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Chapter 1

Introduction

Graphs are the backbone of many modern applications in the fields of social networks

[1], fraud detection [2] recommendation engines [3], medicine [4], biology [5] or soci-

ology [6], just to cite a few of them. Due the increasing demand for managing and

analyzing graphs, many graph processing technologies have emerged, including graph

databases such as Neo4J [7], Amazon Neptune [8], Sparksee [9] or DGraph [10], graph

analytics frameworks such as Pregel [11], iGraph [12], or tools like GraphX [13], an

API build on top of a general cluster computing framework like Apache Spark [14].

In order to compare systems and to assist users into choosing the platform that bet-

ter suits their needs, several benchmarking efforts have been conducted on initiatives

such as LDBC Social Network Benchmark [15], Graphalytics [16], gMark [17], Graph

500 [18] or LUBM [19], among many others. Benchmarking graph processing sys-

tems is a complex task. Graphs from different domains have characteristics such as

degree distribution, node/edge types and properties, or community structure, that

affect the performance of the queries or of the analysis. This means that a query

or algorithm that performs well in a graph might have performance issues on others,

thus, benchmarks must put special care on selecting the datasets they will test the

systems on.

However, obtaining real graphs with the desired characteristics is really difficult, either

due to privacy concerns or because their holders are not willing to share them. Given

this situation, benchmarks usually opt to generate graphs synthetically in a way that

fits exactly the needs of the benchmark [11]. However, creating a synthetic graph

generator to produce realistic graphs at scale is a very time-consuming and error-

prone task, and no general frameworks exist for save developers from such burdens.

1



2 Chapter 1. Introduction

Additionally, different graph benchmarks accept graphs in different formats, making

it compulsory to convert the generated synthetic graphs to those supported one, with

all the inconvenience that this fact causes. Finally, we face the same problem if we

want to use real-life graphs as models for the graph generation process.

The project related to this thesis, DataSynth [20], has the objective of creating a

flexible and scalable graph data generation framework to let practitioners generate

synthetic property graphs with the desired characteristics, from structural to dimen-

sional. Additionally, it introduces an approach that has barely been considered, the

modeling of correlations between properties and the graph structure, by means of

a novel property-to-node matching algorithm that already yielded some promising

results.

Unfortunately, at the moment DataSynth does not have a convenient to use API,

where specifying a graph generation plan is currently really difficult. In addition, it

only outputs the generated graphs in a single format, so they need to be manually

translated if we want to use them as an input for different graph benchmarking tools.

The main contribution of this Masters thesis is providing DataSynth with a com-

prehensive domain specific language (DSL) to let users specify their data generation

needs in a convenient way. This meta-language, which we called Babel, when exe-

cuted is transformed into a lower level Intermediate Language (IL) that would be

used by DataSynth to schedule the execution of the generation process on a state-of-

the-art distributed map-reduce framework, such as Hadoop [21], Apache Spark [14]

or Apache Flink [22], generating the graph.

On the other hand, in order to solve the graph format issue, an application/library

named Gnormalizer was also created for extracting the structure of already existing

graphs, and outputting the graph on a given format. This makes it possible to convert

already existing graphs to a format that graph analytics tools can read, to obtain their

parameters for their use on imitating the input graph with DataSynth. It allows for

a simple integration with already existing graph benchmarking tools, converting the

graphs to the required format just after the graph generation.

The rest of the document is structured as it follows:

• In Chapter 2, we provide an overview of the related project, DataSynth [20],

and explain the way this Master thesis project integrates with it.
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• In Chapter 3, we introduce the User API used for describing graph generation

plans while providing the technical details of this metalanguage implementation.

• In Chapter 4, we talk about the Intermediate Language and explain the design

decisions we made for it, detailing its syntax an capabilities.

• In Chapter 5, the complimentary library used for transforming graphs between

formats and for extracting its structure is introduced.

• Finally, in Chapter 6 the conclusions are summarized and directions for future

research areas are given.





Chapter 2

Background

The project related to this thesis, DataSynth [20], is a framework for property graph

generation with customizable schemas and characteristics. This framework has the

main objective of assisting benchmark designers in generating property graphs effi-

ciently at scale, saving them from implementing their own generators.

This chapter provides an overview of the framework architecture, its requirements and

how this Master’s thesis components will integrate with it. In Section 2.1 we review

the different requirements a graph generator must fulfill, that is, what aspects of a

graph it must be able to mimic in order to be practical for real benchmarks. Section

2.2 provides an overview on how the graph generation process works in DataSynth

to meet such requirements. This has direct implications on how the DSL and IL

proposed in this thesis are designed.

The thesis contributions to the framework, which are the Domain Specific Lan-

guage (DSL), the Intermediate Language (IL) and the graph normalization library

(gnormalizer) and how they integrate with the project are going to be explained in

detail in their own chapters.

2.1 Graph generator requirements

In order to generate graphs for real benchmarks a graph generator needs to be capable

of reproducing several aspects of a real graph, including its schema, scale, structure

and properties’ value distributions, among other graph characteristics inherent in a

property graph generator. In this section we overview such requirements by means of

the running example shown in Figure 2.1, which represents a movie acting network.

5



6 Chapter 2. Background

Figure 2.1: Running example

2.1.1 Schema requirements

A generator should be flexible to adapt to a wide rage of domains, thus it should be

able to generate graphs with diverse schemas consisting of multiple node and edge

types and properties, including edge cardinalities. The most typical example is a

Social Network Graph [1][3], but one might also be interested in generating graphs

for other use cases, like a crypto-currency transactions graph [23] or bio-informatics

[5].

In our running example, there are two node types, Movie and Actor, and one edge

type, portrayed. Actor has the String properties name, gender and country,

and a Date one named birthDate. Movie has five properties: Director, title,

releaseDate, country and budgetInUSDollars. director, title and country

are Strings, releaseDate as a Date and budgetInUSDollars as a Numeric. The

portrayed edge type, which has only the String property characterName, has a

’many to many ’ cardinality between Actor and Movie.

2.1.2 Structure and Property/Structure correlations require-

ments

In order to generate graphs with realistic structural characteristics, the graph genera-

tor should be configurable with a set of graph structural properties, such as the graph

clustering coefficient, diameter, community distribution, etc. This is relevant because

graphs from different domains might have really diverse set of structural properties.

In addition, the generators must also take into consideration the correlations between

the properties and the graph structure.

For instance, in our running example there is a structural characteristic named

Dportrays that forces the portrays edge type to follow a power law. On the other
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hand, the connected Movie and Actor country should follow a joint probability dis-

tribution P ′
country(X, Y ), because Actors are more likely to film in their home country.

The resulting graph should have a community structure with communities of Actors

from the same country sharing the screen in movies from their home country.

2.1.3 Property Value Distribution requirements

The properties from the graph nodes and edges can follow a diverse set of prob-

ability distributions and correlations between them. In order to generate realistic

graphs, a generator must be as flexible as possible with this fact, allowing the user to

manually introduce their own property generators with their own set of distribution

probabilities.

An example of this is shown in the running example displayed in Figure 2.1, where

the Actor’s name has to be correlated with his/her gender and home country. On

the other hand, the portrayed characterName will follow a PcharacterName(X|Y,X)

distribution with a correlation with the connected Actor’s gender and country. In

addition, the distribution requirements also include property constraints, like the

Movie budgetInUsDollars being a positive number or the Actor birthDate being

before the releaseDate property on the movie he/she participates on.

2.1.4 Scale requirements

Different property graph benchmarks use different notions of scale, like the number of

nodes, of edges, a combination of both or even the graph size on disk. For instance,

Graph500 [18] is based on the number of nodes, LUBM [19] on the number of edges,

Graphalytics [16] on a combination of nodes and edges, and the LDBC Social Network

Benchmark [15] on the size of the generated graph. This means that a property graph

generation should be capable of adapting to all these means of specifying the graph

scale.

2.1.5 Other requirements

A generator should also support generating graphs at scale efficiently, so we can for

instance generate large realistic property graphs with similar or even larger sizes than

real life ones. The intention is also to support graph generation on distributed settings,

because generating or storing large graphs efficiently might not be possible on single
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node machines. Thus, the generation process should be adaptable to distributed

computing frameworks as Apache Spark [14] or Hadoop [21].

Finally, controlling a generator of this complexity while defining complex cross-

domain schemas is not trivial, and if we are not defining a good interface the chances

of this framework to be adopted will drop considerably. For solving this, in this thesis

we are creating and implementing a Domain Specific Language (DSL) for defining

the execution plans and the data schema of the graph to generate. This DSL, which

we named Babel, when compiled, generates an IL with all the information a prop-

erty graph generator needs to generate a realistic property graph at scale on existing

computing frameworks.

2.2 Datasynths’ Graph Generation Process

In this section we detail the DataSynth framework approach for generating property

graphs fulfilling the requirements introduced in Section 2.1. For doing this, we use the

Figure 2.2, which shows an overview of the DataSynth framework [20] architecture,

and we detail what happens on each step shown there.

Figure 2.2: DataSynth general approach [20].

