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ABSTRACT

In variable interval irrigation, simply including soil salinity data in the soil salinity model is not valid for making predictions,
because changes in irrigation frequency must also be taken into account. This study on variable interval irrigation used
capacitance soil sensors simultaneously to obtain hourly measurements of bulk electrical conductivity (σb), soil temperature
(t) and soil water content (θ). Observations of σb were converted so that the electrical conductivity of the pore water (σp) could
be estimated as an indicator of soil salinity. Values of θ, t and σp were used to test a mathematical model for studying how σp
cross-correlates with t and θ to predict soil salinity at a given depth. These predictions were based on measurements of σp, t,
and θ at a shallow depth. As a result, prediction at shallow depth was successful after integrating intervention analysis and out-
lier detection into the seasonal autoregressive integrated moving average (ARIMA) model. We then used the (multiple-input/
one-output) transfer function models to logically predict soil salinity at the depths of interest. The model could also correctly
determine the effect of the irrigation event on soil salinity. Copyright © 2017 John Wiley & Sons, Ltd.
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RÉSUMÉ

Dans le cas d’une irrigation à intervalle variable, il ne suffit pas d’inclure des données de salinité dans un modèle prédictif, car
la fréquence des irrigations influe sur la salinité. Nous avons utilisé des capteurs capacitifs pour mesurer au pas de temps
horaire la conductivité électrique apparente (σb), la température du sol (t) et la teneur en eau du sol (θ). Les observations σ
de conductivité électrique ont été converties de façon à ce que la teneur en eau dans les pores (σp) puissent être estimées comme
indicateur de la salinité. Les valeurs de θ, t et σp ont été utilisés pour tester un modèle mathématique pour étudier comment σp
s’auto corrèle avec t et θ pour prédire la salinité du sol à une profondeur donnée. Ces prédictions sont basées sur des mesures de
σp, t et θ à faible profondeur. En conséquence, la prédiction à faible profondeur a réussi après une analyse intégrante et la dé-
tection des valeurs aberrantes dans un modèle de moyenne mobile saisonnière autorégressive intégrée (ARIMA). Nous avons
ensuite utilisé des modèles de fonction de transfert (plusieurs entrées, une seule sortie) pour prédire la salinité du sol aux
profondeurs d’intérêt. Le modèle a pu également déterminer correctement l’effet de l’évènement d’irrigation sur la salinité
du sol. Copyright © 2017 John Wiley & Sons, Ltd.
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INTRODUCTION

Salinity is shown to have a large impact on plants by
reducing their ability to take up water. This creates an
imbalance of plant nutrients, which ultimately leads to the
degradation of land. Munns (2002) demonstrated that when
salts accumulate excessively in older leaves, premature
senescence occurs, causing a reduction in the leaf area
available for photosynthesis and thus rendering the plant
less able to sustain growth.

Determining the electrical conductivity of soil pore water
(σp) conventionally requires extraction of the water from the
soil by suction or measurement of saturated paste conductiv-
ity, both of which are labour-intensive methods. Also, there
is always uncertainty as to whether all ions have been
collected in the extract sample (Hilhorst, 2000).

A more recent method for temporally and spatially
evaluating the σp is to convert the bulk electrical conductiv-
ity (σb) to σp by using methods, models and estimates such
as those described by Rhoades et al. (1990) or Mualem
and Friedman (1991).

SOIL SALINITY MEASUREMENT

New sensors have been developed to measure σb, such as
time-domain reflectometry (TDR) and frequency-domain
reflectometry (FDR).

Temperature and water content significantly affect the
accuracy of determining σp. Therefore, a precise real-time
measurement of σp depends on electrical conductivity
sensors being able to simultaneously measure three
variables: water content (θ), soil temperature (t) and σb.

The σb of the soil system is determined by estimating the
conductance pathways in the system, namely: (i) solid–
liquid interphase; (ii) solid phase; (iii) liquid phase. In
agricultural practice, it is beneficial to recognize the level
of electrical conductivity of the liquid phase (σp) that is
contained in the soil pores, as it provides a sound indicator
of the solute concentration contained within the soil. A
strong linear correlation between the values of the dielectric
soil constant (εb) and σb in most soil types was discovered
by Malicki et al. (1994). This discovery was further
developed by Hilhorst (2000), whereby a successful
conversion of σb to σp was made possible by applying a
theoretical model that outlined the linear relationship
between σb and εb.

σp was estimated by Hilhorst (2000) using the equation

σp ¼ εpσb
εb � εσb¼0

(1)

where σp is the pore water electrical conductivity (dS m-1);
εp is the real portion of the soil pore water’s dielectric
permittivity (unitless); σb represents the bulk electrical

conductivity (dS m-1); εb is the real portion of the bulk soil’s
dielectric permittivity (unitless); εσb=0 is the real portion of
the soil’s dielectric permittivity when the bulk electrical
conductivity has a value of 0 (unitless). It should be noted
that εσb=0 is an offset of the linear relationship between εb
and σb. In the soils used for Hilhorst’s study (2000), εσb=0
depended on the soil type and it varied between 1.9 and
7.6. So, he recommended 4.1 as a generic offset.

