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A model to predict crater dimensions given a LOC in underground pipelines is proposed
The model implements 57 real accidents of natural gas underground pipelines

The approach proposes worst, mean and less severe scenarios to support decision-making
Some applications in Domino effect scenarios and Right-of-Way distances were discussed
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Abstract

Parallel and crossing pipelines are frequently implemented due to land-use restrictions and their
ease of operation and maintenance. Given the proximity of these pipelines and the hazardousness
of the substances they transport, an eventual Loss of Containment (LOC) in a fracashg

corridor can lead to a domindfect that should be considered in Quantitative Risk Analysis
(QRA). For underground pipelines, this LOC is accompanied by a formation of a crater, which
can uncover adjacent pipelines triggering a domiffea scenario to take place. This paper

aims to develop a model to predict feasible crater dimensions (i.e., width and depth) from a
LOC in underground natural gas pipelines using operational and structural parameters. For this
purpose, a recent review of 57 underground natural gas pipeline accidents were considered in a
probability-based approach once data was processed. This approach initially predicts the Width-
to-Depth crater ratio (WD) using a multivariate regression. Then feasible crater dimensions were
determined using the regression prediction interval and the width-depth joint probability func-
tion, which is approximated with a Gaussian copula. This approach proposes a worst, mean and
less severe scenarios to support decision-making processes regarding parallel or crossing under-
ground natural gas pipelines with a LOC. Besides the identification of donfiect &scenarios,

this information can be used to support pipeline segmentation for risk analysis or even to support
Right-of-Way (ROW) definition during pipeline installation.

Keywords: Crater formation, Crater model, Underground pipeline, Domifiecg Natural gas.

1. Introduction

Pipelines are the safest and most ca$eeive means of transporting hydrocarbons such as
natural gas over long distances. These pipelines are frequently installed in a parallel or crossing
distribution, and they include other services such as water distribution or electric wiring (Casal
etal., 1995; Majid & Mohsin, 2013). This is due to land-use restrictions and the fact that pipelines
distributed this way make operation and maintenance easier (Shi et al., 2012). However, these
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systems undergo flierent degradation processes related to their operation and surrounding con-
ditions that can lead to a possible Loss of Containment (LOC), which in turn, can sevéeely a

the population or environment around the pipelines. Because of the proximity of the parallel
and crossing pipelines, a LOC can trigger a domifieat of accidents in the adjacent pipelines,
thus aggravating theffiects of the initial event (Ramirez-Camacho et al., 2015). Therefore, the
domino dfect should be included in the Quantitative Risk Analysis (QRA) of pipelines to reduce
uncertainty in the risk calculation.

For underground pipelines, a crater is formed because of LOC, which can expose adjacent
pipelines to a possible domindfect event. In the case of natural gas pipelines, this crater
can be caused by the sudden and catastrophic rupture of a high-pressure pipeline (e.g., due to
a mechanical failure), or by the explosive ignition of the gas accumulated from a leak in the
pipeline; for instance, due to weld cracks, corrosion defect or an accidental perforation. Once
the crater is formed by the rupture of the initial pipe, or source pipe (SP), the likelihood of a
domino dfect event depends on whether or not a second pipe, or -target pipe (TP), is within
the crater’s boundaries. If the TP was not exposed in the initial rupture, then the TP would not
suffer any damages because of the protecting soil that surroundsiit. If the TP lies within the crater
dimensions (totally or partially), it can fail because of two main scenarios. The first one is related
to the overpressure from the SP explosion; this cotilecathe TP totally or partially, leading
to its failure. The other scenario is associated with a thermal failure when the initial rupture
did not dfect the TP. This thermal failure occurs due to the impingement of a fire that would
spring from the gas leaking from the SP. Based on the aforementioned scenarios, given a LOC,
the probability of a pipeline being exposed should be associated with the crater dimensions and
the spatial distribution of the paralletossing pipeline corridor.

To prevent such dominoffect scenarios, safety distances between parallel and crossing
pipelines and their surroundings have been proposed in standard or code practices such as that
reported for natural gas and water parallel pipelines by the Energy Commission of Malaysia
(clearance of 300 mm) or the ASMEB31.8 (clearance>»f in for an underground structure)
(Mohsin et al., 2014; Shi et al., 2012). Other approaches like Silva et al. (2016) suggest al0
m separation for underground pipelines based on an analysis of historical accidents, and PE-
MEX (2009) recommend a minimum separation of 1 m in the same ditch. Nevertheless, as was
pointed out in Alileche et al. (2015), safety distances in domtifiece scenarios depend on the
escalating ffects from the primary system, so these safety distances should actually consider the
minimum separation at which escalating events are avoided. In the case of natural gas, the possi-
ble final events are Vapour Cloud Explosion (VCE), Flash Fire, and Jet Fire (Ramirez-Camacho
et al., 2017), so the safety distance would be delimited by: the extension of the flame envelope
(Flash Fire); the flame length and its direction (Jet Fire); or the overpressure associated with the
explosion energy (VCE) (Alileche et al., 2015). Consequently, further analysis is required to es-
timate a safety distance as the approaches reported in Haklar (1997), Haklar & Dresnack (1999),
Sklavounos & Rigas (2006), Mohsin et al. (2014) show for Jet Fire scenarios, which are the most
probable events (Bubbico et al., 2016).

Based on the aforementioned, to estimate safety distances in parallel or crossing underground
pipelines, whether or not the crater formed by a LOC can expose the other pipe should be de-
termined. Once this information is known, approaches like Haklar (1997); Haklar & Dresnack
(1999) can be implemented to support decision-making in donfileetescenarios. Currently,
the work aiming to predict the crater dimensions from a pipeline LOC is limited. Therefore, the
central problem here is to create a model that adequately predicts the crater dimensions. There
are some approaches such as the Gasunie, Battelle, Advantica or the NEN 3651 models (Leis
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et al., 2002; Acton et al., 2010; NSI, 2012) that were develdpesed on experimental results
which depend on soil properties from the pipeline location. There are other approaches that
use TNT explosion models based on a set of experiments or FEM (Finite Elements Modeling)
(Ambrosini et al., 2002; Ambrosini & Luccioni, 2006; Krishna et al., 2016). Finally, there is
an approach called the Accident-based model recently proposed by Silva et al. (2016) which
implements a polynomial regression on 17 underground accidents.

The aforementioned models have some limitations that may prevent their uffeairte
final predictions. The Gasunie, Battelle, Advantica, NEN 3651, and the Accident-based models
all focus on crater width predictions, but only the Gasunie and Batelle models incorporate crater
depth calculations. This prevents the Advantica, NEN3651, and Accident-based approaches
from being eligible for use in crossing pipelines. These five models are deterministic and they
require a soil classification, whichfacts their predictions. Hence, they have important sources
of uncertainty. Regarding the TNT models, these approaches may significefetyfoim the
real crater dimensions because of the "hydraulic mining hose” described by Peekema (2013).
According to Peekema (2013), the final crater dimensions will be greater because of the fluid
pushed out from the broken pipeline lightly scours the soil. Therefore, TNT models would
underestimate the real crater dimensions, representing a threat for crossing or parallel corridors.
To the best of the authors’ knowledge, no other model that deals with crater formation caused by
ruptures or leakages of underground pipelines appears to be publicly available.

Bearing in mind these limitations, the objective of this paper is to propose a probability-based
approach to model the most likely crater dimensions using information about design, operation,
and installation of a pipeline, which is known. For this purpose, a historical review of 90 natural
gas accidents was considered (Ramirez-Camacho et al., 2017) focusing on parameters such as the
pipeline wall thickness, diameter, burial depth, and operating pressure. After data processing, 57
of these 90 records are implemented in a multivariate regression to predict the Width-to-Depth
crater ratio (WD) and determine its prediction interval. Using the WD prediction interval and
the joint width-depth probability density function, which is obtained from a Gaussian copula,

a maximum and mean criterion were proposed to determine the less severe, mean and worst
scenarios for the crater dimensions.

This paper is organized as follows: Section 2 reviews the available pipeline crater models.
Section 3 presents the probability-based approach. Section 4 discusses the main results related
to the crater predicted dimensions, and Section 5 presents some concluding remarks.