First, the user describes the graph requirements on the DSL, including all the graph

structure, property, property/structure correlations, distributions and scale require-

ments. This DSL generates an Intermediate Language (IL) when compiled, that

describes how the resulting graph should look like and the necessary information to

generate it. This is the DSL and IL designed in this thesis.

The graph generation process starts by analyzing the schema described on the IL,

and it outputs a dependency graph with the tasks the generator needs to execute

in order to generate the graph. There are three types of tasks: Generate property
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(either node or edge property), Generate structure and Graph matching. These tasks

are fully composable and their execution is completely independent if there is no direct

dependency between them, so the back-end will be able to execute the independent

ones in parallel. The Generate property task relays on a Property Generator (PG) for

completing its mission, and the Generate structure does the same using a Structure

Generator (SG).

Following the workflow described on the dependency graph, the generator first cre-

ates the instances of each node type independently with their own set of properties.

Secondly the graph structure is generated following the degree distributions specified

by the user in the DSL and present later in the IL. As a third step, the edges and

the nodes are matched following the previously generated structure guided by the

Property/Structure correlations defined by the user. Finally, the edge properties are

generated considering the connected nodes properties and the user joint probability

distributions.

In Section 2.2.1 we are detailing the storage structure supporting this graph genera-

tion process on a distributed setting, Section 2.2.2 overviews the generators used for

generating the properties for all the graph nodes and edges, Section 2.2.3 provides

detail on the graph structure generators, Section 2.2.4 talks about the property gen-

eration tasks, Section 2.2.5 describes to graph generation task and the Section 2.2.6

does the same for the graph matching ones.

2.2.1 Generator Data Model

One of the biggest challenges of DataSynth is making it as much scalable as possible,

even relaying on multiple hosts for running the different generation tasks. For accom-

plishing this objective DataSynth uses a distributed data storage with two types of

tables, Property Tables (PT s) and Edge Tables (ET s). PT s are used for storing the

generated graph elements properties, and there is one per node and edge property,

and it has just two columns, one for the node or edge identifier and another for the

generated value. The ET s are being used for storing the graph edges without any of

their properties, and there is a table of this kind per edge type, and the table will had

three identifiers, the one from the edge and the one from the two connected nodes.

For instance, in our running example, a PT is created for the Actor’s name, gender,

country and birthDate, for the Movie’s director, title, releaseDate, country
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and budgetInUSDollars, and for Portrays’s characterName. Additionally, we would

have a single ET with the identifiers of each edge connected Actor and Movie and

the identifier from the edge itself.

2.2.2 Property Generators (PGs)

The Property Generators (PGs) have the responsibility of generating a property for

a node or for an edge. PGs are defined using the DSL and specify how properties are

generated. The overall approach intends them to be pluggable and composable, and

we also intend them to be usable in a distributed setting with reproducible results.

In the DSL chapter Section 3.2.1 we show how PGs are defined in Babel.

In the way DataSynth is implemented a PG only needs to implement the method

with signature ”def run(id: Long, r: (id) => Long, ...): T” per each prop-

erty. This method generates the property values for a given node or edge instance.

The parameter ”id” represents the instance of the node or the edge for which we are

generating the property. The parameter ”r” corresponds to a deterministic hashing

function that generates a random number using the provided ”id”. Additionally,

the PGs ”run” method might also accept more parameter if we need to specify a

correlation between property values.

Thanks to the fact that the function parameters are only the id and a deterministic

function with the same id as input, we can recreate any property value in place just

by knowing the id, the hashing function and its generator. Additionally, if the ”run”

method is implemented in a deterministic and pure way, we are able to completely

parallelize the generation tasks, even if we are working in a distributed setting.

The ”run” method is flexible enough to generate the properties for our running ex-

ample. For instance, if we want to generate the Actor’s gender and country and

for the Movie’s director we would use a generator with a ”run” method with the

following signature: def run(id: Long, r: (id) => Long): String. An exam-

ple generator for a property correlated with another, like Actor’s name, which de-

pends on his/her own gender and country, has the following ”run” function sig-

nature: def run(id: Long, r: (id) => String, gender: String, country:

String): String. In Section 3.2 we detail this type of function would be imple-

mented if we use the DSL.
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2.2.3 Structure Generators (SGs)

The SGs work in a really similar way as the PGs, but have the method with function

signature ”def run(n: Long): ET”, which generates an ET with size n (number

of edges). In addition, in case we want to generate the ET with a specific quantity

of edges, the generator must implement the following helper function that returns the

required input number of nodes for the ”run” method: ” def getNumNodes(numEdges:

Long): Long”

In the API chapter Section 3.2.4 we are going to show how we define the SGs in the

DSL.

2.2.4 Generate Property Tasks

The Generate Property task type has the objective of generating the properties for

the graph nodes and edges, and that will be done calling an associated PG. Each

call to the associated PGs ”run” method will only generate a property, so we will

need to call the PG as many times as the quantity of properties to generate with

the corresponding parameters. As explained in Section 2.2.2 we can perform the calls

in a parallel, even if the properties are correlated, thanks to the fact that we can

regenerate the dependent properties in place using the corresponding generator.

2.2.5 Generate Structure Tasks

The SGs have the main responsibility of generating the graph structure consider-

ing the structure distributions specified by the user in the DSL. The SGs, when

called, return an ET with all the edges we require from an edge type. At this point

thought, the edges properties will still not be considered, since they are generated

after matching the node identifiers with the graph structure in the Graph Matching

step.

2.2.6 Graph Matching Tasks

Once the graph structure and the node properties are generated, we need to match

the generated nodes with the graph structure in such way that the joint property-

structure probability distributions P (X, Y ) defined by the user are preserved. This

distribution represents the probability of picking a random edge of the graph with

values X and Y on its connected node pair. If there is no correlation at all between
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the edge type and a property, the matching is done randomly. For specific details on

how this process works, please refer to [20].

Once the matching is done, the generator calls the PG task(s) to generate the missing

edge properties, which can take into account the properties of the connected nodes

by means of their identifiers and the corresponding PGs.
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Babel: A domain specific language

for graph generation

Providing an user-friendly API is really important in order to simplify the usage of

the framework, decreasing the development time, so the user is capable of generating

complex graph structures easily.

The API is the bridge between the user and DataSynth and a lot of effort is put

in its completeness. We can describe a rich set of graphs with it, implementing a

diverse set of properties and distributions, being as much understandable, expressive

and unambiguous as possible.

As a main requirement, the API needs to be expressive enough to be able to express

all the graph generation requirements we previously described in Section 2.1. Addi-

tionally, as a non-functional requirement, we have considered that it would be really

important for the framework adoption if the API is Integrated Development Envi-

ronment (IDE) compatible, so developers are capable to use their own development

tools, with all the amenities and help they provide, for defining the graph generation

plans.

For implementing the API we have created a Domain Specific Language (DSL) for

representing property graphs. This DSL is written on top of Scala [36] using Macro

Annotations [37] for enriching the user source code at compile time. Using this

technologies we reduce the amount of code required for defining a graph structure

considerably, furthermore, these technologies are supported by the major IDE tools

and editors, such as Emacs [38], Visual Studio Code [39], Eclipse [40] and IntelliJ

13
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IDEA [41]. We choose Scala because it is a programming language specially intended

for writing DSLs [42][43][44], and the macro annotations because they are a state-of-

the-art source code enrichment technique in Scala. Additionally, the resulting DSL

syntax fitted perfectly our expectations. On the other hand, the graph normalization

library that will be presented in Chapter 5 is also using the same programming lan-

guage, and it is the reference language in most distributed computing frameworks,

such as the Akka toolkit [45] or Apache Spark [14].

This chapter has the objective of describing how the user can define all the process

required for generating the Intermediate Language (IL) that is then used as input to

DataSynth. In Section 3.1 we are describing in detail how the properties are defined

for the graph edges and nodes, Section 3.2 shows how the generators are defined and

Section 3.3 overviews how the user can describe the graph generation plans.

For this chapter we use the movie acting network running example shown in the

Figure 2.1 from Chapter 2.

3.1 Graph Properties Definition

Each graph is different, and each one of them has different properties on the nodes

and/or in the edges. In order to support graph generation of a diverse set of domains,

the schema of nodes and edges are defined as classes, with each class with its own

sets of properties. Every graph is formed by a set of nodes and edges with their own

set of properties, including an identification one that is used for distinguishing them

uniquely.

In this section we synthesize how to describe the nodes and edges properties in the

DSL. In Section 3.1.1 we are detailing the programming language types that can be

used in the DSL for defining the individual graph node or edge properties, Section

3.1.2 shows how we can define custom types in Babel, Section 3.1.3 details how to

model a node type properties and Section 3.1.4 does the same for the edge ones.
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3.1.1 Supported Primitive Property Types

The API supports any of the following native primitive types:

• Character types: Char

• String types: String

• Date types: LocalDate

• Timestamp types: Instant, OffsetDateTime and ZonedDateTime

• Duration types: Duration

• Interval types: Interval

• Integer Number types: Byte, Short, Int, Long and BigInt

• Decimal Number types: Float, Double and BigDecimal

All these types, once they are serialized to the IL, respect the same constraints as

in the Scala programming language. This means that for instance a Scala Int is

represented in the IL as a 32-bit signed Integer number. In Chapter 4 we detail in

depth how these types are being serialized to the IL.