Having simultaneous data on σp, t and θ enabled us to
properly build models that could precisely predict soil
salinity by taking into account the changes in θ and t.

Soil salinity movement models

In predicting solute transport between the land surface and
groundwater table, deterministic convection–dispersion
equations based on Fickian diffusion are convenient tools
for describing solute movement, as they allow a limited
number of field studies to be extracted to various soils, crops
and climates, as well as to differing tillage and water
management regimes (Genuchten Van, 1991).

However, questions have been raised in the literature as to
the utility of these equations when describing solute
transport in structured soils where there exist large
continuous voids, for example: natural inter-aggregate
pores, inter-pedal voids, earthworm tunnels and gopher
holes. The movements of solutes in these voids can be very
different from those that occur through materials that are
fairly homogeneous (Beven and Germann, 1982; White,
1985). Because most soils are heterogeneous, specific
methods are required for simulating heterogeneous field-
scale transport processes (Genuchten Van, 1991).

As a way of managing the heterogeneous nature of soil
and predicting the evolution of soil solutes, some experi-
menters prefer to adopt stochastic models instead of using
constant values to describe the possible future evolution of
soil solutes. These models assume that solute transport has
random variables, and each variable is assigned a discrete
value in accordance with a specified probability distribution.

The use of stochastic models has increased significantly
over the last decade. For example, they have been employed
in: artificial neural networks (ANNs) (Huang et al., 2010);
agronomic applications that model crop development
(Zhang et al., 2009; Fortin et al., 2010); and predicting crop
yields (Park et al., 2005; Green et al., 2007; Khazaei et al.,
2008). Zou et al. (2010) collected silt loam soil profile data
on a monthly basis from 2001 to 2006 and used them to
compare the back-propagation neural network (BPNN)
model and the autoregressive integrated moving average
(ARIMA) model. Their objective was to predict (i) the
average moisture content in the top 1-m profile by using
the moisture content measured at 0.60 m depth, and (ii)
the average salt content measured at various depths of the
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soil profile (0.10, 0.20 and 0.45 m). Mishra and Desai
(2005) used ARIMA and seasonal ARIMA models to
forecast droughts. Sarangi et al. (2006) used ANNs to model
root zone soil salinity and the salinity of subsurface drainage
effluent in the coastal clay soils of rice fields in Andhra
Pradesh, India. They found that drainage effluent salinity
could be predicted better by feeding the input values to the
ANNs after a time lag rather than by using the conceptual
SALTMOD model.

In irrigated agriculture, the ARIMA model has the
potential to predict soil salinity, in that it uses past observa-
tions as a means of predicting future patterns. Previous
models assumed a fixed spacing between irrigation events
and that therefore the ARIMA model could be applied
suitably. One example could be that of a farmer who
irrigates a field every 10 days with the expectation that the
field data set will provide an ARIMA model in which there
is a decrease in soil salinity on the tenth day. This is known
as a post-irrigation event. However, if the farmer decides to
apply variable interval irrigation and thus uses a spacing of
9 days between irrigation events, the ARIMA models will
not be capable of effective predictions in this case. In this
instance, the previously identified ARIMA model would
show a decrease in soil salinity after 10 days instead of after
9. Wei (1989) states that—in order to successfully apply an
ARIMA model to time series data sets with outliers—it is
necessary to incorporate intervention analysis models and
outlier detection.

Aljoumani et al. (2012) explained why the ARIMA
models cannot predict soil water content in cases of variable
interval irrigation. By including intervention analysis and
outlier detection in the ARIMA model, they were able to
predict the water content of the soil.

Outliers versus intervention variables

When considering the time series of soil salinity, soil
moisture and soil temperature, a key distinction is made
between outliers and intervention variables. If a situation
arises where a priori information relating to a special event
(in this case, an irrigation event) proves to cause possible
abnormal observations, the effect of this event should be
captured through intervention analysis. In this study, the
abnormal observations of the soil salinity caused by irriga-
tion events are captured through intervention analysis.

Conversely, if anomalies in the observations are repre-
sented without a priori information on their occurrence or
on the dynamic patterns of their effects (i.e. a precipitation
event), this represents an outlier. To predict soil salinity,
we incorporated variable interval irrigation into the ARIMA
model as a means of examining the effectiveness of the
irrigation event by capturing, with intervention analysis,
the abnormal observations of soil salinity time series caused

by irrigation events. For this to be possible, it was necessary
to perform two procedures. First, we detected and removed
the outliers, which therefore caused an upward trend in soil
salinity forecasts due to an absence of effect from the irriga-
tion events (outliers). Second, we assessed the intervention
effects of the irrigation event and included them in the
model, which thus resulted in a decrease of soil salinity at
the time of irrigation. In this second procedure, the weight
of the irrigation coefficient determined the extent of the
decrease. This complementary analysis provides an
advantage that can be attributed to the likelihood of having
a well-realized irrigation schedule (which is based on a short
duration of 1 day or even 1 h) combined with the knowledge
of its effect on the soil salinity. Therefore, the next irrigation
event will be determined at the point where the prediction
for soil salinity exceeds the plant’s tolerance to salts. For
example, to predict σp in a lettuce field, we determine the
time of irrigation when the predicted value of σp exceeds 2
dS m�1, even though the soil moisture value is at field
capacity. This is because lettuce crops are sensitive to
salinity.

