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Abstract

Modern applications become larger and more complex with each passing day. To name
a few, weather forecasting or particle simulation applications are examples of how
applications may have significant differences in features, constraints, and limitations.

Users of these applications are usually faced with the task of optimizing or tuning them.
To put the amount of work in perspective, experienced developers might take weeks to
merely understand one of these large applications. Once experienced with it, they can
begin tuning executions. Many aspects have to be taken into consideration, however.
Input sizes, recursive depths, system workloads, internal status, or the underlying
architecture onto which applications are running, are just a few.

Most runtimes supply users with functionalities to tune their executions. Optimizing
through runtime-wise parameters by trial and error prevails as the default methodology
in the field of parallel applications. Users often try different configurations until they
stumble upon one which seems to yield the most performance. This is the so-called
’optimal’ configuration. These are static as they cannot take the current state of the
system into consideration. They also prove to be nonportable, as a slight change
in any of the aspects mentioned before might yield undesirable negative effects in
performance. When this occurs, users must try different configurations yet again.

In this project, we propose the addition of several monitoring modules to runtimes.
These modules introduce precise information about the units of work these libraries
must schedule. The extension of these libraries allows for accurate real-time predic-
tions for present and future executions. Such predictions can be used to obtain better
scheduling of future units of work automatically and, therefore, improve the overall
performance of executions or the utilization of resources. All this, while being unno-
ticed by users, thus giving more power to the runtimes.

Through the evaluation provided, we demonstrate the precision of our predictions and
how they can be used to optimize resource utilization among others. We integrate all
the extensions mentioned above on an already existing runtime maintaining the vision
of the integration being capable on any similar runtime or library.

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The OmpSs-2 Programming Model . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Influencing OpenMP since 2008 . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Synchronization of Tasks through Dependences . . . . . . . . . . . . . 16

4 The Nanos6 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Runtime Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Intel® Resource Director
Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4 Monitoring & Other Features . . . . . . . . . . . . . . . . . . . . . . . 26

iv



5.4.1 Cache Monitoring Technology (CMT) and Memory Bandwidth
Monitoring (MBM) . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.2 Cache Allocation Technology (CAT) . . . . . . . . . . . . . . . 29

5.4.3 Monitoring with the OS Interface . . . . . . . . . . . . . . . . . 31

6 Tools & Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.1 Mercurium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.2 Paraver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.3 Extrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.1 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.2 Agile Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 The Monitoring Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.1 Enhancing Profiling in Nanos6 . . . . . . . . . . . . . . . . . . . . . . . 36

7.2 Previous Monitoring Module . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3 Improved & Lightweight Monitoring Module . . . . . . . . . . . . . . . 37

7.3.1 Choosing Timers . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.2 Monitoring Locations . . . . . . . . . . . . . . . . . . . . . . . . 40

7.3.3 Task Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3.4 Thread Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3.5 CPU Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.6 Runtime Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.7 Monitoring API . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3.8 PQoS API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3.9 Output Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.3.10 Current Monitoring Structure . . . . . . . . . . . . . . . . . . . 53

8 Predictions through Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1 The Cost Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.2 Prediction Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.2.1 Predictions Related to Monitoring . . . . . . . . . . . . . . . . . 57

v



8.2.2 Predictions Related to PQoS . . . . . . . . . . . . . . . . . . . . 58

8.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.4 Wisdom Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.5 Prediction Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 63

9 Enhancing Scheduling in OmpSs-2 . . . . . . . . . . . . . . . . . . . . . . . 66

9.1 Autofinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.2 Time-To-Completion Infrastructure . . . . . . . . . . . . . . . . . . . . 66

9.3 Dynamic CPU Activation . . . . . . . . . . . . . . . . . . . . . . . . . 67

10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

10.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

10.2 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.4 CPU Usage – Prediction Accuracy . . . . . . . . . . . . . . . . . . . . 74

10.5 Dynamic CPU Activation . . . . . . . . . . . . . . . . . . . . . . . . . 83

10.6 Normalized Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10.7 Displaying PQoS Events through Extrae . . . . . . . . . . . . . . . . . 85

11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

12 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Appendix A The Cholesky Factorization . . . . . . . . . . . . . . . . . . . . . 96

vi



List of Figures

3.1 Fork-join vs Thread-pool execution models . . . . . . . . . . . . . . . . 9

3.2 Summary of the contributions from StarSs/OmpSs in OpenMP . . . . 10

5.1 Rebalancing applications across processors for optimal cache utilization
using CMT [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 RMIDs can be used to track the resource usage of threads, apps, VMs
or containers. Software assigns RMIDs based on specific monitoring
needs [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 A “noisy neighbor” on core zero over-utilizes shared resources in a plat-
form, causing performance inversion [1] . . . . . . . . . . . . . . . . . . 29

5.4 CLOS enable flexible control over threads, apps, VMs, or containers [1] 30

5.5 Capacity Bitmasks overlap and isolation across multiple CLOS [1] . . . 30

6.1 A graphical representation of the steps in Agile . . . . . . . . . . . . . 35

7.1 Monitoring and other modules shown as internal plugins of Nanos6 . . 37

7.2 Representation of the lifetime of tasks in Nanos6 through status changes 41

7.3 Scheme showing the monitoring module and its underlying structure . 53

8.1 Predictions compared to real timing values of tasks in a Mergesort
execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.2 Zoomed in view at a start zone of plot 8.1 . . . . . . . . . . . . . . . . 60

8.3 Zoomed in view at a mid-zone of plot 8.1 . . . . . . . . . . . . . . . . 61

8.4 Predictions compared to real timing values of tasks in a Mergesort
execution with the Wisdom mechanism enabled . . . . . . . . . . . . . 62

8.5 Zoomed in view at a start zone of plot 8.4 . . . . . . . . . . . . . . . . 62

8.6 Predictions compared to real timing values of tasks in a Cholesky exe-
cution with the Wisdom mechanism enabled . . . . . . . . . . . . . . . 63

vii



10.1 Different series show the overhead introduced by monitoring, PQoS,
and both modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

10.2 Accuracy of CPU usage predictions for Multisaxpy . . . . . . . . . . . 75

10.3 Accuracy of CPU usage predictions for Heat . . . . . . . . . . . . . . . 76

10.4 Accuracy of CPU usage predictions for Cholesky . . . . . . . . . . . . 77

10.5 Accuracy of CPU usage predictions for Mergesort . . . . . . . . . . . . 78

10.6 Accuracy of CPU usage predictions for Mergesort for the SSF machine 78

10.7 Accuracy of CPU usage predictions for NQueens . . . . . . . . . . . . 79

10.8 Accumulated average accuracy of CPU usage predictions for NQueens 80

10.9 Accuracy of CPU usage predictions for Strassen . . . . . . . . . . . . . 81

10.10 Accumulated average accuracy of CPU usage predictions for Strassen . 81

10.11 Comparison of different scheduling techniques through resource usage . 83

10.12 Testing different inputs with the same wisdom information for Cholesky
in SSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10.13 LLC Misses as reported by PQoS through Extrae . . . . . . . . . . . . 85

10.14 LLC Misses as reported by PQoS through Extrae – Zoomed-in view . . 86

10.15 LLC usage as reported by PQoS through Extrae . . . . . . . . . . . . 86

10.16 Memory Bandwidth used by threads as reported by PQoS through Extrae 87

10.17 Number of retired instructions over time as reported by PQoS through
Extrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10.18 Number of unhalted clock cycles over time as reported by PQoS through
Extrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.19 Combination of the views shown in figures 10.18 and 10.17 in order to
create the IPC view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

viii



List of Tables

4.1 Different information available in the verbose variant of the runtime . . 22

5.1 Comparison of support for different monitoring & allocation technolo-
gies between common profiling libraries . . . . . . . . . . . . . . . . . . 24

5.2 Availability of Intel® PQoS features on different processors . . . . . . . 26

5.3 Intel® PQoS software interoperability matrix . . . . . . . . . . . . . . 26

8.1 A brief experiment using the cost clause to normalize time . . . . . . . 57

10.1 Features of the application set used to evaluate our proposals . . . . . . 72

10.2 Average accuracy of CPU usage predictions for figure 10.2 . . . . . . . 75

10.3 Average accuracy of CPU usage predictions for figure 10.3 . . . . . . . 76

10.4 Average accuracy of CPU usage predictions for figure 10.4 . . . . . . . 77

10.5 Average accuracy of CPU usage predictions for figure 10.5 . . . . . . . 78

10.6 Average accuracy of CPU usage predictions for figure 10.7 . . . . . . . 80

10.7 Average accuracies of CPU usage predictions for all machines & appli-
cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10.8 Average accuracy of CPU usage predictions for figure 10.12 . . . . . . . 85

ix



List of Code Samples

3.1 Snippet of code showing the usage of the task construct. . . . . . . . . 13

3.2 Snippet of code exemplifying OmpSs-2 constructs and clauses. . . . . . 14

3.3 Snippet of code showcasing dependence clauses. . . . . . . . . . . . . . 17

3.4 Snippet of code showcasing dependence clauses within task nesting. . . 17

7.1 Start phase of the tick-to-time updating service . . . . . . . . . . . . . 39

7.2 Ending phase of the tick-to-time updating service . . . . . . . . . . . . 40

7.3 Location of profiling and monitoring calls when a task starts execution 40

7.4 calc_load function from the Linux kernel . . . . . . . . . . . . . . . . 46

7.5 CALC_LOAD macro from the Linux kernel . . . . . . . . . . . . . . . . . 46

7.6 Monitoring Infrastructure’s API . . . . . . . . . . . . . . . . . . . . . . 48

7.7 API of the integration of PQoS within the Monitoring Infrastructure . 50

8.1 Snippet of an OmpSs-2 Mergesort code using the cost clause . . . . . . 56

A.1 Blocked Cholesky Factorization code using OmpSs-2 directives. . . . . . 96

x



List of Algorithms

7.1 Pseudocode of the service that updates monitoring average loads . . . . 48

9.1 Pseudocode of the addTask function of the scheduler interface . . . . . 68

9.2 Pseudocode of the getTask function of the scheduler interface . . . . . 68

9.3 Pseudocode of the getIdleCPU function of the scheduler interface . . . 69

9.4 The Dynamic CPU Activation service . . . . . . . . . . . . . . . . . . . 69

xi



1 | Introduction

Current trends show that modern applications have become and keep becoming larger.
As they grow, so does their computational intensity and complexity. A few good ex-
amples of relatively large applications or benchmarks are FTDock [2], which performs
docking of biomolecules to make predictions, and WRF [3], which models weather fore-
casting. These and more applications use underlying computations that are intensive
enough as to be considered benchmarks on their own. Some examples of these com-
putations include fast Fourier transforms and LU decompositions like the Cholesky
decomposition, first introduced in [4].

To fulfill these growing needs, applications are often ported to utilize other libraries
or runtimes that offload work by fully exploiting parallelism. These ports aim to
exploit intra-node parallelism [5–8], inter-node parallelism [9, 10], or both [11]. Most
commonly, distributed-memory programming models such as MPI [12] are used to
exploit inter-node parallelism. Other shared-memory programming models such as
OpenMP [13] or OmpSs [14] are used for the intra-node counterpart.

The recent increase of interest in artificial intelligence brings more use cases for the
aforementioned libraries. To name an example, at the lowest level of machine learning
are various matrix operations that are computationally intensive. Recently, there have
been successful attempts [15, 16] to introduce parallelism in AI-related fields.

Users of these applications, meaning users who work with and keep developing them,
need their applications to execute as fast as possible. This is one of the most desired
needs. However, resource utilization is also an essential factor. Using the least amount
of resources as possible opens the door for more executions to be done in parallel.
Taking into consideration both of these needs when scheduling is not an easy task –
many aspects have to be taken into account:

• Limitations or boundaries – Is the application memory or compute bound? Does
it perform a lot of Input/Output operations?

• Input sizes – The input size will have a direct effect while scheduling, although
it is linked with other parameters.

• Units of work – Together with the input size they define in a rough way the
available parallelism in an application. It can be the block size, the recursion
depth or simply the number of units of work.
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• Current state of the system – Possibly one of the most important aspects and
frequently neglected due to not having runtime-related information in execution
time from the application side.

• Underlying architecture – Also being an important aspect, the underlying ar-
chitecture is an aspect that should be taken into account. As applications are
portable, so should be their most significant executions. An alteration of the ar-
chitecture from an execution to another could drastically decrease performance
depending on the features of both.

One of the above stands out from the rest. Applications have no internal knowledge
about the runtime. By knowledge we understand information such as the size of the
execution queues or buffers. Runtimes, such as the ones that implement the OpenMP
or OmpSs programming models, give means by which users can tune their applications.
These are often in the form of environment variables, compilation parameters or even
inner-code parameters such as block sizes in some of the directives used. Users can
use these to specify a particular scheduling policy, granularity, etc.

Frequently, users will use the tools mentioned above to tune applications. Depending
on the architecture where they execute their applications, users will have a set of
parameters and variables to run with, that they have previously needed to study. This
proves to be a tedious task, as these parameters will most likely have to be considered
again when modifying any of the aforementioned aspects. As dull as it might be,
users continue to manually tune their applications since they search for simplicity and
maximum performance.

Being aware of the system’s status is not a task that pertains to application develop-
ers, so in this project we aim to solve these issues focusing on what users search for –
simplicity and performance. It must stand out that we believe the approach of power
to the runtime to be the appropriate one for these cases, since it eliminates the need
to study each application parameter in each architecture. Our proposal focuses on
the extension of runtimes with monitoring modules capable of obtaining information
in a lightweight manner without introducing distortion in executions. These moni-
toring modules would be capable of obtaining precise predictions about the incoming
workload in systems to better schedule units of work or to exploit resource utilization
better.

1.1 Contributions

The primary aim of this project is to extend programming models with tools by which
they can easily identify units of work and their relative computational weight. This
is so that runtime libraries based on these programming models can use the tools to
enhance their scheduling policies.

Specifically, we aim to extend the OmpSs-2 programming model to serve as an example.
Nonetheless, our approach should be replicable and adaptable for any kind of parallel
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programming model. A summary of the contributions of this thesis is listed next:

• Find non-intrusive information-gathering mechanisms.

• Extend the OmpSs-2 programming model with these mechanisms to easily iden-
tify or categorize units of work based on their features.

• Integrate all the extensions into a complete monitoring infrastructure that col-
lects metrics about every element in the programming model.

• Use the aforementioned infrastructure to create tools that, in a lightweight man-
ner, obtain information about the units of work. In OmpSs-2 these units of work
are tasks.

• Compute predictions of any kind that might be worth using by the internal
schedulers, based on metrics obtained by the monitoring infrastructure. These
can be in the form of timing predictions, workload predictions, task’s features-
based predictions or resource utilization predictions.

• Generate the ability to provide real-time information about the metrics to ex-
ternal modules or libraries.

• Use predictions and metrics to enhance scheduling policies within the OmpSs-2
programming model.

With the contributions listed above, users would benefit from not having to tune their
applications manually. They would also benefit from custom-shaped scheduling from
the runtime side without having to study their applications, thus obtaining what they
want more straightforwardly and transparently.

1.2 Document Structure

This document starts with the current chapter (1), which introduces the topic of our
contributions and the aim of the project. It follows with state of the art in the related
work chapter (2). After a brief of the related work in this field, chapters 3, 4, and 5
describe the literature of the environment of this project, as well as the OmpSs-2
programming model. After explaining all the elements that take part in this project,
chapter 6 presents a complete description of all the tools and libraries used, as well as
the methodology that was followed while working on this project.

Once the whole environment and tools have been described, chapters 7, 8, and 9 start
describing the thesis itself. In chapter 7 we introduce the modules with which OmpSs-
2 is extended. In chapter 8, the algorithms used to create predictions are discussed,
and, in chapter 9, we showcase all the implemented enhancements to current scheduling
techniques and policies. Once every aspect of the thesis has been discussed, chapter 10
follows by presenting an extensive evaluation of our contributions, properly introducing
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every application and architecture that has been tested since our contributions are
independent of both.

To wrap it up, in chapter 11 we discuss the conclusions extracted from this thesis and
finally in chapter 12 we briefly comment about all the options regarding future work
after this thesis.
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2 | Related Work

Finding scheduling policies that automatically adapt to both runtime and application
needs is not a new topic. Many researchers have worked on finding optimal and adap-
tive techniques to solve the aforementioned issues. When it comes to automatic gran-
ularity control, Thoman et al. [17] presented an approach for recursive OpenMP [13]
applications. Their approach uses a compiler to generate several versions of a task
each with increasing granularity. At runtime, a specific version of the tasks is chosen
taking into account the size of internal queues. Similarly, Cong et al. [18] propose
a strategy to control the granularity of parallel tasks, adapting them to the size of
internal queues. This last proposal is thought for an open-source runtime, the X10
Work Stealing framework.

The aforementioned techniques propose adaptive task granularities. These techniques
might be well suited for some applications. However, they do not contemplate all
applications and runtimes. Another approach to control runtime workloads is limiting
task creation. When a new task is about to be created, the runtime takes a decision.
If the task meets certain criteria, it is spawned. On the other hand, if it does not meet
such standards, it is inlined in the caller or parent task. By inlining them, their parent
tasks are made coarser, and the overhead of creating too fine-grained tasks disappears.
This technique was first thought as an extension for OpenMP in work conducted by
Duran et al. [19], through introducing a final clause in the programming language
to force coalescing of excessively fine-grained tasks. This proposal was accepted and
entered in OpenMP. However, it is a manual way of tuning applications as users must
study the best parameter for this clause in all applications where they want to use it.

From some of the same authors came another proposal [20], where they add an auto-
matic cut-off technique which imitates the behavior of the final clause. This proposal
does not rely on programmers. Mohr et al. [21] were the first ones to introduce this
concept in their article. Their concept, however, spawns tasks only if the system’s
workload is scarce, that is, resources are idle. This approach has flaws, since it only
takes into account the current status of the system. Thus, very fine-grained units of
work might be created if the system has idle resources, and if the overhead to create
such units of work is too demanding, it might not be worth doing.

In a previous work [22], we also introduced the concept of limiting task creation. Even
though our work focused on recursive applications, the heuristics we presented could
be adapted to any application. Our work improved previous proposals by introducing
the idea of a new cost clause, which only required from users to specify the relative
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computational cost of the units of work. Because of this, it cannot be defined as manual
tuning. Our proposal concluded that through this clause, predictions of timing were
precise and these helped automatically limiting granularity. Our previous work also
related to a proposal introduced by Duran et al. [20], since both use internal profiling to
obtain information at runtime. Other works such as the one conducted by Aharoni [23]
propose algorithms that automatically discover worthwhile parallelism and insufficient
parallelism in applications, without focusing on units of work.

Duran et al. explored adaptive scheduling techniques yet further in another pro-
posal [24], where they derived at runtime the best scheduling policies for each parallel
loop in applications. This technique is similarly based on information also gathered at
runtime.

On another note, predicting resource utilization for better managing remains a visited
topic as well, as it has not been out of the scope, but rather recently visited for virtual
machine environments. Recent works [25, 26] discuss heuristics and statistical methods
such as linear regression to predict the utilization of resources to optimize their usage
for cloud computing platforms and virtual machines within servers.

Predicting resource usage is not trivial. It is often linked to timing predictions for
workloads, which is what this project aims to achieve. Works such as the one conducted
by Sadjadi et al. [27] aim to predict the execution time of long-lasting applications,
at runtime. Other works like Sadeka et al. [28] propose using timing predictions to
predict resource usage, thus linking both ideas. Their aim, however, is focused on
cloud computing platforms.

A different approach presented by Qawasmeh et al. [29] suggests the use of machine
learning and runtime APIs to both profile executions and try to cluster tasks. Their
profiling APIs allow having at their disposal information about tasks by using hardware
counters. With this information, they achieve to group and identify different types
of tasks and then use scheduling policies to intertwine the execution of tasks with
sufficient difference in features.

To the best of our knowledge, ours is the first approach that tries to not only combine
but also improve and extend with new proposals most of the aforementioned works.
Similarly to most of the articles, this thesis generically extends runtimes with mon-
itoring modules to obtain information at runtime. Our approach, however, studies
different methods to gather information to make it as lightweight as possible, to avoid
the effect of overheads when profiling executions that shadow the potential enhance-
ment of performance with our scheduling techniques.