If we want to represent an optional type, we use the Scala Option class and wrap

the primitive type inside it. For instance, if we want the gender property to be

nullable in the running example Actor, we represent the type as: Option[String].

Furthermore, enumerations and other Scala class objects may also be nested, as long

as all their parameters are from types supported by the framework.

3.1.2 Custom Primitive Types

There are several use cases where we may want to define a custom primitive type,

for being more concise and/or for simplifying the generators. For instance, it does

not make a lot of sense having empty ’Strings’ on the generated nodes and edges,

like on the running example Movie, where we definitively always want to have some

characters on its title, country and director.

For accomplishing this requirement, we take advantage of the Scala ’literal types ’ [46]

and ’implicit conversions ’ [47] features for defining them. For instance, if we want to
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define a NonEmptyString, we may implement in the DSL as in Source Code Snippet

3.1.

1 import babel.types._

2 import babel.types.primitives.constraints

3

4 val minLength: Int = 1

5 val minLenghtConstraint = constraints.Numeric.minLength(minLength)

6

7 type NonEmptyString = String.withMinLength(minLength)

Source Code Snippet 3.1: Example custom primitive type definition

It is worth of notice that implementing a custom type manually doesn’t offer a lot

of value right now in our current system, because we currently relay entirely on

the generator for controlling the value creation with the desired constraints. But,

if we invest time in the future for researching about automated generator creation,

this constraint based custom types can potentially be part of the implementation

foundations.

3.1.3 Node Property Model Definition

For defining a node type we only need to define a Scala class annotated with the

macro annotation @node in front of it. With this annotation, the class attributes will

become the properties of the nodes we want to describe. In our running example we

would define the Actor and Movie node property models as in Source Code Snippet

3.8 and the Source Code Snippet 3.7.

1 @node class Actor(name: NonEmptyString,

2 gender: Option[NonEmptyString],

3 country: NonEmptyString,

4 birthDate: LocalDate)

Source Code Snippet 3.2: Example node property model definition for the running
example Actor node type
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1 @node class Movie(director: NonEmptyString,

2 title: NonEmptyString,

3 releaseDate: LocalDate,

4 country: NonEmptyString,

5 budgetInUSDollars: Option[Double])

Source Code Snippet 3.3: Example node property model definition for the running
example Movie node type

3.1.4 Edge Property Model Definition

Defining an edge type is similar, but we use the annotation @edge instead, with the

type of the source and target nodes as inputs for the annotation. In the same way as

with the @node annotation, the attributes of the class represent the model of the edges

we want to generate. The Source Code Snippet 3.4 shows an example implementation

for the portrayed edge property model from our running example.

1 @edge(source = Actor, target = Movie, cardinality = ManyToMany)

2 class Portrayed(characterName: String)

Source Code Snippet 3.4: Example edge property model definition for the portrayed

edge type from our running example

3.2 Generator Definition

In this section, we detail how we describe the generators in Babel, considering the

generation requirements we described in Section 2.1.

In Section 3.2.1 we detail how we define a PG in Babel, Section 3.2.2 shows how we

combine these PGs definition to form a node, Section 3.2.3 does the same for the

edges, Section 3.2.4 overviews the SG definition in the DSL and in Section 3.2.5 we

detail how we define a generator for the whole graph, joining the PGs and the SG

for forming a graph.
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3.2.1 Property Generators (PG)

For defining a property generator, we must accomplish all the requirements from

Section 2.2.2 from Chapter 2. This means that, for describing the graph, we must

define a generator for all the properties in every single node and edge model previ-

ously defined. Additionally, we must define a generator for joining the properties in

each graph node and edge. Finally, the generator ”run” method should accept the

generated node or edge ”id”, the hashing function in the ”r” parameter and a flexible

number of dependent values in ”dependencies”. Considering all these requirements,

we created the interface defined in Source Code Snippet 3.5 that all the property

generators need to extend.

1 trait PropertyGenerator[T] {

2 def run(id: Id, r: (ID) => T, dependencies: Any*): T

3 }

Source Code Snippet 3.5: Interface that needs to be extended by all the PGs.

For defining a property generator we only need to extend the PropertyGenerator[T]

interface defined in Source Code Snippet 3.5, and provide the implementation we want

including its probability distributions.

For instance, in our running example, the Actor has a birthDate property, and it is

really important for generating movie acting communities, because actors are more

likely to participate in movies with people from a similar age. An example property

generator for this property is displayed in the Source Code Snippet 3.6. In this case,

the uniform distribution is used for simplifying the example implementation.
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1 object ActorBirthDateGenerator extends PropertyGenerator[LocalDate] {

2

3 // This generator does not dependent on any other property,

4 // so we are ignoring the 'dependencies' parameter.

5 override def run(id: Id,

6 r: (Id) => Long,

7 dependencies: Any*): LocalDate =

8 LocalDateGenerator.nextLocalDate(

9 hash = r(id),

10 min = NOW().minusYears(90),

11 max = NOW(),

12 distribution = Distribution.Uniform

13 )

14 }

Source Code Snippet 3.6: Example definition of a graph node or edge property gen-
erator

3.2.2 Node Generators

For defining a node or an edge generator we need to implement a generator instance.

For doing that, we need to add the @generator macro annotation, extending the

previously generated model class. This annotation has the responsibility of checking

that all node properties have an attached generator, yielding a compiler error if we

miss any of them, and the IDE will show us which ones we still need to implement. On

the other hand, the macro will also automatically implement the serialization method

’intermediateLanguage()’ for serializing the generator to the IL. In Section 4.5 we

are detailing how the DSL source code expansion works, and how the generators will

be reflected in the IL.

It is worth of notice that on node or edge generators we do not need to implement

the ”run” method, since DataSynth will automatically perform the required calls for

all the generators with an associated node or edge property.
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The Source Code Snippet 3.8 shows an example implementation of the running ex-

ample Actor node generator, using the ActorBirthDateGenerator we defined at

the Source Code Snippet 3.6. Additionally, the Source Code Snippet 3.7 shows an

example Movie generator.

1 @generator

2 class MoviePropertiesGenerator extends Actor {

3

4 override val directorNameGenerator: Generator[NonEmptyString] =

5 new NameGenerator(

6 dependsOn = Seq(countryGenerator)

7 )

8

9 override val countryGenerator: Generator[NonEmptyString] =

10 new CountryGenerator()

11

12 override val releaseDate: Generator[LocalDate] =

13 new MovieReleaseDateGenerator()

14

15 override val titleGenerator: Generator[Int] =

16 new MovieTitleGenerator(

17 dependsOn = Seq(directorNameGenerator, countryGenerator)

18 )

19

20 override val budgetInUSDollarsGenerator: Generator[Double] =

21 new BudgetInUSDollarsGenerator(

22 dependsOn = Seq(releaseDateGenerator, countryGenerator)

23 )

24 }

Source Code Snippet 3.7: Example node generator for the running example Movie

nodes properties
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1 @generator

2 class ActorPropertiesGenerator extends Actor {

3

4 override val nameGenerator: Generator[NonEmptyString] =

5 new NameGenerator(

6 dependsOn = Seq(genderGenerator, countryGenerator)

7 )

8

9 override val genderGenerator: Generator[Option[NonEmptyString]] =

10 new GenderGenerator()

11

12 override val countryGenerator: Generator[NonEmptyString] =

13 new CountryGenerator()

14

15 override val actorBirthDateGenerator: Generator[LocalDate] =

16 new ActorBirthDateGenerator()

17 }

Source Code Snippet 3.8: Example node generator for the running example Actor

nodes properties

3.2.3 Edge generators

Generating the edges properties is done in the same way as with the node generators

from Section 3.2.2, but extending the edge model class instead. The Source Code

Snippet 3.9 shows an example edge generator for the running example portrayed

edge model. The @generator macro will automatically enrich the class for forcing

us to implement all the generators for each of the edge properties, and it will also

automatically implement the method for serializing the edge generator to the IL.
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1 @generator

2 class PortrayedPropertiesGenerator extends Portrayed {

3

4 override val characterNameGenerator: Generator[NonEmptyString] =

5 new characterNameGenerator()

6 }

Source Code Snippet 3.9: Example edge generator for the running example portrayed
properties

3.2.4 Structure Generators (SGs)

Once we have implemented the node generators, we can define the graph structure

generator extending the StructureGenerator[T] interface shown in the Source Code

Snippet 3.10, that is based on the requirements from Section 2.2.3. In order to make

a simpler implementation, we can out-source the structure creation to an existing

graph generator, such as RMAT [48], saving us from the burdens of implementing the

graph structure generator manually.