2. Review of pipeline crater approaches

This section describes the five available models which seek to predict the crater dimensions
due to a failure of a buried pipeline: i) Gasunie, ii) Batelle, iii) NEN 3651, iv) Advantica and v)
Accident-based model. The assumptions and limitations of each model are described below; a
summary of each model is presented in Table 1. This table illustrates the type of information that
each model implements. Among the information reported, there are structural parameters (e.g.,
pipeline diameter), operation parameters, soil parameters, installation parameters (e.g., burial
depth), properties of the transporting fluid (e.g., density), and the output from each model.

2.1. Gasunie model

The Gasunie model has three main assumptions. They are that: i) the ends of pipes are
disconnected because of the rupture; ii) the crater is initially formed by removing the soil near
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Table 1: Summary of models to predict crater dimensions

Model Approach Struct. Op. Soil Installation Gas Output Ref.

Gasunie Experimental O o o o O W&D (Leis et al., 2002)
Batelle Experimental O o O O O W&D (Leis et al., 2002)
Advantica Experimental O o o O O w (Acton et al., 2010)
NEN3651 Experimental O o O O O w (NSI, 2012)
Accident-based Historical analysis O o o O O w (Silva et al., 2016)
Proposed model Probabilistic O o O O O W&D -

W: Width, W&D: Width and Depth, Struct.:Structural paranteteOp.: Operating parameters

the pipeline and then the axial length is increased due to soil erosion by the fluid; and iii) the
soil has homogeneous properties (Silva et al., 2016). This model was proposed by the Delft
Hydraulics Laboratory and N. V. Nederlandse Gasunie Company, considering an elliptical cross-
sectional as the one illustrated in Fig. 1. In this cd3és the crater depthy; is the crater angle

at the ground surface;, is the crater angle &/2, a andb are the ellipse shape parameters, and

W is the crater width.

Figure 1: Gasunie model Scheme.

If the rupture occurs at the top of the pipeline, this model assumes that the depth of the
crater is independent of the soil type. The crater depth is then determined based on the pipeline
diameterD,, and the cover deptb; asD = D, + D, where the cover depth corresponds with
the distance from the ground level to the top of the pipeline.

In case of a guillotine rupture, the soil type and moistufed the depth of the crater (Leis
et al., 2002); therefore, a soil parameterreported for dierent soils in Leis et al. (2002) and
Luo et al. (2009)- and a functid®(v) are implemented as follows:

R(v) = 0.28+ 0.62(5— v) — 0.07(25- 2 (1)

The crater depth is then determined as follows:

4.3Dp + De, if v<0.6
R(»)D,
0.3
2.2Dp + D, ifv>2
4

+D;, if06<v<2 (2




The crater angles can be determined by the soil parametefollows:

a1 = tami(yv + 1)

(2.8 +0.5v v+ 1))] 3)

ay = tam? 0

These angles are used to determine the ellipse shape parametas(idh) by solving the
following equations simultaneously:

b b \? b b
tana; = 5 (b—_D) -1, tanas = a (m) -1 (4)

Finally, the width of the crater is determined as follows:

b - D)?
) -

W=2a4/1-

As pointed out by Luo et al. (2009), the Gasunie model is based on empirical correlations
that omit the pipeline operating pressure. So, this model could under or overestimate the crater
dimensions depending on high or low-pressure pipelines.

2.2. Batelle model

The Batelle model is an improvement of the Gasunie model in which the width of the crater is
determined as in a chemical explosion (Silva et al., 2016). This model assumes that a guillotine
rupture caused the crater and that it has two cross-sections, one of them following that reported
in the Gasunie model to determine the crater depth. The width of the crater is determined by:

™ > (6)
whereuy; is the critical gas velocity and, is the velocity of the explosive gases. The velocity of
the explosive gases is obtained from the gdsaad soil pso) densities, the speed of sourg) (
and the specific heat ratigYas follows:

e
= 3psil(y? - 1) ")

The critical gas velocityy, is commonly taken as.24 nmys (Leis et al., 2002); however, Silva

et al. (2016) have observed that an underestimation of the crater width can be prevented if a mean
critical velocity of 18542 mjs is used instead. This model enhances the dimensions obtained
from the Gasunie model by including the specific heat ratio, the critical velocity at which the soil
can be removed, and the gas and soil densities. Nevertheless, this model uses the same qualitative
soil classification as in the Gasunie model for its depth calculation, which is an important source

of uncertainty.

Dp
Dp DC+7 Dp2
W=2\——uy—|Dc+ —



Table 2: Crater width regressions for the Advantica Modebregul by Silva et al. (2016)

Soil type Pressure (bars) Diameter (in)  Regression
20 * W =0.399D, + 5.469
40 <128 W =-10"1D; + 10875
Sandy soil > 128 W =0.393D, + 5.7275
60 <240 W = 0.0278D, + 14.6060
> 24.0 W =0.392Dp + 5.80
80-150 * W = 0.3999D,, + 5.4695
20 <361 W =0.023Dp + 6.0135
> 36.1 W = 0.093D;, + 3.4989
40 <360 W = 0.0258D + 5.9839
> 36.0 W =0.1449D, + 1.6881
Clay soil 60 <240 W = 0.023D + 5.9989
> 24.0 W = 0.243Dp + 0.5545
80 * W = 0.3148D + 0.1522
100 * W =0.371Mp + 0.0842
150 <126 W = -0.0079D, + 55811
> 126 W =0.356Dp +1
Mixed soil <80 <361 W =0.0244D + 10.276
> 36.1 W =0.194D, + 4.0742

*Any diameter

2.3. Advantica model

This model is based on experimental results obtained from Acton et al. (2010) in which
twelve natural gas releases were reported with pressures ranging from 20 to 150 bars and diam-
eter between 25 to 80 mm in adjacent buried pipelines. Considering this information, Silva et al.
(2016) determined linear regressions regarding the crater width shown in Table 2.

2.4. NEN 365% Accident-based model

The NEN 3651 was developed by the Nederlands Normalisatie Instituut to provide require-
ments for elements reported in NEN 3650. The available information about this standard is
limited and only the radius of the corresponding crater for a guillotine rupture is reported, which
includes the internal pressure of the pipeline in bars. The equivalent width of the crater is as
follows:

W=2 \/0.64(Df3P)2/3 +0.65(D3P)%/3) - 0.83D2 (8)

Finally, the Accident-based model proposed by Silva et al. (2016) uses 17 reported accidents
to obtain a multivariate polynomial regression of the width of the crater. This regression consid-
ers parameters reported in the previous models such as the specific heat ratio, the density of the
soil, and the operating pressure:

W = 40795+ 0.382D, — 0.068P + 4.844D, — 10,069 — 0.02(so 9)

3. Probabilistic-based approach based on natural gasaccidents

The methodology is divided in three phases (Fig. 2). Initially, the records obtained in
Ramirez-Camacho et al. (2017) are processed. These records are then used to predict the WD
ratio. Finally, the feasible crater dimensions are determined using the width-depth joint proba-
bility and a maximum or mean value approach depending on the pipeline diameter. Each of these
phases will be described in detail below.
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Figure 2: Overall methodology

3.1. Data processing

Some of the records gathered did not include information about all features; for instance, 29
records did not report the width or the depth of the crater, and another 9 were included based on
their crater-approximated dimensions. In fact, only 28 of the 90 records included information
regarding the pipeline diameter, wall thickness, operating pressure, burial depth, and the crater
dimensions (width and depth). Therefore, thre@edent strategies (Barlow’s formula, a refer-
ence cover and a WD ratio) were considered to completa fhéri unavailable information.

Barlow’s formula was implemented to obtain an approximation of the pipeline’s internal
pressure or the wall thickness. This formula associates the pipeline’s internal prEessioee
allowable stress, which is assumed to be 72% of the yield streng{Zhao et al., 2012), the
wall thicknessWV T, and the outside diametBx, as follows (Stewart, 2016, p.834):

2.(72%y) - WT

P
DP

(10)
From 11 records that did not include the operating pressure or the wall thickness, only 3 of
them could be included with Barlow’s formula. This is because 8 of 11 records did not provide

information regarding the pipe material; thus, their yield strengths were unknown. This strategy
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could not gather more records because 24 other records drfitgipeline operating pressure
and the wall thickness. So, this formula could not be implemented to approximate the missing
information.