Aljoumani et al. (2014) showed that it is important to
capture the effect of irrigation events on bulk electrical
conductivity and to then use the effect as an outlier for
improving the fitted model. For the same reasons explained
in those references, intervention analysis and outlier
detection should complement the ARIMA model when
modelling soil salinity in variable interval irrigation.

For the purpose of describing soil salinity fluctuations, in-
corporating the time series outlier and intervention analysis
into the ARIMA model provides two advantages. First, if
we employ intervention analysis results in the input series
that is represented by a simple pulse or step indicator func-
tion, this will indicate whether or not an irrigation event is
in fact present. This further improves the efficiency of irriga-
tion scheduling and its effect on soil salinity by including
the irrigation event’s effectiveness in the ARIMA model.
Outlier correction is employed primarily to modify the data
in a way that accepts the normality hypothesis of the
ARIMA model (Box et al., 1994).

The second advantage results from including the outlier
analysis in the ARIMA model. This provides more precision
from reducing the residual variance of the model.

Many studies have confirmed the effects of soil moisture
and temperature when estimating soil salinity. However,
McKenzie et al. (1989) and Slavich and Peterson (1990)
found that soil texture, θ and t all affect the calibration mea-
surements of electromagnetic (EM) induction when
predicting σb. Sarangi et al. (2006) found that soil salinity
correlates both with the content of soil water and with tem-
perature. However, we found no studies that developed
models for predicting soil salinity by taking into account fu-
ture changes in soil water content and soil temperature.
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This study seeks to fulfil the general objective of model-
ling soil salinity for predictive purposes while also consider-
ing future variations in soil water and soil temperature. The
specific objectives of this study are as follows:

• to study the autocorrelation as well as the partial corre-
lation functions of the estimated σp, θ and t, specifically
when they are measured at shallow depths; the cross-
correlation function between θ, σp, and t at 0.10 m
depth; the estimated σp at an interested depth
(0.10 m); and the average soil salinity in the top
0.60 m of the soil profile;

• to develop models for predicting the soil salinity at var-
ious greater depths by measuring σp, θ and t at a single
shallow depth;

• to employ outlier analysis and intervention analysis in
examining how irrigation events affect soil salinity.

MATERIALS AND METHODS

Hourly field observations of bulk electrical conductiv-
ity (σb), soil temperature (t), and soil water content (θ)

Commencing on 23 April 2010, the observations were car-
ried out over a period of 55 days in the Agricultural Park
of Baix Llobregat, which is situated 5 km south of Barce-
lona, Spain. The set-up comprised an experimental field area
on 275 m2 (55 × 5 m) of land with planted lettuce (Lactuca
sativa) which was irrigated by means of a furrow system.
Four irrigation events were applied, with each irrigation
dose set at 26 mm applied over a period of 20–26 min.
The site’s soil was fairly uniform, silty loam, and the bulk
density ranged between 1.4 and 1.5 g cm-3 as far down as
0.75 m of depth. The water table lay 4 m below the surface
of the soil. We measured the distributions of σb, t and θ
across the soil profile in the test furrow by using capacitance
soil moisture sensors (5TE, Decagon Devices, Inc., Pull-
man, Wash.), which were installed at depths of 0.10, 0.20,
0.35, 0.50 and 0.60 m below the surface of the soil. Then,
in order to convert σb to σp, we used the Hilhorst model
(2000). To define the models for predicting σp, we used: a
total of 1318 observations of estimated σp; measurements
of t and θ at a depth of 0.10 m; and the σp averages for the
upper 0.60 m. These were then validated by using an addi-
tional 659 observations. All the details about field observa-
tions and the data plot are described in Aljoumani et al.
(2012, 2014).

Model identification and forecast

The time series analysis of σp, t and θ was carried out in
three steps. The first involved applying the Box–Jenkins
method (Box et al., 1994) in order to identify an appropriate

univariate model for the time series of σp, t and θ at 0.10 m
depth. This was done using the seasonal ARIMA model:

p; d; qð Þ� P;D;Qð ÞS (2)

where p and q are the regular autoregressive and moving av-
erage orders; P and Q are the seasonal autoregressive and
moving average factors; d and D are the orders of differenc-
ing for the regular and seasonal part; and, finally, subindex S
represents the seasonal period, which in this study is 24 h.

In the second step, we included irrigation duration in the
model as an intervention analysis in order to evaluate its ef-
fects. Then, we conducted a search to establish whether or
not the univariate series contains any outliers. In the third
step, we modelled the linear system in order to identify the
appropriate transfer function. This was done by using, as in-
put, the time series of t and θ at a depth of 0.10 m, with the
outputs being the time series of σp at a depth of 0.10 m and
the average σp calculated for the top 0.60 m of soil.

