Sections 8–9). �

6.8. Lower-set inclusions. Let P be a poset. A full subposet L ⊂ P is a lower set if
x ≤ b in P and b ∈ L imply x ∈ L. A map of posets L→ P is a lower-set inclusion if it is
injective, full, and its image is a lower set in P . Clearly lower-set inclusions are convex.
Let Clower denote the category of finite posets and lower-set inclusions. Note that L→ P

is a lower-set inclusion if and only if it is a right fibration of categories. Upper sets are
defined analogously.

Lemma 6.9. In the category of posets, lower-set inclusions are stable under pullback.

Proposition 6.10. The map d⊤ : 1 → 2 classifies lower-set inclusions. That is, if P is
a poset, pullback along d⊤ defines a bijection

{monotone maps P → 2} ∼= {isoclasses of lower-set inclusions L ⊆ P}.

Proposition 6.11. There are natural (levelwise) equivalences

Dec⊥C ≃ NClower Dec⊤C ≃ N(Cupper)op

Proof. There is a natural equivalence

Ciso
/n ≃ Map([n−1],Clower).

Indeed, given an n-layering of a poset P (i.e. a monotone map P → n), let first Pn = P ,
and define then, by downward induction, Pk → k as the pullback of Pk+1 → k+1 along
the lower-set inclusion d⊤ : k → k+1. By Lemma 6.9, we obtain lower-set inclusions
Pk → Pk+1. Then the equivalence assigns to P→n the sequence of lower-set inclusions

(P1 →֒ P2 →֒ · · · →֒ Pn−1 →֒ P ) ∈ Map([n−1],Clower).

This assignment is fully faithful since each automorphism of such a sequence corresponds
to a unique automorphism of P over n. Finally, given such a sequence of lower-set
inclusions, we recover a monotone map P → n, sending x to the least k for which x ∈ Pk.
It is straightforward to check that the face maps match up as required, so as to assemble
these equivalences into a levelwise equivalence of simplicial groupoids.
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The result for the upper dec is analogous. The ‘op’ appears in that case because the
smallest subset in the chain is the last one, not the first as above. �

Proposition 6.12. C is a decomposition space (but not a Segal space).

Proof. We apply the decalage criterion [19, Theorem 4.10 (4)]. We already proved that
the two Decs are Segal spaces. It remains to check that the following two squares are
pullbacks:

Ciso
/0

s0 // Ciso
/1

Ciso
/1

d⊥

OO

✤❴

s1
// Ciso

/2

d⊥

OO
Ciso

/0

s0 // Ciso
/1

Ciso
/1

d⊤

OO

✤❴

s0
// Ciso

/2

d⊤

OO

But it is clear they are strict pullbacks: this amounts to saying that if a 2-layered poset
has one layer empty, it is determined by the other layer. Since the inert face maps are
iso-fibrations, the squares are also (homotopy) pullbacks. Clearly C is not a Segal space
as Ciso

/m+n 6≃ Ciso
/m × Ciso

/n . �

Lemma 6.13. The decomposition space C is complete, locally finite and locally discrete,
and of locally finite length.

Proof. Since Ciso
/0 is contractible, consisting of the empty poset with no non-trivial au-

tomorphisms, we know s0 : C
iso
/0 → Ciso

/1 is mono, so C is complete. Now observe that Ciso
/1

is locally finite as each finite poset has only finitely many automorphisms. We have just
seen that s0 : C

iso
/0 → Ciso

/1 is finite and discrete, and for d1 : C
iso
/2 → Ciso

/1 the fibre over each

finite poset P is the finite discrete groupoid {P → 2} of all monotone maps. Lastly, C is
of locally finite length: the degenerate simplices are precisely the layerings with an empty
layer. The fibre of g : Ciso

/n → Ciso
/1 over P has no non-degenerate simplices if n is greater

than the number of elements of the finite poset P . �

Lemma 6.14. C is a monoidal decomposition space under disjoint union.

Proof. For fixed k, we have Ciso
/k × Ciso

/k → Ciso
/k given by disjoint union. It is clear that

these maps assemble into a simplicial map C×C→ C. CULFness of this simplicial map
follows because to give a pair of posets, each with a k-layering, is the same as giving a pair
of posets, together with a k-layering of their disjoint union. In other words, disjoint union
of layered posets are computed layer-wise. Diagrammatically, this square is a pullback:

Ciso
/1 × Ciso

/1

��

Ciso
/k × Ciso

/k

g×goo

��

Ciso
/1 Ciso

/k ,g
oo

where g is the unique active map (and k could be 0). �

7. Directed restriction species

We introduce the new notion of directed restriction species, with associated incidence
coalgebras generalising well-known constructions with rooted forests [9, 7], acyclic di-
rected graphs [42, 44], posets and distributive lattices [50, 12], and double posets [41].
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7.1. Directed restriction species. A directed restriction species is by definition a
(pseudo)-functor

R : Cop → Grpd,

or equivalently, by the Grothendieck construction, a right fibration R → C; we shall
always assume that all values are locally finite groupoids. The idea is that the value on a
poset P is the groupoid of all possible R-structures that have P as underlying poset.

A morphism of directed restriction species is just a (pseudo)-natural transformation.
This defines the category of directed restriction species DRSp, equivalent to the cate-
gories of groupoid-valued presheaves on C, and of right fibrations over C:

DRSp ≃ GrpdCop

≃ RFib/C.

7.2. Coalgebras from directed restriction species. Let R be any directed restriction
species. An admissible cut of an object X ∈ R[P ] is by definition a 2-layering of the
underlying poset. In other words, the cut separates P into a lower-set and an upper-set.
This agrees with the notion of admissible cut in Butcher–Connes–Kreimer (cf. 2.2), and
in related examples.

A coalgebra is defined by the rule

(5) ∆(X) =
∑

c∈cut(P )

X|Dc ⊗X|Uc, X ∈ R[P ],

where the sum is over all admissible cuts c = (Dc, Uc).
Note that the incidence coalgebra of a directed restriction species is generally non-

cocommutative. It is cocommutative if and only if it is actually supported on discrete
posets, so that in reality it is an ordinary restriction species, as we explain next.