A reference cover depth was implemented to avoid the use of the burial depth, which is a
feature that 40 records did not report. In this paper, a minimum cover depth of 3 ft. (0.9144
m) was implemented, which is commonly reported for transmission pipelines (ASME, 2002,
2004) despite that the cover depths depend on several variables such as the soil properties and
pipeline route. Therefore, the cover depths were translated to this reference considering that
the diference between the burial and the cover depths is the pipeline diameter (Fig. 3). With
the burial depth of the pipeline definedlasand the pipeline diameter &,, the cover depth is
calculated a®. = bg—Dp. Considering the diierence between this cover depth and the reference
D¢ = 0.9144- D, the adjusted depth with this reference cover is giveDby D + Dg. It was
assumed that those records that did not report their cover depth have a reference cover of 0.9144
m. This is not a strong assumption considering that the cover depth can be as many as two
times the pipeline diameter (Mokhtari & Alavi, 2015). The records reported herein have a mean
relation of 18D, and more than 70% reported a cover depth less or equé o l2onetheless,

a parallel evaluation was implemented without using this transformation to determine if this
assumption giects the final results significantly.

Surface
A4

Cover depth

Burial depth

|.----------------------------

Figure 3: Cover and burial depth scheme

Finally, a WD crater ratio was used to complete the missing information in the 29 records
that did not report the crater’s width or depth, bearing in mind the assumption that the crater
was symmetrical. For this purpose, the models reported in Section 2 could be implemented;
nonetheless, there are several unknown parameters such as the soil parameters (Leis et al., 2002)
that prevent these models from being taken into account. The available information about the
WD ratio is scarce and only historical records of pipeline ruptures are reported. For instance,
McGillivray & Wilday (2009) reviewed the dimensions of the craters caused by historical gas
pipeline ruptures in the UK and found that the crater width varies from 1.7 to 33 m, whereas
the crater depth ranged from 1.7 to 7.6 m. They reported a total of 22 records where their WD
ratios have a mean value of 3.5 and a median near to 3.33. These results suggest that the width
and depth of the crater have a ratio near to 3:1 iMD = 3), so we assumed this WD ratio to
complete these 29 records. As in the cover depth assumption, a parallel assessment was carried
out without this WD relation to determine if the final results afieeted considerably. For the
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sake of simplicity, these sets will be referred to from herasim Table 3.

Table 3: Dataset Classification
Dataset Reference Cover Depth WD Relation

Setl No No
Set 2 Yes No
Set 3 No Yes
Set 4 Yes Yes

3.2. Prediction of WD ratio

3.2.1. Multivariate regression approach

Based on the records obtained from the data processing, a multivariate parametric regression
is proposed to model the WD ratio. Additionally, a logarithmic regression was used in this
approach because some features, such as the WD, had wider ranges (i.e., greater than 10:1).
These features follow nonlinear performances, and the logarithmic scale helped stabilize the
variance (Maindonald & Braun, 2010). Recall, tha¥ iflenotes the response axidhe variables
evaluated, the logarithmic regression would have the general form of Eq. 11, which is equivalent
to a general power relation. Hegg is the interceptg; are the regression cfirients obtained
from a least squares approach arid the associated error.

logY =0+ Zﬁi logX + € (12)

Variables are selected to determine which predictors (i.e., features) better described the WD
final response. For this purpose, a mixed approach that combines forward and backward selection
was considered. This selection starts with no variables and then variables are added one by one
to provide a better fit. If the p-value of one of the variables rises above a given threshold, then
the variable is removed. This procedure is repeated until all variables in the model have an
adequate p-value and the external variables, if included in the model, wibeidd e regression
capabilities (James et al., 2013).

The model fit was initially determined based on two well-known numerical measures: the
Residual Standard Error (RSE) and the adjuftedtatistic. The first one is an estimate of the
standard deviation of the error based on the Residual Sum of Squares (RSS), and the latter is a
measure of the linear relationship between the variables and the response. Besides these numer-
ical measures, the Akaike and Bayesian Information Criteria (AIC and BIC) were implemented.
These selection criteria are numerical values that are by themselves meaningless, but are used
to compare competing models or regressions and they are commonly used instead of other tests
(see for instance Posada & Buckley (2004)). AIC ranks the information loss and the unaccount-
able information, whereas BIC is based on a log likelihood function incorporating the deviance
of the model fit and penalizing for additional parameters (Stancescu, 2014). Both criteria prefer
those models with the lowest results. Additional information about these selection criteria can
be found elsewhere (see for instance Konishi & Kitagawa (2008)).

Setk = p + 1 wherep denotes the number of fitted parameters and le¢ the sample size
for the regression. For small samples (ir’k < 40) the modified version of AIC, which is
calculated based gmby the RSS, is recommended (Symonds & Moussalli, 2011). The modified
versions of the AIC and BIC implemented are presented below:
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AIC. = {n [Iog(%ﬂ] + Zk} +n+nlog(2r) + % (12)

BIC.=n [Iog (%ﬁ] + klogn + n+ nlog(2r)

To evaluate the robustness of the regressions, their linearity, independence, homoscedastic-
ity, and normality assumptions (Yan & Su, 2009) were evaluated using the regression diagnostic
plots (i.e. residual and quantile-quantile (QQ) plots). The linearity assumption indicates that
the response and the predictors have a linear, additive relationship; the independence assump-
tion establishes statistical independence of the regression errors; the homoscedasticity assures a
constant variance of the errors; and the normality assumption means that these errors are nor-
mally distributed. Additionally, an outlier and leverage diagnosis was implemented to evaluate
if any register should be removed. The first identifies records that ntéer fliom the bulk of
the data evaluated, whereas a leverage observation has an unusual value in the independent vari-
ables (i.e., predictor). To identify possible outliers, the studentized residuals plot was considered,
which corresponds with the residual errors divided by their standard error. According to James
et al. (2013), the observations whose studentized residuals are greater than 3 (absolutely) are
possible outliers. Regarding the leverage diagnosis, the leverage stat{btitween 1nand 1)
was calculated to identify observations with higher leverage. For this purpose, the leverage plot
included in the diagnostic plots was considered.

3.2.2. WD Prediction interval

Based on the regression ¢beients, the confidence interval for the €éid@ents and the pre-
diction interval were determined. According to Rencher & Schaalje (2008), the 100(%
confidence interval of thgth regression cdécientg; is given as follows:

Bj * tojan-k-1RS EVj; (13)
wheret, 2«1 is the Student's inverse cumulative distribution at/2 with n — k — 1 degrees
"(n-k-1)’
is theith reported WD and;is theith predicted WD. Her& is an x k matrix that corresponds
with the fitted observations for each of the k predictors.

Consider the future respongg Which is obtained from the regression €@io@ents evaluated

at a k+ 1) column vectoiX, with predictors 1xo, X1, . .., X. S0, the prediction interval is given
by (Rencher & Schaalje, 2008):

yo + ta/2,n—k—1RS Eﬂl + Xé(X'X)flxo (14)

In this paper, the prediction intervals were determined usingpthdict function in the open
source R-project.

of freedom,/gjj is the jth diagonal-element oK(X)"* andRS E= wherey;

3.3. Feasible crater dimensions

3.3.1. Width and depth fitting probabilities
Initially, the width and depth probability density functionsdf) were determined based on
the information gathered from the historical review. These density functions can be determined
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by Goodness of Fit tests such as Chi-Square, Kolmogorov $monAnderson Darling. How-

ever, these approaches usually depend on predefined parameter values and not on estimated pa-
rameters from the available data (Stancescu, 2014). Therefore, an information criteria approach
was implemented instead, where the number of parameters of the fitted distribution is considered
to select the simple and consistent model. In this paper, a BIC was used following the Sheppard
(2012) function, and a copula was implemented to approximate the width-deptpgibivased

on the width and depth margingadifs.