1 trait GraphStructureGenerator[T] {

2 val run(n: Long): T

3 val getNumNodes(numEdges: Long): Long

4 }

Source Code Snippet 3.10: Interface that needs to be extended by all the SGs

3.2.5 Graph Generator

Once we have defined all our PGs and SGs we can generate the graph generator

itself that will bind all of them together. This generator will be used for pointing

to DataSynth the target elements of the different graph generation phases that we

detailed in the Section 2.2 from Chapter 2. The Source Code Snippet 3.12 shows the

interface that we need to implement for accomplishing this.
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1 trait GraphGenerator {

2 override val nodePropertyGenerators: PropertyGenerator[_]

3 override val edgePropertyGenerators: PropertyGenerator[_]

4 override val graphStructureGenerator: GraphStructureGenerator[_]

5 }

Source Code Snippet 3.11: Example graph generator

An example implementation is shown in Source Code Snippet 3.12 were we define our

running example graph generator. In this example we are referencing the PGs defined

in the Source Code Snippet 3.7, the Source Code Snippet 3.8 and the Source Code

Snippet 3.9, and a SG implementing the interface from the Source Code Snippet 3.10.

1 @generator

2 class MovieActingNetworkGenerator extends GraphGenerator {

3

4 override val nodePropertyGenerators =

5 Seq(

6 ActorPropertiesGenerator(),

7 MoviePropertiesGenerator()

8 )

9

10 override val edgePropertyGenerators =

11 Seq(PortrayedPropertiesGenerator())

12

13 override val graphStructureGenerator =

14 MovieActingNetworkStructureGenerator()

15 }

Source Code Snippet 3.12: Example graph generator
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3.3 Intermediate Language Generation

Once we have implemented the graph generators, we are able to define the execu-

tion plan, outputting the Intermediate Language we need to execute in any of the

framework back-ends.

For defining the plan execution, we only need to a use the Builder class Babel, then

we may use its API for defining how we want the graph to be generated and its

quantities.

The Source Code Snippet 3.13 shows a simple graph execution plan definition for

our running example. It uses the MovieActingNetworkGenerator defined at the

Source Code Snippet 3.4, outputting the Intermediate Language that will be used for

generating the graphs. In Chapter 4 we are going to provide detail about the IL, and

show example outputs the API is going to generate.

1 Babel

2 .builder()

3 .generate(MovieActingNetworkGenerator)

4 .build()

5 .intermediateLanguage()

Source Code Snippet 3.13: Example execution plan generator
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Intermediate Language

One of the goals of DataSynth is to be decoupled from the actual technology execut-

ing the data generation process, either if it is implemented on distributed computing

frameworks such as Apache Spark [14], Hadoop [21] or Apache Flink [22], or in single

node implementations. Unfortunately, implementation approaches may differ com-

pletely, using, for instance, different programming languages or even different pro-

gramming paradigms. A system implementing all the stack at once is really complex,

since it becomes a code monolith really difficult to program and maintain.

Creating an intermediate language representation enables us to decouple entirely the

DSL from the execution implementation, making the code more modular and easier

to maintain. Additionally, by doing this separation, anyone is capable of creating

their own front-end or back-end implementation without having to code everything,

only needing to stick to framework contracts. This strategy is broadly used on the

vast majority of the new state-of-the-art compilers, having the clearest examples on

the Bytecode in the JDK [24], or the IR in the LLVM compiler [25].

This chapter explains in detail the design of the framework Intermediate Language

(IL), including the technological decisions. Section 4.1 introduces the base of the

language syntax and how the language itself is structured, Section 4.2 explains the

type of fields we can use on the generated graph nodes or edges, Section 4.3 describes

how the graph structure models are defined, Section 4.4 describes the way of defining

a graph generator and overviews how the IL is generated from the DataSynth DSL

we described in Chapter 3.

25
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4.1 Language Syntax and Structure

In order to accelerate the back-end development, an already existing data commu-

nication language like JSON [26] is being used. In this way, development time is

minimized, given that almost every programming language has mature libraries for

handling this type of object notation [26]. On the other hand, most developers are

familiar with JSON, so they would be capable of understanding the base syntax eas-

ily, and they would have the possibility even to code the intermediate code directly,

at the cost of losing the type safety and the IDE auto-completion provided by the

DSL.

The intermediate language output is divided into modules, each one of them contain-

ing all the required information from a category that the back-end implementations

need to process.

The language contains the following modules, which are processed in order:

• GraphNodeAndEdgePropertyModels: Contains the structure definition of the

graph nodes and edges. For instance, all the Actor, Movie and portrayed

from the running example introduced in Figure 2.1 from Chapter 2 have its own

associated model. Each model will contain a list of the properties associated to

that node or edge, like the running example Actor, that has the name, gender,

country and birthDate properties.

• Generators: Contains the definition of a set of generators that, when exe-

cuted, will generate the graph node and edges properties following the models

described in the ”Property Models” section. As described in Chapter 2, every

single graph property will have its own generator, like the running example

Movie, that has a generator for each of its director, title, releaseDate,

country and budgetInUSDollars.

The Source Code Snippet 4.1 displays the base Intermediate Language structure. The

models defined in Section 4.3 belongs to the "graphNodeAndEdgePropertyModels"

field and the generators defined on Section 4.4 are placed inside the "generators".
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1 {

2 "graphNodeAndEdgePropertyModels": { /*.. Model definitions . */ },

3 "generators": { /*... Generator Definitions ..*/ }

4 }

Source Code Snippet 4.1: Structure of all the IL generation plan definitions

4.2 Type system

Data generation needs to adapt to the model independently from the implementation

platform, so we need to define the models in the intermediate language describing their

types and constraints. Any back-end implementation implementing this language

should adapt all the primitive types we are defining in this section to its own type

and library ecosystem, but, at the same time, forcing the constraints defined in the

Intermediate Language.

4.2.1 Primitive Types

The simplest atom of a programming language type system are the primitive types,

which represent a value. The combination of these values types can be used for

forming graph nodes or edges, which may represent any entity or relationship we

may think of. In the intermediate language we do not only consider the conventional

types, but also a set of nice-to-have types as part of the core type system, forcing

this metalanguage implementations to be more flexible and convenient to use. In

summary, the primitive types we have added are: Numeric Types, Identifier Types,

Time Types, Character String Types and the Enumeration types.

In Section 4.2.1.1 we are going to detail the Numeric types, Section 4.2.1.2 overviews

the identifier types, Section 4.2.1.3 the time types, Section 4.2.1.4 the Character

String types and Section 4.2.1.5 details the enumeration types.

4.2.1.1 Numeric types

Most traditional programming languages include a set of integer types which normally

are Byte (1 bytes), Short (2 bytes), Int (4 bytes), Long (8 bytes) and decimal number
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ones like Float (4 bytes) and Double (8 bytes) [27][28][29]. In all these cases the

numbers can be negative, but in some languages they also have their non-negative

counterparts, which are usually referred as ’unsigned number types’ [27][29]. There

are programming languages that also define number types with arbitrary precisions,

so developers can specify their required thresholds.

For these types we decided to follow an approach similar to the one used on the Ruby

[30] programming language, that abstrasts the numeric types to the user, so the user

only works directly with a single type, so she/he only needs to define the thresholds

and let the compiler decide the internal number representation [31][32]. In our case,

all numbers are represented with the Number type and the thresholds are defined using

constraints.

For the first version of the Intermediate Language we have implemented the following

numeric constraints:

• MinValue: Represents the minimum accepted value for the property.

• MaxValue: Represents the maximum accepted value for the property.

• NumberDecimals: If we want the numeric property to have decimals, we need

to set this value to set the precision we need.

For instance, a ’16-Byte unsigned integer ’, which would be represented on C + + as

an ’unsigned short’ [27], would be represented on the IL as on Source Code Snippet

4.2.

1 {

2 "exampleNumberField": {

3 "Type": "Number",

4 "Constraints": {

5 "MinValue": 0,

6 "MaxValue": 65535,

7 "MaxNumberDecimals": 0

8 }

9 }

10 }

Source Code Snippet 4.2: Example graph node or edge model number field definition
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4.2.1.2 Identifier Types

If we want to identify a generated graph node or edge uniquely from the rest, we

probably want an identifier specially designed for distributed environments settings

as the Universally Unique Identifier (UUID) [33].

This type of implementation cannot be simpler to define on the IL due to the fact

that it does not have any associated constraint because most of the times these types

are auto-generated, being the definition as simple as the one shown on the Source

Code Snippet 4.3.

1 {

2 "exampleIdentifier": {

3 "Type": "UUID"

4 }

5 }

Source Code Snippet 4.3: Example graph node or edge identifier property definition

4.2.1.3 Time types

Time types are not usually considered a primitive type in almost any language

[27][28][29][35], but we considered them to be primitive ones because we expect them

to be present on a lot of different use cases, like for instance, in our running example

of Figure 2.1, the Actor’s birthDate and the releaseDate from the Movies.

In order to avoid having problems with the time/date formats, the intermediate lan-

guage sticks to the international standard for time/dates ISO-8601 [34]. We also

included the value "now()" to represent the current time, so the generators won’t be

allowed to create elements in the future.

