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Controlling an stochastic nonlinear system with a small amplitude signal is a fundamental problem
with many practical applications. Quantifying locking is challenging and current methods, such as
spectral or correlation analysis, do not provide a precise measure of the degree of locking. Here we
study locking in an experimental system, consisting of a semiconductor laser with optical feedback
operated in the regime where it randomly emits abrupt spikes. To quantify the locking of the
optical spikes to small electric perturbations, we use two measures, the success rate (SR) and the
false positive rate (FPR). The SR counts the spikes that are emitted shortly after each perturbation,
while the FPR counts the additional extra spikes. We show that the ROC curve (SR vs. FPR plot)
uncovers parameter regions where the electric perturbations fully control the laser spikes, such that
the laser emits, shortly after each perturbation, one and only one spike. To demonstrate the general
applicability of the ROC analysis we also study a stochastic bistable system under square-wave
forcing, and show that the ROC curve allows identifying the parameters that produce best locking.

The entrainment or locking phenomenon, by which an
oscillator adapts its natural rhythm to an external pe-
riodic signal, is well-known [1]. It has been observed in
lasers [2–7], chemical systems [8, 9], biological oscilla-
tors [10–13], circadian cells [14–17], etc. In many situ-
ations it is important to gain full control of the system
with a small amplitude signal. Examples include peri-
odic electrical stimulation of cardiac tissue for the con-
trol of arrhythmias, or electrical stimulation of the brain
nervous system for the treatment of disorders such as
Epilepsy or Parkinson [18–21].

Various control strategies have been proposed in the
literature and a popular one is based on stabilizing an
unstable periodic orbit of the system [22]; however, this
technique is successful only if the system has an unstable
orbit that can be stabilized.

A technical challenge is to quantify the quality of the
locking obtained (in particular, in stochastic systems),
and precise measures are lacking. The simplest way to
identify locking is to measure the oscillation period (the
dominant peak of the Fourier spectrum) in units of the
forcing period. In this way, when varying the forcing
amplitude and period, a pattern of tongues (known as
Arnold tongues) is found. In the different tongues the os-
cillator synchronizes to the external forcing such that the
oscillation frequency and the external frequency are re-
lated as pfosc = qfext with p and q being integer numbers.
In between Arnold tongues, the system is unlocked and
shows aperiodic oscillations. Another well-known tool is
the phase-response or phase-resetting curve (PRC) that
describes the effect of a perturbation in the phase of the
oscillator [23–25]. The PRC simplifies the description of
complex, stochastic dynamics to a one-dimensional phase
dynamics, allowing to determine whether the phase of the
oscillator is locked to the external signal, but it has the
drawback that one needs to estimate the phase, which
can be difficult when the oscillator is inherently noisy

and/or when its dynamics involves different timescales.

Here we demonstrate that receiver operating charac-
teristic (ROC) curves allow for a precise quantification
of the degree of locking. A ROC curve quantifies the di-
agnostic ability of a binary classifier as a function of its
classification threshold. ROC curves (developed during
World World II for detecting enemy objects in battle-
fields) are nowadays routinely used by machine learning
algorithms for classification, but have not yet been em-
ployed, to the best of our knowledge, to quantify locking.

The experimental system used is a semiconductor laser
with optical feedback, which displays a rich variety of
nonlinear behaviors [26–28]. Here we focus on the so-
called low-frequency fluctuations (LFF) regime, where
the laser emits a spiking output: during a spike the in-
tensity drops abruptly and then recovers gradually (see
Fig. 1(a)). In this regime, we control the spikes via peri-
odic, small-amplitude electric perturbations of the laser
pump current. Using the ROC analysis we find the oper-
ation conditions that produce perfect locking: the laser
responds to each electrical perturbation with one opti-
cal pulse, with no single extra pulse, and with no single
missed pulse (Fig. 1(c)). While the laser with optical
feedback and current modulation has been studied in the
literature [2–7, 29–35], to the best of our knowledge, no
perfect locking has yet been reported.

To demonstrate the general applicability of the ROC
approach, we also consider a numerical example: a
stochastic bistable system with square-wave forcing. In
addition, in the Supplementary Information we show that
the quantification of the locking quality obtained from
the ROC curve is not obtained with other, more direct
means (such as the analysis of the inter-spike-interval dis-
tribution, the Fourier spectrum, the cross-correlation or
the autocorrelation function).