3.3.2. Copula-based approach

Overall, copulas are functions that couple multivariate distributions from their marginal dis-
tributions. These functions have uniform one-dimensional margins, and they are invariant un-
der any monotone, increasing transformations on the marginal distributions (Montes-Iturrizaga
& Heredia-Zavoni, 2015). These functions represent a parametric approach for modeling the
dependent structure in joint distributions of random variables (Escarela & Hernandez, 2009)
as shown in several areas such as finance, stock market, or even mortality models (Frees &
Valdez, 1998). Consider the vectrof mrandom variables with marginal distribution functions
Fi(x),i = 1,...,m. Let the set of transformationg; = Fi(x) define a dependent, uniformly
distributed vector ofnrandom variable®l on [0, 1]™. Based on Sklar’'s theorem, if the marginal
distributionsF;i(x) are continuous, then th¥ joint probability distribution function can be de-
termined as follows (Montes-lturrizaga & Heredia-Zavoni, 2015):

F(X) = C(F1(xa), ..., Fm(Xm)) = C(Uy,...,Un) (15)

whereC(U) = C(Uy,U,,...,Up) is the copula distribution. Moreover, the joindf of X can be
determined using the marginadif of all the random variablesfi(x) fori = 1,...,m) and the
copula density function(F1(X1), . . . , Fm(Xm)) as:

(%) = o(Fa(x0)...... Fm(xm) | ] i(3) (16)

A detailed introduction to the theory and copula types can be found in Nelsen (2007); Escarela
& Hernandez (2009); Montes-lturrizaga & Heredia-Zavoni (2015).

To determine the width-depth joint distribution, the Gaussian copula was used due to its
similarity to the bivariate Gaussian distribution. This copula follows this general form:

Cr(vi, Vo) = (I)z[tl)‘l(vl), (D_l(Vg)], (va, V2)T € (O, 1)2 a7

where®1(-) is the inverse normal cumulative distribution ag(-, -) is the joint distribution
function of a bivariate Gaussian distribution with mé&and correlation matriR. Because this

matrix is normalized, it is associated with the Pearson correlatiofficieats matrix. Therefore,

it is used to incorporate the dependence between the width and depth random variables. For
this purpose, the measures most implemented at invariant scales are the population versions of
Kendall and Spearman. They correspond to a form of dependence known as concordance, which
allows a reliable estimation when the copula is assumed to belong a specific parametric family
such as the one presented in this case (Escarela & Hernandez, 2009).
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3.3.3. Normalized pdf given the predicted WD ratio

Assume that the WD ratio is determined from the above multivariate regression and the width
is taken a®v = WD D. Then, the width-depth joirpdf from Eq. 16 is given by:

fwp(WD-d,d) = ¢(Fp(d), Fw(WD- d)) fo(d) fw(WD- d) (18)

whereFp (Fw) and fp (fw) are the distribution anddf of the crater depth (width). Note that
this joint pdf follows paths as in Fig. 4 because of the WD linear relationship.

Consider the prediction interval in Eq.14 and denote the lower, fit and upper WIDgg,
WDyir andW Dyj;, respectively. To determine the feasible dimensions, three preliminary scenar-
ios are proposed for a pipeline diameter less than 18 in:

e Upper scenario: This scenario uses the upper limit of the WD prediction interval in the
joint pdf to select the most probable crater depih: = méelx{ fwp (W Dypr - d, d)}. The

width of the crater is then calculated using this WD ratio.

e Lower scenario: This scenario uses the lower limit of the WD prediction interval in the
joint pdf to select the most probable crater depbi: = méelx{ fwo (WD - d,d)}. The

width of the crater is then calculated using this WD ratio.

e Mean scenario: This scenario uses the fitted WD value in the jgidf to select the most
probable crater depthD* = mdax{ fwpo (WDsj; - d, d)}. The width of the crater is then
calculated using this WD ratio.
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Figure 4: Scheme of the three preliminary scenarios

Fig. 4 shows the linear relation of the upper, lower and fit WD ratio, and the width-depth
joint probability schematically. The three lines representpté obtained from Eq.18 using
these three ratios. Note that a higher WD ratio may involve a lower feasible depth in comparison
with the fit and lower confidence limit because of the shape of the jaffit

In the case of a pipeline whose diameter is greater or equal to 18 inches, these scenarios
change slightly. Instead of using a maximum criterion to determine the feasible dimensions, we
consider the expected value of the normaliped Algorithm 1 describes the main procedure
used to obtain the feasible crater dimensions using the maximum or the expected approaches. In
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this case, the input parameters are the WD ratio, a partitwarpeten,, the maximum width
Winax and the pipeline diameté&,. Heren, andWaxare chosen from the final user.

Algorithm 1 Feasible crater dimensions

Input: WD ratio, np (partition), Wmax, Dp (pipeline diameter).
Output Feasible dimensions &% andD*
. SetWeyal := [0.001 :Wnay] {Vector withn, equally spaced points from 0.001\dax}
: Setdeyal := Weval/ WD {Calculate the equivalent depth for each widtiwigy,}
: Initialize the vectorfyp =[O, ..., 0] {With np pointg
for i = 1tonpdo
fwp = ¢(Fp(deval(i)), Fw(WD: deval(i))) fo (deval(i)) fw (WD deval(i)). {See Eq. 1B
end for
. if Dp < 18in then
indmax =Find(maxfwp))
W = Weval(indimax) {The width with the maximunfyp}
10: D* = deval(indimax) {The adjusted depth with the maximufwp}
11: else
12: fwp = fwp/Area(fwp, deval). {Obtained the normalizepdf, dividing by the area ofwp with deval}
13: D* = E[ fwp] {The adjusted depth is the meanfgfp with deval)}
14: W = D* - WD{Calculate the width with the WD ratjo
15: end if

CoNORrRONE

Finally, if the burial depthby is reported, the corresponding crater depth is obtained using
D = D* + D¢ — 0.9144, whereD* is the depth obtained from the maximferpected value
criterion andD is the cover depth calculated Bs = by — Dp. Recall that if the cover depth
is not reported, it is assumed to be the reference coverddfd, so the crater depth obtained
follows D = D*.

As an alternative analysis of the preliminary scenarios mentioned before, the decision-maker
can select the WD within the prediction interval whose probability is the highest (usipgtioé
the WD ratio, just mentioned) or the following scenarios to approximate the crater dimensions:

e Less Severe scenario: This scenario implements the lowest width and depth dimensions
obtained from the Lower, Upper and Mean fits.

e Themost likely scenario: This scenario implements the width and depth dimensions from
the Lower, Mean or Upper fits with the higher probability on the jpidt (See Fig. 4).

e Worgt scenario: This scenario implements the greatest width and depth dimensions ob-
tained from the Lower, Upper and Mean fits.

The aforementioned scenarios were considered with the initial Lower, Mean and Upper fits.

4. Resultsand Discussion

4.1. Data processing

4.1.1. Summary results of the proposed datasets

To evaluate if the data procesSexted the predictor variables significantly, the mean, coef-
ficient of variation (CoV) and the variable range were used for each dataset described in Table
3. To show their lack of information, Table 4 illustrates these results, including the total records
from each variable and dataset.
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Table 4: Basic statistics from the datasets.

Dataset Feature Dia_meter Wall thickness Operating Crater dimension
(in) (in) pressure (bar) Width (m)  Depth (m)
Total records 57 41 47 61 61
Setl Mean 26.00 0.34 57.56 11.43 4.50
(30 Records) Cov 38.37% 36.35% 27.03% 56.62% 61.21%
Range [6-56] [0.071-0.752]  [17.2-92.4] [1.5-33] [0.6-18.3]
Total records 57 41 47 61 61
Set 2 Mean 26.00 0.34 57.56 11.43 4.33
(41 Records) CoV 38.37% 36.35% 27.03% 56.62% 51.08%
Range [6-56] [0.071-0.752]  [17.2-92.4] [1.5-33] [0.6-10.88]
Total records 84 57 65 89 89
Set 3 Mean 26.12 0.34 56.13 10.91 4.16
(40 Records) CoV 37.19% 32.40% 26.12% 58.63% 62.14%
Range [6-56] [0.071-0.752]  [17.2-92.4] [1.5-33] [0.6-18.3]
Total records 84 57 65 89 89
Set 4 Mean 26.12 0.34 56.13 10.91 4.09
(57 Records) CoV 37.19% 32.40% 26.12% 58.63% 53.48%
Range [6-56] [0.071-0.752]  [17.2-92.4] [1.5-33] [0.6-10.88]

These four datasets are depicted in Fig. 5. From the initild&@dents, 30 records were ob-
tained without considering the reference cover depth nor the data processing for the WD relation.
Once the reference cover (Set 2) or the WD relation (Set 3) was implemented from these records,
11 and 10 new records were processed respectively. Finally, when both approaches were im-
plemented, 6 new records (apart from Set 2 and 3 records) become available for the regression
analysis.