7.3. Sets as discrete posets. Any finite set can be regarded as a discrete poset, and
any injective map of sets is then a convex map. Hence there is a natural functor I→ C.
This functor is easily seen to be a right fibration. Hence every restriction species is also
a directed restriction species. This is to say that there is a natural functor

RSp → DRSp

from restriction species to directed restriction species, clearly fully faithful.

7.4. Directed restriction species as decomposition spaces. If R→ C is a directed
restriction species, let Rk be the groupoid of R-structures on posets P with a k-layering.
(In other words, R2 is the groupoid of R-structures with an admissible cut, and Rk is the
groupoid of R-structures with k − 1 compatible admissible cuts.)

Theorem 7.5. The Rk form a simplicial groupoid R, which is a decomposition space.
Morphisms of directed restriction species induce CULF functors between decomposition
spaces. The construction defines a functor from the category of directed restriction species
and their morphisms to that of decomposition spaces and CULF maps.

Proof. This can be proved in the same way as Theorem 5.8 for ordinary restriction
species. A more elegant proof will be given in Theorem 10.9, after setting up fancier
machinery. �

Since we assume directed restriction species R : Cop → Grpd take locally finite
groupoids as values, it follows by Lemma 5.10 that R1 is a locally finite groupoid. Now
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by Lemmas 1.11 and 6.13 we have the necessary finiteness conditions to obtain classical
incidence coalgebras by taking homotopy cardinality:

Lemma 7.6. The decomposition space R is complete, locally finite, locally discrete, and
of locally finite length.

Lemma 7.7. The incidence coalgebra obtained by taking homotopy cardinality coincides
with formula (5).

Proof. The main point here is that since R is locally discrete by Lemma 7.6, the homo-
topy sum resulting from the decomposition space is just an ordinary sum, as in (5). �

7.8. Monoidal directed restriction species. The category C is symmetric monoidal
under disjoint union. We define a monoidal directed restriction species to be a directed
restriction species R → C for which the total space R has a monoidal structure and
the right fibration is also a strong monoidal functor. This extends the notion of ordinary
monoidal restriction species introduced in 5.14, as I→ C is easily seen to be a monoidal di-
rected restriction species. Since strong monoidal right fibrations compose, every monoidal
restriction species is also a monoidal directed restriction species. We have:

Proposition 7.9. The functor of Theorem 7.5 extends to a functor from monoidal directed
restriction species and their morphisms, to monoidal decomposition spaces and CULF
monoidal functors.

If a restriction species is monoidal, the associated incidence coalgebra becomes a bial-
gebra. The projection R → C is monoidal, and so the incidence bialgebra of R comes
with a bialgebra homomorphism to the incidence bialgebra of C.

Except when explicitly mentioned otherwise, all the following examples are in fact
monoidal directed restriction species and hence induce bialgebras.

7.10. First examples. Just as for ordinary restriction species, it is sometimes useful to
describe a directed restriction species by describing the associated right fibration R→ C,
where the restriction structure is encoded in the arrows.

(1) Posets. The category C of finite posets and convex maps is the terminal directed
restriction species. The resulting coalgebra comultiplies a poset by splitting it along
‘admissible cuts’ into lower-sets and upper-sets (cf. Example 2.5).

(2) One-way categories and Möbius categories. For a finite category C to have an
underlying poset, it is required that for any two objects x, y ∈ C at least one of the
hom sets HomC (x, y) and HomC (y, x) is empty. (This implies that C is skeletal.) The
underlying poset C is then given by declaring x ≤ y to mean that HomC (x, y) is nonempty.
Such categories form a directed restriction species U : for a convex map of posets K ⊂ C ,
the restriction of C to K is given as the full subcategory spanned by the objects in K.
For the corresponding right fibration U→ C, the arrows in U are the fully faithful CULF
functors (automatically injective on objects since the categories are skeletal).

With the further condition imposed that the only endomorphisms are the identities,
we arrive at the notion of finite delta, in the terminology of Mitchell [45], now more
commonly called finite one-way categories. This is equivalent (cf. [38]) to the notion of
finite Möbius category of Leroux [39]. Möbius categories play an important role as a
generalisation of locally finite posets, and in particular admit Möbius inversion. It is clear
that we also have a directed restriction subspecies of finite Möbius categories.
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7.11. Convex-closed classes of posets. Ordinary (restriction) species are mostly
about structure, not property, since the only property that can be assigned to a finite set
is its cardinality. For directed restriction species, property plays a more important role,
since posets can have many properties. Any class of posets closed under taking convex
subposets and closed under isomorphisms defines a (fully faithful) right fibration, and
hence a directed restriction species. Such a class may or may not be monoidal under
disjoint union. (Note that this notion, which could reasonably be called convex-closed
classes of posets, is different from the classical closure property in incidence coalgebras,
where a class of intervals is required to be closed under subintervals [50].)

For example, forests (cf. 7.12 below), linear orders, and discrete posets (cf. 7.3) are
convex-closed classes of posets, and form (monoidal) directed restriction species. Consid-
ering linear orders leads to L-species, in the sense of [4].

Just as in the case of ordinary restriction species, the minimal such ‘ideals’ are defined
by picking any single poset P , and considering the ‘principal ideal generated by P ’, more
precisely the slice category C/P . Note that C/P cannot be monoidal in the sense of
7.8. Since the morphisms in C are just the convex maps, C/P is equivalent to the full
subcategory of C consisting of P and all its convex subposets. This reflects the standard
fact that any element in a coalgebra generates a subcoalgebra.

7.12. Examples: various flavours of trees (actually forests). (1) Combinatorial
trees. Consider the directed restriction species of rooted forests: a rooted forest has an
underlying poset, whose convex subposets inherit each a rooted-forest structure. Regarded
as a right fibration H → C, the category H has objects rooted forests and morphisms
subforest inclusions (not required to preserve the root). The resulting bialgebra is the
Butcher–Connes–Kreimer Hopf algebra [9, 7] already treated in 2.2. As explained, this
is not a Segal groupoid: a tree cannot be reconstructed from its layers. An important
non-commutative variation comes from planar forests [13].