We plan to use these profiling modules to make several different kinds of predictions
– some of these related to execution time, some others related to resource usage, etc.
Our approach also monitors the accuracy of predictions to have feedback for future
predictions, which is something we believe none of the works mentioned above included.
These predictions will be used to create several heuristics, some of them included in
our previous work [22]. With these heuristics, we plan to have enhanced scheduling
policies that also adapt automatically to any architecture or application tested. As a
final remark, we believe to be the first ones to focus our work generically, not only on
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recursive applications.

As previously stated, we will exemplify our proposal in the context of the OmpSs-
2 [30] programming model. However, our claims could be adapted to any task-based
programming model.
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3 | The OmpSs-2 Programming Model

OmpSs-2 [30] is the second generation of the OmpSs programming model. The name
comes from the combination of names of two other programming models: OpenMP
and StarSs. OmpSs takes its general ideas from the design aspects of these two mod-
els. It is a programming model formed by a set of directives and library routines.
These, combined, allow developers to create concurrent applications with high-level
programming languages such as C++ or Fortran.

With OmpSs, developers use annotations in codes to produce parallel versions of ap-
plications. This idea was based on OpenMP. These annotations do not have direct
effects in programs. They allow an underlying compiler to generate extra code to
enable parallel versions of the code to exist.

StarSs, or Star SuperScalar, is a family of programming models that also offer implicit
parallelism through a set of compiler annotations. Some of the differences between
StarSs and OpenMP are:

• StarSs uses a thread-pool execution mode. OpenMP on the other hand imple-
ments fork-join parallelism. A representation of both is shown in figure 3.1. The
scheme in the upper part of the figure shows a fork-join model in which parallel
regions are created and dismissed, and in which threads within the region ex-
ecute tasks. The scheme below illustrates how threads poll tasks from a task
queue and execute them, and how parallel regions are not created nor destroyed.
Instead, a parallel region is implicit from beginning to end.

• StarSs includes features to target heterogeneous architectures through leverag-
ing native kernels. OpenMP, however, targets accelerator support through the
generation of direct compiler code.
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Fig. 3.1: Fork-join vs Thread-pool execution models

• StarSs offers asynchronous parallelism as the main mechanism of expressing par-
allelism. OpenMP only started implementing this feature since version 3.0.

• StarSs offers task synchronization through dependences as the main mechanism
of expressing execution order. OpenMP only started including this mechanism
since version 4.0.

When using both programming models, the differences between them are easy to grasp.
In OpenMP, developers must first define regions of the code that are to be executed in
parallel. After that, they express synchronization or work-sharing between the threads
inside the parallel region. Once that is out of the way, developers might need to add
directives to synchronize between different parallel regions, or even within them.

With StarSs, the process is more straightforward. StarSs simplifies parallelizing pro-
grams by implicitly defining parallelism from the beginning of the execution until the
end. Developers need not control parallel regions or work sharing between threads.
This is instead offloaded to the underlying runtime. Defining parallel code in StarSs is
as simple as identifying units of work as tasks. A task is the minimum execution en-
tity that can be managed independently by the runtime’s scheduler. Tasks are units of
work, or pieces of code, that can be executed in parallel. As aforementioned, synchro-
nizing these units of work is much simpler. StarSs offers dependences for this purpose.
Dependences allow expressing the correct order in which tasks must be executed to
guarantee a proper program order. This, at the same time, allows exploiting resources
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more efficiently. This is because the underlying runtime can take any scheduling deci-
sion within the boundaries of the specified synchronization.

Rather than the misconception of being an extension of OpenMP, OmpSs tries to be
the evolution that OpenMP needs to be able to target newer architectures. To do this,
OmpSs takes the key design features from OpenMP and adds new ideas developed in
the StarSs family. More about this is explained in section 3.1.

The reference implementation of OmpSs-2 is based on the Mercurium source-to-source
compiler and the Nanos6 Runtime Library. Mercurium is a source-to-source compiler
that provides support to transform high-level directives in parallel applications. More
about Mercurium is explained in section 6.1.1.

The Nanos6 runtime provides services to manage the parallelism in user applications,
including task creation, synchronization, and data handling, and provide support for
heterogeneous architectures. As a big part of this project is carried in this runtime, it
is explained further in chapter 4.

3.1 Influencing OpenMP since 2008

Many ideas from the OmpSs and StarSs programming models have been introduced
into OpenMP. Figure 3.2 summarizes these contributions.

OMP 3.0
OMP 3.1

OMP 4.0 

OMP 4.5 

OMP 5.0 

+ Task  
 prototyping

+ Task  
 dependences

+ Task priorities 
 + Taskloop 
   prototyping 

+ Task reductions 
 + Taskwait 
   dependences 
    + OMPT impl. 
     + Multideps 
      + Commutative 

+ Tasklop 
 dependences 
 + Data affinity 
    

Fig. 3.2: Summary of the contributions from StarSs/OmpSs in OpenMP

Starting from version 3.0 released in May 2008, OpenMP included the support for
asynchronous tasks. The reference implementation, which was used to measure the
benefits that tasks provided to the programming model, was developed at Barcelona
Supercomputing Center or BSC [31] and was done with the Nanos4 runtime library
and the Mercurium source-to-source compiler.
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The next contribution, which was included in OpenMP’s version 4.0 released in July
2013, was the extension of the tasking model to support data dependences, one of the
strongest points of OmpSs that allows defining synchronization between tasks. This
feature was tested using Mercurium source-to-source compiler and the Nanos++ RTL.

In OpenMP’s version 4.5, released in November 2015, the tasking model was extended
with the taskloop construct. It used Nanos++ as the reference implementation to
validate these ideas. BSC also contributed to version 4.5 adding the priority clause
to task and taskloop constructs. BSC continues to influence OpenMP in their newest
version 5.0 while there is more to come.

3.2 Main Features

OmpSs-2’s main objective is to provide an environment to develop applications for
modern High-Performance Computing systems. There are two ideas which make
OmpSs-2 a productive model; the performance it provides, and the ease of use. Pro-
grams developed with OmpSs-2 must be able to deliver a reasonable performance when
compared to other programming models targeting the same architecture(s). When it
comes to ease of use, OmpSs-2 has been designed using principles that have been
praised by their effectiveness. Some of the most remarkable features from the OmpSs-
2 programming model include:

• Lifetime of task data environment: A task completes its execution when the
last line of code of its body is executed. However, it does not become ”deeply
completed” until all of its children tasks have become deeply complete. If a task
has no children, it becomes deeply completed when the last line of its body is ex-
ecuted. The data environment of a task is preserved until it is deeply completed.
This environment has all the variables of the task when it is created.

• Nested dependency domain connection: Dependences of a task propagate to
its children as if the task did not exist. When a task finishes, its outgoing
dependences are replaced by those generated by its children.

• Early release of dependences: Once a task is completed, it will release all the
dependences that are not included on any unfinished descendant task. If the
wait clause is specified in the task construct, however, all its dependences will
be released at once when the task becomes deeply completed.

• Weak dependences: The weakin/weakout clauses specify potential dependences
only existent in children tasks. These do not delay the execution of the task.

• Native offload API: A new asynchronous API to execute OmpSs-2 kernels on a
specified set of CPUs from any application, including Java, Python, R, etc.

• Task Pause/Resume API: A new API that can be used to suspend and resume
the execution of a task programmatically. This API improves the interoperability
and performance of hybrid MPI and OmpSs-2 applications.

11



3.3 Programming Model

As previously mentioned, a huge difference between OmpSs-2 and OpenMP is the lack
of the parallel clause to specify parallel regions in user applications. This clause is
needed in OpenMP as it uses a fork-join execution model where users need to specify
where and when parallelism starts and ends. OmpSs-2 uses the model implemented by
StarSs where parallelism is implicitly created at the start of executions. In other words,
parallelism could be seen as a pool of threads – hence the name, thread-pool execution
model – that the underlying runtime library uses during the execution. As the user
has no control over resources, OpenMP-like methods such as omp_get_num_threads()
are not available.

As previously mentioned, in OmpSs-2 a thread team is created since the beginning of
the execution. This team is divided into a master thread and various worker threads.
The master thread sequentially executes user code as a task, which is called the initial
task. This task includes the whole program within it. The other threads (worker
threads) wait while polling for concurrent tasks. These actively wait until any task
is available. When executing an OmpSs-2 code sequentially (directives should be
ignored), the program should correctly behave as a non-OmpSs-2 code.

3.4 Tasks

Parallelism is expressed through tasks in OmpSs-2. Tasks are pieces of code that
can be executed concurrently (unless specified through directives) at run-time. When
an execution reaches a point of the code where there is a task directive, instead of
directly executing the region within the task, an instance containing that code is
created. The execution of this instance or task is offloaded to the underlying runtime
library. This runtime, at some point, will execute the task on the available resources.
These resources are threads, which are assigned tasks when available. The execution
of the task, as previously mentioned, might not be immediate. Within the constraints
specified by users, through dependences, the scheduling policies can take whatever
decisions they please. This, of course, always assuring the correct execution of the
program. Hence why the task might be executed immediately or postponed until
scheduling constraints are met.

Threads can suspend tasks at specific points, called scheduling points, to resume or
begin executing a different task. Suspended tasks will be resumed later by the same
thread in which they were suspended if these are ”tied” tasks. On the other hand,
”untied” tasks can be resumed by any worker thread.

Task declarations may appear within a task declaration itself. This is also named task
nesting and allows defining multiple levels of parallelism. This may lead to performance
improvements in applications since the runtime can exploit data or temporal locality.
Multiple levels of parallelism are required, also, by recursive applications.
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Specifying tasks is as easy as using the task construct shown below. This construct
may appear inside the code in a program, or outlined in procedure calls. The usage
will mark whatever is within the following statement as a task.

#pragma oss task [clauses]

{ ... }

Code 3.1: Snippet of code showing the usage of the task construct.

Next is a list of the possible clauses for the task construct. Below it is their usage and
a brief explanation.

• private(<list>)

• firstprivate(<list>)

• shared(<list>)

• depend(<type>:<memory-reference-list>)

• <depend-type>(<memory-reference-list>)

• priority(<expresion>)

• cost(<expresion>)

• if(<scalar-expression>)

• final(<scalar-expresion>)

• label(<string>)

• [ wait | weakwait ]

The private(<list>), firstprivate(<list>) and shared(<list>) clauses allow
the specification of data sharing attributes of the list of variables inside the clause.
More about these three clauses and their implicit attributes can be found in OmpSs-2
specification [30].

Synchronizing parallel tasks of an application is a must in order to create a correct
execution. This is because tasks often depend on data computed by other tasks.
OmpSs offers two ways of expressing this: data dependences, and explicit directives to
set synchronization points. This can be achieved through the depend clause. Both the
syntax and a thorough explanation of the depend clause can be found in section 3.6.

The priority clause is a hint for the runtime about a task. The bigger the value in
this clause, the higher the priority. Lower numbers then, indicate a low priority. The
default priority is 0. The expression in the clause is evaluated as a signed integer. This
way, strictly positive priorities indicate a higher priority than the default, and negative
priorities indicate a lower priority than the default.
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Since the cost clause is one of the elements this project is based on, its features and
description are discussed in later sections.

If the expression of the if clause evaluates to true, the execution of the new task can
be deferred. On the other hand, if it evaluated to false, the current task must be
suspended until the new task is completed.

As aforementioned in chapter 2, if the expression of the final clause evaluates to true,
the newly created task will be a final task. This means that every code that generates
a task will also generate final tasks. Also, when executing within a final task, all the
task directives within the final task will be ignored and thus the code inside them will
be executed immediately. As a final note, tasks created within a final task can use the
data environment of its parent task.

Tasks with the wait clause will execute a taskwait-like operation right after exiting
its code. As this is done outside the task code’s scope, this occurs when the task
has abandoned the stack. Due to this, the usage of the wait clause is restricted to
tasks that, when exiting, have no subtasks accessing the variables of the parent task.
Otherwise, regular taskwaits should be used.

The label clause specifies a string that has many uses. It can be used in any tool to
identify the task with a far more human-readable format.

Snippet 3.2 shows a dummy example of some of the aforementioned constructs and
clauses.

1 #pragma oss task label(recurse) cost(N*N + N) inout(x, y)

2 void recurse(int * x, int * y, int N) {

3 if (x == N) return;

4 else {

5 *x = (*x) + 1;

6 *y = (*y) * (*y);

7 recurse(x, y, N);

8 }

9 }

10

11 int main () {

12 int x, y, N = 10;

13 #pragma oss task label(initialize) cost(2) priority(1) out(&x, &y) {

14 x = 1;

15 y = 2;

16 }

17

18 recurse(&x, &y, N);

19 #pragma oss taskwait

20 }

Code 3.2: Snippet of code exemplifying OmpSs-2 constructs and clauses.

When the thread of execution reaches a #pragma oss task construct, a new task is
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created. As shown, it is an instance of a task with label initialize, as it is a task
that initializes variables. This task has a higher priority than others since the default
priority is 0. It has a cost value of 2 and two out dependences on variables x and y.

The task construct allows annotations of function declarations or definitions, as well as
the already shown annotations of structured-blocks. If a function is annotated with the
task construct, each call to the function becomes a task creation point. This is shown
in the same snippet in function recurse. Any invocation of that function will generate
a task with the restrictions and properties of the clauses specified in its declaration.

If the taskwait construct had not been specified in the snippet above, the execution
could have terminated without knowing if all or any task had been executed. To ensure
correct finalization of tasks this construct must be used.

3.5 Task Scheduling

When a task reaches a task scheduling point, the implementation may decide to switch
from that task to another one. Task scheduling points may occur when:

• a task is generating code

• a taskwait directive is found

• a task has just been completed

Switching from one task to another is known as task switching. Task switching may
imply the beginning of a non-previously executed task or resuming the execution of a
paused task. Task switching is limited through the following constraints:

• The set of available tasks is initially formed by the set of tasks included in the
ready task pool.

• If a thread has executed a tied task, and there is a task switch, the tied task will
only be able to be resumed by the thread which performed the task switch (i.e.
the set of available tasks for a thread does not include tied tasks that have been
previously executed by a different thread).

• When creating a task with the if clause, if the expression within the clause
evaluates to false the runtime must offer a mechanism to immediately execute
this task (usually by the same thread that creates it).

• When executing in a final context, all the task directives within the ”final”
task will be ignored. Instead, the code within the inner tasks will be executed
immediately as simple routine calls
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3.6 Synchronization of Tasks through Dependences

As mentioned, OmpSs-2 allows synchronizing parallelism between different tasks through
data dependences (clauses in the task directive). Tasks often require data for their
computations. The usual scenario is that tasks need some input data to perform op-
erations, and with the input data they produce new data or modify existing data that
can be used by other tasks.

OmpSs-2’s underlying runtime uses these dependences along with the order of creation
of tasks to perform an analysis. This analysis creates constraints that relate to execu-
tion order. These constraints are related to tasks, and they produce a correct order of
execution for the applications.

There are several types of dependences. They can be categorized by order and opera-
tion into Read-after-Write (RaW), Write-after-Write (WaW) or Write-after-Read(WaR).
When a task must be created, its explicit dependences are compared against the de-
pendences of already existing tasks. If there is a match, newly created task becomes a
successor of the matched task(s). This process generates a dependency graph. Tasks
are scheduled to be executed as soon as all their predecessors have finished.

The dependency clauses allow the runtime to infer scheduling restrictions from the
parameters within them. These restrictions are the so-called dependences. The syntax
of this clause specifies first the dependence type and, after a colon, a memory reference
list. The types allow the keywords in, out, inout and concurrent. After these
keywords, there is a comma-separated list of memory references. All these clauses also
admit a comma-separated list of elements (memory references), and an explanation
for each, extracted from [30], is listed next:

• in(memory-reference-list): If a task has an in clause that evaluates to a
given lvalue, then the task will not be eligible to run as long as a previously
created sibling task with an out, inout or concurrent clause applying to the
same lvalue has not finished its execution.

• out(memory-reference-list): If a task has an out clause that evaluates to
a given lvalue, then the task will not be eligible to run as long as a previously
created sibling task with an in, out, inout or concurrent clause applying to
the same lvalue has not finished its execution.

• inout(memory-reference-list): If a task has an inout clause that evaluates
to a given lvalue, then it is considered as if it had appeared in an in clause and
an out clause. Thus, the semantics for the in and out clauses apply.

• concurrent(memory-reference-list): The concurrent clause is a special ver-
sion of the inout clause where dependences are computed with respect to in,
out and inout but not with respect to other concurrent clauses. As it relaxes
the synchronization between tasks users must ensure that either tasks can be
executed concurrently either additional synchronization is used.
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1 void foo (int *a, int *b) {

2 for (int i = 1; i < N; i++) {

3 #pragma oss task in(a[i-1]) inout(a[i]) out(b[i])

4 propagate(&a[i-1], &a[i], &b[i]);

5

6 #pragma oss task in(b[i-1]) inout(b[i])

7 correct(&b[i-1], &b[i]);

8 }

9 }

Code 3.3: Snippet of code showcasing dependence clauses.

Snippet 3.3 above showcases a dummy example with some of the aforementioned
clauses. To better grasp the whole view, however, snippet 3.4 is included, which show-
cases task nesting and dependences. This snippet was taken from a larger snipper from
OmpSs-2’s website [30].

1 #pragma oss task depend(inout: a, b) // Task T1

2 {

3 a++; b++;

4 #pragma oss task depend(inout: a) // Task T1.1

5 a += ...;

6 #pragma oss task depend(inout: b) // Task T1.2

7 b += ...;

8 #pragma oss taskwait

9 }

10 #pragma oss task depend(in: a, b) depend(out: z, c, d) // Task T2

11 {

12 z = ...;

13 #pragma oss task depend(in: a) depend(out: c) // Task T2.1

14 c = ... + a + ...;

15 #pragma oss task depend(in: b) depend(out: d) // Task T2.2

16 d = ... + b + ...;

17 #pragma oss taskwait

18 }

19 #pragma oss task depend(in:a, b, d) depend(out:e, f) // Task T3

20 {

21 #pragma oss task depend(in:a, d) depend(out:e) // Task T3.1

22 e = ... + a + d + ...;

23 #pragma oss task depend(in:b) depend(out:f) // Task T3.2

24 f = ... + b + ...;

25 #pragma oss taskwait

26 }

Code 3.4: Snippet of code showcasing dependence clauses within task nesting.

Next, we explain how the code above is parallelized. If we wanted to parallelize the
original code, we would need to follow the next steps:
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1. First we would add the directives (or pragmas from now on) of the outermost
tasks. Since the data used within these conflicts with other outermost tasks, we
would need to specify this using the depend clauses. Usually, it is a good practice
to protect all the data accesses of tasks. This reduces the proneness to errors,
improves the maintainability of the code and reduces conflicts in accesses.

2. Secondly, in each of the inner tasks we would identify separate computations or
procedures. We would convert each of these (if desired) to tasks.

3. Finally, we would add taskwait directives at the end of the outermost tasks.

Synchronization in the previous example happens in two ways. First, the outermost
tasks contain dependences that mimic the ones from their sub-children. This is to
ensure that there are no data races between the inner tasks and any other task from
the program. Also, to ensure that the dependences are not released too early, a taskwait
is added at the end of each outermost task. This is so that the dependences of the
outermost task are not released until all its children have completed their execution.

The synchronization in the previous example is correct, as it creates an execution order
that meets the requirements of the program. However, inserting memory references
in the depend clauses of outermost tasks that these do not need for themselves is not
a good practice. This delays the execution of outermost tasks until the dependences
they specify are met. Subsequently, the creation of its children tasks is also delayed.
Also, the taskwait directive causes all the dependences specified to be released at the
same time. To avoid these negative effects, OmpSs-2 introduces other clauses such as:

• Weak dependences: When it comes to the memory reference list specified in the
depend clause, it may happen that the task that specifies the list needs such
references. It may also happen that they are needed by one or more subtasks of
the task. In a third scenario, both subtasks and the task itself might need the
data. In the event that only subtasks need the data, as previously mentioned, it
might only be specified in the parent task as a synchronization mechanism. To
optimize this scenario, the dependence system of OmpSs-2 was extended to define
the weak counterparts of the in, out and inout dependences. Their semantics
are symmetrical to the ones used by clauses without the weak prefix. However,
the weak variants specify that tasks do not perform any action with the data
specified in the clause, their subtasks do.