Univariate time series analysis. For elucidating the
patterns of the σp, t and θ data at 0.10 m depth, and for find-
ing the average σp in the top 0.60 m depth of soil, we imple-
mented univariate seasonal (ARIMA) (p, d, q) × (P, D, Q) S

modelling techniques. Moreover, for the purpose of identi-
fying and fitting the ARIMA models, four phase approaches
were adopted, namely: model identification, model parame-
ter estimation, diagnostic checking, and forecasting. As part
of the autoregressive (AR) process, each value of a time se-
ries was dependent on the preceding value, in addition to a
random shock. The AR model for a centred time series with
order p can be defined as

X t ¼ φ1X t�1 þ φ2X t�2 þ…þ φpX t�p þ at

or

1� φ1B� φ2B
2 �…� φpB

p
� �

X t ¼ at (3)

where φjdenotes the jth AR parameter, at the Gaussian
white-noise error, and B the backshift operator in which
BpXt = Xt � p. The errors for the moving average (MA)
model are the average of the random errors for this period
and previously. We define the MA time series of order q
by means of

X t ¼ at þ θ1at�1 þ θ2at�2 þ ::þ θqat�q

or

X t ¼ 1þ θ1Bþ θ2B2 þ ::þ θqBq� �
at (4)

where θq is the qth MA parameter.
Identifying AR and MA models requires a stationary time

series. Although this implies that the variance and mean
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values are constant, some transformation is needed in order
to identify the model.

Successive differences of the data’s regular and seasonal
components were taken to ensure no trend in mean. The
required numbers of differences for the stationary time
series were denoted by d and D. Moreover, in applying the
logarithmic transformation that is usually used, no trend in
variance is obtained (Soebiyanto et al., 2010; Quinn, 1985;
Vandaele, 1983).

In any time series, Xt, the ARIMA (p, d, q) × (P, D, Q)S
ofXt is

φp Bð ÞΦP Bsð Þ 1� Bð Þd 1� Bsð ÞDX t

¼ θq Bð ÞΘQ Bsð Þat (5)

where φp(B) and θq(B) are the regular autoregressive and
moving average factors, and ΦP(B

s) and ΘQ(B
s) are the

seasonal autoregressive and moving average factors.
The autocorrelation function (ACF) and the partial auto-

correlation function (PACF) were used to identify time se-
ries models (McCleary and Hay, 1980; Pankratz, 1983;
Hoff, 1983). ACF measures the relation between Xt and
Xt + K, where K is the time lag. We used PACF in order to
take into account any dependence on intermediate elements
(i.e. those inside the lag) (Box et al., 1994; McDowall et al.,
1980; Wei, 1989).

The maximum likelihood method was chosen for this
study in order to estimate the model parameters. In addition,
by constructing the Wald test statistic, we were able to deter-
mine the significance of these parameters.

Diagnostic checking tests were used to ascertain whether
the residuals showed any autocorrelation at any lags. The as-
sumptions would be satisfied if the ACF and PACF of the
residuals were non-significant at all lags.

Intervention analysis and outlier detection. Outliers
in the σp, t and θ data refer to soil at 0.10 m depth and to
the average σp in the top 0.60 m. They were removed using
Grubbs’ test for detecting outliers (Grubbs, 1969):

Z ¼ =M � V=
SD

(6)

where Z is the test statistic, M the mean of the values, V the
value being tested, and SD the standard deviation of the
values. A total of 1318 observations of σp, t and θ were
available. Assuming an outlier probability of 5%, we set
the outlier test statistic at 4 (Grubbs, 1969). The values of
σp, t and θ that yielded test statistics greater than or equal
to 4 were eliminated from the data set. In order to properly
assess how precipitation and other observed irregularities
impacted the time series of σp, t and θ, two types of outliers
were considered: additive outliers (AO) and temporary
changes (TC). At the same time, level shift (LS) was used

as an intervention analysis to assess the impact of the irriga-
tion event on the time series of σp, t and θ. AO is a pulse that
affects the time series at one period only. TC is an event that
decays exponentially, according to a prespecified dampen-
ing factor. LS is an event that permanently affects the subse-
quent level of a series (Chen and Liu, 1993).

Let Zt denote the underlying time series process, which is
free of the impact of outliers and occurs prior to the irriga-
tion event; and let Xt denote the observed time series. We as-
sume that Zt follows the seasonal ARIMA (p, d, q) (P, D, Q)
S model φp(B)ΦP(B

s)(1 � B)d(1 � Bs)DZt = θq(B)ΘQ(B
s)at.