For the first version of the IL we included the following two types:

• Date: For representing the date, it will be represented as a date in ISO-8601,

for instance: "1905-01-01"

• Timestamp: For including the time of the day into the day. The format will be

like a timestamp in ISO-8601, such as: "2017-03-17T14:02:25.629".
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Both the Date and the Timestamp types share the following constraints:

• minTime: Minimum time in the ISO-8601 format for the property. For instance,

we may have either a "1905-01-01", "2017-03-17T14:02:25.629" or "now()"

for representing the current time.

• maxTime: Maximum time for the property in the ISO-8601 format. The same

formats as with the minTime constraint apply.

The Source Code Snippet 4.4 represents a Date model in the IL and the Source Code

Snippet 4.5 does the same for the Timestamp ones.

1 {

2 "exampleDateValue": {

3 "Type": "Date",

4 "Constraints": {

5 "minTime": "1905-01-01",

6 "maxTime": "now()",

7 }

8 }

9 }

Source Code Snippet 4.4: Example graph node or edge model Date property

1 {

2 "exampleTimestamp": {

3 "Type": "Timestamp",

4 "Constraints": {

5 "minTime": "2017-03-17T14:02:25.629",

6 "maxTime": "now()",

7 }

8 }

9 }

Source Code Snippet 4.5: Example graph node or edge Timestamp property
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4.2.1.4 Character String Types

Text data generation is really common and, with high probability, is going to be

required in most data generation tasks, so it is really important that the implemented

system supports this kind of data type. For defining all kinds of text the type String

is used.

In the first version of the IL we accept the following constraints for this type:

• minLength: Non negative Integer value for representing the mininum length

of the String property. For instance, if the value is 2 (and the maxLength is

arbitrary big) we would accept "abc" and "ab", but we will refuse "a" and "".

• maxLength: Non negative Integer value that works in the same way as minLength

but specifying the maximum length of the String property. For instance, if we

set it to 3 (and the minLength is 0), we would accept "", "a", "ab", "abc", but

we will refuse "abcd" property values.

• encoding: Represents the encoding of the String to generate, just in case we

need to generate special characters not available in the standard, at the moment

we only accept the values "UTF-8" and "UTF-16".

An example text property is displayed in Source Code Snippet 4.6, where we would

show the name of our running example Actor.

1 {

2 "name": {

3 "Type": "String",

4 "Constraints": {

5 "minLength": 1,

6 "maxLength": 80,

7 "encoding":"UTF-8"

8 }

9 }

10 }

Source Code Snippet 4.6: Example graph node or edge model Character String prop-
erty definition
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4.2.1.5 Enumeration Types

In case we want a parameter to be one of the given list of values, we may choose an

Enumeration type. An example implementation can be found at the Source Code

Snippet 4.7. This type will only have the acceptedValues constraint, that accepts a

list of the accepted values formatted as Strings.

1 {

2 "movieRating": {

3 "Type": "Enumeration",

4 "Constraints": {

5 "acceptedValues": [

6 "Outstanding",

7 "Good",

8 "Mixed",

9 "Negative",

10 "Horrible"

11 ]

12 }

13 }

14 }

Source Code Snippet 4.7: Example graph node or edge enumeration property defini-
tion

4.3 Model Definition

Once the type system is defined, we can start composing several of these fields for

describing the graph node or edge structure as required. For instance, we can create

a structure by nesting its parameters into a model object, indicating if a parameter

is required or unique, as it is shown on the Source Code Snippet 4.8. By default,

parameters can have duplicates and are required. Finally, the Intermediate language

also accepts working with collections of values. For doing that, we need to create the

’Collection’ type, and nest the required model inside it, as shown in Source Code

Snippet 4.9.
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1 {

2 "ExampleModelWithTwoProperties": {

3 "firstProperty": {

4 "Type": "UUID",

5 "isUnique": true

6 },

7 "secondProperty": {

8 "Type": "Number",

9 "Required": false,

10 "Constraints": {

11 "MinValue": 0,

12 "MaxValue": 104,

13 "MaxNumberDecimals": 0

14 }

15 }

16 }

17 }

Source Code Snippet 4.8: Example graph node or edge custom model overriding the
default uniqueness and optionality settings

1 {

2 "ExampleModelWithACollectionProperty": {

3 "collectionProperty": {

4 "Type": "Collection",

5 "Model": "Person",

6 "MaxNumberInstances": 14,

7 "AllowDuplicates": true

8 }

9 }

10 }

Source Code Snippet 4.9: Example graph node or edge model introducing the concept
of collections
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4.4 Graph Generators

Once the structure of the graph nodes and edges are present we can proceed defining

the generators for them. These generators, when executed, will create an instance

of the defined node or edge. Section 4.4.1 explains how the graph nodes and edges

model definitions are generated and the Section 4.4.2 shows how the graph structure

generation is defined.

4.4.1 Graph Property Generator

Defining a node or an edge generator in the Intermediate Language is a complex task

in some cases. So we opened the door for serializing a class generator directly into

the AST, the only requirement is that the generator class implements the contract

’PropertyGenerator[T]’ shown in Chapter 3 at the Source Code Snippet 3.5. The

Intermediate Language, once the compiled source code is pushed to a public access

web repository and the URL to access it will be referenced in the IL in the same way

as in the example Source Code Snippet 4.10.

1 {

2 "CodeBasedGeneratorExample": {

3 "type": "property-generator",

4 "generatorFor": "ActorGenerator",

5 "runtime": "JVM-8",

6 "language": "Scala-12",

7 "s3-bucket": "https://babel.s3-eu-west-1.amazonaws.com/",

8 "s3-file": "actor-generator.class"

9 }

Source Code Snippet 4.10: Example code-based generator definition on the Interme-
diate Language

4.4.2 Graph Structure Generator

The first option is to provide the target parameters we want to obtain in the final

graph and let the back-end implementation do the rest. In this case, the Intermediate

language representation would be formatted as the one on the Source Code Snippet

4.11.



Chapter 4. Intermediate Language 35

1 {

2 "GraphStructureGenerator": {

3 "type": "structure-generator",

4 "runtime": "JVM-8",

5 "language": "Scala-12",

6 "s3-bucket": "https://babel.s3-eu-west-1.amazonaws.com/",

7 "s3-file": "BTERGraphMovieActingNetworkGraph-generator.class"

8 }

Source Code Snippet 4.11: Example property graph based generator

Another option for generating a graph is using a sample graph, that, in the same

way as with the code based generators we described on the Section 4.4.1, needs to

be accessible to the public, so we need to ensure that none of the published sample

graph nodes or edges are confidential. The library described on the Chapter 5 would

be used for confidentializing it.

The Source Code Snippet 4.12 shows how sample graph based generators are defined

on the Intermediate Language.

1 {

2 "SampleGraphBasedGenerator": {

3 "type": "graph",

4 "format": "edge-list",

5 "s3-bucket": "https://babel.s3-eu-west-1.amazonaws.com/",

6 "s3-file": "example-graph.txt"

7 }

8 }

Source Code Snippet 4.12: Example Sample graph based generator
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4.5 Intermediate Language Generation using the

DSL

As it is mentioned in Chapter 3, the DSL is based on the Scala programming language

compile-time macro annotations. In this section we are providing detail on how the

DSL generates the IL. These macros enrich the source code written by the user as

a compilation phase, as shown in Figure 4.1, where the source code is expanded to

something that will be used for generating the IL.

Figure 4.1: Overall overview of compilation time phases when using the DSL compile
time macro annotations, outputting an executable JVM ByteCode

4.5.1 Generating the IL from the DSL

As described in Chapter 3, for a node and/or an edge property model we only need

to add @node in front of a Scala class if we want to define a node model, or a

@edge if we want to define an edge one. For instance, if an user wants to define

in the IL our running example Actor model displayed in the Source Code Snippet

3.8, it has to call the intermediateLanguage() method generated by the macro

annotation @node. For doing the generation, given the initial Actor class definition,

the macro annotation expands the code to the source code shown on the Source code

Snippet 4.13. When the user calls that intermediateLanguage() method, the IL

shown in the Source Code Snippet 4.14 will be generated. The output will be placed

inside the parent IL structure defined in Section 4.1, concretely as an element of the

"graphNodeAndEdgePropertyModels" Array. The generators, such as the one shown
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in the Source Code Snippet 4.10, are included as an element from the "generators"

section.