• Extended lvalues: All the clauses from the dependence system allow extended
lvalues from those of C and C++. Two extensions are allowed:

– Array sections allow specifying multiple items of an array in a single ex-
pression. There are two ways of specifying this through array sections:

∗ a[lower : upper]: Through this syntax, all the elements from a in
the range specified – from lower to upper both included – are referenced.
If ’lower’ is missing, the default value is 0. If the reference is applied to
an array and ’upper’ is missing, the default value is the last element of
the dimension of the array.
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∗ a[lower ; size]: This syntax specifies that the referenced elements
from a are within the range that starts at lower and ends at lower +

size - 1 (both limits included).

– The other extension is ’shaping expressions’, that allow recasting pointers
into arrays to recover the dimension sizes. Shaping expressions are one or
more expressions of the form [size] before a pointer.

• Taskwait dependences: In addition to dependences, it is possible to introduce
synchronization points in an OmpSs-2 application. These are defined through the
taskwait directive. When the execution of a task reaches one of these points, it
is halted until all previous sibling tasks are completed. This can be used through
introducing the dependence clauses (any kind) in the taskwait directive.

• Multidependences: Multidependences is a powerful feature. It allows defining a
dynamic number of dependences. A multidependence consists of two parts:

– an lvalue expression that contains references to an iterator. The iterator
does not exist in the program.

– the definition of the previously mentioned iterator and its range of values.
Depending on the programming language, the syntax is different:

∗ dependence-type(reference-list, iterator-name=lower;size) for
C / C++.

∗ dependence-type([reference-list, iterator-name=lower,size])

for Fortran.
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4 | The Nanos6 Runtime

Nanos6 [32] is a runtime that implements the OmpSs-2 [30] parallel programming
model, developed by the Programming Models group at the Barcelona Supercomputing
Center [31]. Nanos6 applications can be executed as is. The number of cores that
are used is controlled by running the application through the taskset command. For
instance, taskset -c 0-2,4 ./app would run app on cores 0, 1, 2, and 4.

When it comes to this project, Nanos6 alongside OmpSs-2 would be the core of it.
Everything we propose is exemplified using Nanos6 to serve as a runtime.

4.1 Tracing

Nanos6 applications, unlike its predecessor Nanos++, do not require recompiling
their code to generate extrae traces or to generate additional information. This is
instead controlled through environment variables, at run-time. Generating extrae
(section 6.1.3) traces is as simple as running the application with the NANOS6 envi-
ronment variable set to ’extrae’ (NANOS6=extrae). More details about this and other
environment variables are explained below in section 4.2.

It is important to note that the resulting traces show the activity of threads instead
of the activity at each CPU.

4.2 Environment Variables

Next is a list of some of the most important environment variables when using Nanos6.
As a note, other variables unspecified in this list are found later in this thesis. These
are yet to be added to the current public version of Nanos6.

• NANOS6: Possibly the most important variable, it lets users select the variant of
the runtime that will be used. Next are the currently available variants and a
brief about them:

– optimized: This is the default value and selects the standard runtime based
on pthreads.
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– debug: Runtime compiled without optimization and with all assertions
turned on.

– extrae: Instrumented to produce extrae traces.

– verbose: Instrumented to emit a log of the execution.

– verbose-debug: Instrumented to emit a log of the execution and compiled
without optimization and with all assertions turned on.

– graph: Instrumented to produce a graph of the execution. Only practical
for small graphs.

– profile: Instrumented to produce a function and source code execution pro-
file.

– stats: Instrumented to produce a summary of metrics of the execution.

– stats-papi: Instrumented to produce a summary of metrics of the execution
including hardware counters.

• NANOS6_STACK_SIZE: Nanos6 by default allocates stacks of 8 MB for its worker
threads. In some codes, this may not be enough. For instance, when converting
Fortran codes, some global variables may need to be converted into local vari-
ables. This may substantially increase the amount of stack required to run the
code and may surpass the space that is available. To solve that problem, the
stack size can be set through this environment variable. Its value is expressed in
bytes but it also accepts the K, M, G, T and E suffixes, that are interpreted as
power of 2 multipliers. An example illustrating this variable could be: export

NANOS6_STACK_SIZE=16M.

• NANOS6_LOADER_VERBOSE: This variable controls the verbosity of the Nanos6
Loader. By default (value 0) it is quiet. If the environment variable has value 1
it will emit to standard error the actions that it takes and their outcome.

By default the loader will attempt to load the actual runtime library from the
path determined by the operating system (taking into account rpath and the
LD_LIBRARY_PATH environment variable). If it fails to load the library, then it
will attempt to locate the library at the same location as the nanos6 loader.

The default search path can be overridden through the NANOS6_LIBRARY_PATH

environment variable. If it exists the first attempt at loading the runtime will be
performed at the directory specified in that variable. The loader does not accept
multiple directories in that variable.

The nanos6 loader resolves the addresses of the API functions to the actual
runtime implementation. In addition it also checks for the implementation of
some features, and if they are not found, it will either complain or emit a warning
and fall back to a compatible but less powerful implementation. More specifically,
the loader accepts running applications that make use of weak dependencies and
will fall back to strong dependencies if the runtime does not have support for
them.
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• NANOS6_SCHEDULER: The scheduler can be specified through an environment vari-
able called NANOS6_SCHEDULER. Currently it accepts:

– default, priority: The default priority-aware scheduler with one immediate
successor reservation per CPU.

– naive: A very simple scheduler in LIFO mode.

– fifo: A very simple scheduler in FIFO mode.

– immediatesuccessor: A scheduler that reserves an immediate successor for
each CPU.

– iswp: A scheduler that reserves an immediate successor for each CPU and
that when starved, leaves one thread polling for new work.

– iswpfifo: A scheduler that reserves an immediate successor for each CPU
and that when starved, leaves one thread polling for new work. This is the
FIFO version.

4.3 Runtime Variants

Through the NANOS6 environment variable, several runtime variants can be selected.
This section discusses the features of some of the most valuable variants for developers.

• Verbose: By default this variant produces a lot of information. This can be
controlled through the NANOS6_VERBOSE environment variable. This variable can
contain a comma separated list of areas. These areas are shown in table 4.1.

Section Description
AddTask Task creation
Blocking Blocking and unblocking within a task through

calls tot he blocking API
ComputePlaceManagement Starting and stopping compute places (CPUs,

GPUs, . . . )
DependenciesByAccess Dependencies by accesses
DependenciesByAccessLinks Dependencies by the links between the accesses to

the same data
DependenciesByGroup Dependencies by groups of tasks that determine

common predecessors and common successors
LeaderThread Execution of the leader thread.
LoggingMessages Additional logging messages
TaskExecution Task execution
TaskStatus Task status transitions
TaskWait Entering and exiting taskwaits
ThreadManagement Thread creation, activation and suspension
UserMutex User-side mutexes (critical)

Table 4.1: Different information available in the verbose variant of the runtime
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• Graph: This variant is used to generate a graph which represents the depen-
dencies between tasks. By default, the graph nodes include the full path of the
source code. To remove the directories, the NANOS6_GRAPH_SHORTEN_FILENAMES

environment variable has to be set to 1.

The resulting file is a PDF that contains several pages. Each page represents the
graph at a given point in time. With NANOS6_GRAPH_SHOW_DEAD_DEPENDENCIES,
when it is set to value 1, it forces future and previous dependencies to be shown
with different graphical attributes.

The NANOS6_GRAPH_DISPLAY environment variable, if set to 1, will make the
resulting PDF to be opened automatically. The default viewer is xdg-open, but
it can be overridden through the NANOS6_GRAPH_DISPLAY_COMMAND environment
variable.

• Stats: To enable collecting statistics, applications must be ran with the NANOS6

environment variable set to either stats or stats-papi. The first collects tim-
ing statistics and the second also records hardware counters. By default, the
statistics are emitted standard error when the program ends. The output can
be sent to a file through the NANOS6_STATS_FILE envar. The contents of the
output contain the average for each task type and the total task average of
metrics such as: number of instances, mean instantiation time, mean pending
time (not ready due to dependencies), mean ready time, mean execution time,
mean blocked time (due to a critical or a taskwait), mean zombie time (finished
but not yet destroyed), mean lifetime (time between creation and destruction).
The output also contains information about: number of CPUs, total number of
threads, mean threads per CPU, mean tasks per thread, mean thread lifetime,
mean thread running time.
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5 | Intel® Resource Director
Technology

Intel® Resource Director Technology [33] is a software package that provides support
for Cache Monitoring Technology (CMT), Memory Bandwidth Monitoring (MBM),
Cache Allocation Technology (CAT), Code and Data Prioritization (CDP) and Mem-
ory Bandwidth Allocation (MBA).

It provides a hardware framework to both monitor and manage shared computing
resources, like cache or memory bandwidth. Large amounts of workloads running
concurrently on a single system increase the demand for shared resources. This lowers
the overall performance of the system. Intel® RDT technologies can monitor and
control the usage or allocation of crucial shared system resources to help improve
these scenarios.

5.1 Motivation

The features it provides/support make this library one of the most complete libraries
when it comes to hardware counters related to cache and memory. By allowing not
only monitoring but also certain allocation features, this library becomes even more
interesting. Table 5.1 shows a comparison of supported features between similar li-
braries in the field. Because of all the features and capabilities it provides, the usage of
Intel’s® CMT-CAT APIs is integrated into this project. This is to obtain a complete
monitoring, which will be further discussed in chapter 7.

Core Task CMT MBM L3 CAT L3 CDP L2 CAT MBA
intel-cmt-cat Yes Yes Yes Yes Yes Yes Yes Yes
Intel(R) PCM Yes No Yes Yes No No No No
Linux perf Yes Yes Yes Yes No No No No
Linux cgroup No Yes No No Yes No No No
Linux resctrl Yes Yes No No Yes Yes Yes No

Table 5.1: Comparison of support for different monitoring & allocation
technologies between common profiling libraries
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Through the use of CMT, applications can be monitored simultaneously while running
on a platform. Studies conducted by Intel [1] showcased a number of applications
running on a 14-core Intel® Xeon® E5-2600 v3 processor-based system with RMIDs
pinned to each core. This can be seen in the article cited from these studies, in a
plot marked as figure 4. As applications run, their cache occupancy can be sampled
periodically. Periodic spikes in occupancy (green line) are visible from a periodic
operating system task. In the middle of the plot, a memory streaming application is
invoked on a core, which quickly consumes all of the L3 cache and then terminates.
Using CMT, this aggressor application can be detected, and if its behavior is found to
interfere with more important applications, the aggressor application could be moved
to another processor or another node. If the aggressor application is simply resource-
hungry but high-priority then its true cache sensitivity can be measured over time
using CMT.

Last level cache occupancy curves collected for various applications could be used to
build long-term histories of applications and schedule optimally across sockets. For
instance as shown on the left side of figure 5.1, if two compute-intensive applications
are co-located on a processor with small working sets, then applications could be
rebalanced across sockets to optimize L3 cache utilization and potentially increase
performance.
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Cache Space
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Fig. 5.1: Rebalancing applications across processors for optimal cache utilization
using CMT [1]

These use cases can easily be seen as, instead of processes, rebalancing tasks or inter-
twining them when detecting that they are memory-hungry. These capabilities bring,
therefore, new ideas to the table which this project might benefit from. Apart from
monitoring, it would be interesting to integrate allocation techniques into a runtime.
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5.2 Support

Support for Intel® RDT in the Linux kernel was originally obtained through Linux
perf system call extensions for both CMT and MBM. Recently, the Resctrl interface
added CAT, CDP, and MBA support. Intel-cmt-cat [34], their software package, works
seamlessly in all Linux kernel versions. Table 5.2 shows the availability of the library’s
features concerning different processor models.

CMT MBM L3 CAT L3 CDP L2 CAT MBA
Intel® Xeon® processor E5 v3 Yes No Yes No No No
Intel® Xeon® processor D Yes Yes Yes No No No
Intel® Xeon® processor E3 v4 No No Yes No No No
Intel® Xeon® processor E5 v4 Yes Yes Yes Yes No No
Intel® Xeon® Scalable Processors Yes Yes Yes Yes No Yes
Intel® Atom® processor for Server C3000 No No No No Yes No

Table 5.2: Availability of Intel® PQoS features on different processors

5.3 Interoperability

Using intel-cmt-cat or Intel® PCM software along with Linux perf and cgroup is not
currently allowed. Use of Linux perf for CMT & MBM and intel-cmt-cat for CAT &
CDP is not permitted. This is due to Linux perf overriding existing CAT configura-
tion during its operations. Table 5.3 illustrates the current status of interoperability
between different libraries and PQoS.

intel-cmt-cat Intel® PCM Linux perf Linux cgroup Linux resctrl
intel-cmt-cat Yes Yes Yes No Yes
Intel® PCM Yes Yes No No No
Linux perf Yes No Yes Yes Yes
Linux cgroup No No Yes Yes No
Linux resctrl Yes No Yes No Yes

Table 5.3: Intel® PQoS software interoperability matrix

5.4 Monitoring & Other Features

This library, also known as Intel® Perceived Quality of Service or PQoS for short,
allows two modes of operation or interfaces. These are the MSR and the OS interfaces.

MSR or Model Specific Registers are used to configure the underlying platform by
programming these registers directly. This interface requires no kernel support for
Intel® RDT, but it is limited to per-core monitoring and managing of resources.
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The second interface is the OS interface. When using this interface, the library lever-
ages Linux kernel extensions to program the aforementioned technologies. This enabled
monitoring and managing resources on a per-process basis as well as the per-core ba-
sis. Hence why this interface should be used when available. Currently, this interface
returns invalid data on some architectures. Thus, it is a must for developers to keep
up to date with any news by checking the compatibility tables provided by Intel®,
like the one shown above.

Even though intel-cmt-cat can be integrated into runtimes with their API to merely
fetch the desired counters, they offer pre-built tools. Next, some of the potential
use cases this library can provide to developers are explained, as well as a thorough
description and example of all the technologies. These examples are shown using the
pqos binaries installed by default with the library. There are more use cases available
in [33], however, the previously mentioned cases are the ones this project will benefit
the most from.

5.4.1 Cache Monitoring Technology (CMT) and Memory Bandwidth
Monitoring (MBM)

The library allows monitoring both cache and memory bandwidth usage. As mentioned
above, this could be done separately when using their APIs. However, for simplicity,
both explanations are discussed in this section as the pqos binary includes both these
technologies into the same command.

CMT is a feature that allows operating systems (OS) or hypervisors/virtual machines
(VMM) to obtain the cache usage made by applications running on their platform.
Currently, this feature allows L3 cache monitoring (last level cache in most platforms).
CMT provides an API:

• To detect if the platform supports this monitoring capability (via CPUID).

• For OS or VMMs to create software-defined IDs for each application or VM that
is scheduled to run on the platform. This ID is named the Resource Monitoring
ID (RMID).

• To monitor cache occupancy on per-RMID.

• For OS or VMMs to read LLC occupancy for each RMID.

By analyzing cache utilization, the OS or VMM can optimize scheduling policy deci-
sions to improve overall system performance. Cache monitoring allows cache utilization
to be simultaneously tracked for many concurrently running independent threads, ap-
plications or VMs at runtime, enabling advanced optimization techniques to be applied
in real-time.

Applications may over-utilize shared resources. Detecting these so-called “noisy neigh-
bor”applications is an essential feature. Memory Bandwidth Monitoring (MBM) helps
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in solving this issue by providing per-thread memory bandwidth monitoring for all
threads at the same time. MBM uses the same underlying infrastructure as CMT.
This includes feature enumeration (via CPUID), and new event codes to poll memory
bandwidth from the local memory controllers, or from all controllers including remote
ones. CMT and MBM share the following mechanisms:

• A mechanism to enumerate the presence of the RDT Monitoring capabilities
within the platform (via a CPUID feature bit).

• A framework to enumerate the details of each sub-feature (including CMT and
MBM, as discussed later, via CPUID leaves and sub-leaves).

• A mechanism for OS or hypervisors to indicate a software-defined ID (RMID)
for each software thread (applications, VMs, ...) that is scheduled to run on a
core. Figure 5.2 shows the infrastructure of monitoring when using Resource
Monitoring IDs (RMIDs).

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics
as applicable to a given product generation on a per software-id basis.

• Mechanisms for OS or hypervisors to read collected metrics such as LLC occu-
pancy or memory bandwidth for a given software ID in real time.

Resource Monitoring IDs (RMIDs) 
(Logical Construct) 

Hardware Monitors Resource utilization per RMID 

Thread(s)Thread(s)Thread(s)Thread(s)
Thread(s)Thread(s)Thread(s)Application(s)

VM(s)VM(s)VM(s)VM(s)

Flexible N:M Mapping 
(Orchestrator, administrator or OS/VMM assigned) 

RMIDs: Resource Monitoring

Fig. 5.2: RMIDs can be used to track the resource usage of threads, apps, VMs or
containers. Software assigns RMIDs based on specific monitoring needs [1]

Example of Usage

Using the pqos command, Instructions Per Cycle, Last Level Cache misses, Last Level
Cache usage (in KB), Memory Bandwidth (Local, in MB/s) and Memory Bandwidth
(Remote, in MB/s) can be monitored. This information is gathered in real time. Thus,
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if integrated with a runtime, this library can provide runtime schedulers with valuable
information about application behaviors and bottlenecks.

The following command – pqos -m "all:[0-2],[3-5],[6-8];" – would monitor (-m
option) all events (all keyword) on the list of cores shown, in groups as delimited by
the corresponding brackets. The list of available keywords currently includes llc, for
Last Level Cache usage monitoring, mbl, for Memory Bandwidth usage monitoring in
the Local node, and mbr, for Memory Bandwidth usage monitoring in Remote nodes.
The previous command could generate an output such as the following:

CORE IPC MISSES LLC[KB] MBL[MB/s] MBR[MB/s]

0-2 0.28 7893k 383.2 901.2 430.8

3-5 0.28 45k 25.3 361282.6 22.4

6-8 0.26 89468k 6778.8 43904.3 4.3

5.4.2 Cache Allocation Technology (CAT)

While shared resources provide good performance scalability and throughput, specific
applications such as background video streaming over-utilize cache, which reduces
the overall performance of critical applications. For example in figure 5.3, the “noisy
neighbor” (on core zero) consumes excessive last-level cache, which is allocated on a
first-come-first-served basis. This can cause performance loss in higher-priority appli-
cations (shown in green on core one).

Last Level Cache

Core 0 

App [0]

Core 1 
 
 
 

App [1]

Core n 
 
 
 

Priority
appNoisy

Neighbor

Fig. 5.3: A “noisy neighbor” on core zero over-utilizes shared resources in a
platform, causing performance inversion [1]

Cache Allocation Technology (CAT) provides an API to control the usage of cache
space consumed by a given thread, application, VM, or container. This allows operative
systems to protect important processes, or hypervisors to prioritize important VMs
even in noisy environments. The basic mechanisms of CAT include:

• The ability to enumerate the CAT capability and the associated LLC allocation
support via CPUID.
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• Interfaces for operative systems or hypervisors so that they can group appli-
cations into classes of service (CLOS). These groups then can be set a certain
limit of last-level cache occupation. These interfaces are based on Model-Specific
Registers.

Classes of Service (CLOS) 
(Logical Construct) 

Hardware Enforces Resource Guidelines per CLOS 

Thread(s)Thread(s)Thread(s)Thread(s)
Thread(s)Thread(s)Thread(s)Application(s)

VM(s)VM(s)VM(s)VM(s)

Flexible N:M Mapping 
(Orchestrator, administrator or OS/VMM assigned) 

CLOS: Resource Control

Fig. 5.4: CLOS enable flexible control over threads, apps, VMs, or containers [1]

Similarly to the RMIDs mentioned in section 5.4.1, figure 5.4 shows how an OS may
group applications into these classes of service (CLOS). CAT also has capacity bitmasks
(CBMs) for each CLOS. These bitmasks limit the amount of cache that threads in a
CLOS can allocate. The values within the bitmasks indicate the amount of cache
available. As shown in figure 5.5, overlapping or isolating regions is possible. In this
figure, CLOS [1] has less cache availability than CLOS [3], thus it could be considered
that CLOS [1] has a lower priority.
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0 0 0 0
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CLOS[1]: Mask

CLOS[2]: Mask
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19 0Capacity Mask

Cache Allocation Technology (CAT) Example - 20 bit Mask

Fig. 5.5: Capacity Bitmasks overlap and isolation across multiple CLOS [1]

Example of Usage

Also using the aforementioned pqos command, classes of services for cores can be set,
and bitmasks can be assigned to these. pqos -e "llc:1=0x000f;llc:2=0x0ff0;" –
would setup 2 classes of service. The first one, CLOS1, is set to the first 4 ways of the
LLC. The next one, CLOS2, is set to the next 8 cache ways. The next command –
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pqos -e "llc:1=0x000f;llc@0,1:2=0x0ff0;” – would set CLOS1 on all sockets and
CLOS2 on socket 0 and 1. Next a possible output of this last command is shown.