Based on these assumptions, the appropriate model for
assessing the impact of the control is

X t ¼ ∑
nr

r¼1
ωrS

LSð Þ
Tr

þ ∑
ni

i¼1
ωiP

TCð Þ
Ti

þ ∑
nj

j¼1
ωjP

AOð Þ
Tj

þ Zt

¼ ∑
nr

r¼1
ωrS

LSð Þ
Tr

þ ∑
ni

i¼1
ωiP

TCð Þ
Ti

þ ∑
nj

j¼1
ωjP

AOð Þ
Tj

þ θq Bð Þ ΘQ BS
� �

φp Bð ÞΦp BS
� �

1� Bð Þd 1� Bð ÞDat

(7)

where ωr is permanent change in the mean level following

the intervention (i.e. the irrigation event), and S LSð Þ
Tr

is a step
indicator at the time of irrigation Tr, where

S LSð Þ
Tr

0 t < Tr

1 t≥Tr

�
(8)

In this study, the level shift (LS) in the soil salinity time
series is produced by the irrigation events; and, since the
date of these events is known a priori, we were able to assess
how irrigation events affect soil salinity by completing the
ARIMA model with intervention analysis.

is the transitory change in the mean level following any

unusual observations (e.g. precipitation);P TCð Þ
Ti

and P AOð Þ
Tj

are

pulse indicators taken at unusual observation timesTiandTj,
respectively, where

P TCð Þ
Ti

0 t < Ti

1
1� δBð Þ

t ¼ Ti

8<: (9)

and

P AOð Þ
Tj

0 t≠Tj

1 t ¼ Tj

(
(10)

δis a dampening factor with the default value of 0.7 (Chen
and Liu, 1993).

The exploratory method of visualizing the outliers in time
series analyses has been well established in other fields, and
this seasonal trend decomposition (commonly known as

286 B. ALJOUMANI ET AL.

Copyright © 2017 John Wiley & Sons, Ltd. Irrig. and Drain. 67: 282–294 (2018)



‘STL’) uses locally weighted regression (loess) (Cleveland
et al., 1990; Hafen et al., 2009). The STL method is straight-
forward and flexible for specifying the amount of variation
in the seasonal components and trends of time series;
furthermore, it provides robust estimates without any distor-
tions resulting from transient outliers (Cleveland et al.,
1990). STL was utilized to model the 24 h prevalent soil sa-
linity, soil water and soil temperature time series. STL is a
filtering procedure for decomposing a time series into addi-
tive components of variation (trend, seasonality and the
remainder); and it does so by applying loess smoothing
models (Cleveland et al., 1990; Chaloupka, 2001).

Transfer function approach. We can use the observa-
tions and predictions from two-time series (input X1t and
X2t) to estimate the outcome of another time series
(outputGt). This is done by a relatively small number of pa-
rameters to model the linear system, which takes the form

Gt ¼ A1 Bð Þ
C1 Bð ÞX 1;t�b1 þ

A2 Bð Þ
C2 Bð ÞX 2;t�b2 þ at (11)

whereA(B)and C(B) are, respectively, the polynomials of the
s and r orders:

A Bð Þ ¼ A0 � A1B� A2B2 �…� AsBs� �
(12)

C Bð Þ ¼ 1� C1B� C2B2 �…� CrBr� �
(13)

where A0, A1, A2,…, As and C1, C2,…, Cr are the parameters

of the model, b is the latent parameter, B is the backshift
operator, and at is a disturbance (noise).

A(B)/C(B) is the system’s designated transfer function. In
modelling a transfer function, the procedure involves three
steps: (i) identification, (ii) estimation and (iii) checking
the model. The same filter can be applied to the output series
Gt (pre-whitening) by employing a univariate model for the
inputs ofX1tandX2twhile using white noise residuals.
Cross-correlating the two residuals identifies the transfer
function form.

The transfer function in this study uses the soil water (θ)
and soil temperature (t) that were observed at 0.10 m depth
for the primary series (X1tandX2t).We chose the output series
(Gt) from the time series of soil salinity (σp) that were
observed at a depth of 0.10 m, as well as the average soil
salinity (σp) from the upper 0.60 m of the soil profile. The
formula used by Wu et al. (1997) was adopted for calculat-
ing the average soil salinity (σp) in the upper 0.60 m of the
soil profile.

The software R, version 2.15.1 (R Development Core
Team, 2012), executed all model identifications and subse-
quently predicted soil salinity at various depths (Cryer and
Chan, 2008; Shumway and Stoffer, 2006).

RESULTS AND DISCUSSION

Figure 1 shows the variation of θ, t, and σp at 0.10 m depth
over time. Decreases in σp signalled the significant effects of
irrigation events that occurred almost on days 4, 27, 32

Figure 1. Variation of soil water content(θ, m3 m-3), soil temperature (t, °C) and soil salinity(σp, dS m-1) at 0.10 m depth with time. IR1, IR2, IR3 and IR4 are
the irrigation events applied on days 4.29, 27.20, 32.04 and 46.33. Pre1, Pre2, and Pre3 are the precipitation events on days 9.33, 20.50 and 52.54. [Colour

figure can be viewed at wileyonlinelibrary.com]
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and 46, as well as from precipitation events almost on days
9, 21 and 53. Figure 1 also shows that t increased after
irrigation, due to the irrigation water being warmer than
the soil before irrigation.

The opposite occurred with precipitation: Figure 1 shows
that t decreased after precipitation; acknowledgement of
these fluctuations will help in modelling σp as a function
of θ and t, as explained below. Later, we developed the
ARIMA model for σp time series at 0.10 m depth and com-
pleted it by including the irrigation event as an intervention
and the precipitation as outlier detection.