Tot: 90 rec.

S4 57 rec. |

Figure 5: Datasets distribution scheme.

Overall, the diferences among these datasets are not significant; the mean crater depth ob-
tained in Set 4 decreases 9% from the initial data of Set 1. Regarding the dispersion of the
datasets, the CoV of the diameter, wall thickness and the crater depth have a mean decrease of
3.44%, whereas the width CoV increases around 2.01%. Finally, the obtained ranges from each
dataset remain almost the same. These results suggest that the data processing did not provide
an important bias in this approach; on the contrary, it provided almost double that of the initial
available records for the multivariate regression approach.
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4.1.2. Width and depth fitting pdfs

Based on the BIC approach, the Width and Depth distributions for each dataset were fitted
to Gamma distributions. Table 5 shows their fitting parameters. Note that the shape and scale
parameters do not change among each dataset significantly. In fact, even though the correlation
codficient increases when the WD relation is implemented, this is not drastic given that near
30% of the initial WD dataset is included with this approximation.

Table 5: Width and Depth crater fitting BIC parameters.

Dataset Feature Distribution  Shape parameter  Scale paameE€orrelation cogicient
S R Y
ez g G oo o
oG tmM I o
e WGl L o

The probability density function of the Width and Depth froath dataset is shown in Fig.
6, which illustrates that the distributions of the datasets do not present an important change
among them. Set 1 and Set 4 have almost the same shape withramtie near to 0.02 around
a depth of 2 m. Regarding to the width distributions, jploié obtained from each dataset match
almost entirely. The aforementioned distributions and the results from Table 4 suggest that these
assumptions will not severelyfact the final predictions of the regression. In contrast, the mul-
tivariate approach will obtain more reliable results due to the increase of the sample size. Based
on these results, the records from Set 4 were employed for the rest of the proposed approach.
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Figure 6: a) Width and b) Depth probability density functidreach dataset.

4.2. Prediction of WD ratio

Initially, the mixed selection method was implemented in R-project to select the variables
that best describe the WD regression. The results of this selection model indicate that the WD
ratio is mainly approximated with the operating pressure and the pipeline diameter. Recall that
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the mixed selection compares each regression model usipgvatue by adding variables one

by one to provide a better fit for the regression model. Table 6 shows the best multivariate
regressions using these variables after an outlier witha= 9 was removed. Note that these
regressions only illustrate the variables implemented. They include possible interactions among
their predictors, and they neglect the intercept parameter in all casegyireEq. 11).

Table 6: Best multivariate regressions from Set 4.

Formula RSE R%adj AIC; BIC. p-Value
log (WD) ~ log (P) 0.4226 0.8474  65.4377 69.4884 2.48E-24
log (WD) ~ log (P) + log(Dp) 0.4183 0.8505 65.2646 71.3407 1.94E-23
log (WD) ~ log (P) + log(Dyp) + log(WT) 0.4155 0.8525 65.4581 73.5595 1.19E-22
log (WD) ~ log (P) + log (Dp)+log(P)log(Dp) 0.4123 0.8548 64.5987 72.7002 7.95E-23
log (WD) ~ log (P) + log (WT)+log(Dp)+log(WT)log(Dp) 0.4191 0.8499 67.3638 77.4905 1.30E-21

log (WD) ~ log (P) + log (WT)+log(Dp)+log(WT)log(Dp) + 0.4272 0.8440 72.1959 88.3987 4.80E-19
log(WT)log(P) + log(P)log(Dp) + log(P)log(WT)log(Dyp)
P: Operating pressure [baNy T: Wall thickness [in],Dp: Diameter [in], W D: Width-to-Depth ratio

The best regression is the one with a high®sadjusted and lowest RSBICc, BICcand
p-Value. These results initially suggest that the operating pressure could determine an adequate
regression model (i.e., log(D) ~ log(P)) because the RSE and tR&-adjusted were almost the
same as the other models. However, their information criteria give better results than the other
models. Nevertheless, AIC and BIC penalize the models that include more predictors, so further
information is required for this selection. Consequently, the regression model ¥ g
log(P) + log(Dp) + log(P) log(Dp) was evaluated because it obtained better results in RSE,
adjusted and AIC. This is due to the relaxation of the additive assumption, which is associated
with the interaction parameter between Bpéand logD;) (James et al., 2013). This relaxation
can be shown using Eq. 11 as follows:

log(WD) = g1 log (P) +B210g (D) + B3 10g (P) log (Dp) + €
= [B1 + Balog (Dp)|log(P) + B2log (Dp) + € (19)
= B1log(P) + B2 log (Dp) + €

wherep: = 1 + B3log(Dp). SinceB; changes with lodD,), the efect of logP) is no longer
constant. Indeed, adjusting ld@y) will change the impact of logf) on log@/V D) (James et al.,
2013).

Considering this regression, the main assumptions were evaluated based on their diagnostic
plot shown in Fig.7. A pattern that is slightlyfacted by some records (red line) is shown in Fig.
7a, but overall it has a flat tendency confirming the linearity assumption. The QQ-plot, which
is illustrated in Fig. 7b, indicates that the residuals of the regression are normally distributed
because the records lie almost on the diagonal of the QQ-plot. Regarding homoscedasticity and
the independence assumptions, note that in Fig. 7c the residuals are mostly equally spread.
This result suggests that the variance does not change drastically along the fitted values and
the data are independent. Finally, Fig. 7d depicts the evaluation of the leverage. Note in this
figure that some records obtain a high leverage that nff@gtathe regression performance, so
it was assessed whether it was beneficial to remove these data points, considering the sample
size. For this purpose, an outlier and leverage diagnoses were implemented with the studentized
residuals and Residuals-Leverage plots. Recall that the observations whose studentized residuals
are greater than 3 (absolutely) are possible outliers. For this regression, the studentized residuals
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Figure 7: Diagnostic plot lo/D) ~ log(P) + log(Dyp) + log(P) log(Dy).

obtained range from -2.77 to 2.43, so there is not strong evidence for the presence of outliers.
The leverage diagnosis obtained results near to 0.25, which indicate that the model could neglect
this leverage and maintain the records with a high leverage. In conclusion, the main assumptions
are satisfied and this regression mainly describes the dataset.

Table 7: Best multivariate regressions from Set 4.
Confidence interval

Cofficient

Predictor

250  975%
10g(Dp) 0.1648 0.5449 0.2152
log(P) 0.0026 -0.0034 0.0085
log(Dp)log(P) ~ 0.1156 -0.1510  0.3822

Table 7 shows the cdigcients obtained and their confidence intervals following Eq. 13 and
a = 5%. The predictioninterval in Eq. 14 was determined us{fg [Iog(Dp), log(P), log(Dy) Iog(P)]
andy, = log(WD), where the latter is obtained from the @id&ents reported in Table 7 using
Eqg. 19. Note that the predictor vectdf does not include the first entry associated with 1 be-
cause this regression omits the intercept. Considering the evaluated preXjctbis prediction
interval is given as follows:

—0.09003 -0.10852
011263 -0.01187 | X,
003043

The aforementioned results allow decision makers to predict the WD ratio of a crater with
a reference cover of 0.9144 m based on the operating pressure, the pipeline diameter, and the
product of both parameters.