L3CA CLOS definitions for Socket 0:

L3CA CLOS0 => MASK 0xfffff

L3CA CLOS1 => MASK 0xf

L3CA CLOS2 => MASK 0xff0

...

L3CA CLOS definitions for Socket 1:

L3CA CLOS0 => MASK 0xfffff

L3CA CLOS1 => MASK 0xf

L3CA CLOS2 => MASK 0xff0

...

Once the CLOS are created, all that is left to do is assign cores to these. This can
also be done with the pqos command like so: pqos -a "llc:1=0,2,6-10;llc:2=1;".
The previous command would associate cores 0, 2, and 6 to 10 with CLOS 1 and core
1 to CLOS 2.

5.4.3 Monitoring with the OS Interface

Every feature mentioned above can also be executed with the OS interface. Monitoring
with the OS interface is similar to the previous. One of the notable differences is that
classes of service (CLOS) are bound to process IDs (PIDs) instead of sockets/cores. To
illustrate an example of what monitoring with the OS interface looks like, the following
command can be executed – pqos -I -p all:116,119-121 –, and it would monitor with the
OS interface (-I option), for process IDs (-p option), all kind of events (all keyword)
on processes with PID 116, and 119 to 121. The output of such command could look
like the following:

PID CORE IPC MISSES LLC[KB] MBL[MB/s] MBR[MB/s]

116 N/A 1.82 2140k 1344.0 1.9 0.0

119 N/A 1.29 288k 704.0 2.2 0.0

120 N/A 2.16 657k 256.0 9.6 0.0

121 N/A 1.27 718k 192.0 63.4 0.0
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6 | Tools & Methodology

In this chapter we aim to briefly describe all the tools left unmentioned in previous
chapters as well as the methodology we adopted when developing this project.

6.1 Tools

In this section, we introduce some of the more frequently used tools in this thesis. Only
a select few of these tools are briefly discussed, however. These are the Mercurium
compiler, and two tools used for analysis and evaluations, Paraver and Extrae.

The explanations of OmpSs-2 and Nanos6 are omitted, as they’ve already been intro-
duced in chapter 3 and chapter 4 respectively.

6.1.1 Mercurium

Mercurium [35] is a source-to-source compilation infrastructure aimed at fast pro-
totyping. Currently supported languages are C, C++ and, Fortran. Mercurium is
mainly used in the Nanos environment to implement OpenMP, but since it is quite
extensible, it has been used to implement other programming models or compiler
transformations. Examples include Cell Superscalar, Software Transactional Memory,
Distributed Shared Memory or the ACOTES project, to name a few.

Extending Mercurium is achieved using a plugin architecture, where plugins represent
several phases of the compiler. These plugins are written in C++ and dynamically
loaded by the compiler according to the chosen configuration. Code transformations
can be implemented in terms of source code (there is no need to modify or know the
internal syntactic representation of the compiler).

6.1.2 Paraver

Paraver [36], a tool developed by Barcelona Supercomputing Center, is a very flexible
data browser that is part of the CEPBA-Tools toolkit. Its analytical power is based
on two main pillars.
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First, its trace format has no semantics; extending the tool to support new performance
data or new programming models requires no changes to the visualizer, just to capture
such data in a Paraver trace.

Secondly, metrics are not hardwired on the tool; they are programmed. To compute
them, the tool offers a large set of time functions, a filter module, and a mechanism
to combine two timelines. This approach allows displaying a vast number of metrics
with the available data.

To capture the expert’s knowledge, any view or set of views can be saved as a Paraver
configuration file. After that, re-computing the view with new data is as simple as
loading the saved file. The tool has been demonstrated to be very useful for perfor-
mance analysis studies, giving much more details about the application’s behaviour
than most performance tools.

Paraver is not tied to any programming model as long as the model can be mapped in
the three levels of parallelism expressed in the Paraver trace. An example of two-level
parallelism would be hybrid MPI + OpenMP applications. The runtime measure-
ment system Extrae that generates Paraver traces currently supports programming
interfaces such as MPI, OpenMP, pthreads, OmpSs and CUDA.

6.1.3 Extrae

Extrae is a package devoted to generating Paraver trace-files for post-mortem analysis.
Extrae, a tool also developed by Barcelona Supercomputing Center, uses different in-
terposition mechanisms to inject probes into target applications to gather information
regarding performance.

Extrae does not only offer the possibility to instrument application codes but also
provides sampling mechanisms to gather performance data. While adding monitors
into specific locations of the application produces insight which can be easily correlated
with source code, the resolution of such data is directly related with the application
control flow.

Currently, Extrae sports two different sampling mechanisms. The first mechanism
are the old-fashioned signal timers, which fire the sampling handler at specified time
intervals. The second sampling mechanism uses processor performance counters to
shoot the sampling handler at a specified range of events interval.

While the first mechanism can provide uncorrelated samples with the application code,
the second mechanism, using the appropriate performance counters, can give insight
of the application but still present some correlation with the application code/perfor-
mance.
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6.2 Methodology

When it comes to methodology, I believe there is no such thing as a miracle plan that
works in any case. I think companies should offer tools so that employees follow in a
generical manner a particular methodology or set of methodologies, always tweaking
them to refine them.

For this project, a combination of the conventional scientific research methodology
with the agile methodology used in development is used.

6.2.1 Research Methodology

The common research methodology follows a ”number-of-steps”plan which can contain
more or fewer steps. The general view, however, consists in:

• Rationale: Finding a rationale behind the study to be conducted.

• Problem: Define the problem. Describe what the problem is, why it is a problem,
and the reasons why it is worth solving.

• Research Objectives: Define the objectives of the research towards solving the
problem. Often, this includes a study of related work if existent. In this study,
researchers must be convinced of the flaws of related work and that their research,
if successful, will end up generating a better solution to the problem.

• Research Hypothesis & Design: This step consists in creating a hypothesis and
begin designing the plan towards finding the aforementioned solution.

• Testing: Once the plan has been set and followed, testing or experiments must
be done.

• Evaluation: Collect data, analyze the results and consider the limitations and
future work of the study.

On its own, the methodology mentioned above would be chaotic for the computer
science field, as it is a method that takes a long time to complete and inconveniences
such as bugs would ruin it, so it was combined with the methodology explained next.

6.2.2 Agile Methodology

Agile software development is an approach to software development under which re-
quirements and solutions evolve through the collaborative effort of self-organizing and
cross-functional teams and their end users. It advocates adaptive planning, evolution-
ary development, early delivery, and continual improvement, and it encourages rapid
and flexible response to change.
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The term agile (sometimes written Agile) was popularized, in this context, by the
Manifesto for Agile Software Development [37]. The values and principles discussed in
this manifesto were derived from a broad range of software development frameworks,
including Scrum and Kanban.

There is significant anecdotal evidence that adopting agile practices and values im-
proves the agility of software professionals, teams and organizations; however, some
empirical studies have found no scientific evidence.

AGILE

Plan
Design

Develop

Test

Evaluate

Fig. 6.1: A graphical representation of the steps in Agile

Figure 6.1 shows a graphical representation of the steps in the agile methodology that
were followed. Typically, there is an extra step called the release phase, in which the
part of the project that was worked on gets released to the end-users. In this work, the
agile methodology was introduced in each step of the scientific research methodology.

To put it in simpler words, first, the existing problem and its flaws are discussed
and developed into – manual tuning. Then a solution was theorized – automatically
tuning applications through enhanced scheduling policies. To develop this solution, a
plan that divided the work into several phases of the project was created. Then, in
each of this phases, Agile development was introduced – first the phase was planned,
then it was designed, developed, and tested, and finally, the phase was evaluated on its
own before moving on to the next phase. This was accompanied by bi-weekly meetings
to keep our focus on track with the global scope of the project.
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7 | The Monitoring Infrastructure

The first phase of this thesis consists in extending OmpSs-2, more specifically the
Nanos6 runtime, with a lightweight monitoring infrastructure. Throughout the follow-
ing sections, we describe everything about this infrastructure or module.

7.1 Enhancing Profiling in Nanos6

Currently, Nanos6 includes a variant called the profile variant. This version of the
runtime, as explained in section 4.3, has plenty of counters that profile the basics of
the runtime, from tasks to threads.

Since this variant is a complete profiling of every internal feature of the runtime, it
introduces substantial overhead. As this version should not be used for performance
purposes, the overhead introduced is not a significant problem. This is because this
variant should only be used for information-gathering purposes, just like the verbose

or debug variants.

Nanos6 was developed in a way that allows it to be extensible with plugins. In other
words, developing a module which is independent of everything else in the runtime
is relatively simple. The current instrumentation or profiling modules that Nanos6
presents can be considered plugins. They use static function calls in certain locations
of the core of the runtime, in order to instrument it. This is visualized in figure 7.1.

Due to the extensibility it presents, our chosen strategy is to create a new monitoring
module that pinpoints the critical features of the runtime just the way the current
profiling does. That is, by introducing static independent procedure calls in specific
locations of the core of the runtime. However, since we aim to enhance scheduling
policies in Nanos6, monitoring runtime features in a lightweight manner must be the
primary objective. Using the profiling existing in Nanos6 however is not a viable
option, as it introduces overhead and it monitors more features than the ones needed
in this work.

Apart from the issues mentioned above, one of our other goals is extending monitoring
to integrate the usage of Intel’s® PQoS library. Because of this, a new module tailored
to our needs must be created.
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Fig. 7.1: Monitoring and other modules shown as internal plugins of Nanos6

7.2 Previous Monitoring Module

In our previous work [22] a monitoring module had to be implemented as well. We
conducted a study to measure the overhead of obtaining timing measures with several
counters, however it was not complete. We gathered information from several sources,
tested all of them and used the best one.

Since this project had to start over with a new monitoring module which takes into
account every element of this thesis, and that is extensible itself, we conducted a study
of timing measures yet again. This is further explained in the next section, where we
discuss every detail of the new improved module.

7.3 Improved & Lightweight Monitoring Module

In this section, we describe every detail of the new monitoring module. As mentioned
above, a study to choose between different options to record time had to be conducted.
The study began by picking up where the previous one left off and by adding several
other sources. Since one of the most important requirements is for our module to
measure metrics in a lightweight way, first we studied the pros and cons of every
available option.

7.3.1 Choosing Timers

Listed next is every option we studied with the most remarkable features and issues
they present.
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• C - <sys/times.h>: This library provides fairly simple usage by instantiating
clock_t structures which contain timers. Afterwards, simply using the times()

procedure – times(clock_t) – records timestamps. When it comes to precision,
it records user time through system calls, up to milliseconds. Due to using system
calls and having low precision, we discarded this option.

• C - <sys/time.h>: Also using the same library, it is possible to record timing
using the getrusage() function. This option measures not only time between
calls, but also memory, I/O, CPU, and thread metrics. In precision, it exceeds
the previous one, as it records up to microseconds. Nonetheless, since it records
lots of metrics, the overhead added is excessive, so we discarded this option as
well.

• C - <ctime>: With simple calls to std::clock() to start and stop timers, this
option gives an estimation of timing with precision up to seconds, which made
us discard this option even though the overhead was negligible.

• C - <time.h>: The usage of this option is fairly simple as well. It consists in
calling the clock_gettime(id, struct) function, where id refers to the type of
timers and struct refers to the timer itself. We also discarded this option since
it measured more metrics than just timing, which added unnecessary overhead.
This option had a precision of up to nanoseconds, which is more precision than
all the previous options had.

• C++11 - <chrono>: Using this library is less simple than other options. A lot of
casting between types has to be done. However, there is barely any overhead since
every metric has its own calls and they can be combined as desired. Precision
can also be tweaked as desired as well, since it supports different precisions
(nanoseconds, microseconds, etc.).

• C/C++ - Hardware-based counters: The FFTW library for computing Fourier
transforms [38] includes a file called cycle.h. This file contains definitions of
timers depending on the architecture. The precision is matchless, as it measures
time using ticks. The usage is fairly simple as well since every architecture has
its own definitions and they all match naming-wise. Due to this, it is the option
that seemed the most reasonable, as it introduces little to no overhead. This is
because it uses assembler instructions that read special registers.

Our decision then, biased by overhead introduced into measuring, ease of use, and
precision, is to use two of the options mentioned above to complement each other. The
first is hardware-based counters as it has both the best precision and less overhead.
However, the second type of timers std::chrono are used as an alternative as well.
This is mainly due to two reasons:

Firstly, we need counters able to work on any existing architecture. When it is detected
that the appropriate definitions for an architecture are not available, structs switch
to the alternative. This alternative can also be used when in a specific architecture
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there is no permission to access timing registers, which would disable hardware-based
timers.

Secondly, hardware-based timers use CPU ticks (frequency clocks) to measure time.
These recorded ’ticks’ must be converted to time, which is done through measuring
how many ticks are counted between a certain time range. To do this, another type of
timer must be used. For this purpose, two types of timers are used.

Clock Synchronization

Nowadays processors include functionalities to vary their frequency on demand. These
are dynamic-frequency CPUs, and the timers used in this work must adapt to these
types of processors as well, since the approach taken must be independent from archi-
tectures.

To adapt to these needs, a synchronization mechanism must be implemented. This
mechanism starts up as soon as the runtime initializes. While the mechanism starts
up and until a tick-to-time ratio is obtained, the second type of timers – std::chrono

– are used. When the runtime initializes, a service is created. This service implements
the mechanism, called TickConversionUpdater, which fires every certain amount of
time. This mechanism has two phases:

The first phase is shown in snippet 7.1. The updating service contains one of the
alternative timers, named _t1, which measures the time between phases. First, a
boolean is set to true to mark that an update has started, so that no more services can
be started and collide with the current update. Then, the hardware-based timer – _c1

– is restarted in case any leftover data from previous updates were present. This only
happens in further updates to keep the tick-to-time ratio in sync. After that, both
timers start measuring time.

inline void beginUpdate()

{

_updateStarted = true;

_c1.restart();

_t1.start();

_c1.start();

}

Code 7.1: Start phase of the tick-to-time updating service

The second phase is shown in snippet 7.2. First, both timers are stopped. Then,
we calculate and update the ratio between clock ticks and seconds. Lastly, we mark
the update as completed with the same boolean that we marked as true in the first
phase. Once the update is completed, the hardware-based timers can be used as the
runtime timers. The first synchronization happens within nanoseconds of the start of
the runtime initialization. This means by the time timers are needed for monitoring,
hardware-based ones can be used.
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inline void finishUpdate()

{

_c1.stop();

_t1.stop();

double rate = ((double) _t1) / _c1.getAccumulated();

ChronoArchDependentData::_tickConversionFactor = rate;

_updateStarted = false;

}

Code 7.2: Ending phase of the tick-to-time updating service

7.3.2 Monitoring Locations

Current modules in Nanos6, such as the profiling module, insert their calls in various
locations of the runtime. Before these modules existed, developers had to study the key
locations in the runtime core where these calls could be inserted. The most common
locations are those in which tasks, threads, and other elements that constitute the
runtime, suffer an important change in their internal status. Calls to the profiling
module API are already in perfect locations, which can be reutilized by our new
monitoring module.

void WorkerThread::handleTask(CPU *cpu)

{

_task->setThread(this);

...

Instrument::startTask(taskId);

Instrument::taskIsExecuting(taskId);

Monitoring::taskChangedStatus(...);

// Run the task

std::atomic_thread_fence(std::memory_order_acquire);

_task->body(...);

...

}

Code 7.3: Location of profiling and monitoring calls when a task starts execution

Snippet 7.3 shows a fragment of the code of a worker thread when it is about to
execute a task. When that happens, right before the execution, the profiling module
inserts a call recording the change of status. The monitoring module should imitate
this behavior, which is why it is shown right after the Instrument module’s calls. For
ease of reading, unrelated pieces of code have been replaced with an ellipsis.

Not all calls to profiling must be replicated, however. Changes such as tasks entering
’zombie’ timing – when a task is completed but not finalized – are unnecessary for the
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monitoring module, and would only add unwanted overhead. Figure 7.2 illustrates all
the changes which tasks might go through in the runtime. These are just the desired
changes to measure with the monitoring module.

TASK IS CREATED

HAS DEPENDENCIES

NO DEPENDENCIES

NO DEPENDENCIES

SCHEDULED TO START

CREATE CHILD TASK

TASKWAIT

USER TASKWAIT

COMPLETED CREATION

IMPLICIT TASKWAIT

START 
BLOCKED 

TIMING

START 
PENDING 
TIMING

START 
READY 
TIMING

START 
EXECUTION 

TIMING

START 
RUNTIME 
TIMING

STOP 
MONITORING

Fig. 7.2: Representation of the lifetime of tasks in Nanos6 through status changes

Tasks start in the pending or ready status, depending on whether they have unmet
dependences. Once the scheduler assigns the task to a thread, the status becomes
executing. While executing, a task can change to the runtime status if it must create a
child task, or blocked if it must due to an explicit user-defined taskwait. Once the task
completes due to the implicit end-of-task taskwait, monitoring ceases for that task.

For threads, there are only two status. The first one is idle. Threads begin as idle, and
when they poll the scheduler for tasks, two events may happen. In the first one, the
scheduler returns a valid task, which switches the status into the second one, executing.
If the scheduler has no work available for the thread, this one remains idle. A thread
only switches to the idle status when it is executing and no more tasks are available.

In the next sections we fully describe every feature and metric that the monitoring
module measures. We give a thorough description of every metric, which includes
why the metric must be monitored and how it is monitored. Afterward, we display
an example of the output of monitoring, showing the potential it could provide to
any runtime. An extensive evaluation of the overhead and the usefulness is discussed
later in chapter 10. Each metric is described by organizing them into four levels of
abstraction: runtime metrics, CPU metrics, thread metrics and task metrics. We
explain each of these metrics in their respective sections.
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7.3.3 Task Metrics

To make any sort of timing predictions about tasks, the monitoring module must
be cappable of providing precise timing metrics concerning every task status shown
in figure 7.2. For that purpose, in each task, timer objects are allocated for every
possible task status. For simplicity when making predictions, these timing metrics are
also accumulated into two kind of groups. The first is per-task status. Then, they are
also aggregated in a per-tasktype basis. In other words, regarding task metrics, so far
monitoring includes:

• For every task instance, a timer per each task status. That translates to 5
timers, one for the ready status, another for the pending status, and so on until
the blocked status.

• Also for every task instance, a timer per each task status accounting the ag-
gregated timing of children tasks. That translates to 5 timers as well, one for
the accumulated ready time of children, another for the accumulated executing
time, etc.

• Even though this does not pertain to the level of abstraction of tasks but types
of tasks, the aforementioned task timers are aggregated into task-type counters.
That means, for every type of task, a counter specifies the amount of elapsed
time that pertains to that specific type of task.

• Related to the previous one, the number of instances of a certain type of task
is also monitored.

7.3.4 Thread Metrics

When it comes to threads, holding two timers per thread recording idle and executing
time is sufficient to make timing predictions. Apart from this, however, the integration
of Intel’s PQoS® library must be done at a threading level, since monitoring on a per-
core basis is still under development as specified in their latest release.

Even though our integration is at a threading level, since threads are the elements that
integrate PQoS, we offload data in tasks. That means that, when a task is bound to
a thread, this task flags the thread asking for its events values, and the thread polls
the data using PQoS’ API. When the task stops execution, the task flags the thread
again. This keeps happening until tasks reach completion. Next, we explain how the
integration of PQoS was carried, and which kind of metrics are stored.

Intel® PQoS Integration

Similarly to other monitoring metrics, PQoS event calls are measured when threads
suffer a change in status. These are the scenarios in which PQoS events are polled:

42



• When a thread begins executing a task or the task resumes execution because it
was previously paused. At this point, the task will poll PQoS events from the
thread which, at its turn, will poll hardware events using Intel’s® PQoS API.
The task will then gain its starting values for all events.