Univariate time series modelling of soil salinity at
0.10 m depth

We can see that the time series is non-stationary, as indi-
cated by the significant slow convergence of ACF in the
original σp time series at 0.10 m depth (Figure 2A). As a
means for obtaining a stationary time series, we differenti-
ated the original series (first-order difference and seasonal
first-order difference). There is no requirement for applying

a logarithmic transformation in this case, as there is no trend
in variance observed in the series.

The ACF and PACF of the differentiated time series
found that the regular component of the series was approxi-
mately AR (3) and that the seasonal component was MA (1).
This is because the ACF (Figure 2B) found significant cor-
relations only at the first three lags of PACF and the 24th
lag of ACF.

The ARIMA (p, d, q) (P, D, Q)S model of the σp time se-
ries at a depth of 0.10 m resulted in ARIMA (3, 1, 0) (0, 1,
1)24. The model is expressed with the usual notation by

1� φ1B� φ2B
2 � φ3B

3
� �

1� Bð Þ 1� B24
� �

X t

¼ 1þ θ24B24
� �

at (14)

where at is a white noise term that is independent and iden-
tically distributed with zero mean, and the variance = 2.8 ×
10-7;φ1 = 0.2088, φ2= �0.0468.φ3= �0.0883 are AR param-
eters. The θ24Θ24= 0.99 parameter of the seasonal MA part
indicates that the model is almost non-invertible. Therefore,
it is inadequate and needs to be improved in structure.

Figure 2. (A) Autocorrelation function (ACF) of the original data, (B) autocorrelation function, and (C) partial autocorrelation function (PACF) of the trans-
formed time series of σp at 0.10 m depth. The ACF of the original data indicates that the series is not stationary. The dotted lines mark 2 × standard errors.

[Colour figure can be viewed at wileyonlinelibrary.com]
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By using a seasonal trend decomposition (STL method),
the large outliers of the remainder (random) return to the
irrigation events. Because we already know the timing of
the irrigation event, the model can be completed using inter-
vention analysis (irrigation events) and outlier detection
(model 10); in this way it becomes invertible and thus
reduces its residual variance (Wei, 1989).

Outlier and intervention analysis in the σp time series
of the ARIMA model at 0.10 m depth: Measuring the
effect of the irrigation event on σp

We applied intervention analysis and automatic outlier
detection to the previous ARIMA (3, 1, 0) (1, 0, 0)24 model
in order to improve it and measure the effects of irrigation
events on σp at 0.10 m depth. With Grubb’s test
(Equation (6)), 15 outliers were detected (Table I) for the
time series of soil water content at 0.10 m depth.

Including the outlier detection and intervention analysis
(effect of irrigation), the observed value of time series of
σp at 0.10 m depth can be described according to
Equation (7) as

X t ¼ ωr S tð Þ
4:29 þ S tð Þ

27:20 þ S tð Þ
32:04 þ S tð Þ

46:33

� �
þ ∑

23

i¼1
ωiP

TCð Þ
Ti

þ ∑
5

j¼1
ωjP

AOð Þ
Tj

þ Zt

(15)

Xt is the observed time series; Zt is the time series free of
outliers; and ωr = �0.759 represents the permanent change
in the mean level after the irrigation event, which character-
izes the effectiveness of the irrigation event on the soil
salinity. In this study, the flow rate and cut-off time for the
four applied irrigations were almost equal; therefore an aver-
age coefficient for ωr was used for estimating the irrigation

event’s impact. In the S tð Þ
4:29 þ S tð Þ

27:20 þ S tð Þ
32:04 þ S tð Þ

46:33

� �
part

of the equation, the step indicator is represented for four ir-
rigation times Tr (days 4.29, 27.20, 32.04, and 46.33).

The ωr S tð Þ
4:29 þ S tð Þ

27:20 þ S tð Þ
32:04 þ S tð Þ

46:33

� �
part of the equa-

tion of a time series for soil salinity (Xt) shows that, at the
time of irrigation, the evolution of soil salinity will decrease,
and the coefficient ωrwill determine the degree to which it
decreases. Moreover, the effects of the 15 detected outliers
are represented by the

∑
23

i¼1
ωiP

TCð Þ
Ti

þ ∑
5

j¼1
ωjP

AOð Þ
Tj

part of the equation.
Applying a Box–Jenkins method to the time series of the

soil salinity (σp)Ztt from Equation (15), we determine the
ARIMA (3, 1, 0) (0, 1, 1)24. In the usual notation, the model
is written as

1� φ1B� φ2B
2 � φ3B

3
� �

1� Bð Þ 1� B24
� �

Zt

¼ 1þ Θ24B24
� �

at (16)

This model (16) is free of outliers and is invertible, with
non-significant ACF and PACF of residuals at all lags.
Table II provides the comparison of statistical parameters
of the two models (14) and (16).