(2) Operadic trees (with nodes). Consider the combinatorial structure of rooted forests
allowing open-ended edges (leaves and root) as in [31, 16], but disallowing isolated edges,
i.e. edges not adjacent to any node. As before, each such forest has an underlying poset of
nodes, and for each convex subset of the node set, there is induced a forest again. These
are full forest inclusions, meaning that for each node, all incoming edges as well as the
outgoing edge must be included (see [31] for details). It is an important feature that
the local structure at the nodes is always preserved under taking such subforests. This
means that one can consider trees whose nodes are decorated with ‘operation symbols’
of matching arity (more precisely P -trees for P a polynomial endofunctor [31, 32]) and
that subtrees inherit such decorations. This is not possible for combinatorial trees, where
the cuts destroy the local structure of nodes (such as for example being a binary node).
Operadic forests (with nodes) form a directed restriction species. Note that in contrast
to what happens for combinatorial trees, cuts do not delete inner edges, they cut them
in two (as a consequence of the fullness of subforest inclusions). But if an isolated edge
results from a cut, it is deleted, as illustrate in this figure:

 

(3) Non-example: operadic trees, including nodeless ones. If one allows the nodeless
tree, the resulting notion of forest does not form a directed restriction species. Indeed,
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with all the nodeless forests being different structures on the empty set of nodes, and since
there exist non-invertible maps between such node-less forests, the functor to C cannot
be a right fibration (it has non-invertible arrows in its fibres). (It is only over the empty
set that this problem arises: between trees with nodes, every non-invertible map can be
detected on nodes.)

This variation, which is subsumed in the class of decomposition spaces coming from
operads [22, 37], has some different features which have been exploited to good effect in
various contexts [16, 33, 34, 36]. In particular it is important that the cut locus expresses
a type match between the roots of the crown forest and the leaves of the bottom tree,
and that there is a grading [20] given by number of leaves minus number of roots. The
incidence bialgebra is not connected: the zeroth graded piece is spanned by the node-
less forests. These are all group-like, and the connected quotient (dividing out by this
coideal) is precisely the incidence Hopf algebra of the directed restriction species of forests
without isolated edges. One can then further take core [33, 36], which means shave off
leaves and root (and forget the P -decoration). This is a monoidal CULF functor, and
altogether there is a monoidal CULF functor from the decomposition space of P -trees
to the decomposition space of combinatorial trees. This is an interesting example of a
relative 2-Segal space in the sense of Young [56] and Walde [53].

7.13. Examples: various flavours of acyclic directed graphs. (1) Acyclic directed
graphs. These have underlying posets, where x ≤ y if there is a directed path from x to y.
Any convex subposet of the poset of vertices induces a subgraph S, which is convex in the
usual sense of directed graphs, meaning that any directed path from x ∈ S to y ∈ S in
the whole graph must be entirely contained in S. There is now induced a natural notion
of admissible cut, similar to Butcher–Connes–Kreimer, and a Hopf algebra results (see
Manchon [42, §5]).

(2) Acyclic directed open graphs. Now we allow open-ended edges, thought of as
input edges and output edges (see [35]), but we do not allow graphs containing isolated
edges. This situation and the resulting bialgebra have been studied by Manchon [42,
§4]. Interesting decorated versions have been studied by Manin [43, 44] in the theory of
computation. His graphs are decorated by operations on partial recursive functions and
switches.

(3) Non-example: Acyclic directed open graphs, allowing isolated edges. Again, if one
allows isolated edges, it is not a restriction species. In contrast it is a Segal groupoid, and
the comultiplication resulting from it enjoys a nice grading (by number of input edges
minus number of output edges).

7.14. Examples: double posets and related structures. A double poset [41] is a
poset (P,≤) with an additional poset structure 4, not required to have any compatibility
with ≤. Let D denote the category of finite double posets (P,≤,4) and inclusions that are
convex for ≤. For every ≤-convex subset (K,≤) ⊂ (P,≤), there is induced a 4 structure
on K, simply by the fact that posets form an ordinary restriction species (cf. 5.5 (3)).
It follows that D → C is a right fibration, and hence a directed restriction species. The
associated incidence coalgebra was first studied by Malvenuto and Reutenauer [41]; see
[14] and [15] for more recent developments.

The case where the second poset structure is a linear order is called special double
poset or just special poset, and is equivalent to Stanley’s notion of labelled poset [51].
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Double posets and special posets are just two instances of the following general con-
struction: for any ordinary restriction species R, consider the directed restriction species
consisting of having simultaneously a poset structure and an R-structure, without com-
patibility conditions. Let the morphisms be inclusions that are convex for the poset
structure.

7.15. Decalage. While for ordinary restriction species R→ I we have Dec⊥R ≃ NR and
Dec⊤R ≃ NRop, the situation is slightly more complicated for directed restriction species.
The result is (as we shall see in Proposition 11.1):

Dec⊥R ≃ NRlower Dec⊤R ≃ N(Rupper)op

where Rlower ⊂ R denotes the subcategory of R-structures with all the objects, but only
the maps whose underlying poset map is a lower-set inclusion. (Similarly, Rupper has
only upper-set inclusion.) (Note that this result does not contradict 5.9: if an ordinary
restriction species R is considered a directed restriction species (as in 7.3) supported
on discrete posets, then all inclusion maps are both lower-set inclusions and upper-set
inclusions.)

7.16. Example: rooted trees (continued). An interesting example of the decalage
result is provided by the Butcher–Connes–Kreimer Hopf algebra of rooted trees 2.2. Al-
though it cannot be realised directly as the incidence coalgebra of a category, Dür [9]
(Ch.IV, §3) constructed it as the reduced incidence coalgebra of a category. In our lan-
guage, he starts with the category C of forests and root-preserving inclusions, and takes
the incidence coalgebra of the fat nerve of C ; then he imposes the equivalence relation
that identifies two root-preserving forest inclusions if their complement crowns are iso-
morphic forests. To be precise, this yields the opposite of the Butcher–Connes–Kreimer
coalgebra, in the sense that the factors Pc and Rc are interchanged; to remedy this, one
should just use C op instead of C . Note also that since the underlying poset of a forest is
oriented from leaves to roots, the root-preserving inclusions are the upper-set inclusions.
The relationship with Dür’s construction is now clear: the ‘raw’ decomposition space
NC op is the decalage of H:

Dec⊤H ≃ NC
op.