0.55094
—0.09003
-0.10852 -0.01187

¥o+ 0.8273. |1+ X, (20)

4.3. Feasible crater dimensions

4.3.1. Copula-based approach

Considering the correlation cficient of Set 4 (Table 5), the Kendall correlation fiaeent
was 0.7890. This cdkcient serves as thelediagonal entries in the correlation matriR)(of the
bivariate Gaussian distribution in the copula construction. Based on the definition of the copula
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density and thedf of the multivariate Gaussian, this copula density function is described as
follows (see Blumentritt (2011)):

_ _ _ _ _ T
o(U) = [RI°3 exp{_[‘b U, 0 (U (R 1;%) 27V, .., 07U } (21)

where|R| denotes the determinant & U € [0,1]® andIy is the d-identity matrix. Then,
considering that the joimidf of a random vector is obtained from the copula density function, and
that the marginal densities of each variable (see Eq. 16), the width-depth joint density distribution
is given by:

— - . ®71 F
| @1 (Fw(w)), @1 (Fp(d))| (R —H2)[ ®—1EF¥>V((;?)) ]

2

o (W, d) = RIS exp - fu(w) fo ()

(22)
whereFp andFyy are the cumulative Gamma distributions of the width and defptland fy, are
the pdf of the width and depth; an@~! is the inverse normal cumulative distribution, the latter
can be determined from the error function @s(p) = V2erf}(2p — 1), wherep € (0, 1).

4.3.2. Feasible width and depth of craters - Case studies

To illustrate how the feasible width and depth of the crater can be calculated, let us consider
the following real accidents: Brunswick (GA, USA) in 2002 and Warren (MN, USA) in 2014.
The first occurred on November 30, 2002 in a pipeline distributing natural gas and it created a
3 m long, 3 m wide, 1.5 m deep crater. The second accident took place on May 26, 2014 in
a natural gas transmission pipeline and led to the evacuation of 10 families and a crater which
was 9.1 m long, 9.1 m wide and 4.6 m deep. The relevant information from these accidents is
summarized in Table 8. Note that because the burial depih not reported in both cases, the
adjusted deptB* coincides with the reported depth. For more information about these accidents,
the reader may refer to the information reported in Ramirez-Camacho et al. (2017).

Table 8: Brunswick and Warren accidents summary.

Case Dp(in) P(bar) bg(m) Crater's Width (m)  Crater's Depth (m) D*(m) WD
Brunswick 8 17.2 - 3.0 15 15 2.00
Warren 24 56.9 - 9.1 4.6 4.6 1.98

To calculate the fitted WD ratio and its prediction intervalr(both accidents), implement
Eg. 19 and Eq. 20. Evaluate these equations at the pipeline diaDgtend the operating
pressureP from Table 8, and the regression @gents reported in Table 7. The result of the
initial prediction was a WD ratio of 1.417 for Brunswick’s accident and 2.641 for Warren’s
accident. The prediction intervals obtained were [0.568-3.537] for the Brunswick accident and
[1.146-6.087] for the Warren accident. Note that in both cases, the real WDs were within these
prediction intervals.

Based on the prediction interval and the regression results, let us describe the process to
approximate the crater feasible dimensions using Algorithm 1. Consider the prediction interval
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Figure 8: Depthspdf with the regression results for the a) Brunswick accident and b) Warren accident

results YW D, WDsir andW Dy, ratios) and thé, reported in Table 8. For these cases, take a
Whax0f @ 99.9% percentile for the fitted Gamma distribution (See Table 5) and a partition number
of np = 10,000. The jointpdfthat follows the WD relation as in Eq. 18 (i.€ywp(WD- d, d))

is calculated from Eq. 22. The normalizedf is then obtained from the quotient between

fwp and its area derived using a trapezoidal numerical integration. This normplifédr the

lower, mean and upper fitted WD results in both accidents are illustrated in Fig. 8. Finally, the
feasible dimensions are obtained using the maximum criterion for the Brunswick accident and
the expected value criterion for the Warren accident, where the latter was determined using a
trapezoidal rule integration. The crater dimensions obtained are presented in Table 9.

Table 9: Feasible dimensions of the craters.
Lower Fit Mean Fit Upper Fit
W D W D W D
Brunswick 0.594 1.046 2.734 1929 6.361 1.798
Warren 3.222 2811 8.632 3.268 9.453 1.553

Case

For the Brunswick accident, the Less Severe scenario camelspwith the Lower Fit, the
Worst scenario uses the width reported in the Upper Fit, and the depth uses the one from the Mean
Fit. For the Warren accident, the Less Severe scenario considers the width from the Lower Fit
and the depth from the Upper Fit, whereas the Worst scenario considers the width from the Upper
Fit and the depth from the Mean Fit. In both cases, the Most Likely scenario coincides with the
Mean Fit. These scenarios are illustrated in Fig. 9, where it can be shown that the reported crater
dimensions are somewhere between the Most Likely and the Worst scenarios. Additionally, note
that both the Less Severe scenarios have reported dimensions that are significantly smaller than
the other scenarios and the dimensions reported; hence, the other scenarios could be considered
instead.

Considering the limited amount of available data, these scenarios give an adequate prediction
of the crater dimensions. Note that the Worst scenario of the Brunswick accident includes the
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Figure 9: Crater Scenarios for the a) Brunswick and b) Warecerdants

real crater dimensions, whereas for the Worst scenario of the Warren accident predicts the real
crater dimensions almost entirely. To illustrate the model prediction capabilities, the dimensions
reported from 9 additional accidents were compared with those obtained with the probabilistic
model in the Lower, Mean and Upper fits (Table 10). The results indicate that the real width and
depth dimensions lie almost entirely within these three fits.

Table 10: Examples of the prediction of the preliminary scenarios.

Dp P bs Real Real D* WD Predicted WD Lower Fit Mean Fit Upper Fit
(iny (bar) (m) W (m)D (m) (m) Lower Mean Uppdr W D° | W D' | W D

6 700 - 20 200 2.00 1.000 0.667 1.814 4.93B792 1.188 3.836 2.115 6.295 1.275
16 276 - 24 300 3.00 0.800 0.767 1.850 4.461.011 1.319 3.931 2.126 6.417 1.439
16 552 - 46 153 1.53 3.000 0.989 2.314 5418552 1.569 4.994 2.158 6.076 1.122
18 589 11 52 280 3.07 1.693 1.052 2.450 5./05829 2.689 8.152 3.328 9.672 1.695
20 469 06 6.1 2.03 2.86 2.136 1.009 2.337 5412653 2.630 7.833 3.352 9.828 1.816
24 546 1.0 9.0 450 5.02 1791 1.129 2.601 5.99150 2.790 8.538 3.282 9.506 1.586
24 548 1.8 100 220 1.92 5198 1.131 2.605 6/0@3156 2.792 8.546 3.281 9.502 1.583
30 714 09 76 3.00 3.78 2.012 1.332 3.091 7.174016 3.01% 9.466 3.062 8.788 1.225
30 694 18 91 1.80 1.68 5.428 1.320 3.057 7.08962 3.022 9.415 3.080 8.844 1.249
Dp: Pipeline diameter?: Internal pressureyqy: Burial depth,D*: Adjusted depthWV: Predicted width

However, for the sake of a deeper comparison, consider the Most Likely crater dimensions
that are associated with the mean fit, and their 25% and 75% percentiles from the quotient be-
tween fwp and its area. Figurel0 shows the realMost Likely crater dimensions with these
percentiles. This figure demonstrates that crater dimensions can be predicted using this Mean
fit range with an error smaller than 2 m, here the greatest error was found in a 18-inch pipeline.
Considering that the Maximum Probability approach @y < 18in) produces shorter predic-
tions than the Expected probability approach (@@ > 18in), these two approaches could be
implemented at the same time for this pipeline diameter with the aim of reducing the prediction
range. Nevertheless, thefidirences between the real dimensions and the Mean fit range sug-
gest adequate prediction performance of the model taking into account the limited amount of
available records and that properties of the soil were not considered.