• When a task must be blocked and thus PQoS event monitoring must stop, or
when it finalizes execution and therefore PQoS event monitoring must end. In
this scenario, the task will poll its events values right before being blocked or
finalized. Then, the paused event values will be subtracted from the initial event
values, which will result in the accumulated values between the interval time.
This accumulated value is stored in the task’s structures.

Section 7.3.8 shows the API that tasks use to poll events from threads. Next, we
explain which and how PQoS events are stored in tasks. Firstly, per-task, we store the
following metrics:

• The elapsed time of the task, obtained from monitoring. This is to swiftly obtain
a task’s timing, to then compute combined metrics such as an event’s value over
time.

• A collection of snapshot-like events. Currently, per task, we store only last
level cache usage (llc_usage) as a snapshot event. A snapshot event behaves
as a hardware event that needs its average values to be computed using all
measurements. That means that all the values must be accumulated on its own
as every time a thread polls the hardware event, it is reset back to 0.

• A collection of accumulated events. An accumulated event behaves as a hardware
event which does not lose information by polling. In other words, we must ensure
the correct computation of the accumulated value of these events by measuring
start and stop values and computing the difference. Currently, per task, we store
four kinds of these events:

– The memory bandwidth of the local node – mbm_local_delta.

– The number of last level cache misses – llc_misses_delta.

– The number of retired instructions – ipc_retired_delta.

– The number of unhalted clock cycles – ipc_unhalted_delta.

These last two are not used on their own, they are combined to form the Instruc-
tions Per Cycle event. Also by combining the retired instruction with the last
level cache misses, we obtain the last level cache miss ratio.

All the events mentioned above form the collection of four events, which names are
self-explanatory – llc_usage, ipc, mem_bandwidth, and llc_miss_rate. To easily
predict values, we also aggregate these events in a per-tasktype basis once tasks finish
their execution. That translates to having these four kinds of events replicated and
accumulated into every type of task, along with the number of instances used in the
aggregation.
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7.3.5 CPU Metrics

CPU metrics only include timers to measure the percentage of idle time on each core
individually. Handling the measurement of these metrics is fairly simple, as it only
requires inserting start & stop calls whenever a CPU is put to sleep or woken up.
Concerning CPU metrics then, monitoring includes:

• For every CPU, two timers, one to measure idle timing and a second one to
measure active timing.

7.3.6 Runtime Metrics

To correctly predict runtime features, information from lower levels of abstraction must
be combined. For this purpose, structs hold information about:

• The average load of the runtime with respect to the number of ready or executing
tasks. This is the currently available workload of the system.

• The average load of the runtime with respect to the number of microseconds
executing/to be executed.

• The aggregated elapsed execution time of tasks that have finalized their execu-
tion.

• The number of task instances taken into account for each runtime load. Chapter 8
further discusses what runtime loads are, why these metrics are needed, and
what they are used for.

As mentioned above, the fourth metric is explained in the next chapter. The third
metric is merely the accumulated elapsed time that has already been executed. The
first and second metrics relate to the average loads in number of tasks or time, both
over specific intervals of time. Currently, monitoring includes four metrics of this kind,
however, more could be computed as explained next.

• average_load_10 – The average load of the runtime in number of tasks, aver-
aging intervals of 10 seconds.

• average_load_60 – The average load of the runtime in number of tasks, aver-
aging intervals of 60 seconds.

• average_timing_load_10 – The average load of the runtime in microseconds
executed, averaging intervals of 10 seconds.

• average_timing_load_60 – The average load of the runtime in microseconds
executed, averaging intervals of 60 seconds.
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The two first metrics give an abstract view about the number of tasks executed over a
range of time. This translates to the size of the internal task queues. These are only
used in the reports given as an output. They are similar to Linux’ average loads given
with the top command. The two last metrics however, approximate the same counters
using time, which provides a clearer vision of the amount of workload executed in the
past.

Linux Load Averages

The top command is an addition to the UNIX set of commands that ranks processes
according to the amount of CPU time they consume. It produces outputs such as the
following:

top - 10:31:53 up 1:29, 3 users, load average: 0.45, 0.42, 0.33

Tasks: 223 total, 1 running, 222 sleeping, 0 stopped, 0 zombie

%Cpu(s): 2.7 us, 0.5 sy, 0.0 ni, 96.5 id, 0.2 wa, ...

KiB Mem : 16306604 total, 11040148 free, 3069464 used, ...

...

PID USER PR NI ... S %CPU %MEM TIME+ COMMAND

524 avahi 20 0 ... S 6.7 0.0 0:00.27 avahi-daem+

2199 anavarr1 20 0 ... S 6.7 2.2 1:25.61 chromium

3282 anavarr1 20 0 ... S 6.7 2.2 2:14.14 chromium

4116 anavarr1 20 0 ... R 6.7 0.0 0:00.01 top

1 root 20 0 ... S 0.0 0.0 0:00.84 systemd

...

In each of these commands, there are three numbers reported as part of the load

average output. Quite commonly, these numbers show a descending order from left
to right. Combining several sources [39–41], the definition of this metric could be one
like the following:

The load average tries to measure the number of active processes at any time. As a
measure of CPU utilization, the load average is simplistic, poorly defined, but far from
useless [40](page 726).

(...) high load averages usually mean that the system is being used heavily and the
response time is correspondingly slow [40](page 720).

The load average is the sum of the run queue length and the number of jobs currently
running on the CPUs [41](page 97).

The load average metrics are not the usual kind of averages. They are time-dependent
averages. Not only that, but they are damped time-dependent averages [39]. Next is
a thorough explanation of how these are computed.

The Linux kernel’s code includes the procedure shown in snippet 7.4. The LOAD_FREQ,
or the frequency by which loads are updated, equals 5 HZ. If 1 HZ is 100 clock ticks,
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and 1 tick equals 10 milliseconds, that means that CALC_LOAD is executed every 5
seconds.

CALC_LOAD is a macro defined in another file of the Linux kernel called sched.h, and
it is shown in snippet 7.5.

static inline void calc_load(unsigned long ticks)

{

unsigned long active_tasks; /* fixed-point */

static int count = LOAD_FREQ; /* 5 HZ */

count -= ticks;

if (count < 0) {

count += LOAD_FREQ;

active_tasks = count_active_tasks();

CALC_LOAD(avenrun[0], EXP_1, active_tasks);

CALC_LOAD(avenrun[1], EXP_5, active_tasks);

CALC_LOAD(avenrun[2], EXP_15, active_tasks);

}

}

Code 7.4: calc_load function from the Linux kernel

extern unsigned long avenrun[]; /* Load averages */

#define FSHIFT 11 /* nr of bits of precision */

#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */

#define LOAD_FREQ (5*HZ) /* 5 sec intervals */

#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */

#define EXP_5 2014 /* 1/exp(5sec/5min) */

#define EXP_15 2037 /* 1/exp(5sec/15min) */

#define CALC_LOAD(load,exp,n) \

load *= exp; \

load += n*(FIXED_1-exp); \

load >>= FSHIFT;

Code 7.5: CALC_LOAD macro from the Linux kernel

What this chaotic code tries to do is calculate load averages in fixed-point representa-
tion, to avoid costly floating-point operations. Numbers such as 1884, 2014 and 2037
are constants used to fake the fixed-point representation. Using the 1 minute sampling
as an example, the conversion of exp(5/60) (since the averages needed are of 1 minute,
or 60 seconds, and in 5 second intervals) into base-2 with 11 bits of precision, occurs
like so:

e
5
60 =

e
5
60

211
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However, EXP_N represents the inverse function (exp(-5/60)) therefore these numbers
can be computed using the following expression:

EXP N =
2M

2
f ∗log2(e)

N

where M is the number of precision bits, f is the frequency of update in seconds, and
N is the number of seconds to average.

Computing Load Averages

To sum up, the three load average numbers provided by top in Linux intend to provide
some information about how much work has been done on the system in the recent
past (1 minute), the past (5 minutes) and the distant past (15 minutes). However,
some issues remain:

• The load is not an utilization metric but queue length.

• They are samples of three different time series.

• They are exponentially moving averages. This will be mentioned in later sections
like section 8.

Once cleared, all that is left to know is how to convert the aforementioned expressions
to compute monitoring load averages. For this purpose, since the module specifies
averages of the last 10 and 60 seconds, 15 bits of precision and 0.01 seconds of interval
between measures, the expressions become:

EXP 10 =
215

2
0.01∗log2(e)

10

EXP 60 =
215

2
0.01∗log2(e)

60

Which once computed, become the following constants inserted in the monitoring code:

#define UPDATE_FREQ 0.01 // 10 ms intervals

#define EXP_10 32735 // 1/exp(0.01s/10s) as fixed-point

#define EXP_60 32763 // 1/exp(0.01s/60s) as fixed-point

Using these constants and functions such as the ones aforementioned in snippets 7.4
and 7.5, precise load averages are computed in a lightweight manner, without the need
for floating point operations. All the needed code is collapsed into one single procedure
that is used as a service to update monitoring loads every specific amount of time
(frequency of update). Pseudocode of this service can be seen in pseudocode 7.1.
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Algorithm 7.1 Pseudocode of the service that updates monitoring average loads

if must_update then
for all average_loads as load[i] do

activeTasks⇐ getActiveTasks(ready + executing);
load[i]⇐ load[i] × EXP_M[i];
load[i]⇐ load[i] + (activeTasks × (FIXED_1 - EXP_M[i]));
load[i]⇐ load[i] >> FSHIFT;

end for
for all average_timing_loads as load[i] do

elapsed⇐ getElapsedTime();
load[i]⇐ load[i] × EXP_M[i];
load[i]⇐ load[i] + (elapsed × (FIXED_1 - EXP_M[i]));
load[i]⇐ load[i] >> FSHIFT;

end for
end if

7.3.7 Monitoring API

Snippet 7.6 shows the API that the whole monitoring infrastructure uses to communi-
cate with the runtime. The purpose and actions of every function are detailed within
the snippet. For simplicity, we have omitted getters and setters. As written, every
action to perform regarding CPU, runtime, and task metrics, is found in or propa-
gated by task-targetting functions such as taskCreated(), taskChangedStatus() or
taskFinished(). Functions are described using the brief, param and return labels
in Doxygen-styled comments. The actions taken are discussed using the actions label.

//****************

//** MONITORING **

//! \brief Initialization of monitoring

static void initialize();

//! \brief Destroy the monitoring module

static void shutdown();

//! \brief Print a report of all the CPU statistics

static void displayCPUStatistics();

//! \brief Print a report of the global runtime statistics

static void displayRuntimeStatistics();

//! \brief Print a report of task timing information

static void displayTaskStatistics();

//***************************

//** TASKS, CPUS & RUNTIME **
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//! \brief Gather basic information about a task when it is created

//! \actions Propagate task creation to PQoS

//! \actions Switch to the appropriate timing status

//! \actions Switch timing to the appropriate runtime load

//! \param[in] task The task to gather information about

static void taskCreated(Task * task);

//! \brief Propagate monitoring operations after a task has changed its

//! execution status

//! \actions Propagate task status change to PQoS (only in some scenarios)

//! \actions Switch to the appropriate timing status

//! \actions Switch timing to the appropriate runtime load

//! \param[in] task The task that’s changing status

//! \param[in] execStatus The new execution status of the task

//! \param[in] cpu The cpu onto which a thread is running the task

static void taskChangedStatus(Task * task, int execStatus, ComputePlace *

cpu = nullptr);

//! \brief Propagate monitoring operations after a task has finished

//! \actions Propagate task finalization to PQoS

//! \actions Stop and accumulate timing statistics

//! \actions Subtract timing from the current runtime load

//! \param[in] task The task that has finished

//! \param[in] cpu The cpu onto which a thread was running the task

static void taskFinished(Task * task, ComputePlace * cpu);

//*************

//** THREADS **

//! \brief Propagate monitoring operations when a thread is initialized

//! \actions Begin/resume timing for the thread

//! \actions Propagate the call to the PQoS API when available

static void initializeThread();

//! \brief Propagate monitoring operations when a thread is shutdown

//! \actions Pause/finish timing for the thread

//! \actions Propagate the call to the PQoS API when available

static void shutdownThread();

Code 7.6: Monitoring Infrastructure’s API

7.3.8 PQoS API

Since PQoS is integrated as a submodule of the infrastructure of monitoring, its calls
are bound to the ones shown in the previous section. This means that when monitoring,
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specific scenarios rise on which a change asks for an update in hardware events. If those
scenarios show up, the integrated PQoS API, shown in snippet 7.7 is called through
the API shown above.

//**********

//** PQOS **

//! \brief Initialization of PQoS

static void initialize();

//! \brief Destruction of the PQoS library

static void shutdown();

//! \brief Prints a report of PQoS information from tasks

static void displayTasksSummary();

//***********

//** TASKS **

//! \brief Predict metrics and gather information about a task

//! \actions Initialize PQoS structures

//! \param[in] task The task to predict metrics for

static void taskCreated(Task * task);

//! \brief Start monitoring PQoS events for a task

//! \actions Gather starting or resuming PQoS event values

//! \param[in] task The task to start PQoS for

static void startPQoS(Task * task);

//! \brief Stop monitoring PQoS events for a task and accumulate

//! events from its threads into the task’s statistics structures

//! \actions Gather pausing or stopping PQoS event values

//! \param[in] task The task to stop PQoS for

static void stopPQoS(Task * task);

//! \brief Finish monitoring PQoS events for a task and accumulate

//! the events into accumulators

//! \actions Accumulate PQoS events into global structures

//! \param[in] task The task that has finished

static void taskFinished(Task * task);

//*************

//** THREADS **

//! \brief Initialization of PQoS for the current thread

static void initializeThread();

//! \brief Shutdown of PQoS for the current thread
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static void shutdownThread();

Code 7.7: API of the integration of PQoS within the Monitoring Infrastructure

7.3.9 Output Statistics

In this section we show a real example of an output obtained from executing Cholesky
on the SSF machine. Every application and machine is thoroughly documented in
section 10. In this execution, we used a 56 core processor with 2 sockets. The size
of the matrixes for the factorization was 32768 * 32768, and the block size was 512 *
512. Next we explain every part of the output that the monitoring module provides.
Since this example is a large one with a lot of task types, we have decided to omit
tasks such as flat2tile, the main task and other initialization tasks, which only had
a single task instance and therefore did not provide much insight.

---------------------

STATS PQOS TASK-TYPE (INSTANCES) gemm (41664)

STATS PQOS LLC Usage (KB) ACC / SUM / AVG / STDEV 72.23% / 393.77197 / 0.00945 / 0.04771

STATS PQOS IPC ACC / SUM / AVG / STDEV 79.42% / 54835.61397 / 1.31614 / 0.14963

STATS PQOS Local Mem BW (KB/ms) ACC / SUM / AVG / STDEV 99.52% / 179787.50802 / 4.31518 / 72.3497

STATS PQOS LLC Miss Rate ACC / SUM / AVG / STDEV 88.08% / 155.46249 / 0.00373 / 0.00031

---------------------

STATS PQOS TASK-TYPE (INSTANCES) potrf (64)

STATS PQOS LLC Usage (KB) ACC / SUM / AVG / STDEV 69.84% / 0.80078 / 0.01251 / 0.04720

STATS PQOS IPC ACC / SUM / AVG / STDEV 79.69% / 53.34096 / 0.83345 / 0.22895

STATS PQOS Local Mem BW (KB/ms) ACC / SUM / AVG / STDEV 100.00% / 0.00000 / 0.00000 / 0.00000

STATS PQOS LLC Miss Rate ACC / SUM / AVG / STDEV 7.47% / 0.11995 / 0.00187 / 0.00070

---------------------

STATS PQOS TASK-TYPE (INSTANCES) syrk (2016)

STATS PQOS LLC Usage (KB) ACC / SUM / AVG / STDEV 75.94% / 26.02148 / 0.01291 / 0.05575

STATS PQOS IPC ACC / SUM / AVG / STDEV 72.52% / 2526.11641 / 1.25303 / 0.22589

STATS PQOS Local Mem BW (KB/ms) ACC / SUM / AVG / STDEV 99.75% / 4380.99185 / 2.17311 / 45.5738

STATS PQOS LLC Miss Rate ACC / SUM / AVG / STDEV 71.73% / 8.38135 / 0.00416 / 0.00056

---------------------

STATS PQOS TASK-TYPE (INSTANCES) trsm (2016)

STATS PQOS LLC Usage (KB) ACC / SUM / AVG / STDEV 71.89% / 23.71289 / 0.01176 / 0.05453

STATS PQOS IPC ACC / SUM / AVG / STDEV 74.69% / 2657.42096 / 1.31817 / 0.27264

STATS PQOS Local Mem BW (KB/ms) ACC / SUM / AVG / STDEV 99.51% / 8111.55847 / 4.02359 / 68.5341

STATS PQOS LLC Miss Rate ACC / SUM / AVG / STDEV 42.20% / 7.88417 / 0.00391 / 0.00073

---------------------

STATS PQOS ALL TASKS

STATS PQOS LLC Usage (KB) SUM / AVG 444.50228 / NA

STATS PQOS IPC SUM / AVG 60074.55225 / NA

STATS PQOS Local Mem BW (KB/ms) SUM / AVG 192280.05847 / NA

STATS PQOS LLC Miss Rate SUM / AVG 171.90376 / NA

---------------------

The piece of output above shows a summary of PQoS events per type of task. It shows
statistics such as the average and standard deviation of each event, the sum of events
from all tasks of a certain task and the accuracy of predictions, which we discuss in
further chapters. Also, a summary aggregating all tasks is shown at the very bottom.
The amount of tasks of each type is shown right after every type of task’s label.

+-----------------------------+

| TASK STATISTICS |
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+-----------------------------+

STATS MONITORING TASK-TYPE (INSTANCES) gemm (41664)

STATS MONITORING UNITARY COST AVG / STDEV 0.00009 / 0.00003

STATS MONITORING PREDICTION ACCURACY (%) 96.51%

STATS MONITORING AVERAGE PARALLELISM 8.86988

+-------------------------+

STATS MONITORING TASK-TYPE (INSTANCES) potrf (64)

STATS MONITORING UNITARY COST AVG / STDEV 0.00006 / 0.00002

STATS MONITORING PREDICTION ACCURACY (%) 84.98%

STATS MONITORING AVERAGE PARALLELISM 0.03928

+-------------------------+

STATS MONITORING TASK-TYPE (INSTANCES) syrk (2016)

STATS MONITORING UNITARY COST AVG / STDEV 0.00004 / 0.00002

STATS MONITORING PREDICTION ACCURACY (%) 74.01%

STATS MONITORING AVERAGE PARALLELISM 0.91271

+-------------------------+

STATS MONITORING TASK-TYPE (INSTANCES) trsm (2016)

STATS MONITORING UNITARY COST AVG / STDEV 0.08984 / 0.02393

STATS MONITORING PREDICTION ACCURACY (%) 72.45%

STATS MONITORING AVERAGE PARALLELISM 0.83023

This piece of output, on the other hand, shows information about timing on a per-task
type basis. Most of the metrics shown are explained in further chapters. The average
parallelism stands for the number of tasks of that type executed within the execution
time of the application. This is a rough approximation to the parallelism present in a
certain type of task. However, this metric does not take into account dependences or
intertwining between different types of tasks.

+-----------------------------+

| RUNTIME LOADS (µs) |

+-----------------------------+

Instantiated Runtime Load (45764) 896657630.00 µs
Blocked Runtime Load (0) 0.00 µs
Ready Runtime Load (0) 0.00 µs
Executing Runtime Load (0) 0.00 µs
Finished Runtime Load (45764) 896657630.00 µs
+-----------------------------+

+-----------------------------+

| AVERAGE LOADS |

+-----------------------------+

Average Load (# of tasks) last 10 s 511.20

Average Load (# of tasks) last 60 s 157.39

+-----------------------------+

+-----------------------------+

| AVERAGE TIMING LOADS |

+-----------------------------+

Average Load (ms) for the last 10 s 865.96

Average Load (ms) for the last 60 s 135.30

+-----------------------------+

+-----------------------------+

| GENERAL STATISTICS |

+-----------------------------+

Total Execution Time 55.65 (s)

+-----------------------------+

The last metrics shown in the output refer to runtime loads, explained in the next
chapter, the aforementioned average loads in number of tasks, and the average loads
in seconds. These are only in the output to show the potential of the runtime. Any of
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these metrics, or the ones mentioned in previous pieces of output, can be polled at any
time during the execution of applications. Hence why, the instantiated and finished
runtime loads have the same value both in instances and time executed.