Furthermore, the dec map Dec⊤H→ H realises precisely Dür’s reduction.

8. Convex correspondences and ‘nabla spaces’

8.1. Convex correspondences. Consider the category

∆

of convex correspondences in
∆, a subcategory of the category of spans in ∆. Objects are those of ∆, and morphisms
are spans

n′ noo
joo f // k

where j is convex. Composition of such spans is given by pullback, which exist by
Lemma 3.11. By construction,

∆

has a factorisation system in which the left-hand class

(called backward convex maps) consists of spans of the form · ·oooo = // · , and the

right-hand class (called ordinalic maps) consists of spans of the form · ·
=oo // · .

Composition of an ordinalic map followed by backward convex map is defined by

(6) ( · ·oo
ioo = // · ) ◦ ( · ·

=oo g // · ) = ( · ·oo
joo f // · )
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with reference to the pullback square

·

g

��

·
✤
❴

f

��

oojoo

· ·oo
i

oo

Lemma 8.2. There is a canonical functor

γ : ∆
op −→

∆

, [n] 7−→ n,

restricting to isomorphisms

(7) ∆
op
act
∼= ∆ ∼=

∆

ordinalic, (∆≥1
inert)

op ∼= (∆≥1
convex)

op ∼=

∆≥1
back.conv.,

and sending all maps [0]→ [n] in ∆ to the zero map n 0→ 0 in

∆

. In particular, γ is
bijective on objects and full.

In summary, the categories ∆
op and

∆

differ only in the fact that 0 ∈

∆

is initial and
terminal, whereas Hom∆op([n], [0]) contains n+ 1 maps.

Proof. The first isomorphism is Lemma 3.3 and the second is Lemma 3.10. �

Proposition 8.3. Precomposing with the canonical functor γ : ∆
op →

∆

of Lemma 8.2
induces a fully faithful functor

γ∗ : Fun(

∆

,Grpd)→ Fun(∆op,Grpd)

whose essential image is the full subcategory consisting of simplicial groupoids X with
d⊥ = d⊤ : X1 → X0.

Proof. Any functor which is bijective on objects and full induces a fully faithful functor
of the presheaf categories. The main point is to characterise the essential image. Note
that every simplicial groupoid X in the image will have all maps Xn → X0 equal, since the
functor γ sends all maps [0]→ [n] to the same image. Given a simplicial groupoid X with
all Xn → X0 equal, we define a

∆

-diagram by sending each object n to Xn and sending

each convex correspondence n′
j
 n

f
→ k to the composite

Xn′

X(γ−1(j))
// Xn

X(γ−1(f))
// Xk,

assuming n > 0 so as to invoke the bijections (7) separately on backward convex and
ordinalic maps. For n = 0, γ−1(j) is not well defined in ∆, but taking X on it is well
defined, since we have assumed all the maps Xn → X0 coincide. To check functoriality
of the assignment, it is enough to treat the situation of an ordinalic map followed by a
backward convex map. These compose by pullback in ∆, and by Proposition 3.12 these
pullback squares correspond to commutative squares in ∆, in a way compatible with the
assignments on arrows, so as to ensure that composition is respected. It is clear that this
nabla space induces X as required. �

8.4. Iesq condition on functors. For a functor X :

∆

→ Grpd, the image of a
backward convex map is denoted by upperstar: if the backward convex map corresponds
to i : k  k′ in ∆, we denote its image by i∗ : Xk′ → Xk. Similarly, the image of an
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ordinalic map, corresponding to f : n → k in ∆ is denoted f! : Xn → Xk. As observed
in 3.13, any identity-extension square in ∆

(8)

a+ n+ b

ida +f+idb=g

��

noo
joo

f

��
a+ k + b koo

i
oo

is a pullback and hence a commutative square in

∆

between maps from a + n + b to k.
The corresponding square of groupoids

(9)

Xa+n+b
j∗ //

g!
��

Xn

f!
��

Xa+k+b i∗
// Xk.

therefore commutes by functoriality (this is the ‘Beck–Chevalley condition’ (BC).)
We say that X satisfies the iesq condition if (9) not only commutes but is furthermore

a pullback for every identity-extension square (8).

If a nabla space M :

∆

→ Grpd sends identity-extension squares to pullbacks then
the composite ∆

op →

∆

→ Grpd is a decomposition space. This follows from the corre-
spondence between iesq in ∆ and active-inert squares in ∆ (Lemma 3.14).

A morphism of nabla spaces is called CULF if it is cartesian on (forward) ordinalic
maps, i.e. on arrows in ∆ ⊂

∆

. If u : M ′ ⇒ M :
∆

→ Grpd is a CULF natural
transformation between functors that send identity-extension squares to pullbacks, then
it induces a CULF functor between decomposition spaces. Altogether:

Proposition 8.5. Precomposition with ∆
op →

∆

defines a canonical functor

Funculf
iesq(

∆

,Grpd)→ Decompculf

from iesq (pseudo)-functors (and CULF (pseudo)-natural transformations) to decomposi-
tion spaces and CULF functors.

9. Sesquicartesian fibrations

9.1. Functors out of

∆

. In view of Proposition 8.5, we are interested in defining functors
out of

∆

. By its construction as a category of spans, this amounts to defining a covariant
functor on ∆ and a contravariant functor on ∆convex which agree on objects, and such that
for every pullback along a convex map the Beck–Chevalley condition holds. Better still,
we can describe these as certain fibrations over ∆, called sesquicartesian fibrations, which
we now introduce.

9.2. Sesquicartesian fibrations. A sesquicartesian fibration is a cocartesian fibration
X → ∆ that is also cartesian over ∆convex, and in addition satisfies the Beck–Chevalley
condition: for each pullback in ∆ of a convex map τ ,

·
σ′

//
��

τ ′

��

❴
✤
·
��
τ

��
· σ

// ·
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the comparison map σ′
!τ

′∗ → τ∗σ! is an isomorphism.
Let Sesq be the category that has as objects the sesquicartesian fibrations and as

arrows the functors of sesquicartesian fibrations (required to preserve cocartesian arrows
and cartesian arrows over convex maps).