Finally, the probabilistic model was compared with some of the models reviewed in Section
2 noting that these models depend on soil properties that usually are not included in incident
reports, or that are subject to significant uncertainty. However, considering some of the cases
discussed in Silva et al. (2016), our probabilistic predictions were comparable with the majority
of the models reviewed in Section 2. This comparison is depicted in Fig. 11, which shows suit-
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Figure 10: Real vs. predicted dimensions

able accuracy for the probabilistic model in almost all cases, with the exception of the accident
with a 20-inch, 15 m wide pipeline. This accident occurs in a location with a "Salty Clay Loam”
soil according to Silva et al. (2016), which maffext the model predictions. The advantage of

the proposed model is that only design parameters must be implemente® feandDp). On

the contrary, the methods described in Section 2 need additional parameters that are subjected

to significant uncertainty (e.g., soil properties and crater angles) or are not well-documented
publicly (NEN 3651 model).
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Figure 11: Comparison of the width prediction capabiliti€aweilable approaches
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4.3.3. Some applications

The importance of the crater dimensions lies in their possibility to evaluate a dofffigad e
scenario in parallel pipelines as well as the possibility to support decision-making processes in
the construction and design of parallel corridors. The formation of a crater can expose adjacent
pipelines and trigger a domindfect due to the initial overpressure or by a thermal failure given
a Jet Fire in the source pipe. For the construg¢tenign of parallel corridors, the crater dimen-
sions can be used to define pipelines Right-of-Way (ROW) or to propose safe distances between
parallel pipelines to avoid the events that can escalate to a dorfiext,€for instance, using
Jet Fire models as in Haklar (1997); Haklar & Dresnack (1999); Sklavounos & Rigas (2006);
Mohsin et al. (2014). Additionally, other applications such as the adjustment of the view factor
from a Jet Fire model, which considers the crater obstacle, can be also considered. This adjust-
ment would prevent an overestimation of the received heat radiation of an object on the ground
level.

For the evaluation of dominoffect, let us consider two real accidents involving parallel
pipelines with natural gas. The first occurred in Rapid City (Canada) in 1995, where a 42-inch
gas main pipeline failed due to stress corrosion cracking. The crater formed by this rupture
uncovers an adjacent 36-inch gas main pipeline that failed because of the heat overload from a
fire on the source pipeline. The second accident took place in Buick (Canada) in 2012, where a
rupture and fire occurred in a 16-inch gas-gathering pipeline due to a hook crack. The rupture
exposed a parallel 6.625-inch gas-gathering pipeline, which after 25 minutes failed because of
flame impingement. The parameters from these pipelines are summarized in Table 11.

Table 11: Operating and structural parameters from doniieezteaccidents (TSB, 1997, 2013b)

Case Source pipeline Target pipeline
Dp(in) bg(m) P(bar) | Dp(in) bg(m) P (bar)

Rapid City 42 15 60.7 36 15 60.7

Buick 16 0.5 66.6 6.625 0.5 8.7

Dyp: Pipeline diamete)y: Burial depth andP:Operating pressure

The predicted worst scenario crater for the source pipeline in the Rapid City accident is
illustrated in Fig. 12. The width and depth for the source pipe’s crater are 10.04 m and 5.50
m, respectively. Note that if the crater were assumed to be symmetrical, the distance from the
crater to the target pipe would be around 1.9 m. Nevertheless, this distance could be shorter
because of the flame direction and the "hydraulic mining hose” described by Peekema (2013).
Note also that if the crater were not assumed to be symmetrical, then it would be oriented to
the target pipe, so it is likely that the initial rupture would uncovers the 36-inch main pipeline.
Assuming that the target pipeline fails due to the fire, the predicted crater of this pipe would have
a width of 9.91 m and a depth of 5.30 m. As a result, the equivalent crater width and depth of
the accident are around 17 m and 5 m, respectively, which do fiet &iom the real dimensions
significantly. According to the report, the width was 23 m and the depth was around 5 m, which
is an interesting result taking into account the limited amount of available information. Other
approaches like the Advantica or the Accident-based models obtained width results of about
12.23 and 16.5 m, which are farther for, the reported Wwide

As in the Rapid City accident, Fig.13 shows the predicted crater with the worst scenario for
the source pipe in the accident near Buick. This figure indicates that a rupture in the source

1Gasunie and Batelle model require a further classification of the soil that fft ¢he final result, so these ap-
proaches were omitted.

22



| 5.1m | y Ground level

55m

Source ag=
L\

pipe

Figure 12: Predicted crater of the Rapid City accident

pipe certainly would uncover the 6.625-inch gathering line because fferatice between the

crater and the target pipe is around 0.01 m. As in the previous accident, a fire is oriented to
the target pipe that can reduce this distance. Following a similar procedure as in the Rapid City
accident, the equivalent crater dimensions would be around 8.71 m wide and 3.42 m deep. These
dimensions are greater than the reported crater that is 7.6 m wide and 1.1 m of deep, but it is
closer if the Advantica model is implemented with a width of 10.6 m.

y Ground level L 299m |

Source N —
pipe @
16 in

Figure 13: Predicted crater of the Buick accident

Finally, there are potential applications for the use ROW definition. According to the guide-
lines for parallel construction of pipelines of INGAA (2008), federal agencies in the United
States such as the Federal Regulatory Commission, require the implementation of an existing
ROW for the construction of new interstate natural gas pipelines. Therefore, parallel pipelines
can be located in a same ditch with a minimum distance between them of 1 m. Note that these
ROW ditch lengths could depend on the pipeline diameter: i) 10 m for a pipeline with a diam-
eter less than 8 inches; ii) 13 m for a pipeline whose diameter is between 10 to 18 inches; and
iif) 15 m for a pipeline with a diameter between 20 to 36 inches (PEMEX, 2009). Now, if two
parallel pipelines whose diameters are in the last category (20-36 inches) are in the same ditch,
they would be separated by at least 1 m and as much 14 m. Suppose this separation is about
7-8 m (as in the Rapid City accident), then the examples and the predicted width dimensions
suggest that a domindfect would take place. For this scenario, a safety distance of about 10m
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could be suggested like in Silva et al. (2016) by using only xteresion of the crater width;
nevertheless, this scenario is likely to be followed by a jet fire (Bubbico et al., 2016), so further
calculations that are outside of the scope of this paper should be implemented. For more details
see Ramirez-Camacho et al. (2015); Alileche et al. (2015); Haklar (1997); Haklar & Dresnack
(1999); Sklavounos & Rigas (2006); Mohsin et al. (2014). Nonetheless, the probabilistic-based
approach proposed in this paper could be implemented to support ROW definition by evaluating
the exposure possibility of two parallel or crossing pipelines.

5. Conclusions

This paper presents a model to predict the feasible crater dimensions (i.e., width and depth)
produced by an underground natural gas (NG) pipeline given a LOC. This model was developed
based on a recent review of 90 real accidents of underground NG pipelines(Ramirez-Camacho
etal., 2017) in a probability-based approach with a maximum or expected criterion. The feasible
dimensions obtained with this model allow a decision maker to evaluate the possibility of expo-
sure of a parallel or cross pipeline, which in turn can be used to identify a dorffiéad scenario
and to evaluate Right-of-Way (ROW) corridors for parallel or crossing routes.

The probabilistic approach was developed based on a multivariate regression and a Gaussian
copula. The multivariate regression predicts the width-to-depth ratio (WD) of the crater based
on a trained set of 57 over 90 reported accidents after a gathering process, whereas the copula
approximates the width-depth joiptlf. Based on a prediction interval of the multivariate regres-
sion and the joint width-depth density, three scenarios were proposed: Less Severe, Most Likely
and Worst scenarios.

The model has been tested for the accidents in Brunswick (GA, USA) in 2012 and War-
ren (MN, USA) in 2014 and obtained results near to those reported. The grediestrdie
was around 1.3 m for the Warren’s accident depth, which could be attributed to a non-reported
cover depth that is greater than the cover reference used. Results from 9 additional cases and
a comparison with other models that predict the crater width indicate that the model has ade-
guately prediction capabilities considering the limit amount of available records. In addition, the
Rapid City (Canada, 1995) and Buick (Canada, 2012) accidents were used to illustrate that these
pipelines were very likely to trigger a dominéect scenario because of the proximity between
their parallel pipelines, the crater dimensions obtained, and the jet flame direction relative to the
target pipes.