7.3.10 Current Monitoring Structure

Figure 7.3 shows how the Monitoring module includes the underlying module of each
kind of metrics. Runtime, CPU, thread, and task-related metrics. Task and thread
metrics are also incorporated by the PQoS module, which, at its time, is included in the
Monitoring module. Finally, each module uses the pertaining chronometer structures,
which must be updated using the appropriate service.

MONITORING 
MODULE 

RUNTIME
METRICS 

CPU  
METRICS 

THREAD 
METRICS 

TASK 
METRICS 

PQOS
MODULE 

CHRONO 
UPDATE
SERVICE

Fig. 7.3: Scheme showing the monitoring module and its underlying structure

All these modules are controlled by the environment variables listed next:

• NANOS6_MONITORING_ENABLE: Used to control whether monitoring is enabled. As
it is a boolean, the only possible values this variable can take are 0 and 1. By
default, it takes value 0.

• NANOS6_MONITORING_VERBOSE: Used to control whether statistics are output.
It is a boolean, so the only possible values this variable can take are 0 and
1. By default, it takes value 0. This variable is only valid if monitoring is
enabled. Currently, it only allows the specified values, however, it is thought to
be extended so that any combination of the four different kinds of metrics can
be output.

• NANOS6_PQOS_ENABLE: Used to control whether PQoS event monitoring is en-
abled. Also being a boolean, the possible values are 0 or 1. By default, it takes
value 0.
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• NANOS6_PQOS_VERBOSE: Used to control whether PQoS event statistics are out-
put. Also being a boolean, the possible values are 0 or 1. By default, it takes
value 0. This variable is only valid if PQoS monitoring is enabled.

Even though it is not possible at the time of writing, we plan to extend and further
separate these modules. This is to allow only certain metrics to be monitored or
output, and so that any combination of metrics can be chosen. All the metrics and
APIs aforementioned in previous sections are used to make predictions, we discuss this
in the next chapter.
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8 | Predictions through Monitoring

With this chapter, we aim to explain how all the aforementioned metrics are used
to obtain precise predictions. We begin by introducing the cost clause. We follow
by explaining which kind of predictions we compute, how they are computed, and
where they are stored. At the end of this chapter, we briefly explain how the error in
predictions is computed, and why it is computed the way it is.

8.1 The Cost Clause

In a utopic scenario, every task would pertain to a group or type of tasks. In each
of those types, tasks would share the same features and would be almost identical to
each other in attributes such as the computational intensity or the memory operations
they perform. However, this is not the case for task-based programming models. In
these models, each task may be grouped with other tasks, but that does not mean
they share the same granularity.

One of the best ways to group tasks is by their objective in an application. To serve as a
simple example, we explain an appropriate organization of tasks by types in Mergesort.
Mergesort is a recursive sorting application which we further discuss in chapter 10. In
this application, we would separate tasks into three types. The first type of task would
be the initialization tasks, which initialize array positions. The second type of tasks
would be the recursive or merge sort tasks, which create other tasks and recursively
call themselves. The third kind would be merge tasks, which take two chunks of an
array and merge them into a single one.

These tasks differ in computational intensity since some have linear cost and others
have exponential cost. Regardless, we need a way to make predictions without implic-
itly knowing this. For this purpose, we introduced the cost clause into OmpSs-2.

The cost clause tries to eliminate the need of, from the runtime-side, identifying
underlying features of tasks. It serves as a help or a hint given to the runtime, by
application developers. We encourage developers to use this clause to point features
such as the computational intensity of a task, the amount of I/O operations if the task
is I/O bound, or the amount of memory transactions if it is well known and the task
is memory-bound.
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The relative computational weight of a task is often bound to input sizes. This is
why the cost clause should and is in fact, parametrized. The clause accepts variables,
constants, or function calls. Next, we show the syntax of this clause in the aforemen-
tioned example application. After discussing the example, we list the most remarkable
features of the newly introduced clause.

1 void merge_sort(double *a, size_t start, size_t end)

2 {

3 if (start >= end) return;

4

5 size_t mid = (start + end) / 2;

6 size_t n1 = (mid - start) + 1;

7 size_t n2 = (end - mid);

8

9 #pragma oss task label(merge_sort) cost(n1*log2(n1))

10 merge_sort(a, start, mid);

11

12 #pragma oss task label(merge_sort) cost(n2*log2(n2))

13 merge_sort(a, mid + 1, end);

14

15 #pragma oss taskwait

16

17 #pragma oss task label(merge) cost((end-start) + 1)

18 merge(a, start, end);

19 }

Code 8.1: Snippet of an OmpSs-2 Mergesort code using the cost clause

As shown in snippet 8.1, the merge procedure has a linear cost. However, merge_sort
has a logarithmic computational weight. Having this information allows us to normal-
ize a task’s cost using its elapsed execution time for future tasks. If the application
has a linear or no algorithmic function, this normalization through the cost clause
will not cause a negative effect, as we will be averaging a task’s time. On the contrary,
if tasks follow an algorithmic expression such as exponential, the average will be nor-
malized and, therefore, much more truthful and precise. These are some of the most
remarkable features concerning the cost clause:

• The clause accepts variables, symbols, and calls to functions even from external
libraries.

• The cost of a task is normalized (i.e., using the task’s elapsed execution time).

• This normalized or unitary cost is used to make predictions in a fair way.

• These can be later on used in real time, as we will discuss in chapter 9.
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TASK ALGORITHM
INPUT

COST
EXPRESSION

ROLLING
AVERAGE(ms)

UNITARY
COST(ms)

QuickSort N = 200.000 O(N*log(N)) 0.6306 0.5948*10−12

N = 1.000.000 3.5352 0.5892*10−12

InsertionSort M = 200.000 O(M*M) 184.80 4.6202*10−9

M = 1.000.000 4604.40 4.6044*10−9

Table 8.1: A brief experiment using the cost clause to normalize time

To demonstrate the effectiveness of the cost clause, table 8.1 is presented. Tasks from
the same type with similar costs may provide accurate predictions. However, tasks
that differ in cost by a lot may not behave conventionally. In the table, we can see the
features obtained from executing two different sorting algorithms. The second column
represents the size of the input, or the number of elements to sort. The third one
shows the algorithmic expression that defines the task’s computational weight. The
fourth one shows an average of the execution time of all tasks, and the fifth one shows
the unitary or normalized cost computed by the monitoring module.

What we try to show is that, no matter the input size of the application or the algorith-
mic expression of tasks, the unitary cost will always provide a normalized and precise
metric. However, non-normalized averages do not take into account exponential nor
logarithmic growth, which is why predictions won’t be as exact.

8.2 Prediction Metrics

Having the cost clause allows us to have means by which we can normalize other
metrics, not only time. In this section we specify every prediction we obtain using
these modules.

8.2.1 Predictions Related to Monitoring

When it comes to predictions related to the metrics we obtain from monitoring, we
get three types.

Firstly, we could save the average unitary cost of every type of task to obtain predic-
tions. When a new task would be created, all we would have to do would be computing
the product of the cost of the newly created task by the average unitary cost. However,
at certain points of an application, unitary costs might vary due to different scenarios.
To serve as an example, a task could be using a shared cache which is being overuti-
lized by other tasks or programs, which would cause the elapsed execution time of
the task to increase, and so would the unitary cost. Due to this and other scenarios,
we decided it was best if we introduced boundaries in the average, transforming it
into a moving or rolling average. That way, only the ’n’ more recent statistics are
used to compute the average unitary cost. To sum it up, for every type of task we
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save the ’n’ latest timing measures, to compute the average unitary cost. As a note,
obtaining the average unitary cost has little to no overhead, as we use accumulators
from the boost [42] library, which is optimized for the purposes we need. Also as a
side note, this ’n’ parameter can be tunned through an environment variable called
NANOS6_ROLLING_WINDOW_SIZE.

Secondly, we use the aforementioned unitary costs to make predictions, which are ag-
gregated into what we call the runtime load metrics. These metrics aggregate an
approximation of the workload in each status in real time. The approximation is due
to aggregating task predictions, and not the actual elapsed time of tasks. The ready,
blocked, paused, instantiated, and finished task statuses then, have their own predic-
tions of aggregated cost as a runtime metric, which are combinations of predictions.

These runtime workload predictions per task status are further optimized by being
updated once tasks complete their execution. When a task reaches completion, its
elapsed time is subtracted from the prediction of the parent if it had one. This is
limited, however, by updating these metrics once again when the parent finishes its
execution, to avoid side effects due to the imperfections of predictions (i.e., the last
prediction of a child task could leave the parent task with a negative predicted elapsed
execution time if the children tasks’ timing were overpredicted).

Lastly, runtime loads are combined predictions that take advantage of task timing pre-
dictions, and with these combined predictions we create forecasts of CPU utilization.
These are fired periodically, as a method of producing an approximated value for the
CPU utilization that is needed for the next period. To put it in an exemplified scenario,
at timestep ’i’, we poll runtime workload metrics to know the predicted amount of
work left in queues. Then, with several heuristics, we compute our prediction of CPU
usage for timestep ’i+1’. At timestep ’i+2’, apart from doing everything previously
mentioned, we also compute the error in the prediction of timestep ’i+1’, and we use
it to tune our predictions further.

8.2.2 Predictions Related to PQoS

Since we monitor not only runtime related metrics but also hardware events through
Intel’s® PQoS library, we provide predictions for these as well. Similarly to the com-
puting of other predictions, once tasks reach completion, their events are normalized
by the cost specified. Then, these unitary event values are averaged in the same way
unitary cost is for timing predictions, through a moving average.

The normalized values for each event are then used to predict events for future tasks.
These predictions can be used to apply different schedule techniques. As an example,
if we anticipate that a set of tasks is going to use a huge amount of shared cache,
maybe scheduling policies that intertwine these with tasks that use almost no shared
cache would be a great idea.
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8.3 Preliminary Results

Before we could use any of the predictions mentioned in previous sections, first we had
to assess if the predictions were accurate. To do this, before doing any complete eval-
uation, we assessed the accuracy of timing predictions in tasks using two applications
with different features on the same machine. Our initial experiments had the next
features:

• They were all executed in the SSF machine. Details about this machine are given
in section 10.

• The first application tested was Mergesort. The size of the array to sort was 100
million elements, and the final depth size was 1 million elements. This creates
thousands of tasks, with mixed granularities. More about this application is
discussed in section 10.

• Since we wanted to test different features, the second application tested is Cholesky.
The size of the factorized matrixes was 32768 columns by 32768 rows, and the
block size was 2048 by 2048. This creates a small number of tasks but with
coarse granularity. More about this application is discussed in section 10.
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Fig. 8.1: Predictions compared to real timing values of tasks in a Mergesort
execution

Our first test was conducted with the Mergesort application. Shown above, in fig-
ure 8.1, pairs of values are plotted throughout the execution (elapsed execution time –
x-axis). These pairs are the predicted task time and the actual task time and they are
plotted at the exact moment the task completes its execution in the application. To
better comprehend the accuracy of predictions, we have filled the area beneath these
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two series. Clear orange areas mean there were either no predictions or underpredic-
tions (since the blue of predictions does not clash in these areas). Clear blue areas
mean there were overpredictions. The slightly purple areas are where the two pairs
meet, thus accurate predictions.

Shown above, we see that at the start of the application, predictions are inaccurate.
As soon as the monitoring has obtained more metrics, these predictions start being
accurate (around the second large spike in the plot). However, since thousands of tasks
are shown, it is hard to grasp any clear ideas, which is why we include the two plots
shown below, which are zoomed areas of the previous plot.
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Fig. 8.2: Zoomed in view at a start zone of plot 8.1

As shown in figure 8.2, at the start, there are lots of missing predictions. In fact,
there should only be missing predictions, since, at the beginning of the application, no
task has completed yet; thus unitary costs cannot be computed. This means that all
the missing predictions from both plots should be clustered at the start. However, as
mentioned above, pairs of predicted versus real time are plotted once tasks complete,
and it is quite common that the tasks that are created first (the ones that have a
nonexistent prediction) do not complete until later in the execution.

However, as we can see in figure 8.3, once a few tasks have completed their execution,
predictions get more and more accurate as time goes, and after a few iterations, we
can grasp how predictions become extremely accurate. The elapsed execution time
of the application is a little over 32 seconds, and the average prediction accuracy for
timing was 78.50% for merge tasks, and 89.84% for the merge_sort tasks.

For completeness, we decided to execute Cholesky to evaluate if the inaccurate predic-
tions were also found at the start of this application. To our surprise, in executions
of Cholesky with a small number of tasks (5̃00 tasks), no predictions were found, even
though the tasks had coarse granularities. We studied this case and found out that
it was not until well into the application when tasks completed, and by the time that
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Fig. 8.3: Zoomed in view at a mid-zone of plot 8.1

enough tasks completed, all tasks had been spawned and thus no predictions could be
made for future tasks.

Due to the initial inaccurate predictions and the case of Cholesky, where no predictions
could be found at all, we decided to optimize our approach by adding the Wisdom
mechanism, which we explain in the next section.

8.4 Wisdom Mechanism

Through the preliminary results we obtained, we decided it was best if we thought of a
mechanism that allowed the runtime to save some general hints for future applications.
These hints are in the form of unitary costs. When this mechanism is enabled, at the
end of an application the average unitary costs of each type of task are saved in a
file. Since these unitary costs are normalized, they are able to work in any scenario of
input. At the start of an application, the previously mentioned file is checked. If such
file exists and unitary costs are available, these are loaded into runtime statistics so
that predictions can be done since the start.

To obtain a fast mechanism with files in a human-readable format, we save these
statistics in a JSON file, with a tree-like structure. To further optimize the whole
process, we also store information such as the average prediction accuracy. The file is
modified always comparing the previous and current accuracies.

This mechanism can be controlled through the NANOS6_MONITORING_WISDOM_ENABLE

and NANOS6_MONITORING_WISDOM_PATH environment variable. The first enables or
disables the mechanism, and the second specifies the path where the file should be
searched and saved.
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Fig. 8.4: Predictions compared to real timing values of tasks in a Mergesort
execution with the Wisdom mechanism enabled

With this mechanism, we decided to rerun the preliminary results, this time with
wisdom enabled. Figure 8.4 shows the previous experiment using Mergesort. This
time, however, we can see that the predictions are far more accurate than before at
the start. To easily grasp this, we zoomed in at the start zone of this plot as well.
This is shown in figure 8.5.
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Fig. 8.5: Zoomed in view at a start zone of plot 8.4

The execution times were identical to the executions with Wisdom disabled, around
30 to 31 seconds, and the average prediction accuracy for timing was 81.23% for merge
tasks, and 91.78% for the merge_sort tasks.
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Granted that the mechanism works and it improves the accuracy of timing predictions,
and for completeness, we also tested it in Cholesky to see if, this time, at least we
obtained predictions. This is shown in figure 8.6.
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Fig. 8.6: Predictions compared to real timing values of tasks in a Cholesky
execution with the Wisdom mechanism enabled

When it comes to statistics for the execution above, its elapsed time was 64 seconds
and the average accuracy of timing predictions was 72.81% for gemm tasks, 75.25% for
potrf tasks, 70.37% for syrk tasks, and 76.98% for trsm tasks.

8.5 Prediction Error Analysis

We have shown how predictions are made and preliminary results about their accuracy,
but an equally important matter is to discuss how we compute the error of predictions,
which inversely relates to the accuracy plots we will show in the next chapter.

To this date, many models tailor the error made in predictions or forecasts. A common
approach is the mean percentage error, which, in a set of predictions, takes each real
value, subtracts the prediction, and divides the difference by the real value. In other
words, this computes an expression that relates the error of the prediction to the actual
value. All these computations are then averaged and converted into a percentage to
obtain the Mean Percentage Error [43]. The next expression shows its formula, where
ai stands for the actual value and fi for the forecast or predicted value.

MP E =
100%
n

n∑
i=1

ai − fi
ai
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Although commonly used, this is not the appropriate model for our approach. This
is mainly because, even though negative percentages can be avoided by getting the
absolute value of the MPE, huge differences may show errors of over 100%.

Another approach suggests modelling prediction errors through the Symmetric Mean
Absolute Percentage Error [44]. This measure relates the difference between the pre-
dicted and actual value to the average value between them. It is called symmetric due
to using absolute values and relating them to the average between the used values. The
expression to compute the SMAPE is shown next, where the aforementioned syntax
still holds.

SMAPE =
100%
n

n∑
i=1

|ai − fi |
(|ai |+ |fi |)/2

However, before deciding to go with SMAPE we found an error model that fit our
needs. This is the Relative Percentage Error [45], which relates the error with a
function tailored by the user, as shown in the next expression.

RP E =
100%
n

n∑
i=1

|ai − fi |
|f (ai , fi)|

This |f (ai , fi)| function, as cited in [46], is not easy to define:

Defining relative difference is not as easy as defining relative change since there is
no ”correct” value to scale the absolute difference with. As a result, there are many
options for how to define relative difference and which one is used depends on what the
comparison is being used for. In general, we can say that the absolute difference |4| is
being scaled by some function of the values x and y, say f (x,y).

Common choices for the function include:

• Well-known ranges

• max(|ai |, |fi |)

• min(|ai |, |fi |)

• max(ai , fi)

• min(ai , fi)

• (ai + fi)/2

• (|ai |+ |fi |)/2 (just like in the SMAPE approach)
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For our implementation, in predictions related to timing we use the absolute max-
imum value between both measures – max(|ai |, |fi |). However, for CPU utilization
predictions, since we know the range of the prediction must always be between zero
and the maximum amount of available CPUs by the runtime, we use this range.

Finally, our expressions to measure the error in predictions of task timing and predic-
tions of CPU utilization are, respectively, the next ones:

T ASK − P REDICT IONError =
100%
n

n∑
i=1

|ai − fi |
max(|ai |, |fi |)

CPU − P REDICT IONError =
100%
n

n∑
i=1

|ai − fi |
MAX CPUs

And the accuracy we show in the plots from further sections is obtained by simply
subtracting the relative percentage errors from 100%.
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9 | Enhancing Scheduling in OmpSs-2

Having a large number of statistics and metrics through the monitoring module pro-
vides, not only information to the runtime, but also capabilities to enhance existing
scheduling policies or even create new ones. In this chapter, we explain what all the
aforementioned metrics and modules are currently used for. In chapter 12, we continue
by proposing new ideas that are in the roadmap. First, we begin by briefly explaining
a technique introduced in previous works. Afterward, we discuss the newly created
techniques.

9.1 Autofinal

From the final clause, and through normalized cost, came the idea of creating a module
called the autofinal module. This module can determine at task creation time if the
task should be a final task. This is possible through monitoring information and pre-
dictions, and it is determined by several heuristics which contain various environment
variables to tweak and control this module.

Although this module is present and uses monitoring, as it is not part of this thesis, we
decided it was best not to explain it thoroughly. A detailed description and evaluation
of this module, as well as the techniques it introduces, can be found in our previous
work [22].

9.2 Time-To-Completion Infrastructure

One of the secondary objectives of this thesis was to offer users an API with which they
could poll the most interesting metrics from monitoring. Combining some metrics,
we created the Time-To-Completion infrastructure, which combines predictions and
metrics to approximate the estimated time until an application completes.

This infrastructure optimizes how predictions are made and combined so that the
estimation of time is as precise as possible. If predictions were accounted from the
start until the end of tasks, this would mean that in the end, the prediction of a task
would be subtracted from the estimation of overall time. If this were the case, instead
of being an estimation that continually decreases at an expected smooth rate, it would
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remain immutable while tasks do not finish execution, and once they ended, it would
suddenly drop quickly.

These are some of the most remarkable features of this infrastructure:

• For every task type, the accumulated cost is saved separately from the average
unitary cost. This due to the variability of unitary costs. Once users want to
poll the estimation, the accumulated cost is multiplied by the average unitary
cost at that period.

• Users either poll the time at a certain moment or set an automatic output with
a refresh rate. Users control the frequency of output.

• Once a task completes its execution, its elapsed execution time is subtracted from
the parent task if existent. This is so that the overall estimation is as accurate
as possible.