Proposition 9.3. There is a canonical functor

Sesq −→ Fun(

∆

,Cat).

Recall that Fun denotes the category of pseudo-functors and pseudo-natural transforma-
tions.

Proof. Given a sesquicartesian fibration p : X → ∆, we can define a pseudo-functor P :

∆

→ Cat as follows. On objects, send n to the categoryXn. Send a convex correspondence

n′
j
 n

f
→ k to the composite functor Xn′

j∗
→ Xn

f!→ Xk. Individually, the covariant and
contravariant reindexing functors compose up to coherent isomorphisms because that’s
how cocartesian and cartesian fibrations work. The Beck–Chevalley isomorphisms provide
the coherence isomorphisms for general composition.

On arrows: given a morphism c : p′ → p of sesquicartesian fibrations, assign a pseudo-
natural transformation u : P ′ ⇒ P : its component on n is cn : X ′

n → Xn, its pseudo-

naturality square on a backward convex map n′
j
 n is given (at an object x′ ∈ X ′

n′) by
the isomorphisms c(j∗(x′)) ≃ j∗(c(x′)) expressing that c preserves cartesian arrows (but
not chosen cartesian). Similarly with the forward maps and cocartesian lifts. Again BC
is invoked to ensure these are really pseudo-natural. �

9.4. Remark. From work of Hermida [25] and Dawson–Paré–Pronk [8], it can be ex-
pected that this functor is actually an equivalence, but we do not need this result and do
not pursue the question further here.

9.5. The iesq property. A sesquicartesian fibration p : X → ∆ is said to have the iesq
property if for every identity-extension square

a+ n+ b

ida +f+idb=g

��

noo
joo

f

��
a+ k + b koo

i
oo

the diagram of categories

Xa+n+b
j∗ //

g!
��

Xn

f!
��

Xa+k+b i∗
// Xk

not only commutes up to natural isomorphism (the BC condition), but is furthermore a
homotopy pullback of categories (i.e. it is equivalent to a iso-comma square).
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Let IesqSesq be the category whose objects are the sesquicartesian fibrations p :
X → ∆ having the iesq property, and whose arrows are functors over ∆

X

p
��✹

✹✹
✹✹
✹✹

c // Y

q
��☛☛
☛☛
☛☛

∆

that preserve cocartesian arrows and cartesian arrows (over convex maps), and satisfying
the condition that for every arrow f : n → k in ∆, the following square is a homotopy
pullback:

(10) Xn
❴
✤

f! //

c

��

Xk

c

��
Yn

f!

// Yk.

This condition on arrows c : X → Y is equivalent to saying that the associated (pseudo)-
natural transformation of pseudo-functors ∆ → Cat is homotopy cartesian, i.e. all its
(pseudo)-naturality squares are homotopy pullbacks.

Proposition 9.6. The functor of Proposition 9.3 restricts to a functor

IesqSesq −→ Funculf
iesq(

∆

,Cat)

Here Funculf
iesq(

∆

,Cat) is the subcategory of Fun(

∆

,Cat) whose objects are those X :
∆

→ Cat such that for every identity extension square the corresponding Beck–Chevalley
square is a homotopy pullback in Cat, and whose morphisms are those pseudo-natural
transformations X → Y that are homotopy cartesian on (forward) ordinalic maps, i.e. on
arrows in ∆ ⊂

∆

. Compare 8.4 for corresponding notions in Fun(

∆

,Grpd).
Taking maximal subgroupoids to get a functor Funculf

iesq(

∆

,Cat) → Funculf
iesq(

∆

,Grpd),
and combining Propositions 9.6 and 8.5, we obtain:

Theorem 9.7. The constructions so far define a functor

IesqSesq→ Decompculf .

9.8. Example: monoids. A monoid viewed as a monoidal functor X : (∆,+, 0) →
(Grpd,×, 1) defines a iesq sesquicartesian fibration. The contravariant functoriality on
the convex maps is given as follows. The cartesian lift of a convex map a+ n+ b n is
simply the projection

Xa+n+b ≃ Xa ×Xn ×Xb −→ Xn,

where the first equivalence expresses that X is monoidal. For any identity-extension
square (8), it is clear that the corresponding diagram

Xa+n+b
❴
✤

j∗ //

g!
��

Xn

f!
��

Xa+k+b i∗
// Xk

is a pullback, since the upperstar functors are just projections. The associated decompo-
sition space is the classifying space of the monoid.
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10. From restriction species to iesq-sesqui

In order to construct nabla spaces satisfying the iesq property, we can construct
sesquicartesian fibrations satisfying iesq, and then take maximal sub-groupoid.

All our examples originate as the left leg of a two-sided fibration, as we proceed to
explain.

10.1. Two-sided fibrations. Classically (the notion is due to Street [52]), a two-sided
fibration is a diagram of categories and functors

X

p
��

q // T

S

such that
— p is a cocartesian fibration whose p-cocartesian arrows are precisely the q-vertical

arrows,
— q is a cartesian fibration whose q-cartesian arrows are precisely the p-vertical arrows,
— for x ∈ X, an arrow f : px → s in S and g : t → qx in T , the canonical map

f!g∗x→ g∗f!x is an isomorphism.
In the setting of ∞-categories, Lurie [40, §2.4.7] (using the terminology ‘bifibration’)

characterises two-sided fibrations as functors X → S × T subject to a certain horn-filling
condition, which among other technical advantages makes it clear that the notion is stable
under pullback along functors S ′ × T ′ → S × T . The classical axioms are derived from
the horn-filling condition.

10.2. Comma categories. For I a category, Ar(I)
(codom,dom)
−−−−−−−→ I × I is a two-sided

fibration. Given categories and functors

S

G
��

T
F

// I

the comma category T↓S is the category whose objects are triples (t, s, φ), where t ∈ T ,
s ∈ S, and φ : Ft→ Gs. More formally it is defined as the pullback two-sided fibration

T↓S
❴
✤

//

��

Ar(I)

(codom,dom)

��
S × T

G×F
// I × I.