This paper seeks to support decision-making processes regarding NG pipelines due to crater
formation. However, the readers should bear in mind that this approach does not implement
information regarding soil properties, pipeline route, and crater angles because none of these
parameters are usually reported.
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Nomenclature

a Significance level D* Adjusted depth
a1,  Crater’s angle at the ground surface and &b, Cover depth
D/2 for the Gasunie model Dp Pipeline diameter
Bi Regression caficients Fi()  Distribution of thei variable
€ Regression residual error fi() Density function of the!” variable
y Gas specific heat ratio

fwp Joint width-depth density function

Lo Thg d—|dent!ty matrlx Sample size for the regression
U Uniformly distributed random vector »

) . Np Partition parameter
y Soil parameter for the Gasunie model

Operating pressure

®~Y(-)  Inverse normal cumulative distribution . A .
ROW  Right-of-Way definition

®,(-,-) Bivariate Gaussian distribution with me&h

and correlation matriR toj2n-k-1 Student’s tinverse cumulative distribution at
p,psoil Gas and soil densities a/2 with n — k — 1 degrees of freedom
iy Yield strength Uy Velocity of the explosive gases for the Batelle
. model
erf1() Inverse error function " .
B Predicted regression ceient Ukr Critical gas velocity for the Batelle model
j .
Yo Prediction of the future regression responseW Cratgrs width )
a,b Ellipse shape parameters for the Gasuni@max Maximum evaluated width
model WD Width-to-depth ratio
by Burial depth WT Pipeline wall thickness
C(,-) Copula distribution function X Fitted observations for thiepredictors
c(-,") Copula density function Xo Predictors to be evaluated
D Crater’s depth
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Appendix A. Dataset

Table A.12 shows the processed records from each dataset in Fig. 5. This table includes the
corresponding ID from the review in Ramirez-Camacho et al. (2017) and the initial source.

Table A.12: Records obtained from each dataset

Set ID Date Place D(in) t(m) P(bar)D*(m)W(m) WD REF
S1 4 0403/1965 Natchitoches, LA, 24 0.250 54.6 5.024 9.0 1.79(HSE, 2002; MHIDAS, 2007)
USA

S1 7 02031974 Monroe, LA, USA 30 0.438 56.0 7.326 9.1  1.24pHSE, 2002)

S1 8 13031974 Farmington, NM, 12 0.250 34.9 3.459 5.2 1.508HSE, 2002)

S1 9 21051974 kj/lz'roi\dian, MS, 6.6 0.071 21.1 1982 3.0 1.51@MHIDAS, 2007)

S1 10 09061974 gesﬁleton, VA, 30 0.312 505 2.776 11.0 3.96HSE, 2002)

S1 11 09081976 gir?might, LA, 20 0.250 54.1 3.872 7.6 1.968HSE, 2002)

S1 14 0411/1982 Efgson, IA,USA 20 0.281 57.7 3.272 15.0 4.588BAM, 2009; HSE, 2002)
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Table A.12: continued from previous page

Set ID Date Place

D(in) t(m)

P(bar) D*(m) W(m) WD REF

2%03/1984 Erlangen-
Eltersdorf, Ger-
many

2%11/1984 Jackson, LA, USA

2704/1985 Beaumont, KY,
USA

2102/1986 Lancaster, KY,
USA

0606/1990 Marionville, ON,
Canada

1307/1992 Potter, ON, Canada

2212/1993 Palaceknowe,
Moftat, Scotland

2303/1994 Edison, NJ, USA
2307/1994 Latchford, ON,
Canada
2907/1995 Rapid City, MB,
Canada
1304/1996 St. Norbert, MB,
Canada
19082000 Carlsbad, NM,
USA
2303/2003 Eaton, CO, USA
01052003 Pierce County,
WA, USA
3007/2004 Ghislenghien,
Belgium
2%08/2008 Pilot Grove, MO,
USA
04052009 Palm City, FL,
USA

2007/2011 Gillette, WY, USA

21112011 Batesville, MS,
USA

2806/2012 Buick, BC, Canada

0810/2013 Harper County,
OK, USA

2706/2014 East Godavari, AP,
India

1704/2015 Fresno, CA, USA

1003/1985 Ignace, ON,
Canada

1%01/1991 Cochrane, ON,
Canada

0812/1991 Cardinal, ON,
Canada

13032002 Iron County, MI,
USA

0202/2003 near Viola,
IL,USA

14092008 Appomattox, VA,
USA

1611/2011 Glouster, OH,
USA

0312/2011 Marengo County,
AL, USA
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2.51EHSE, 2002; MHIDAS, 2007)
3.53BMHIDAS, 2007; BAM, 2009)

8.23fHSE, 2000)
3.266HSE, 2000)

7.716TSB, 1997)
2.46¢HSE, 2000)
2.78(NTSB, 2003)

3.92BAM, 2009)
1.42QMHIDAS, 2007)

2.89@AM, 2009)
5.19@D0T, 2008)
1.698NTSB, 2013)

2.15fPHMSA, 2012¢)
9.81PHMSA, 2013b)

3.95{TSB, 2013b)
1.90PHMSA, 2013a)

2.07@Mishra & Wehrstedt, 2015)

2.418Exponent, 2015)
3.53HSE, 2002; BAM, 2009)

4.71HSE, 2002)

3.33@HSE, 2002)

1.00(DOT, 2002)

1.57@VIHIDAS, 2007; BAM, 2009)
2.45PHMSA, 2008)
1.978PHMSA, 2011b)

3.90PHMSA, 2011a)



S2

S2

S2

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S4

S4

S4

S4
S4

S4

75

78

80

46

50

60

61

62

63

64

65

79

20

22

58

73
87

90

Table A.12: continued from previous page

Set ID Date Place D(in) t(m) P(bar)D*(m)W(m) WD REF

1112/2012 Sissonville, WV, 20 0.281 64.1 4.300 10.9 2.53ANTSB, 2014)
USA

1710/2013 Fort McMurray, 36 0.465 92.0 5.000 15.0 3.000TSB, 2013a)
AB, Canada

23012014 Otterburne, MB, 30 0.370 63.3 3.000 12.5 4.16{TSB, 2014)
Canada

2202/1973 Austin, TX, USA 10.8 0.373 36.9 1.205 3.1  2.53(HSE, 2002)

1312/2003 Toledo, WA, USA 26 0.281 35.0 5.708 15.4 2.69@HInt Dossier, 2005)

3006/2005 Douglas County, 20 0.312 47.0 2856 6.1 2.13PHMSA, 2012b)
KS, USA

12092009 near Englehart, 36 0.400 68.7 2.933 6.1 2.080TSB, 2009)
ON, Canada

0%11/2009 Bushland, TX, 24 0.250 53.0 4.324 12.9 2.98@HMSA, 2009)
USA

09092010 San Bruno, CA, 30 0.375 25.9 3.410 7.9 2.31{NTSB, 2011)
USA

3(011/2010 Natchitoches 30 0.312 46.3 1.710 4.6 2.69(PHMSA, 2011d)
Parish, LA, USA

0812/2010 East Bernard, TX, 24 0.500 49.6 3.057 7.6 2.486PHMSA, 2011c)
USA

1902/2011 Beardmore, ON, 36 0.360 66.2 5.233 13.0 2.484TSB, 2011)
Canada

2911/2013 Houstonia, MO, 30 0.312 61.6 3.843 9.5 2.47PPHMSA, 2014)
USA

2(08/1985 Lowther, ON, 36 0.360 67.9 4.900 14.7 3.00(HSE, 2002)
Canada

02031986 Callander, ON, 36 0.360 62.6 4.000 12.0 3.00(HSE, 2002)
Canada

03052009 Rockville, IN, 24 0.312 54.6 2.833 85 3.00DOT, 2009)
USA

0606/2012 Laketon, TX, USA 26 0.250 47.4 1.667 5.0 3.00(PHMSA, 2012a)

1401/2015 Brandon, MS, 30 0.375 529 2.667 8.0 3.00(PHMSA, 2015b)
USA

0208/2015 Falfurrias, TX, 16 0.250 57.0 3.033 9.1 3.00(PHMSA, 2015a)
USA
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