1 case class Actor(name: String,

2 gender: Option[String],

3 country: String,

4 birthDate: java.time.LocalDate)

5

6 object Actor extends ActorCompanion(isRequired = true)

7 object OptionalActor extends ActorCompanion(isRequired = false)

8

9 private sealed abstract class ActorCompanion

10 private (override val isRequired: Boolean)

11 // If it is an Edge, extends `EdgeDefinition` instead

12 extends NodeDefinition {

13

14 override val typeName: String = "Actor"

15 override val isRequired: Boolean = true

16

17 override def intermediateLanguage(): Json = {

18 import babel.types._

19 import io.circe._

20 import io.circe.syntax._

21

22 val objectTypesJson =

23 JsonObject.fromMap(typeMap.mapValues(_.asJson)).asJson

24

25 val objectPropertiesJson =

26 JsonObject.fromMap(

27 ListMap(

28 "type" -> "object".asJson,

29 "properties" -> objectTypesJson

30 )

31 ).asJson

32

33 JsonObject.fromMap(Map("Actor" -> objectPropertiesJson)).asJson
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34 }

35

36 override def toString: String = intermediateLanguage.spaces2

37

38 def typeMap: SortedMap[String, types.Type] = {

39 import babel.types._

40 ListMap[String, types.Type](

41 ("name", classOf[String]),

42 ("gender", Option(classOf[String])),

43 ("country", String),

44 ("birthDate", classOf[java.time.LocalDate])

45 )

46 }

47 }

Source Code Snippet 4.13: Output source code from the Source Code Snippet 3.8
after the macro annotation @node expansion compilation phase

1 {

2 "Actor" : {

3 "type" : "object",

4 "properties" : {

5 "name" : {

6 "typeName" : "Text",

7 "isRequired" : true,

8 "constraints" : [

9 {

10 "name" : "MinLength",

11 "value" : "0"

12 },

13 {

14 "name" : "Encoding",

15 "value" : "UTF-8"

16 }

17 ]

18 },
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19 "gender" : {

20 "typeName" : "Text",

21 "isRequired" : false,

22 "constraints" : [

23 {

24 "name" : "MinLength",

25 "value" : "0"

26 },

27 {

28 "name" : "MaxLength",

29 "value" : "60"

30 },

31 {

32 "name" : "Encoding",

33 "value" : "UTF-8"

34 }

35 ]

36 },

37 "country" : {

38 "typeName" : "Text",

39 "isRequired" : true,

40 "constraints" : [

41 {

42 "name" : "MinLength",

43 "value" : "0"

44 },

45 {

46 "name" : "Encoding",

47 "value" : "UTF-8"

48 }

49 ]

50 },

51 "birthDate" : {

52 "typeName" : "Date",

53 "isRequired" : true,

54 "constraints" : [
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55 {

56 "name" : "MinDate",

57 "value" : "1918-01-01"

58 },

59 {

60 "name" : "MaxDate",

61 "value" : "Now"

62 }

63 ]

64 }

65 }

66 }

67 }

Source Code Snippet 4.14: Output Intermediate Language from the Source Code
Snippet 4.13 model class serialization, containing all its types and constraints
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Gnormalizer: Graph normalization

framework

As part of this Master thesis, an open-source library was created for reading real

world graphs stored in different formats and to convert them into formats readable

by a rich set of graph benchmark frameworks, such as iGraph [12], GraphX [13] or

the one related to this project, DataSynth [20].

Pre-processing graphs in some of the most popular graph formats, such as the ”Edge

List”, yield an extra complexity. Some of the benchmarks require the edges to be

sorted by its source node first, and then by its target one. All of this is not as trivial as

it seams, because a lot of graphs do not fit into memory, and the results are required

to be sorted.

In order to optimize the performance, depending on the size of the input graph, the

library chooses automatically between two different graph loading techniques, an in-

memory and an out-of-core one. In addition, the framework is designed to take profit

of all the computer cores, being fully parallel.

This chapter describes how this library is designed and implemented. Section 5.1

shows an overview of how the library is implemented. Section 5.3 shows the out-of-

core algorithm, used for changing the format of arbitrary big graphs, that do not fully

fit in memory. If the graphs fit in memory, the in-memory approach shown in Section

5.2 is used instead. Section 5.4 shows the API of the library, either if its being used as

a standalone tool or as a Babel module. In Section 5.5 we evaluate the performance

41
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of the library using a set of benchmarks for both the in-memory and the out-of-core

loading techniques.

5.1 Framework Overview

This framework, that can be used either as a library or as an standalone application,

as we detail in Section 5.4, has a straightforward workflow. First, it receives an input

graph, in any of the supported formats, and after its execution is completed it outputs

a sorted graph in the desired format, as it is shown on the Figure 5.1.

Figure 5.1: Overview of the graph structure extractor framework (Gnormalizer)

As explained in Chapter 3, Babel includes this tool as a core part of the API’s

functionality, being the main usage workflow exemplified on the Figure 5.2. On this

case, Gnormalizer is used for converting an input graph into a format that a graph

processing library, such as iGraph [12], can understand, so it can obtain all the graph

statistics, adding them to the IL for its usage during the graph generation process.

On the other hand, we can also add the converted graph as part of the IL, so the

back-end may output a graph with its real structure but with synthetic node and

edge parameters.
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Figure 5.2: Workflow using Gnormalizer as a middle-ware between Babel and any
graph processing framework for obtaining its attributes, in order to incorporate them
to the Intermediate Language representation.

In the same way as Babel, the Scala [36] programming language was chosen as the

implementation language. The most important reasons are its native and simple in-

tegration with a rich set of JVM based distributed computing frameworks, including

Spark [14], Hadoop [21], and Flink [22]. In addition, Gnormalizer can be easily reused

from these frameworks for reading the synthetic graphs generated using DataSynth.

Finally, Scala is also faster than Java in the scenarios were an impure functional

programming approach is used [49][50]. This fact enables creating workflows without

an excessive effort similar to the one shown on the Figure 5.3, were the generated

graphs are automatically evaluated using multiple benchmarking frameworks, each

one of them having its own input format.

Figure 5.3: Workflow using Gnormalizer for translating automatically a justly gen-
erated graph into the format required for its benchmarking on multiple frameworks,
taking profit on its compatibility with JVM based technologies, such as Spark [14],
Flink [22] or Hadoop [21].
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5.2 Extracting graphs fitting in memory

The best case scenario is that where the input graph fits entirely in memory, so we do

not really need to use the hard drive for performing the graph processing, improving

the algorithm performance considerably, mainly because the access to memory is

orders of magnitude faster than the access to disk [52].

When the library reads a file, and, while it is processing each node from the input

graph, it automatically asks to a mapper, which we called NodeIndexMapper, for the

index assigned to the justly read node, generating a new index if it was not previously

indexed. This index, that will be an integer value between 0 to N-1, where N is the

number of nodes in the graph, corresponds to the output identifier for each graph

node. Doing this mapping will help with the sorting afterwards, because sorting using

integers is faster than with Strings, and if we want to output in a common format,

such as ”Edge List”, we don’t need the node properties anyway.

Figure 5.4: In-memory graph structure extraction approach overview

Every time an edge is read from the input graph and the index of its endpoints are

assigned using the Node Index Mapper, it is inserted in a TreeMap structure, using
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the edge source as the key, and a TreeList for all the target nodes associated with

the source. Doing this, the parsed edges are already stored in memory sorted, having

in both cases a computational complexity of log(n) [51].

Unfortunately, using this approach alone would not be scalable because the insertion

complexity is log(n), and if we store too many edges in the structure we are going to

start to be penalized by the increasing logarithmic complexities.

For solving this issue, the library uses edge buckets, choosing between with a helper

HashMap, reducing the tree searches to the minimum when running the library al-

gorithm. Each of the buckets is responsible of handling all the edges whose source

belongs to one of its nodes, being it possible to configure the number of owned nodes.

If the graph is not directed, we are currently treating the first endpoint we see for

doing the bucket assignation, that usually is done in order by the index.

As it is explained on Section 5.5.2, the default number of nodes per bucket is semi-

arbitrary set to 4,500 nodes. Changing this number may improve the performance

for some graphs and decrease it in others, as it will be shown on Section 5.5.

Once all the graph edges are placed into this graph structures, all of their edges are

serialized to an output file, in the provided graph format.

The whole workflow is summarized in Figure 5.4, showing an overview on how the

in-memory sorting algorithm works. If the graph is extremely small, (5Mb at most)

a simple Quick-sort algorithm is used, because on the Section 5.2 benchmarks we saw

a performance increase of about 15% for those scenarios.
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5.3 Extracting graphs not fitting in memory

Figure 5.5: Out-of-core graph structure extraction approach

When the graph does not fit entirely in memory, we need to use an alternative ap-

proach to the one defined on Section 5.2. Compared to the in-memory version, it

splits the graph file contents into different separate files stored in the Hard Disk

Drive, so the memory does not need to store simultaneously all the file content. This

implementation is based on the merge-sort algorithm [53].

This approach works in a similar way to the in-memory one, but it temporally places,

if required, the graph in separate files. When all the graph is extracted from the input

file and split between files, each of the generated files run individually the in-memory

algorithm in order, appending the output graph to the same file.

During all this process, the Node Index Mapper is kept entirely in memory, but only

stores the graph node unique identifiers and its assigned indexes, so the amount of

memory used is a small fraction in comparison to the total graph size. This is possible

because typically in real graphs the number of edges is much larger than the number

of nodes.

An overview on how this algorithm works, supposing that the optimizer chooses not

to bypass any intermediate storing to disk, is displayed on the Figure 5.5.
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5.4 Framework API

For using Gnormalizer we can either use it as a library or as an application. If we use

it as a library we only need to add it as a dependency, and then use its API directly.