The experimental setup [35] uses a 685 nm semicon-
ductor laser (Thorlabs HL6750MG) with solitary thresh-
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old Ith,sol = 26.62 mA, which has part of its output fed
back to the laser by a mirror. The feedback produced a
7.2% threshold reduction (Ith = 24.70 mA). The length
of the external cavity is 70 cm, which gives a delay time
of 5 ns. The laser temperature and current were stabi-
lized with 0.01 C and 0.01 mA accuracy, respectively. A
90/10 beam-splitter in the external cavity sends light to
a photo-detector (Det10A/M), an amplifier (Femto HSA-
Y-2-40), and a 1 GHz oscilloscope (Agilent DSO9104A).
To modulate the laser current we used a 500 MHz Bias-T
in the laser mount. The waveform used is a pulse-down
periodic signal, as it produces locking for a wide range
of parameters [35]. The signal was generated by a func-
tion generator (Agilent 81150A), and the duration of the
pulse was the shortest available: 5 ns with raising and
falling times of 2.5 ns each.

The control parameters are the dc value of the laser
current, Idc, which controls the natural frequency of the
spikes, f0, the peak to peak perturbation amplitude,
Amod, and frequency, fmod. Idc was varied in the range
25 mA to 28 mA, fmod, in the range 1 MHz to 80 MHz,
and Amod, in the range 0.2 mA to 0.62 mA. Therefore,
for the lowest Idc value, Amod represents a variation be-
tween 0.75% and 2.5% of the dc level, while for the high-
est dc value, Amod represents a variation between 0.7%
and 2.2%. For each set of parameters a time series of the
laser intensity with N = 107 data points was recorded
with 2 GS/s sampling rate, which allowed to capture the
intensity dynamics during 5 ms.

Figure 1 displays typical examples of the intensity
dynamics when the laser is not perturbed (panel a),
and when it is periodically perturbed (panels b-c) with
Amod =2.3% of Idc = 27 mA, and different frequencies.

The spikes which occur shortly after a current pertur-
bation are considered to be induced by the perturbation
and are indicated with green dots (in the following, they
will be referred to as true positives). The other spikes
will be referred to as false positives and are indicated
with red dots. In Fig. 1(b) the frequency of the pertur-
bations is lower than the natural frequency of the spikes
(fmod = 10 MHz and f0 = 15 MHz). It is observed
that after each perturbation the laser emits a spike, but
in between perturbations the natural dynamics prevails
and thus, many spikes are spontaneous (false positives).
For a higher frequency, Fig. 1(c), locking 1:1 is observed
since every perturbation triggers a spike. For a higher
frequency, Fig. 1(d), there is a transition between lock-
ing 1:1 and 2:1. In this region the spikes cannot follow the
fast external perturbations and some spikes are delayed
with respect to the perturbations. By further increasing
the perturbation frequency, the spike rate adjusts such
that there is one spike every two perturbations, Fig. 1(e).

The variation of the spike rate with the frequency of
the external signal is typical of the locking phenomenon.
To analyze the locking degree we study the distribution of
the time intervals between consecutive spikes (the inter-

FIG. 1. Time series of the laser intensity (black line, nor-
malized to zero mean and unit variance) and the pulse-down
waveform applied to the dc pump current (gray lines, shifted
vertically for clarity). Green dots represent the spikes that
occur shortly after a perturbation, while red dots mark those
spikes that are considered non-induced by a perturbation.
The dc pump current is Idc = 27 mA and the modulation am-
plitude is 2.3% of Idc. Panel (a) shows the unforced dynamics
(Amod = 0). For this pump current the natural frequency of
the laser spikes is f0 = 15 MHz. Panel (b) shows the in-
tensity dynamics when Amod =2.3% of Idc the perturbation
frequency, fmod = 10 MHz. Panels (c), (e) display locking
1:1, and 2:1 for fmod = 20 MHz, and 41 MHz respectively;
panel (d) shows the transition between locking 1:1 and 2:1
observed at fmod = 30 MHz.

spike intervals, ISIs). We present in Fig. 2 the ISI dis-
tribution (in color code) vs. the perturbation frequency,
keeping fixed Amod and Idc. The ISI distribution is pre-
sented in two ways: in Fig. 2(a) the vertical axis is the
time interval between spikes (ISI), while in Fig. 2(b), it
is normalized to Tmod = 1/fmod (here the histograms are
computed with bins centered at nTmod).

In Fig. 2(a), as fmod increases we observe the transition
from no locking to 1:1 locking. At low frequencies (from
0 to 15 MHz) the laser behaves as if it is not driven
by the external signal and the natural noisy dynamics
dominates. This is revealed by a broad ISI distribution,
which has only a small narrow peak at fmod (an example
is presented in the inset, black line).

As the frequency increases, the spikes lock to the exter-
nal signal and the ISI distribution becomes very narrow,
as seen in the insets in Fig. 2, red lines. In the locking
regions the spikes are mainly controlled by the external
perturbations, and the ISI distribution peaks at nTmod,
where n is an integer number.