After modelling σp at a depth of 0.10 m, our next step is to
model the θ and t time series at a depth of 0.10 m as well as
the average soil salinity in the top 0.60 m of soil. Table III
shows the ARIMA models for θ and t and the average soil
salinity in top 0.60 m of soil; these resulted from following

Table I. Outlier detection and parameter estimation for time series
of soil salinity at 0.10 m

Observation time (h) Type ω

103 AO 0.185 7.97
106 TC 0.125 4.55
153 AO 0.098 4.56
494 TC �0.170 6.04
653 AO 0.300 12.20
654 AO �0.111 5.146
770 TC �0.231 7.88
919 TC �0.111 4.18
962 TC �0.110 4.18
1 001 TC �0.118 4.32
1 029 TC �0.109 4.16
1 089 TC 0.114 4.216
1 112 TC �0.286 9.32
1 113 TC �0.146 5.21
1 262 TC �0.207 7.22

Table II. Comparison of the two models for soil salinity at 0.10 m depth in terms of statistical parameters (one based on observed data Xt and
the second based on outlier-free data Zt)

Model φ1 φ2 φ3 θ24 σ2

Model based on observed data Xt (10) �0.0114 �0.0684 1.38 ×10-4

Model based on outlier- free data Zt (12) �0.0467 �0.0108 0.0273 �0.923 7.43 × 10-5
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the same steps applied to model σp at a depth of 0.10 m. The
effects of the irrigation events on the time series of θ and t at
0.10 m were 0.0843 and 0.288, respectively.

After having identified all the models and estimating the
parameters, diagnostic checks are then applied to the fitted
model to verify whether the model is adequate.

Transfer function method

Looking at the cross-correlation between the pre-whitened,
primary time series (soil water and temperature at a depth
of 0.10 m) and target soil salinity (0.10 m depth and the
average), we see an effect from the primary series on the
target series, but not vice versa. Figure 3 indicates that the
current values of soil water, content and temperature at
0.10 m have a significant effect on the current soil salinity
values at a depth of 0.10 m and on the average soil salinity
in the top 0.60 m of soil.

Models were identified for predicting soil salinity based
on soil water content and soil temperature at a depth of
0.10 m (Table IV). The coefficients of Xtin Table IV‘s
equations indicate that the current values of soil water con-
tent and soil temperature at 0.10 m have effects,

respectively, of �7.82 and �0.050 on the current values
of soil salinity at a depth of 0.10 m. Furthermore, the cur-
rent values of soil water content and soil temperature at
0.10 m depth have effects, respectively, of �1.68 and
�0.004 on the current values of the average soil salinity
in the soil’s top 0.60 m.

Forecasting

Figure 4 shows the calibration of the model as well as its
predictions of average soil salinity and soil salinity at
0.10 m depth. The first 659 observations of each time series
were used to define the model. The output of the calibrated
model corresponded very well to the values before 659 for
each depth. The predicted and observed values after the
659 observations agreed reasonably. There were sometimes
large relative differences between the values that were
predicted and those that were observed. However, the
absolute difference between prediction and measurement
never exceeded 0.27 dS m-1.

Figure 5 provides an example of using the transfer func-
tion model presented in Table IV to predict soil salinity over
2 days at a depth of 0.10 m and in the top 0.60 m of soil. Soil

Table III. Models of soil water content (θ), (t) at 0.10 m and soil salinity in the upper 0.60 m of soil

Model φ1 φ2 φ3 φ4 φ5 Θ1 θ24 σ2

Soil water �0.03 �0.019 1.06 × 10-5

Soil temperature 1.55 �0.641 0.027 �0.87 �0.88 1.83 × 10-5

Soil salinity in the upper 0.60 m of soil 0.07 0.158 0.11 0.05 -0. 04 �0.54 1.56 × 10-5

Figure 3. Cross-correlation function for soil water content and soil temperature hourly time series at 0.10 m and soil salinity at 0.10 m depth. Cross-correlation
function for soil water content and soil temperature 0.10 m and soil salinity in the top 0.60 m of soil profile, respectively. Dashed lines indicate 95% confidence

limits. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table IV. Time series transfer function model for soil salinity at 0.10 m depth and in the top of 0.60 m of the soil profile

Soil water content X1,t, soil temperature X2,t at 0.10 m and soil salinity Yt at 0.10 m:

Y t ¼
-7:8242þ 1:4053B-0:2606B2 þ 0:7234B3
� �

X 1;t þ -0:0508þ 0:0153Bð ÞX 2;t þ at
1� Bð Þ 1þ 0:680B24

� �
1þ 0:1597Bþ 0:1266B2 þ 0:0502B3
� �

ateN 0; 6:489:8�10�5
� �

Soil water content X1,t, soil temperature X2,t at 0.10 m and average soil salinity Yt

Y t ¼
-1:6855-0:0548Bþ 0:4975B2 þ 0:0717B3
� �

X 1;t þ 0:004-0:0111ð ÞX 2;t þ at
1� Bð Þ 1� 0:0358B24

� �
1� 0:0627þ 0:0209B2 � 0:1754B3
� �

ateN 0; 2:684�10�5
� �

Figure 4. Measured and predicted soil salinity versus time at 0.10 m depth and in the top 0.60 m of soil profile. Prediction was based on the identified transfer
function models for each one. The curve before the vertical dashed line refers to model calibration and after the vertical dashed line to model prediction. [Colour

figure can be viewed at wileyonlinelibrary.com]
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salinity was observed at 55 days, and the prediction is for
the 56th and 57th days (48 h). It includes the effect of the
next irrigation if the farmer chooses to irrigate after 36 h.
The figure shows how the irrigation event at day 57.5 affects
soil salinity evolution; this effect is determined by the
ωrfrom Equation (15).