Note that the factors come in the opposite order: T↓S → S is the cocartesian fibration,
and T↓S → T the cartesian fibration. The left leg cocartesian fibration comes with a
canonical splitting. The two-sided fibration sits in a comma square which we depict like
this:

T↓S //

��
⇐

T

��
S // I
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Lemma 10.3. In a diagram

X ×T R

f

��

❴
✤

//

��

R

w
��

X

p

��

q
// T

∆

where
— (p, q) : X → ∆× T is a two-sided fibration;
— p : X → ∆ is a iesq sesquicartesian fibration; and
— w : R→ T is a cartesian fibration;

we have

(1) f is a iesq sesquicartesian fibration.
(2) the map X ×T R→ X is a morphism of iesq sesquicartesian fibrations from f to

p (in the sense of 9.5).

Proof. (1) f is a cocartesian fibration because it is the left leg of the pullback two-sided
fibration of X → ∆ × T along ∆ × R → ∆ × T . The f -cartesian lift of a given convex
arrow has components (ℓ, c) where ℓ is a p-cartesian lift to X, and c is a w-cartesian lift
of q(ℓ). Given the pullback square

Xa+n+b
❴
✤

j∗ //

σ′

!

��

Xn

σ!

��
Xa+k+b i∗

// Xk

expressing that X → ∆ has the iesq property, the corresponding square for X ×T R→ ∆

is simply obtained applying − ×T R to it, hence is again a pullback, so f has the iesq
property.

(2) By construction X ×T R → X preserves cocartesian arrows and cartesian arrows
over convex maps, so it is indeed a morphism of sesquicartesian fibrations. For each arrow
σ : n→ k in ∆, the square required to be a pullback is

Xn ×T R
❴
✤

σ!×TR//

��

Xk ×T R

��
Xn σ!

// Xk

which is clear. �

10.4. Restriction species and directed restriction species. Recall that I denotes
the category of finite sets and injections, and that a restriction species is a functor R :
Iop → Grpd, or equivalently, a right fibration R → I. Recall also that C denotes the
category of finite posets and convex maps, and that a directed restriction species is a
functor R : Cop → Grpd, or equivalently, a right fibration R→ C.

We are going to establish that every ordinary restriction species and every directed
restriction species defines naturally a iesq sesquicartesian fibration. We will do the proofs
for directed restriction species, and then exploit the fact that ordinary restriction species
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are a special kind of directed restriction species to deduce the results also for ordinary
restriction species.

Proposition 10.5. The projection C↓∆→ ∆ is a iesq sesquicartesian fibration.

Proof. The comma category is taken over Poset. The objects of C↓∆ are poset maps
P → k, and the arrows are squares in Poset

Q //

��

P

��
n // k

with Q → P a convex map and n → k a monotone map. Just from being a comma
category projection, C↓∆ → ∆ is a (split) cocartesian fibration. The chosen cocartesian
arrows are squares in Poset of the form

P
= //

��

P

��
n // k.

Over ∆convex it is also a (split) cartesian fibration, as follows readily from Lemma 6.2 on
pullback stability of convex maps in Poset: the cartesian arrows over a convex map are
squares in Poset of the form

P
❴
✤
// //

i∗β
��

P ′

β
��

k //
i

// k′.

The chosen cartesian arrows are the squares in which the map P → P ′ is an actual
inclusion.

Finally for the iesq property, we need to check that given

a+ n+ b = n′

ida +f+idb =g

��

noo
joo

f

��
a+ k + b = k′ koo

i
oo

the resulting strictly commutative square

C/n′

j∗ //

g!

��

C/n

f!
��

C/k′ i∗
// C/k

is a pullback. To this end, note first that lowershriek functors between slices are cartesian
fibrations, so it is enough to show that this square is a strict pullback. We first compute

the strict pullback at the level of objects. A pair (P ′ β
−→ k′, P

α
−→ n) lies in the pullback
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C/k′ ×C/k
C/n if i∗β = f!α, that is, P is an actual subposet of P ′ and this diagram is a

pullback:

P //

α
��
❴
✤

P ′

β

��

n

f
��
k //

i
// k′.

The claim is then that there is a unique way to complete this diagram to

P //

α

��

❴
✤

P ′

β

��

��❅
❅

❅
❅

n // //

��

n′

��⑧⑧
⑧⑧
⑧⑧
⑧

k // // k′.

Indeed, at the level of elements, P ′ is constituted by three subsets, namely the inverse
images P ′

a, P ′
k and P ′

b. (We don’t need to worry about the poset structure, since we
already know all of P ′. The point is that the covariant functoriality does not change the
total space.) We now define P ′ → n′ = a+n+b as follows: we use β to define P ′

a → a and
P ′
b → b on the outer subsets, and on the middle subset we use α to define P ′

k = P → n.
Conversely, an element in C/n′ defines a element in the pullback, and it is clear that the
two constructions are inverse to each other. Having established that the two groupoids
have the same objects, it remains to check that their automorphism groups agree. An

automorphism of a pair (P ′ β
−→ k′, P

α
−→ n) is an automorphism of P ′ compatible with the

k′-layering and whose restriction to k is furthermore compatible with the refined layering
here, given by P → n. But this is precisely to say that it is an automorphism of P ′ that
is compatible with the layering P ′ → n′ constructed. �

Proposition 10.6. There is a natural functor

DRSp ≃ RFib/C → IesqSesq,

which takes a directed restriction species R : Cop → Grpd with associated right fibration
R→ C to the comma category projection R↓∆→ ∆.
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Proof. Just note that stacking pullbacks on top of a comma square yields again comma
squares:

R′↓∆
❴
✤

//

��

R′

��
R↓∆

❴
✤

//

��

R

��
C↓∆ //

��
⇐

C

��
∆ // Poset.

Now C↓∆ → ∆ is a iesq sesquicartesian fibration by Proposition 10.5, so the statement
about objects follows from Lemma 10.3 (1) and the statement about morphisms from
Lemma 10.3 (2). �

From these results for directed restriction species, the analogous results for ordinary
restriction species can be deduced, remembering from 7.3 that I→ C is a right fibration.