A large transition region, characterized by a broad ISI
distribution, is observed between locking 1:1 and 2:1. In
this region the dynamics is characterized by a reorgani-
zation of the spikes, which no longer fit in one period (as
in the 1:1 region), but an interval of two periods is too
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FIG. 2. Inter-spike interval (ISI) distribution as a function
of the perturbation frequency for Idc = 27 mA and Amod =
0.62 mA (2.3% with respect to Idc). In order to enhance
the plot contrast, the color scale indicates the logarithmic
of the number of intervals (the white color stands for zero
counts). In panel (a) the vertical axis is the ISI, while in
(b), it is normalized by the perturbation period. The insets
display typical ISI histograms when the laser is mainly driven
by its natural dynamics (black line for fmod = 10 MHz) and
when is driven by the external perturbations (red line for
fmod = 20 MHz).

long for a single spike (as in the 2:1 region), see Fig. 1(d).
Therefore, after a perturbation, some spikes occur before
the next perturbation, while others occur after the next
perturbation.

Another feature that can be observed in Fig. 2(a) is
that the spike rate cannot be too fast (the smallest ISI
is about 0.03 µs). When fmod increases and the most
probable ISI reaches this minimum time, the transition
to the next locking regime starts. The minimum ISI (re-
ferred to as refractory time) is due to the fact that after
each spike, a step-like recovery occurs, and during the
recovery process, another spike is unlikely to be emitted.

In Fig. 2(b) the nTmod = 〈ISI〉 curves are converted
into horizontal plateaus due to the normalization by
Tmod. In this plot it is clearly observed that, as fmod

increases, the ISIs become larger multiples of Tmod as
the laser spikes are spaced by an increasing number of
perturbation cycles. At frequencies above 50 MHz the
ISI distribution is not unimodal but has several peaks
centered at nTmod. This normalized representation of
the ISI distribution has the advantage that the locking
regions are easy to identify, but the refractory time is
not. Due to the normalization, the distribution of the
natural spikes (which is independent of fmod in the non-
normalized representation of the ISI distribution) is con-
verted in a narrow tilted line and the broad nature of the
ISI distribution at low frequencies is not visible.

In order to quantify the degree of locking we use ROC
curves, which are obtained by plotting the true positive
rate (TPR, also referred to as success rate, SR) as a func-
tion of the false positive rate (FPR), for different values
of the control parameters. The SR measures the response
of the laser per perturbation cycle: if the laser emits one

FIG. 3. ROC curve to track transition to locking when (a)
the perturbation amplitude increases (in color scale) while
keeping constant the frequency (fmod = 14 MHz) and when
(b) the perturbation frequency increases (in color scale) while
keeping constant the amplitude (Amod = 2.4%). The dc value
of the pump current is Idc = 26 mA. To represent in logarith-
mic scale the value FPR= 0, we have set it to 3×10−5 (labeled
as 0 in the x-axis).

spike after each perturbation, SR= 1, if it emits one spike
every two perturbations, SR= 1/2, etc. Only spikes emit-
ted within a detection window of duration τ are consid-
ered as spikes induced by the perturbation. The length
of the window, τ = 15 ns, is such that only one spike
can be emitted within this interval of time [35]. The
FPR measures the spikes which are emitted outside this
window. FPR= 0 indicates that the spikes are always
emitted within the interval τ after a perturbation, while
FPR= 1 indicates that no spike is emitted within this
time interval.

The SR vs. FPR plots (ROC curves) allow identify-
ing the optimal combination of experimental parameters
(Amod, fmod, and Idc) that produce the best locking: if
we want to generate an optical spike for each electric
perturbation, the optimal parameters are those that give
points in the curve that are closest to the top-left corner
(i.e., SR=1 and FPR =0).

Figure 3(a) displays the transition to locking 1:1 when
the perturbation amplitude is increased while the fre-
quency is kept constant (iso-frequency line with fmod =
14 MHz). We note that we reach perfect 1:1 locking
(SR=1 and FPR =0) for Amod = 2.4%. Figure 3(b)
displays the transition as fmod increases (iso-amplitude
line with Amod = 2.4%). Here, the transitions from
SR= 1 and FPR= 0 to SR= 1/2 and FPR= 0, and from
SR= 1/2 and FPR= 0 to SR= 1/3 and FPR= 0, are
observed. During these transitions there is an increase
of the number of false positives, followed by a decrease,
which are due, as discussed before, to the re-organization
of the spikes: the spikes cannot follow the external signal
as it becomes faster.