However, in this study, the 48-h predicted value
decreases, while the lead time increases but still remains
within the confidence interval (95%).

CONCLUSION

Modelling and predicting salinity in soils under variable
interval irrigation are not valid if changes in irrigation
frequency are not taken into account. We studied the time
series under such a regime, specifically for soil salinity
(σp), soil water content (θ) and soil temperature (t)—all
of them at a depth of 0.10 m in a lettuce field of silty loam
soil. Each time series was transformed into a stationary se-
ries; then, we constructed ARIMA models for studying
each time series and for making predictions. The ARIMA
model with an underlying normality assumption could not

properly predict soil salinity. Therefore, the model was
completed by means of intervention analysis (with the in-
terventions being irrigation events) as well as outlier detec-
tion (in order to identify unusual observations). We then
used transfer function models (multiple-input/one-output)
to predict σp at our depths of interest (0.10 m and the aver-
age σp in the upper 0.60 m of soil); this was done using the
measured water θ and t at 0.10 m depth and produced ratio-
nal predictions. The subsequent irrigation and decrease in
σp after that irrigation event were correctly estimated. Since
the irrigation doses for the four irrigation events in this
study were almost the same, we used an average mean
level (ωr= 0.087) to show an irrigation event’s effective-
ness on the soil salinity time series. In cases involving var-
iable doses of irrigation, our suggestion is to study the
effect of each irrigation event and to then include each ef-
fect separately in the model. Moreover, the time series
analysis in our study applies mathematical models to one
soil profile at different depths in order to find certain rela-
tionships among the observed variables (σp, θ and t). How-
ever, in order to validate the model we used for the whole
area of study, we recommend using additional measure-
ments of σp, θ and t from different soil profiles to take into
account the spatial variability of the study area. Lastly, fu-
ture studies should look toward further consideration of
how these sensors and their data can be positioned in a
way that makes them more accessible for practical use.
At present, capacitance sensors of this type are available
on the commercial market; however, they are limited al-
most exclusively to use in scientific experiments. This
can be attributed to the process involved, whereby the tech-
nician is required to travel to the field with a computer in
order to transfer the sensor data from the datalogger to an
Excel spreadsheet. From this, mathematics is then applied
for studying the relationship between the variables. As an
alternative, an electronic unit could be designed to be in-
cluded in the sensor datalogger, which may result from
telecommunication technicians incorporating our stochastic
models. This would allow for the provision of a visual in-
dication of the electrical conductivity of the soil solution.
Our study finds that, with the proper programming, this
low-cost sensor could be expanded in a way that provides
further beneficial capabilities, such as allowing a normal
farmer the opportunity to ascertain salt levels in the root
zone.
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Figure 5. Prediction models for soil salinity at 0.10 m depth (A) and average
soil salinity in the top 0.60 m of soil profile (B). Prediction was based on the
indentified transfer function. We have observed data for 55 days, the model
predicts the 56th and 57th days, taking into account the effect of next irri-
gation if the farmer chose to irrigate on 57.5th day (* is the irrigation time
at 57.5th day). [Colour figure can be viewed at wileyonlinelibrary.com]
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NOTATION

σb Bulk electrical conductivity (dS m-1)
T Soil temperature
Θ Soil water content
σp Electrical conductivity of the pore water (dS

m-1)
ARIMA Seasonal autoregressive integrated moving

average
εp Real portion of the soil pore water’s dielectric

permittivity (unitless)
εb Real portion of the bulk soil’s dielectric

permittivity (unitless)
εσb=0 Offset of σp ~ εb relationship
P Regular autoregressive factor
Q Regular moving average order
P Seasonal autoregressive order
Q Seasonal moving average order
D Orders of differencing for the regular part
D Orders of differencing for the seasonal part
S Subindex represents the seasonal period
AR Part of the autoregressive process
φj Denotes the jth AR parameter
at Gaussian white-noise error
B Backshift operator in which BpXt = Xt � p.
MA Moving average process
θq qth MA parameter
θq qth MA parameter
φp(B) Regular autoregressive factor
θq(B) Regular moving average factor
ΦP(B

s) Seasonal autoregressive factor
ΘQ(B

s) Seasonal moving average factor
ACF Autocorrelation function
PACF Partial autocorrelation function
Z Test statistic
M Mean of the value
V Value being tested
SD Standard deviation of the values
AO Additive outliers
TC Temporary changes
LS Level shift
ωrωr Permanent change in the mean level following

the irrigation event
S LSð Þ
Tr

STr(LS)
Step indicator at the time of irrigation Tr

ωi Transitory change in the mean level following
any unusual observations

P TCð Þ
Ti

PTi(Tc)
Pulse indicators taken at unusual observation
times Ti

P AOð Þ
Tj

PTj(Ao)
Pulse indicators taken at unusual observation
times Tj

δ Dampening factor with the default value of
0.7

STL Seasonal-trend decomposition
A(B)/C(B) System’s designated transfer function
Zt Time series free of outliers
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