Corollary 10.7. The projection I↓∆→ ∆ is a iesq sesquicartesian fibration.

Corollary 10.8. For any ordinary restriction species R : Iop → Grpd with associated
right fibration R → I, the comma category projection R↓∆ → ∆ is a iesq sesquicartesian
fibration.

Proposition 10.6, together with Theorem 9.7 (that is, Propositions 8.5 and 9.6), gives
the following result, summarising our constructions so far.

Theorem 10.9. The preceding constructions define functors

RSp
7.3
−−→ DRSp

10.6
−−−→ IesqSesq

9.6
−−→ Funculf

iesq(

∆

,Grpd)
8.5
−−→ Decompculf .

These functors are not exactly fully faithful but we shall see in the next section that
they become fully faithful when suitably sliced.

10.10. Unpacking, and comparison with the discussion in §7. Given a directed
restriction species R : Cop → Grpd, we may consider the associated right fibration
p : R→ C as a morphism in RFib/C from p to the terminal object C→ C. Theorem 10.9
then associates to this a decomposition space R : ∆

op → Grpd with a CULF functor
Ψ(p) : R→ C, constructed via iesq-sesqui and nabla spaces.

Indeed, we have a functor

Ψ : RFib/C → Decompculf
/C

to the category of decomposition spaces which are CULF over C.
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Let us unpack the constructions. Consider the pullback of p to the comma categories

R/n
//

��

❴
✤

R↓∆
❴
✤

//

��

R

p

��
C/n

//

❴
✤

��

C↓∆ //

��
⇐

C

��
1

pnq
// ∆ // Poset.

The values of the simplicial groupoids R and C at [n], are groupoid interiors of the fibres
over n ∈ ∆,

Cn = (C↓∆)ison = Ciso
/n , Rn = (R↓∆)ison = Riso

/n = Ciso
/n ×Ciso Riso,

and Ψ(p)n : Rn → Cn is the canonical projection. The simplicial structure is given as
follows:

• An active map g : [n] →\ [k] in ∆ and the corresponding g : k → n in ∆ induce,
by postcomposition, the map of groupoids

Ck → Cn, (P → k) 7→ g
!
(P → k) = (P → k → n).

This in turn induces the map Rk → Rn,

Rk
❴
✤

//

��

Rn
❴
✤

//

��

R1

��
Ck

// Cn
// C1.

and hence the projection R→ C is cartesian on active maps.
• An inert map f : [n] [k] in ∆ and the associated convex map f : n k in ∆

induce, by pullback, the homomorphism

Ck → Cn, (P → k) 7→ (f∗P → n).

The definition of Rk → Rn uses the directed restriction species structure,

Ck ×C1
R1 −→ Cn ×C1

R1, (P → k, S) 7−→ (f∗P → n, (S|f∗P ) ).

11. Decalage and fully faithfulness

We have already exploited (Proposition 6.11) the decalage formulae

Dec⊥C ≃ NClower Dec⊤C ≃ N(Cupper)op

which we now generalise as follows. For each directed restriction species R, we can pull
back the corresponding right fibration R→ C to these subcategories of lower- and upper-
set inclusions, giving

Rlower := Clower ×C R, Rupper := Cupper ×C R,

the categories of R-structures and their lower-set and upper-set inclusions. Thus we have
pullback functors

RFib/Clower

pbk
←−− RFib/C

pbk
−−→ RFib/Cupper .
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Proposition 11.1. We have the following natural (levelwise) equivalences of simplicial
groupoids:

Dec⊥R ≃ NRlower Dec⊤R ≃ N(Rupper)op.

Proof. The equivalences are expressed by commutativity of the left-hand faces (incident
with the edge labelled by the functor Ψ : R 7→ R) of the cube in the following lemma. �

Lemma 11.2. We have the commutative diagram

RFib/Cupper

N

�� ++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲

RFib/C

Ψ

��

77♦♦♦♦♦♦♦♦♦

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲ RFib/NCupper Fib/Ciso

N

��

RFib/(Dec⊤C)op RFib/Clower

N

��

77♦♦♦♦♦♦♦♦♦

LFib/Dec⊤C

❲❲❲❲
❲❲❲❲

❲

++❲❲❲❲
❲❲❲❲

❲❲❲

Decompculf
/C

Dec⊤
77♦♦♦♦♦♦♦♦

Dec⊥ ++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲
RFib/NClower Cart/C1

RFib/Dec⊥C

77♦♦♦♦♦♦♦♦♦

Proof. We first prove that the left-hand faces commute. In simplicial degree zero the
images of p : R→ C clearly coincide: they are piso : R1 = Riso → C1 = Ciso. Analogously
to 10.10 we can write

(Dec⊥R)k = Rk+1 = Ck+1 ×C1
R1 = (Dec⊥C)k ×C1

R1

(NRlower)k = (NClower)k ×(NClower)0 (NRlower)0 = (NClower)k ×C1
R1,

and similarly for Dec⊤ and the categories of upper-set inclusions. From Proposition 6.11
we have canonical equivalences of simplicial groupoids Dec⊥C = NClower and Dec⊤C =
N(Cupper)op. We also have commuting diagrams for active or bottom face maps

(Dec⊥R)k
= //

��

(Dec⊥C)k ×C1
R1

��

∼= // (NClower)k ×C1
R1

= //

��

(NRlower)k

��

(Dec⊥R)n
= // (Dec⊥C)n ×C1

R1

∼= // (NClower)n ×C1
R1

= // (NRlower)n

The diagram for d⊤ : [k−1]→ [k] also commutes:
(

P
↓

k+1
, S

)

oo //

❴

��

(P1 ⊆ P2 ⊆ · · · ⊆ P, S)
❴

��
(

d⊤
∗
P
↓
k

, (S|d⊤
∗
P )

)

oo // (P1 ⊆ · · · ⊆ Pk, (S|Pk)) .
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This shows that the two left-hand faces commute.
The top face is just pullback to Ciso taken in two steps in two ways. For the bottom

face, observe first that C1 is the constant simplicial groupoid with value C1 = Ciso. The
bottom face commutes because both ways around send a CULF map R → C to the
(obviously cartesian) simplicial map of constant simplicial groupoids R1 → C1. The
right-hand faces are easier to understand with RFib/NCupper instead of LFib/Dec⊤C and
RFib/NClower instead of RFib/Dec⊥C: commutativity of the two squares then just amounts
to the fact that the fat nerve commutes with pullbacks. �

Since ordinary restriction species are just directed restriction species supported on
discrete posets, Proposition 11.1 implies the following result, remembering that for discrete
posets, every inclusion is both a lower-set and an upper-set inclusion:

Corollary 11.3. For an ordinary restriction species R→ I with associated decomposition
space R, we have

Dec⊥R ≃ NR Dec⊤R ≃ NRop.