This API is really simple, we only require to specify the input and output file locations

and call the execute() command. In addition, if we want to override the bucket size,

because as it is shown in Section 5.5 the bucket size affects performance, and it may

affect the performance differently depending of the type of the graph. A full usage

example of the API is shown in the Source Code Snippet 5.1, including an overload

of the used bucket size used by the inner algorithms to 3000. In the Source Code

Snippet 5.2 we show the second option, that is calling the Gnormalizer application

directly from the shell with the parameters "--input" (file), "--if" (input format),

"--output" (file) and "--of" (output format) specified. Optionally, we can override

the bucket size with the parameter "--bucketSize".

1 Gnormalizer

2 .inputFile("./input/connections.graph", GraphFormat.EdgeList)

3 .outputFile("./output/connections.graph", GraphFormat.EdgeList)

4 .execute(bucketSize = 3000)

Source Code Snippet 5.1: Example usage of the Gnormalizer as a library

1 $ gnormalizer \

2 --input ./input/connections.graph -if EdgeList \

3 --output ./output/connections.graph -of EdgeList \

4 --bucketSize 3000

Source Code Snippet 5.2: Example execution of Gnormalizer from the Shell

5.5 Experiments

A set of already existing graphs found on the Standford Graph Database (SNAP) [54]

were chosen as the project framework training graphs, each of them with different

sizes and structures.
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For doing the analysis we are executing a test suite against multiple different bucket

sizes, until the system crashes because an Exception is thrown, an execution takes

10 times more than the previous, or we reach the 100.000 bucket size. We execute the

test 4 times, the first one for warming up the JVM and the other three for checking

the performance. The results displayed across this section represents the average of

the 3 later executions.

With these benchmarks we evaluate the algorithm performance against multiple

bucket sizes, and determine the default bucket sizes values with them.

Table 5.1 shows he characteristics of the machine we used to run the experiments,

and in Table 5.2 we detail the software versions used for running the benchmarks.

Processor Intel I7-4960HQ - 4 cores @ 2,6 GHz

L1 cache 256 KB

L2 cache 1 MB

L3 cache 6 MB

Memory 8Gb 1600 MHz DDR3

Hard Disk
Crucial MX300 525GB 3D NAND SATA

M.2 (2280) Internal SSD - CT525MX300SSD4

Table 5.1: Technical characteristics of the computer used for running the benchmarks

Mac OS X Sierra - 10.12.6

Java Virtual Machine JDK 8 - 1.8.0 181

Scala 2.12.7

Gnormalizer library (Benchmarked library) 0.4

FS2 - Functional Streams 2 library 1.0.0

Cats-Effect (IO monad library) 1.0.0

Better Files (File handling library) 3.6.0

Table 5.2: Software and library versions used on the benchmark execution

5.5.1 In-memory algorithm Benchmark results

In this section, we are benchmarking the in-memory algorithm using the real-life

graphs shown in Table 5.3. In Section 5.5.1.1 we are running the in-memory algorithm
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on the ’EU email communication network’ graph, in Section 5.5.1.2 we are doing the

same for the ’Social Circles: Twitter’ graph and the ’Patent Citation Network’ is been

benchmarked in Section 5.5.1.3. Finally, in Section 5.5.1.4 we compare the results of

these benchmarks with another ones using the Quick-sort [61] algorithm instead.

EU Email

Communication

Network [55]

Social Circles:

Twitter [56]

Patent Citation

Network [57]

Size 1.5Mb 44.6Mb 280.5Mb

Number nodes 265,214 81,306 3,774,768

Number edges 420,045 1,768,149 16,518,948

Table 5.3: Small graphs used for benchmarking the in-memory algorithm

5.5.1.1 Benchmark results for the ’EU email communication network’

graph

For the ’EU email communication network’ graph the best processing time was when

each bucket owned 83,750 nodes, doing the whole processing on just 1049.21 millisec-

onds, processing 400,344.06 nodes per second in average. The Figure 5.6 shows the

results of the benchmarks when running the in-memory algorithm on the ”EU email

communication” network graph depending on the bucket size.

Figure 5.6: Average execution time to read and sort the 1.5Mb ’EU email communi-
cation’ graph (265,214 nodes and 420,045 edges) depending on the bucket size.
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5.5.1.2 Benchmark results for the ’Social Circles: Twitter’ graph

The library spent a minimum of 5.62 seconds for processing the ’Social Circles: Twit-

ter’ graph when the maximum bucket size was of 29,500 nodes, handling an average

of 314,617.26 edges per second. The Figure 5.7 shows the results of the benchmarks

when running the in-memory algorithm on the ”Social Circles: Twitter” network

graph depending on the bucket size. It is worth of notice that when the bucket size

is greater than 40,000 nodes, the processing time gets worse significantly fast, and in

Section 5.5.1.5 we are going to enumerate our theories about why this phenomenon

happens.

Figure 5.7: Average execution time to read and sort the 44.6Mb ’Social Circles:
Twitter’ graph (81,306 nodes and 1,768,149 edges) depending on the bucket size.

5.5.1.3 Benchmark results for the ’Patent citation’ graph

The minimum processing time for the patent citation graph processing was obtained

when the bucket size consisted of a maximum of 21,000 nodes, doing the whole exe-

cution on 24.33 seconds, handling 678,860.9 edges per second. The performance also

started to suffer an important degradation in a similar point point as with the ’Social

Circles: Twitter’ graph, but the degradation started when the maximum bucket size

was of 42,000 nodes. Figure 5.8 shows the results of the benchmarks when running

the in-memory algorithm on the ’Patent citation’ graph depending on the bucket size.
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Figure 5.8: Average execution time to read and sort the 280.5Mb ’Patent citation
network graph’ graph (3,774,768 nodes and 16,518,948 edges) depending on the bucket
size.

5.5.1.4 Comparing the results with the ones obtained when using the

Quick-Sort algorithm directly on the graphs

Since the graphs used in this section are relatively small, we tried running the Quick-

Sort algorithm directly on them. For the ’EU email communication network’ we were

capable of doing the processing on just 759.75 milliseconds, about a 27.6% faster. On

the other hand, we got a StackOverflowException when trying to sort the other

graphs using this algorithm, so this algorithm has a blocking limitation for graphs

exceeding a few MegaBytes, because it heavily relays on the Java Stack. If we

increase the Java Stack size overriding the parameters in the JVM , we start having

consistently much worse results once the size of the graph exceeded the size of the

computer cache.

5.5.1.5 Performance degradation when the bucket size is too big

Both the in-memory and the out-of-core algorithms experienced in our benchmarks

a significant performance degradation once the bucket size reaches a certain point,

that varies depending on the graph, but it appears to be stabilized at around 8,000

nodes in big graphs. This case can be observed in our test graph benchmarks from

Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11.
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We have several theories about the root cause, but we think it is highly probable that

this is caused because of the cache size. If the bucket size is too big we may arrive

to a point were the buckets do not fit into it, so the algorithm will run in a smaller

performance cache level, or even in the RAM memory, which is significantly slower.

This assumptions gains weight because Gnormalizer is highly parallel and it divides

the whole graph between all the available threads, and, since the real-world graph

are usually sorted, every thread will have a subsection of a ’sorted’ graph that will

use continuously the same buckets until the source node changes. Since the bucket

size is too big, not all of the threads buckets fit into the cache, making the graph

normalization significantly slower.

5.5.2 Out-of-core algorithm Benchmark results

In this section we are detailing the results of the benchmarks done using the out-

of-core algorithm. For doing this, we used the graphs shown in Table 5.4, and we

executed a suite of test with different bucket sizes, with 250 node increments, until

a JavaHeapException stopped the benchmark execution. Section 5.5.2.1 shows the

results of the out-of-core algorithm when using the ’Google+’ graph, the Section

5.5.2.2 does the same for the ’Amazon reviews’ one and the results from the ’Friendster

social network and ground-truth communities’ graph are shown in Section 5.5.2.3.

Finally, the Section 5.5.2.4 explains how we selected the default bucket size parameters

for the library using the results from these benchmarks.

Google+ [58]

Amazon

Reviews

[59]

Friendster social

network and ground-truth

communities [60]

Size 1.34Gb 11.02Gb 32.36Gb

Number nodes 107,614 9,084,722 65,608,366

Number edges 13,673,453 34,686,770 1,806,067,135

Table 5.4: Big graphs used for benchmarking the out-of-core algorithm

5.5.2.1 Benchmark results for the ’Google+’ graph

On the the ’Google+’ benchmark, the best result was obtained when the bucket size

consisted of a maximum of 4,250 nodes, in this case the total processing time was of

121.244 seconds, processing in average 112,776.33 edges per second. The Figure 5.9

shows the performance distribution depending on the selected bucket size.
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In spite this graph fits entirely into memory, we benchmarked it using the out-of-core

algorithm for checking if graph size affected the performance significantly, due to the

shared Node Index Mapper. The experiments shown that doing the conversion of the

graph ’in-memory’ was only a 26.69% faster, if we consider the number of processed

edges per second.

Figure 5.9: Average execution time to read and sort the 1.34Gb Google+ graph
(107,614 nodes and 13,673,453 edges) depending on the bucket size.