This estimation can be used by any external libraries, such as Slurm [47], to opti-
mize scheduling of executions. Slurm is an open source cluster management and job
scheduling system for Linux clusters. It allocates access to resources for users for a
specific duration, so that their jobs can be executed. It also provides a mechanism
to start, execute, and monitor parallel jobs. Finally, it schedules resource usage by
managing queues of work or jobs.

Libraries such as Slurm could highly benefit from our infrastructure. Oftenly, users of
these clusters will input a substantial amount of duration so their jobs are not killed.
Two main scenarios might occur in which both users and resource utilization benefit
from libraries having accurate estimations of the real duration of the jobs in their
queues.

First, if the user fell short in the specified duration of his or her job, the estimation of
time provided by the runtime allows Slurm to modify the job to add more duration if
it made sense. This is to avoid wasting the time the user already spent, as the user
would need to restart his/her execution from scratch. On the other hand, if the user
specified more time than his or her job actually needed, Slurm can benefit from this
by anticipating an earlier completion of the job.

9.3 Dynamic CPU Activation

As mentioned in section 8, timing predictions for tasks are used to predict runtime
workloads. These are used to predict CPU utilization. With these, we can achieve one
of the primary objectives of this thesis, which is to manage CPU usage automatically.

Our approach towards this objective is to extend the default scheduler of Nanos6 with
the capabilities to do the aforementioned tasks. The focus of this approach is due to
the scheduler being the element that controls CPUs through a CPU manager. The

67



scheduler is in charge of providing idle CPUs to threads when work becomes available,
and also to disable CPUs when there is a lack of tasks to suffice the currently available
CPUs. Next, we show pseudocodes with every primary function in the scheduler
interface that interacts with CPU managing.

Algorithm 9.1 Pseudocode of the addTask function of the scheduler interface

add_task(task, get_idle)
spinlock⇐ lock;

queue.push(task);
if get_idle then

idle_cpu⇐ get_idle_cpu();
else

idle_cpu⇐ ∅;
end if

spinlock⇐ unlock;
return idle_cpu;

Pseudocode 9.1 shows the basic operations when adding a task. The task is inserted
into the task queue and, if the thread had asked for it, an idle CPU is returned. This
last action must be removed, so this function will not be able to return idle CPUs
anymore. Pseudocode 9.2 shows the actions taken when a thread asks for a task.
When this happens, if the queue is not empty, a task is returned. On the contrary, if
there is permission to do it, we mark the CPU (compute_place) which the thread was
executing on as idle. This action must be removed as well since schedulers no longer
manage CPUs.

Algorithm 9.2 Pseudocode of the getTask function of the scheduler interface

get_task(compute_place, can_idle)
spinlock⇐ lock;
task⇐ queue.get_task();
spinlock⇐ unlock;

if task , ∅ then
return task;

end if

if can_idle then
cpu_becomes_idle(compute_place);

end if

Another action that must be withdrawn from the schedulers is the ability to return
idle CPUs with the function shown in snippet 9.3. Worker threads called this function.
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Algorithm 9.3 Pseudocode of the getIdleCPU function of the scheduler interface

get_idle_cpu(force)
idle_cpu⇐ ∅;

spinlock⇐ lock;
if force || queue , ∅ then

idle_cpu⇐ get_idle_cpu();
end if
spinlock⇐ unlock;

return idle_cpu;

All the aforementioned actions must be replaced with a call to a service. In other
words, in every line of code where schedulers managed CPUs, instead, we activate a
service controlled by CPU utilization predictors. This service takes into account the
prediction for the next period of time and takes the actions it must to ensure that only
the sufficient CPUs are utilized, in order not to waste resources. Pseudocode of the
service is shown in snippet 9.4.

Algorithm 9.4 The Dynamic CPU Activation service

dynamic_cpu_activation_service(prediction)
if predict_next_period then

workload⇐ get_runtime_loads();
instances⇐ get_num_instances();

utilization⇐ get_current_cpu_utilization();
accuracy⇐ RPE(utilization, prediction);

prediction⇐ min(instances, workload / PREDICT_RATE);
prediction⇐ min(prediction, MAX_NUM_CPUS);
prediction⇐ max(prediction, 1.0); // Minimum 1 CPU
return prediction;

end if

With the predictions from this service, we call the now extended CPU manager, telling
it the operations that must be done. That is, idling CPUs that will be unused for the
next period, or waking up CPUs that will poll tasks from the predicted workload. A
detailed and extensive evaluation of predictions and these enhanced scheduling tech-
niques is given in the next chapter. Timing predictions for tasks and the assessment
of the wisdom mechanism, however, is already discussed in chapter 8.
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10 | Evaluation

In this chapter we finalize by showcasing the extensive evaluation of our proposals.
First, we describe the applications used in our experiments. Then, we discuss the
architectures used. Once that is out of the way, we start the experiments by analyzing
the overhead of the introduced modules and infrastructures. Afterward, we assess
the accuracy of CPU utilization predictions. Then, we show the enhanced usage of
resources provided by the dynamic CPU activation infrastructure. Finally, we extend
the evaluation done in chapter 8 for the wisdom mechanism.

10.1 Applications

To assess the accuracy of predictions, we prepared a set of applications with noticeable
differences. Next we list each of the applications in the set, briefly commenting on all
of their features.

• Cholesky: The Cholesky factorization is a decomposition of a positive-definite
matrix into the product of a lower triangular matrix and its conjugate trans-
pose, which is useful e.g. for efficient numerical solutions. The benchmark was
executed with an input size (matrix size) of 32768 by 32768 elements. It is an
iterative implementation, and the block size chosen for the executions was 2048
by 2048 elements. These parameters make this application have coarse grained
tasks. The parallelism available is scarce, as not many tasks are created due to
the relatively big block size, compared to the input size.

• Mergesort: Mergesort is a sorting algorithm in which tasks are subdivided until
a certain point. The implementation of this application was recursive. We
executed this application choosing an input size of 100 million elements to be
sorted. The depth of recursion was controlled through the final clause with a
value of 1 million. This means that the application subdivided tasks until each
chunk of the vector to sort had 1 million elements. These parameters create
a reasonable amount of tasks compared to Cholesky. The tasks created have
medium to coarse granularities. To test the accuracy of our predictions, each
execution contained 5 iterations, thus sorting and randomizing the array five
times in every execution.
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• NQueens: NQueens is a problem that finds solutions to place N non-attacking
queens on an ’N’ by ’N’ chessboard. Solutions exist for all natural numbers ’N’
with the exception of N=2 and N=3. The size of the chess board chosen was 17
by 17. It is a recursive application. Recursion depth is controlled through the
final clause, with a value of 4. Thus, when the column index reaches 4, tasks
become final. Since it has exponential growth in tasks, this application creates
a lot of tasks ranging from low to medium granularities.

• Strassen: Strassen is an algorithm for matrix multiplication. It is faster than
the standard matrix multiplication algorithm and is useful in practice for large
matrixes. Our implementation is recursive. The size of the matrixes was 8192
by 8192, as it consumes more memory than Cholesky. Recursion was controlled
through the final clause as well. The maximum depth of recursion was when
the block size reached 256 by 256 elements, thus creating a large number of
tasks, approximately as many as in NQueens. The small granularities in this
benchmark created a lot of available parallelism.

• Multisaxpy: Multisaxpy is an iterative mini-app that combines scalar multipli-
cation and vector addition. SAXPY stands for ”Single-Precision A*X Plus Y”. It
is a function in the standard Basic Linear Algebra Subroutines (BLAS) library.
To get representative executions, we had to execute this application with arrays
of 100 million elements in size. The chunk size we chose was 1 million elements,
similarly to Mergesort. However, we had to execute a thousand iterations per
execution to get meaningful executions. This application also created a lot of
parallelism through tasks ranging from low to medium granularities.

• Heat: Our last application in the set was the Heat simulation, which uses an
iterative Gauss-Seidel method to solve the Heat equation. The Heat equation is
a parabolic partial differential equation that describes the distribution of heat
(or variation in temperature) in a given region over time. We executed this
application with a size of 32768 by 32768 and a block size of 1024 by 1024.
Even though this application creates much parallelism as it creates around half
a million tasks, these range from low to coarse granularities. In order to get
long executions, each of them executed 500 timesteps of the simulation. The
simulation had 2 heat sources.

As shown above, with our set we can test applications that range from low parallelism
to high parallelism. The full spectrum of granularities is also widely tested, as these
vary between applications. When it comes to execution time, as shown in table 10.1,
the average elapsed execution time ranges from as little as 12 seconds to as much as
500 seconds for some applications. We believe that getting high accuracies in short-
lasting applications proves the correctness of our approach, as these executions are
the hardest to make predictions for. However, we complement our evaluations with
long-lasting executions as well.
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Application # of Tasks Average Elapsed
(SSF)

Average Elapsed
(CTE-Power)

Average Elapsed
(CTE-KNL)

Average Elapsed
(Marenostrum4)

Cholesky ∼500 22 seconds 497 seconds 29 seconds 10 seconds
Mergesort ∼15k 13 seconds 12 seconds 27 seconds 14 seconds
NQueens ∼30k 55 seconds 214 seconds 123 seconds 101 seconds
Strassen ∼40k 20 seconds 16 seconds 26 seconds 18 seconds

Multisaxpy ∼100k 22 seconds 12 seconds 29 seconds 13 seconds
Heat ∼500k 129 seconds 71 seconds 163 seconds 103 seconds

Table 10.1: Features of the application set used to evaluate our proposals

In the mentioned table, we see the average elapsed execution times for each application
and architecture tested. These, as well as every result in this thesis, were obtained out
of averages of 5 executions per data point. When it comes to the accuracy shown in
plots, each data point shows the accuracy at a specific timestep. Accuracy is reported
at a frequency of 100 microseconds. Thus, every 100 microseconds, the accuracy for
the previous period is saved in a buffer so it can be displayed later on.

10.2 Architectures

We claim that our proposals are independent of applications, input parameters for
these and architectures or number of CPUs. Due to this, we tested our contributions
in several architectures. We believe that the MxN mesh resulting from testing the
aforementioned M applications in these N architectures gives our contributions a fair
and complete evaluation. The most remarkable and basic features of each architecture
are listed next.

• SSF: The SSF cluster contains 8 x Intel® Xeon® Phi E5-2690v4 nodes. Each
of these is equipped with 16 GB of memory, 56 cores divided into 2 sockets, and
240 GB of Intel® SSD DC S3520 Series. The cores in this machine are equipped
with Intel® RDT technologies, allowing us to use PQoS monitoring. For the
evaluation of this thesis, a node from this cluster was exclusively dedicated to
all our purposes, so we had access to install any tool or kernel we needed. The
operating system is SUSE Linux Enterprise Server.

• CTE-Power9: CTE-POWER is a cluster based on IBM Power9 processors. Its
operating system is Red Hat Enterprise Linux Server 7.4, with an Infiniband
interconnection network. Its compute nodes are composed by 52 nodes each of
them with 2 x IBM Power9 8335-GTG @ 3.00GHz, with 20 cores per socket and 4
threads per core, totaling 160 threads per node. For this thesis, we used a whole
node with exclusive access through sending jobs to the job queue system. Each
of the nodes has 512GB of main memory distributed in 16 dimms of 32GB each
@ 2666MHz. The storage was composed by 2 x SSDs of 1.9TB as local storage
and 2 x 3.2 TB of NVME. Using this machine allowed us to test a different
architecture with far more cores than any other machine in this list.
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• CTE-KNL: CTE-KNL is a cluster based on Intel® Xeon® Phi Knights Landing
(KNL) processors, a SUSE Linux Enterprise Server 12 SP2 Operating System and
an Intel® OPA interconnection. It has 16 compute nodes, each with 1 x Intel®

Xeon® Phi CPU 7230 @ 1.30GHz 64-core processor. Even though hyperthread-
ing exists in these processors, it was disabled and thus unusable, so 64 cores were
used. Each node contains 96GB of memory distributed in 8 x 2GB MCDRAM
@ 7200 MHz dimms. The storage was composed by 120GB of SSD. A node with
exclusive access was used in this cluster, also through the internal job queue sys-
tem. Several optimized compilation options were enabled for every application
compiled, including AVX–512 instructions and other memory-alignment flags.

• Marenostrum4: MareNostrum4 is a supercomputer based on Intel® Xeon®

Platinum processors from the Skylake generation. It is a Lenovo system com-
posed of SD530 Compute Racks, an Intel® Omni-Path high performance network
interconnect and running SuSE Linux Enterprise Server as operating system. It
consists of 48 racks which house 3456 nodes, totaling 165888 processor cores and
390TB of memory. Each compute node contains 2 x sockets of Intel® Xeon®

Platinum 8160 CPU with 24 cores @ 2.10GHz each, totaling 48 cores per node.
Each node also contains 200GB of local SSD and 96 GB of main memory.

10.3 Overhead

A previous evaluation of the overhead of each module was conducted. Shown below in
figure 10.1 we can see four series for four applications. Above each of these four series
is the slowdown introduced by activating the monitoring modules. We decided to do
an extensive evaluation using these four applications as it completed the spectrum of
features. Each of the series is computed out of an average of five executions in each of
the four machines. We averaged different architectures since the difference in overhead
between these was hardly noticeable.

As shown, measuring PQoS events seems to be the lightest between the PQoS module
and the monitoring one. In some scenarios, both modules present a slowdown of 5%.
However, when combining the usage of both, since the atomic structures are combined
as well, the slowdown is not doubled (10%) but rather slightly worse, hardly ever
reaching more than 5% of slowdown.
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Fig. 10.1: Different series show the overhead introduced by monitoring, PQoS, and
both modules

One scenario that stands out is the usage of both modules for Strassen, which presents
a slowdown of 8.5%. We believe this is due to the fine granularity of tasks. We
also believe, however, that the slowdown shown in these series is worsened by having
to track down the overhead itself – that is, having to print out these statistics. If
we take all of this into account, and we consider all the information gathered and
the potential provided to the runtime, the usage of both these modules presents a
negligible overhead.

10.4 CPU Usage – Prediction Accuracy

In this section we present different figures each with the accuracy of predictions for
CPU utilization. These are important since we base the dynamic CPU activation
mechanism on the accuracy of them. We present six figures, each with one of the
benchmarks listed above. In these six figures are four series in each, each representing
the execution of the application with the parameters mentioned above in a certain
architecture. With these plots, we test the whole spectrum of applications and archi-
tectures. To better comprehend these figures, we specify in tables the average accuracy
of CPU utilization predictions for all applications and benchmarks.
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Fig. 10.2: Accuracy of CPU usage predictions for Multisaxpy

SSF Marenostrum4 CTE-Power CTE-KNL
Average Accuracy 99.52% 99.18% 97.73% 99.08%

Table 10.2: Average accuracy of CPU usage predictions for figure 10.2

Figure 10.2 shows the accuracy of CPU predictions for the Multisaxpy application
over time. Each series plots the accuracy of each prediction made for every period. As
shown, there is a drop of accuracy right before the end of the application in each of the
series. This will be a recurrent scenario in most experiments, since, even though our
predictions are immediate, the runtime might take some time to accommodate to the
current workload. In other words, once no more tasks are available, the mechanism
forecasts that the utilization will instantly drop. However, what will happen is that,
over a certain period, CPUs will become idle. This will happen when threads running
on active CPUs try to poll tasks and no more are available. The average accuracy for
predictions for this application can be seen in table 10.2.

A similar thing happens at the start of the application. Even though tasks might be
ready to be executed, CPUs will not become active until threads are woken up on them
and poll tasks. Both these scenarios can also be seen in the Heat application, shown in
figure 10.3. However, the accuracy this time is higher as the runtime is quicker to react
to changes in the available workload. The average accuracy is shown in table 10.3,
below the mentioned figure.
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Fig. 10.3: Accuracy of CPU usage predictions for Heat

SSF Marenostrum4 CTE-Power CTE-KNL
Average Accuracy 99.39% 99.60% 99.15% 99.65%

Table 10.3: Average accuracy of CPU usage predictions for figure 10.3

The results of our next application, Cholesky, are shown in figure 10.4. For this ap-
plication, as mentioned in previous sections, we had to use the wisdom mechanism to
ensure that predictions are made. This is because the input we chose for this applica-
tion creates a small number of tasks. These tasks, due to the application’s behavior,
do not complete until deep into the execution. These issues cause for monitoring not
to normalize costs, which means predictions cannot be done for task timing. This,
at the same time, translates into being unable to make runtime workload predictions.
Finally, this means that CPU utilization predictions cannot be done.
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Fig. 10.4: Accuracy of CPU usage predictions for Cholesky

SSF Marenostrum4 CTE-Power CTE-KNL
Average Accuracy 97.38% 94.24% 90.89% 94.74%

Table 10.4: Average accuracy of CPU usage predictions for figure 10.4

This application shows a relatively good average prediction. However, the scenario
previously commented is worsened at the end of the application. Since there are almost
no tasks and the ones left executing are huge, CPUs take a while to become idle. Due
to this, even though the utilization should be lower, the runtime reports active CPUs
when they should be in idle mode. This causes the error to be significant at the end.
Nonetheless, the average accuracy of predictions shown in table 10.4 demonstrates
that the accuracy, although lower than in other application, is still high. One of the
series that stands out the most is CTE-Power. The accuracy is around 91%, which
is worsened by the error being moderately bigger due to the amount of CPUs in that
machine (160).

Figure 10.5 shows the evaluation for the Mergesort application. At first glance we see
different behaviour than in other figures, however, this is due to having five iterations
of Mergesort instead of one. This can be seen more clearly in figure 10.6, where we
show the same plot with only the SSF series. Taking this into account, the series look
much more similar to the ones displayed in other plots. As shown, at the end of each
iteration in every series, there is a sudden drop in accuracy. This is caused, yet again,
by runtime CPUs and threads not responding quick enough to the lack (or existence,
at the beginning) of tasks. With all this, the plot is similar to the three previously
discussed.

Table 10.5 shows that the accuracy is quite impressive for this application as well.
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Fig. 10.5: Accuracy of CPU usage predictions for Mergesort
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Fig. 10.6: Accuracy of CPU usage predictions for Mergesort for the SSF machine

SSF Marenostrum4 CTE-Power CTE-KNL
Average Accuracy 96.77% 88.86% 97.16% 96.95%

Table 10.5: Average accuracy of CPU usage predictions for figure 10.5

After Mergesort, we tested the accuracy of our predictions with the NQueens applica-
tion. Upon inspecting the results, we saw clear differences compared to the previous
four applications. A similar plot would have resulted messy to inspect. To easily
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visualize the accuracy, we decided to split the plot into four subfigures, separating
each architecture into one. These are shown in figure 10.7. As shown, the two upper
architectures, SSF and CTE-Power9, present results similar to previous applications.
This includes the characteristic downwards spike of accuracy right at the end of exe-
cutions. However, in the run performed in Marenostrum4, we can grasp a few spikes
of mispredictions during the execution. In CTE-KNL, these are present more often.
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Fig. 10.7: Accuracy of CPU usage predictions for NQueens

Upon inspecting the collected data, we saw two interesting features. First, the overall
average accuracy seemed to be reasonably similar to executions that did not present
spikes. Second, even though tasks were being executed at various points throughout
the execution, these had no predictions. Because of this, the predicted CPU utilization
for subsequent periods was very low, however since tasks were being executed, the real
CPU utilization was high. We concluded that this was due to NQueens being a recur-
sive application. Initial tasks have no predictions, however these are not completed
until well into the execution.

In other words, these spikes correspond to runtime workload metrics where the infor-
mation is composed only by tasks with no predictions. Upon running these executions
more times in all architectures, we saw this was a recurrent scenario for all architec-
tures. However, some machines were more prone to present these spikes than others.