Theorem 11.4. The functor

Ψ : DRSp −→ Decompculf
/C

is fully faithful.

Proof. From the cube diagram in Lemma 11.2 we get the commutative square

RFib/C

(pbk,pbk)
//

Ψ

��

RFib/Clower ×
Fib

/Ciso

RFib/Cupper

N×
N

N

��
Decompculf

/C (Dec⊥,Dec⊤)
// RFib/Dec⊥C ×

Cart/C1

LFib/Dec⊤C .

Now the main point is that the pair of pullback functors is jointly fully faithful. Indeed,
a transformation is natural in all convex maps if and only if it is natural in both lower-set
inclusions and upper-set inclusions, since every convex inclusion factors (non-uniquely)
as a lower-set inclusion followed by an upper-set inclusion. Since also the fibre product
of fat nerves is fully faithful, and since the pair of Decs is faithful, we conclude that Ψ is
fully faithful. �

Theorem 11.5. The functor

RSp −→ Decompculf
/I

is fully faithful.

Proof. In the commutative diagram

RSp //

f.f.

��

Decompculf
/I

f.f.
��

DRSp
f.f.

// Decompculf
/C
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RSp ⊂ DRSp is clearly fully faithful; DRSp → Decompculf
/C is fully faithful by Theo-

rem 11.4, andDecompculf
/I → Decompculf

/C is fully faithful since I→ C is a monomorphism

in Decompculf . �

12. Remarks on strictness

Since our general philosophy is that the homotopy content is the essence—and in the
end we want to take homotopy cardinality anyway—we have worked in this paper with
groupoids up to homotopy: when we say simplicial groupoid, we mean pseudo-functor
∆
op → Grpd, and all pullbacks mentioned are homotopy pullbacks.
Nevertheless, one may rightly feel that it is nicer to work with strict simplicial objects.

In the present situation one can actually have a strict version of everything, if just re-
striction species and directed restriction species are assumed to be strict groupoid-valued
functors, not pseudo-functors (and their morphisms strict natural transformations rather
than pseudo-natural transformations). It is doable to trace through all the construction
with sufficient care to ensure that the resulting decomposition spaces are again strict.

We finish the paper by outlining the arguments going into this. First of all:

12.1. Strict decomposition spaces. We define strict decomposition spaces to be strict
functors ∆

op → Grpd such that the active-inert squares are simultaneously strict pull-
backs and homotopy pullbacks.

Note that the squares in question are already strictly commutative since they are strict
simplicial identities, so in practice the pullback condition happens because it is a strict
pullback in which one of the legs is an iso-fibration.

For example, the fat nerve of a small category is a strict decomposition space: it is
clearly a strict functor, the Segal squares are readily seen to be strict pullbacks, and the
face maps are iso-fibrations because the coface maps in ∆ are injective on objects.

12.2. Strict CULF functors. We define a strict CULF functor to be a strictly simplicial
map, whose naturality squares on active maps are simultaneously strict pullbacks and
homotopy pullbacks.

Again, this typically happens when the simplicial map is degree-wise an iso-fibration.

Theorem 12.3. The functors RSp → DRSp → Decompculf of Theorem 10.9 take
strict (directed) restriction species and their strict morphisms to strict decomposition
spaces and strict CULF functors.

Let us explain the main intermediate step.

12.4. Strictly iesq sesquicartesian fibrations. A sesquicartesian fibration is split
when there are specified functorial cocartesian lifts for all maps and specified functorial
cartesian lifts for convex maps, and such that the Beck–Chevalley isomorphisms are strict
identities. A split sesquicartesian fibration is strictly iesq when the strictly commutative
Beck–Chevalley squares are both strict pullbacks and homotopy pullbacks. A strict mor-
phism of strictly iesq sesquicartesian fibrations is by definition a functor that preserves
the specified lifts, both cocartesian and cartesian, and for which the square (10) is both
a strict pullback and a homotopy pullback.
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Lemma 12.5. The functors RSp→ DRSp→ IesqSesq of Proposition 10.6 take strict
(directed) restriction species and their strict morphisms to strictly iesq sesquicartesian
fibrations and strict morphisms.

The main ingredient in checking this is the fact that the base case C↓∆→ ∆ is a strictly
iesq sesquicartesian fibration. This follows from inspection of the proof of Proposition 10.5,
where in fact the crucial pullback square was established as a strict pullback along an iso-
fibration. For this we exploited in particular that the pullbacks of convex maps can be
taken to be actual subset inclusions.

For the general strict directed restriction species (which includes I), the proof follows
from niceness of comma categories, including the fact that comma-category projections
are always split cartesian and cocartesian fibrations, and therefore the top squares in the
proof of Proposition 10.6 can be taken to be strict pullbacks.

Finally, it is straightforward to verify that all the strictnesses are preserved by the
functor of Proposition 9.6 to (suitably strict) nabla spaces, and from there to strict de-
composition spaces via Proposition 8.5.

We stress that for the sake of taking homotopy cardinality to obtain incidence coalge-
bras, the strictness is irrelevant.
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réarrangements. No. 85 in Lecture Notes in Mathematics. Springer-Verlag, Berlin, New York, 1969.
Republished in the “books” section of the Séminaire Lotharingien de Combinatoire.
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formulae for Green functions in bialgebras of trees. Adv. Math. 254 (2014), 79–117. arXiv:1207.6404.

[17] Imma Gálvez-Carrillo, Joachim Kock, and Andrew Tonks. Decomposition Spaces, Inci-
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