Figure 4 displays the ROC curves for four dc values
of the pump current. In each panel we plot the SR and
FPR values obtained for all the amplitudes and frequen-
cies studied. For easy visualization we join the points
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FIG. 4. ROC curves for (a) Idc = 25 mA, (b) 26 mA, (c)
27 mA, and (d) 28 mA. The lines join points with the same
perturbation frequency, while the color scale represents the
amplitude in % of Idc. To represent in the logarithmic scale
the value FPR= 0, we have set it to 3× 10−5 (labeled as 0 in
the x-axis).

with iso-frequency lines [as in Fig. 3(a)] while the color
indicates the amplitude of the perturbation. In Fig. 4(a)
we see that for low Idc it is not possible to perfectly en-
train the spikes: while the success rate can approach to
1 (at low fmod), the number of false positives is always
large (revealing many “natural”, uncontrolled spikes). At
intermediate Idc values [Figs. 4(b) and (c)] there is per-
fect locking, as indicated by points at SR= 1, 1/2 and
1/3 and FPR= 0. For higher Idc [Fig. 4(d)] high quality
locking is not obtained.

To demonstrate the general applicabilty of ROC anal-
ysis, we study numerically a stochastic bistable sys-
tem [36], dx/dt = x − x3 +

√
2Dξ(t) + F (t), where

F (t) represents a square-wave periodic signal of ampli-
tude Amod and frequency fmod, and ξ(t) represents white
Gaussian noise of strength D. We keep Amod small
enough such that, without noise, the square-wave signal
does not induce swithchings.

With noise, in response to the combined effect of the
square-wave signal and the noise, the system switches be-
tween two states (+1, -1), and displays optimal switch-
ing regularity for particular parameter values (the well-
known phenomenon of stochastic resonance [37–39]). Let
us next analyze the dynamics using the ROC approach,
which allows to identify the parameters that produce op-
timal locking, such that the system switches between the
two states following the changes of the external signal.
To this end, the switchings that follow the changes of the
square-wave signal are considered true positives, and the
others, false positives.

Figure 5(a) displays the ROC curve obtained when
varying the noise strength D, while keeping constant
Amod and fmod. At low noise intensities the system rarely

FIG. 5. ROC analysis of a stochastic bistable system with
square-wave forcing when the noise strength is varied (a),
while keeping constant Amod = 0.3 and fmod = 0.012, and
when the modulation frequency is varied (b), while keeping
constant D = 0.3 and Amod = 0.3. The insets show the coef-
ficient of variation. Panels (c) and (d) show the evolution of
the system for the frequency that minimizes Cv, and for the
frequency that gives (SR, FPR) closest to the (1, 0) corner.

switches and therefore, both SR and FPR are close to 0.
As D increases, SR increases while FPR remains low.
As D is increased further, SR remains nearly constant
while FPR increases due to extra switchings. Remark-
ably, the noise strengh for which the ROC curve is closest
to the [0, 1] corner coincides with the minimum of the co-
efficient of variation, Cv, shown in the inset of Fig.5(a).
Thus, ROC analysis identifies optimal switching regular-
ity (i.e., stochastic resonance). This is not the case in
Fig. 5(b), where we vary the modulation frequency while
keeping constant D and Amod,. At fmod there is a high
success rate, but also a large number of false positives
(extra switchings). As fmod increases, FPR decreases but
SR also decreases due to the fact that the system does
not always follow the modulation. In contrast to the ex-
perimental laser system, in the bistable system we have
not found parameters that produce perfect locking. The
inset in Fig. 5(b) displays Cv as a function of fmod and we
note it is minimum for fmod = 0.007. On the other hand,
the frequency for which the ROC curve is closest to the
[1, 0] corner is fmod = 0.012. The system evolution for
these frequencies is shown in Figs. 5(c) and 5(d), where
we note that, for fmod that minimizes Cv, there are sev-
eral very short switchings (eg., just before 250, shortly
after 750 and 1000), which are false positives that do not
occur when the system is modulated at the frequency
identified by ROC analysis.

To summarize, we have shown that ROC curve analysis
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provides a precise quantification of the degree of locking
of noisy oscillators. In the case of the laser with opti-
cal feedback, we have found the experimental parame-
ters that allow full control of the laser output, entraining
the emitted spikes to the electric perturbations such that
the success rate is equal to 1, while the false positive
rate is equal to zero. Considering, as a numerical exam-
ple, a stochast bistable system driven by a square-wave
periodic force, we have shown that ROC curve analysis
allows to identify the parameter for which the system
optimally follows the swithings of the forcing signal. We
anticipate that ROC curve analysis will lead to higher
locking quality in a wide variety of practical applications
where irregular oscillations need to be controlled by small
amplitude signals.
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