Figure 10.8 shows similar subfigures. These, however, represent the average accuracy
over time instead of the current accuracy. To put it differently, figure 10.7 shows
the immediate accuracy of every timestep in which CPU utilization predictions are
computed. Figure 10.8 on the other hand shows the accumulated average accuracy
over the whole execution. Thus, in this last figure, the accuracy presented at timestep
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i is the averaged accuracy using the immediate accuracies from timestep 0 to timestep
i. These still let us know where spikes are present, but showcase that the average
accuracy does not variate much as they represent a small portion of all the timesteps.
The average accuracies for all architectures are shown in table 10.6.
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Fig. 10.8: Accumulated average accuracy of CPU usage predictions for NQueens

SSF Marenostrum4 CTE-Power CTE-KNL
Average Accuracy 99.72% 93.46% 95.50% 89.41%

Table 10.6: Average accuracy of CPU usage predictions for figure 10.7

Our last experiment was conducted with the Strassen algorithm for matrix multipli-
cation. The accuracy results are shown in figure 10.9. The initialization of matrixes is
a large portion of the execution of this benchmark. During that phase, the accuracy
was constantly at 100% for all machines, since only one CPU was used and predicted.
Due to this, and to not undermine the error in the computation phase, we filtered
the initialization from our data, as it does not provide a fair comparison with other
applications.
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Fig. 10.9: Accuracy of CPU usage predictions for Strassen
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Fig. 10.10: Accumulated average accuracy of CPU usage predictions for Strassen

To better comprehend the results of Strassen, we also divided the series between four
different plots. Filtering the initialization phase causes great differences in time-range
across different architectures. As we can observe, these figures do not show signifi-
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cant similarities compared to other applications. The prediction accuracy seems to
fluctuate between 80% to 100% for the entire duration. We believe this is due to the
excessively fine granularity of tasks and the low execution time of this application.
The smaller tasks are, the harder it is to predict their behavior through normalization.
This application presents granularities as small as processing blocks of 256 elements.

The four series present similarities between themselves, however. Just like in previous
executions, the starting and ending spikes are present. Similarly to the NQueens exe-
cutions, a small number of spikes are found spread between the executions in Marenos-
trum4 and CTE-Power9. Even though the accuracy of predictions seems to fluctuate,
the average seems to be around 90%, which is similar to the average accuracy for other
applications. This is shown in table 10.7. To visualize the average accuracy over time,
we also include figure 10.10, which, like for NQueens, shows the accumulated average
accuracy of predictions at every timestep.

We show table 10.7 for completeness. In this table we combine all the average accu-
racies shown above, for a faster inspection. At the end of the table we compute the
average of all predictions, using all the results gathered in this section.

Average Accuracies SSF Marenostrum4 CTE-Power CTE-KNL
Multisaxpy 99.52% 99.18% 97.73% 99.08%

Heat 99.39% 99.60% 99.15% 99.65%
Cholesky 97.38% 94.24% 90.89% 94.74%
Mergesort 96.77% 88.86% 97.16% 96.95%
NQueens 99.72% 93.46% 95.50% 89.41%
Strassen 85.14% 84.52% 88.40% 85.81%

Total Average 96.32% 93.31% 94.81% 94.27%

Table 10.7: Average accuracies of CPU usage predictions for all machines &
applications

One of the recurrent scenarios in all previous figures is the spikes that signal accuracy
drops. These, as shown through the average accuracy, are a minor part of the overall
execution. Oftenly, they show up either at the beginning or the end of executions.
If needed, these can be solved like they were for Cholesky: by activating the wisdom
mechanism. The potential of this mechanism is further discussed in section 10.6 of
this chapter.

Finding these spikes spread throughout executions is another scenario we found par-
ticularly interesting. However, it does not present a big risk. To solve these temporary
spikes, instead of taking actions at every timestep, scheduling policies could be built.
These would gather information about the N latest timesteps, combine these predic-
tions and then decide the overall utilization of CPU for the next N timesteps through
heuristics. This can be further optimized by playing around with the frequency of
predictions. For the shown results, we used a frequency of 100 microseconds, as re-
ported above. Next we show our CPU utilization predictions in action, comparing
them against the already existing default scheduler.
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10.5 Dynamic CPU Activation

To test our predictions, we created the Dynamic CPU Activation mechanism, intro-
duced in section 9.3. Then, we compared two schedulers. The first is the current
default scheduler in Nanos6, the PriorityScheduler, which wakes up CPUs and they
remain woken up until the end of the execution. This is a no-idle policy. The scheduler
uses producer-consumer-based spinlocks that minimize thread contention, hence why
CPUs can remain non-idle and constantly poll for tasks. Although very efficient while
executing, this policy could utilize resources in a better way with our mechanism.

The second scheduler we tested is an extension of the PriorityScheduler with the Dy-
namic CPU Activation mechanism. When CPU usage is predicted to drop for future
timesteps, CPUs are disabled instead of stuck in an endless polling loop. This is so
that these resources can be better utilized for other purposes or by other libraries.
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Fig. 10.11: Comparison of different scheduling techniques through resource usage

Figure 10.11 shows two executions of Cholesky in the SSF architecture, with the ini-
tialization of matrixes being filtered. Both had the same parameters and lasted similar
execution times. We attribute this similarity to both the high accuracy of our predic-
tions and also not underestimating workloads, since our approach predicts a similar
higher utilization than the real one almost always. As we can observe, once the fac-
torization starts in Cholesky, all the CPUs are working in the default scheduler. After
a few moments, the utilization starts to drop and there are peaks of utilization.

As we are in a discrete domain – every prediction is made at a specific timestep – we
can compute the whole area of the plot between the first and last timestep, and the
total area between the two series. This gives us a number which, once converted to
a percentage, allows us to visualize the amount of resources that could be reutilized
by other libraries. Thus, computing the area between the blue and orange series, we
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obtain an area of about 14.12% of the total area, which tells us that our approach
utilizes resources 14% better than default policies for our experiment.

10.6 Normalized Costs

This section aims to demonstrate the effectiveness of normalized costs fully. To do
this, we exemplify our approach using the wisdom mechanism. The best case scenario
to test this is the Cholesky application. This is because, as shown before, with the
parameters chosen, it needs the wisdom mechanism to have predictions.

To test this, we used the Cholesky application in the SSF machine. We first executed
Cholesky with the size of the matrixes being 32768 by 32768 elements as usual, and
the block size 1024 by 1024. We used this block size instead of the usual one to be
able to have some predictions.

Once the first execution is completed, a file is created with the normalized costs of
every type of task. With this file, our second test is able to provide predictions since
the beginning of the execution. This second execution had the same parameters as the
first one, just for completeness.
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Fig. 10.12: Testing different inputs with the same wisdom information for
Cholesky in SSF

Our third execution downgraded the block size from 1024 to 512 by 512 elements. To
fully test normalized costs, we also added a fourth execution with a larger block size
than the default. The fourth execution had a block size of 2048 by 2048.
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No Wisdom +
BS 1024

Wisdom +
BS 1024

Wisdom +
BS 512

Wisdom +
BS 2048

Average Accuracy 62.11% 99.60% 99.75% 97.08%

Table 10.8: Average accuracy of CPU usage predictions for figure 10.12

The accuracy at each timestep for all these executions is shown in figure 10.12. As
shown, normalized costs are effective for all the tested parameters. In the first series we
see that after the initialization and matrix transformation operations, there is a drastic
change in the accuracy of performance, due to not having predictions for those tasks.
However, when using the wisdom file created by the first execution, different block
sizes seem to yield almost identical accuracy. We tested both a bigger and smaller
block size to make sure it was independent of the growth or decrease in the number
of tasks and the granularity of these. Table 10.8 shows the average accuracy of the
previous four executions.

10.7 Displaying PQoS Events through Extrae

Since we could access any metric in real-time, we decided to test a proof-of-concept by
inserting Extrae custom event calls in the runtime. This is to be able to externalize
PQoS events to traces. To do this, we executed Cholesky in SSF using only 8 of the
56 available cores. We decided to limit the number of cores for visualization purposes.

Fig. 10.13: LLC Misses as reported by PQoS through Extrae
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Fig. 10.14: LLC Misses as reported by PQoS through Extrae – Zoomed-in view

Figure 10.13 shows a trace of the execution in a view that displays the number of
LLC misses during the whole execution. To visualize how these are output from the
runtime, we include figure 10.14, which is a zoomed-in fragment of the first figure (see
time scale). As shown, every time a task is created, paused, resumed, or completed,
LLC misses (and other events) are polled from the thread and output into the trace.
This creates different intervals with different values for the same event.

Fig. 10.15: LLC usage as reported by PQoS through Extrae

In figure 10.15 we display the LLC utilization. As shown, threads are prone to allocate
a bigger amount of LLC the first time they have to. Memory bandwidth, shown in
figure 10.16, is displayed differently. Since it is anothter type of event, only when
threads are using memory bandwidth it shows up in traces. When they are not,
nothing shows up (dark part).

86



Fig. 10.16: Memory Bandwidth used by threads as reported by PQoS through
Extrae

Finally, in figure 10.17 and 10.18 we show the retired instructions and the unhalted
cycles, respectively. Not much can be seen in these. However, Extrae allows for views
to be combined. By combining these two previous views, we obtain the instructions-
per-cycle view, shown below in figure 10.19.

Fig. 10.17: Number of retired instructions over time as reported by PQoS through
Extrae
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Fig. 10.18: Number of unhalted clock cycles over time as reported by PQoS
through Extrae

Fig. 10.19: Combination of the views shown in figures 10.18 and 10.17 in order to
create the IPC view

As shown, by simply double-clicking at any location in the view, we can obtain the
IPC at that exact moment (below the figure). This works seamlessly for all of the
events shown previously.
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11 | Conclusions

In this thesis, we have studied different techniques through which we can obtain the
metrics of a runtime library in a lightweight manner. Using the information gathered
from these metrics, we have created tools to monitor all the different elements that
form a task-based programming model. Our study can be replicated to any, but we
have exemplified our contributions using the OmpSs-2 programming model and the
Nanos6 runtime library.

To integrate these tools in the Nanos6 runtime, we created a monitoring infrastructure
that controls all the aforementioned tools as separate submodules. For completeness,
and to explore other techniques, we integrated another module with the monitoring
module. This module measures different hardware events for elements such as cores,
threads, or tasks.

With all these metrics, events, and the information gathered through them, we created
an infrastructure of predictions. Through hints provided by users to the runtime, all
these aforementioned metrics can be normalized to predict future values for tasks,
threads, CPUs, and runtime-wise metrics.

We have also demonstrated how both runtimes and underlying systems can benefit
from these metrics and predictions. This is through the creation of enhanced scheduling
techniques that poll precise predictions to better schedule tasks or to better utilize
resources.

To fully understand its potential and accuracy, we have first evaluated timing predic-
tions on tasks. Upon examining preliminary results, we opted to further optimize our
approach by introducing a ’wisdom’ mechanism that takes advantage of normalized
metrics by saving these for future executions. To assess the usability of the predictions,
we also put to the test the accuracy of CPU usage predictions with different architec-
tures and various applications. Last, we demonstrated the effectiveness of normalizing
metrics through the cost clause and the better utilization of resources through new
scheduling techniques.
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12 | Future Work

As shown in previous sections, our monitoring infrastructure provides runtimes with
much information. We have utilized all of them to produce predictions, however
hardware-based events can be very useful for other studies.

We plan to categorize tasks by their hardware events using the PQoS module. Also,
Intel’s® CMT-CAT library brings many possibilities to the table. Two clear examples
would be the limited allocation of last level cache occupation and memory bandwidth
usage.

Apart from this, as mentioned before, the expression to compute the error of predic-
tions does not take into account things such as the runtime not responding instantly
to predictions. Even though there might be a lack of workload in the runtime, CPU
utilization does not instantly drop. This causes part of the error in accuracy not to be
real.

Finally, through the usage of predictions and normalized cost, we plan to create a
scheduler that takes into account the relative computational weight of tasks when
scheduling them.
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[46] Leo Törnqvist, Pentti Vartia, and Yrjö O. Vartia. How should relative changes be
measured? The American Statistician, 39(1):43–46, 1985. doi: 10.1080/00031305.
1985.10479385. URL https://doi.org/10.1080/00031305.1985.10479385. 64

[47] Slurm. Online documentation of slurm, v. 18.08. 2018. URL https://slurm.

schedmd.com/. Accessed: 29-12-2018. 67

95

http://www.perfdynamics.com/Papers/la1.pdf
http://www.perfdynamics.com/Papers/la1.pdf
https://www.boost.org/doc/libs/1_65_0/doc/html/accumulators.html
https://www.boost.org/doc/libs/1_65_0/doc/html/accumulators.html
https://en.wikipedia.org/wiki/Mean_percentage_error
https://en.wikipedia.org/wiki/Mean_percentage_error
https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
https://en.wikipedia.org/wiki/Relative_change_and_difference
https://en.wikipedia.org/wiki/Relative_change_and_difference
https://doi.org/10.1080/00031305.1985.10479385
https://slurm.schedmd.com/
https://slurm.schedmd.com/


A | The Cholesky Factorization

In this chapter we display the complete code of the blocked Cholesky factorization we
used for our evaluations. We believe this is one of the most important benchmarks we
used. Users have control over decisions such as:

• Whether the matrix is created from scratch or loaded from a file.

• Whether the matrix initialized is saved into a file.

• Whether there is a check of the factorization at the end of the execution.

The only current constraint is that the input size (matrix leading dimension) must be
correctly divided by the block size specified (input_size % block_size == 0).

1 // "util.h" defines other less important functions such as

2 // initialization tasks and layout-transforming tasks

3 #include "util.h"

4

5 void oss_potrf(int nblocks, size_t bsize,

6 int i, int j, double A[nblocks][nblocks][bsize][bsize])

7 {

8 #pragma oss task label(potrf) cost((1.0/3.0) * bsize*bsize*bsize)

9 inout(A[i][j])

10 {

11 lapack_int error = LAPACKE_dpotrf(

12 LAPACK_COL_MAJOR,

13 ’L’, bsize,

14 &A[i][j][0][0], bsize

15 );

16 assert(error == 0);

17 }

18 }

19

20 void oss_trsm(int nblocks, size_t bsize,

21 int ai, int aj, double A[nblocks][nblocks][bsize][bsize],

22 int bi, int bj, double B[nblocks][nblocks][bsize][bsize])

23 {
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24 #pragma oss task label(trsm) cost(bsize*bsize)

25 in(A[ai][aj])

26 inout(B[bi][bj])

27 cblas_dtrsm(

28 CblasColMajor,

29 CblasRight,

30 CblasLower,

31 CblasTrans,

32 CblasNonUnit,

33 bsize, bsize, 1.0,

34 &A[ai][aj][0][0], bsize,

35 &B[bi][bj][0][0], bsize

36 );

37 }

38

39 void oss_syrk(int nblocks, size_t bsize,

40 int ai, int aj, double A[nblocks][nblocks][bsize][bsize],

41 int bi, int bj, double B[nblocks][nblocks][bsize][bsize])

42 {

43 #pragma oss task label(syrk) cost(bsize*bsize*bsize)

44 in(A[ai][aj])

45 inout(B[bi][bj])

46 cblas_dsyrk(

47 CblasColMajor,

48 CblasLower,

49 CblasNoTrans,

50 bsize, bsize, -1.0,

51 &A[ai][aj][0][0], bsize,

52 1.0,

53 &B[bi][bj][0][0], bsize

54 );

55 }

56

57 void oss_gemm(int nblocks, size_t bsize,

58 int ai, int aj, double A[nblocks][nblocks][bsize][bsize],

59 int bi, int bj, double B[nblocks][nblocks][bsize][bsize],

60 int ci, int cj, double C[nblocks][nblocks][bsize][bsize])

61 {

62 #pragma oss task label(gemm) cost(bsize*bsize*bsize)

63 in(A[ai][aj])

64 in(B[bi][bj])

65 inout(C[ci][cj])

66 cblas_dgemm(

67 CblasColMajor,

68 CblasNoTrans,

69 CblasTrans,

70 bsize, bsize, bsize, -1.0,

71 &A[ai][aj][0][0], bsize,
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72 &B[bi][bj][0][0], bsize,

73 1.0,

74 &C[ci][cj][0][0], bsize

75 );

76 }

77

78

79 void cholesky(int nblocks, size_t bsize, double A[nblocks][nblocks][bsize][

bsize])

80 {

81 int i, j, k;

82 for (i = 0; i < nblocks; ++i) {

83 // Diagonal Block Factorization

84 oss_potrf(nblocks, bsize, i, i, A);

85

86 // Triangular Systems

87 for (j = i + 1; j < nblocks; ++j) {

88 oss_trsm(nblocks, bsize, i, i, A, i, j, A);

89 }

90

91 // Update Trailing Matrix

92 for (j = i + 1; j < nblocks; ++j) {

93 for (k = i + 1; k < j; ++k) {

94 oss_gemm(nblocks, bsize, i, j, A, i, k, A, k, j, A);

95 }

96 oss_syrk(nblocks, bsize, i, j, A, j, j, A);

97 }

98 }

99 }

100

101

102 int main(int argc, char* argv[])

103 {

104 setbuf(stdout, NULL); // Do not buffer prints

105 if (argc < 4 || argc > 5) {

106 printf("\nUsage: ./cholesky <size> <block_size> <check> [out]\n");

107 printf(" size : Matrix’ order (size x size)\n");

108 printf(" block_size : Blocking factor for the matrix.\n");

109 printf(" check : Whether to check the factorization’s result (1/0).\n");

110 printf(" out : [optional] The file name where the matrix used will be

written for future usage.\n");

111 printf("size % block_size = 0\n");

112 printf("Different block sizes may generate different matrixes depending

on the test, use the ’out’ option with caution.\n\n");

113 exit(1);

114 }

115

116 const size_t ld = atoi(argv[1]); // Matrix size
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117 const size_t bsize = atoi(argv[2]); // Block size

118 const int nblocks = ld / bsize; // Number of blocks

119 const size_t len = ld*ld*sizeof(double);

120 const int check = atoi(argv[3]); // Factorization check

121

122 int out = 0;

123 char * filename;

124 if (argc == 5) {

125 out = 1;

126 filename = argv[4];

127 }

128

129 assert(ld % bsize == 0);

130 assert(check == 1 || check == 0);

131

132 // Allocate matrixes

133 double (*matrix)[nblocks][bsize][bsize] = malloc(len);

134 assert(matrix != NULL);

135 double (*original_matrix)[nblocks][bsize][bsize] = malloc(len);

136 assert(original_matrix != NULL);

137

138 // Init matrix

139 initialize_matrix(nblocks, bsize, (double *) original_matrix, out,

filename);

140

141 // Transform from flat (original_matrix) to tile (matrix)

142 flat2tile(nblocks, bsize, (double *) original_matrix, matrix);

143

144 #pragma oss taskwait

145

146 struct timeval start, stop;

147 gettimeofday(&start, NULL);

148

149 // Compute cholesky factorization

150 printf("Executing the factorization...\n");

151 #pragma oss task label(cholesky) cost((1.0/3.0)*ld*ld*ld)

152 inout(matrix[0;nblocks][0;nblocks][0;bsize][0;bsize])

153 cholesky(nblocks, bsize, matrix);

154

155 #pragma oss taskwait

156

157 gettimeofday(&stop, NULL);

158 float elapsed = 1000000.0 * (stop.tv_sec - start.tv_sec);

159 elapsed += stop.tv_usec - start.tv_usec;

160 elapsed /= 1000000.0;

161

162 float gflops = ((1.0/3.0) * ld*ld*ld) / (elapsed * 1.0e+9);

163
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164 if (check) {

165 // Allocate new matrix to transform it from tiled to flat

166 double (*factorized_matrix)[nblocks][bsize][bsize] = malloc(len);

167 assert(factorized_matrix != NULL);

168

169 // Transform from tile (matrix) to flat (factorized_matrix)

170 tile2flat(nblocks, bsize, matrix, (double *) factorized_matrix);

171

172 #pragma oss taskwait

173

174 // Check factorization

175 const double EPS = BLAS_dfpinfo( blas_eps );

176 check_factorization(ld, (double *) original_matrix, (double *)

factorized_matrix, ld, EPS);

177 free(factorized_matrix);

178 }

179

180 // Print results

181 printf("\n");

182 printf("%s: %s\n" , "BENCHMARK" , "cholesky");

183 printf("%s: %llu\n", "SIZE" , ld);

184 printf("%s: %f\n" , "PERFORMANCE(GFlops)", gflops);

185 printf("%s: %d\n" , "BLOCK_SIZE" , bsize);

186 printf("%s: %f\n" , "TIME(s)" , elapsed);

187 if (out) {

188 printf("%s: %s\n", "MATRIX_FILE_NAME" , filename);

189 }

190

191 free(matrix);

192 free(original_matrix);

193 }

Code A.1: Blocked Cholesky Factorization code using OmpSs-2 directives.
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