5.5.2.2 Benchmark results for the ’Amazon reviews’ graph

On the the ’Amazon reviews’ benchmark, the best result was obtained when the

bucket size consisted of a maximum of 3,000 Nodes, in this case the total processing

time was of 1,164.94 seconds, processing in average 29,775.58 edges per second.

Figure 5.10: Average execution time to read and sort the 11.02Gb Amazon Reviews
graph (9,084,722 nodes and 34,686,770 edges) depending on the bucket size.
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5.5.2.3 Benchmark results for the ’Friendster social network and ground-

truth communities’ graph

For the ’Friendster social network and ground-truth communities’ graph, the best

results were obtained when having a bucket size of 4,750 nodes, spending 20,236.8

seconds for the whole conversion, processing an average of 89,246.68 edges per second.

Figure 5.11: Average execution time to read and sort the 32.36Gb Friendster graph
(65,608,366 nodes and 1,806,067,135 edges) depending on the bucket size.

5.5.2.4 Picking a default bucket size using the results

In all the out-of-core benchmarks the performance curve were really similar when

running the benchmarks across different bucket sizes, showing in all the cases that

an optimal performance was obtained when choosing a bucket size between 3,000 and

8,000 nodes. In Section 5.5.1.5 we detail our theories about the root cause of the

performance degradation happening once the bucket size exceeds the 8,000 nodes.

On the other hand, If we consider the average number of processed edges per second

as the benchmark target, we can see that the performance difference between the

graphs is evident. We have a hint that this is caused by the graph structure itself

and not because of its size, because the processing performance of the 32.36Gb graph

was comparatively three times faster than the 11.02Gb one.
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Considering that the performance distribution between bucket sizes was considerably

consistent in all the tested cases, and the problem of selecting a wrongly sized bucket

size, we defaulted the bucket size for Gnormalizer semi-arbitrarily to a maximum of

4.500 nodes, but we let, as shown in Section 5.4, overload the bucket size depending

on the type of graph we have.
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Conclusions

The work in this master thesis has the main objective to design and implement a

comprehensive and flexible system for generating synthetic graphs. This was ac-

complished by providing an implementation independent Domain Specific Language

(DSL). This metalanguage, when compiled, generates an Intermediate Language

(IL) representation that can be executed by any supported generator, in our case

DataSynth, outputting a synthetic graph with the desired nodes and edges proper-

ties and cardinalities.

In order to favor the platform adoption and to enable implementations without using

the DSL, the IL is design to be as human readable as possible. This metalanguage

implements, as part of its core functionality, the main character and numeric primitive

types defined in most modern programming languages, adding to them more complex

types like date, time, duration and scheduling ones, just to cite a few of them.

Both the DSL and the IL are flexible enough to represent many kinds of graphs

generation plans we may think on, including, if it is required, custom code in our

desired programming language. This code would be serialized and included as part

of the IL, so it can be used during the graph generation.

As a secondary thesis output, a library named Gnormalizer was designed and imple-

mented for parsing and converting real and/or synthetic graphs to different graphs

formats. This tool allows converting real or synthetic graphs to the formats of third-

party graph processing frameworks and benchmarks accept.
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Some benchmarking frameworks require graph formats where the input graph is

sorted. Additionally, real world or synthetic graphs may be of arbitrary big sizes,

so the library is capable of handling graphs that do not fit in memory. This added

the requirement to the library of being capable of sorting in an out-of-core scenario.

Using the library as a research sandbox, a parallel streaming out-of-core algorithm

was developed for performing the graph conversions, yielding promising results such

as been able to perform the format conversion, including the sorting of a 1.34Gb

graph in 122.84 seconds, a 11.02Gb graph in 1,164.94 seconds and a 32.36Gb one in

20,236.80 seconds.

6.1 Future work

During this thesis the foundations of a generic graph generation system have been

set, but it still needs to be integrated with DataSynth and potentially with another

third-party graph processing frameworks. Once this integration is done, we would

automatically evaluate the graphs as soon as they are generated, using any third-

party graph processing framework or benchmark.

Another research line is related with Gnormalizer and its out-of-core streaming fully

parallel approach when sorting the input graphs. The investigation done in this

thesis about this topic was really superficial, due to time and scope constraints, but

its results were promising enough for consider doing more research on this topic.

Further investigation may provide a better approach for sorting files that do not fit

entirely into the memory, when traditional sorting algorithm do not take profit of all

the resources provided by the computer.

Also in the DSL, we may start a research line on automating the creation of node or

edge property generators. These generators, would be automatically generated from

the type constraints specified by means of the DSL.

In order to increase the utility of the DSL, it would also be really interesting to

convert it to a synthetic graph generator orchestrator, being capable of handling

generation plans on distributing computing environments, using some SAAS on-line

platform, such as Azure [62] or AWS [63].
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Finally, on the longer run, we would be able to improve significantly the feasibil-

ity of synthetic graphs, thanks to the usage of recursive graph generation pipelines

for training the generation algorithms using Artificial Intelligence [64][65] and Deep

Neural Network [66] approaches.
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[4] BARABÁSI, Albert-László; GULBAHCE, Natali; LOSCALZO, Joseph. Network

medicine: a network-based approach to human disease. Nature reviews genetics,

2011, vol. 12, no 1, p. 56.

[5] BARABASI, Albert-Laszlo; OLTVAI, Zoltan N. Network biology: understanding

the cell’s functional organization. Nature reviews genetics, 2004, vol. 5, no 2, p.

101.

[6] OTTE, Evelien; ROUSSEAU, Ronald. Social network analysis: a powerful strat-

egy, also for the information sciences. Journal of information Science, 2002, vol.

28, no 6, p. 441-453.

[7] Neo4J graph database. (n,d.) Retrieved June 6, 2018, from: https://neo4j.

com/

[8] AWS Neptune graph database. (n,d.) Retrieved June 6, 2018, from: https:

//aws.amazon.com/neptune/

61

http://journals.sagepub.com/doi/abs/10.1177/016555150202800601
http://journals.sagepub.com/doi/abs/10.1177/016555150202800601
http://journals.sagepub.com/doi/abs/10.1177/016555150202800601
https://dl.acm.org/citation.cfm?id=956831
https://dl.acm.org/citation.cfm?id=956831
https://dl.acm.org/citation.cfm?id=956831
http://wwwconference.org/www2008/papers/pdf/p1041-debnath.pdf
http://wwwconference.org/www2008/papers/pdf/p1041-debnath.pdf
http://wwwconference.org/www2008/papers/pdf/p1041-debnath.pdf
http://wwwconference.org/www2008/papers/pdf/p1041-debnath.pdf
https://www.nature.com/articles/nrg2918
https://www.nature.com/articles/nrg2918
https://www.nature.com/articles/nrg2918
http://home.himolde.no/~molka/in765/NetworkBio_Nature-Rev-Genetics-2004.pdf
http://home.himolde.no/~molka/in765/NetworkBio_Nature-Rev-Genetics-2004.pdf
http://home.himolde.no/~molka/in765/NetworkBio_Nature-Rev-Genetics-2004.pdf
http://journals.sagepub.com/doi/abs/10.1177/016555150202800601
http://journals.sagepub.com/doi/abs/10.1177/016555150202800601
http://journals.sagepub.com/doi/abs/10.1177/016555150202800601
https://neo4j.com/
https://neo4j.com/
https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/


[9] Sparksee graph database. (n,d.) Retrieved June 6, 2018, from: http://www.

sparsity-technologies.com/

[10] Dgraph graph database. (n,d.) Retrieved June 6, 2018, from: https://dgraph.

io/

[11] MALEWICZ, Grzegorz, et al. Pregel: a system for large-scale graph process-

ing. En Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data. ACM, 2010. p. 135-146.

[12] iGraph - Network Analysis Software. (n, d.) Retrieved June 6, 2018, from: http:

//igraph.org/

[13] GraphX, Apache Spark API for graphs and graph-parallel computation. (n, d.)

Retrieved June 6, 2018, from: https://spark.apache.org/graphx/

[14] Apache Spark, Unified Analytics Engine for Big Data. (n, d.) Retrieved June 6,

2018, from: https://spark.apache.org/

[15] LDBC Council: Social Network Benchmark. (n,d.) Retrieved June 6, 2018, from:

http://ldbcouncil.org/developer/snb

[16] LDBC Council: Graphalytics Open-source Graph Processing Benchmark Suite.

(n,d.) Retrieved June 6, 2018, from: https://graphalytics.org/

[17] G. Bagan, A. Bonifati, R. Ciucanu, G. H. . Fletcher, A. Lemay and N. Advokaat,

”gMark: Schema-Driven Generation of Graphs and Queries,” in IEEE Transac-

tions on Knowledge and Data Engineering, vol. 29, no. 4, pp. 856-869, April 1

2017.

[18] Graph 500, Large-scale graph benchmarks. (n,d.) Retrieved June 6, 2018, from:

http://graph500.org/

[19] GUO, Yuanbo; PAN, Zhengxiang; HEFLIN, Jeff. LUBM: A benchmark for OWL

knowledge base systems. Web Semantics: Science, Services and Agents on the

World Wide Web, 2005, vol. 3, no 2-3, p. 158-182.
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