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Abstract: The use of low alloy steels (LAS) in H2S-containing environments in the oil and gas industry 

is governed by the ISO standard 15156-2 (NACE MR0175-2). One requirement, which has been 

disputed over the years, is that the nickel (Ni) content shall not exceed 1 wt%. This work investigated 

the effect of Ni in solid solution on hydrogen diffusion, solubility, and trapping in ferritic/pearlitic 

research-grade LAS with nominal Ni contents from 0 to 3 wt%. Hydrogen permeability experiments 

were carried out in a Devanathan-Stachurski setup at 15, 45 and 70 °C. The effective diffusion 

coefficients, calculated by the tlag method, decreased with increasing Ni content. The sub-surface 

hydrogen concentration in lattice and trap sites increased with increasing Ni content. There was no 

difference between the first and subsequent hydrogen permeation transients, suggesting that Ni in solid 

solution forms reversible traps. The effect of Ni in refining the microstructure may be superimposed on 

the effect of Ni in solid solution, and should be investigated in future work. 
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Introduction 
 

Low alloy steels (LAS) are widely used in the oil and gas industry. In H2S-containing 

environments, the use of LAS is governed by ISO standard 15156-2 [1] (NACE MR0175-2). 

The standard limits the nickel (Ni) content to maximum 1 wt%, due to concerns regarding 

sulfide stress cracking (SSC) resistance. Despite extensive investigations in the 1980’s, the 

engineering community has yet to reach consensus as to whether the cap on Ni is scientifically 

justified. Ni improves LAS hardenability and lowers the ductile to brittle transition temperature 

with a moderate penalty on weldability. Qualifying LAS with Ni contents above 1 wt% would 

be a technology enabler in developing sour reservoirs with severe temperature and pressure 

conditions. [2] 

 

Hydrogen uptake, diffusion, and trapping are properties that influence the metals’ resistance to 

hydrogen stress cracking (HSC) (SSC is a form of HSC in the presence of H2S [3]). Ni affects 

these properties, both as an element in solid solution and due to its refining effect on the 

microstructure. 

 

Yoshino and Minozaki [4], Asahi and Ueno [5], Yamane et al. [6] and Wilde et al. [7] 

investigated hydrogen permeability of quenched and tempered (QT) steels with varying Ni 
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contents exposed to different environments. The effective diffusion coefficient generally 

decreased with increasing Ni content. Results were not consistent with the effect of Ni on 

hydrogen solubility and steady state permeation flux. The effect of Ni in solid solution in the 

ferrite phase cannot be determined from the results on QT steels. 

 

Beck et al. [8] investigated hydrogen diffusion and solubility as a function of Ni content in pure 

Fe-Ni alloys using a permeation technique at temperatures from 27 to 90 °C. The authors 

assumed purely ferritic microstructures up to 8 wt% Ni. They reported a decrease in the 

effective hydrogen diffusion coefficient and an increase in hydrogen solubility with increasing 

Ni content. Dresler and Frohberg [9] criticized that the metallurgical treatment was not precisely 

stated in the work of Beck et al., and Yamanishi et al. [10] questioned whether the 

microstructures were actually entirely ferritic. Dresler and Frohberg carried out diffusion 

experiments at 25 °C on Fe-Ni alloys, which according to the authors, had a body-centered 

cubic (bcc) microstructure up to 5 at% (~5 wt%) Ni. The diffusion coefficient decreased slightly 

with increasing Ni content up to 5 at%, with the largest reduction between 0.04 to 0.15 at% Ni. 

Hydrogen solubilities were not estimated. Neither of these three works investigated irreversible 

vs. reversible trapping by performing consecutive charging transients. 

 

The objective of this work was to investigate the effect of solid solution Ni on hydrogen 

diffusion, solubility and trapping in the ferrite phase, using ferritic/pearlitic research-grade LAS 

with nominal Ni contents from 0 to 3 wt% specifically manufactured for this project.  

 

Experimental  

 

Materials  

 

Four research grade LAS with nominal Ni contents from 0 to 3 wt% were produced. The actual 

chemical compositions are given in Table 1. Impurity levels were analyzed using glow 

discharge mass spectroscopy, and the susceptibility to temper embrittlement was quantified by 

calculating the X (Bruscato) and J (Watanabe) factors [11]. The highest X-factor was 0.6, and 

the highest J-factor was 9.1, suggesting all alloys can be considered immune to temper 

embrittlement [12]. 

 

Table 1. Chemical compositions of research grade LAS, analyzed by methods specified in ASTM 

E1019-11/CO [13] and ASTM E1479-99/CTP3101/ICP [14]. Iron (Fe) balances to 100 wt%. 

Alloy Ni [wt%] Mn [wt%] Si [wt%] C [wt%] 

0 wt% Ni 0.00 1.30 0.24 0.17 

1 wt% Ni 0.97 1.30 0.24 0.17 

2 wt% Ni 1.85 1.28 0.23 0.17 

3 wt% Ni 2.86 1.30 0.24 0.17 

 

The materials were cast and hot-rolled at the supplier and delivered as plates with thicknesses 

of about 1 cm. Samples for the permeability experiments were made using electrical discharge 
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machining (EDM). The disks in the experiments had a diameter of 29 mm and a thickness of 

about 1.15 mm after grinding. 

 

The materials had a banded microstructure in the as-received condition. Therefore, samples 

were homogenized by heat-treating at 1200 °C for seven days. The samples were encapsulated 

in quartz glass with vacuum to avoid oxidation and decarburization. After 7 days at 1200 °C, 

the samples were oven cooled to 500 °C (i.e. below the A1 temperature) followed by heating to 

930 °C (i.e. above the A3 temperature), repeated twice. Subsequently, the samples were oven 

cooled to 500 °C and, finally, air cooled to room temperature. The goal was to refine the 

microstructures after the long-lasting homogenization. Oven cooling rates ranged from 

approximately 7 °C min-1 at 930 °C to roughly 1 °C min-1 at 600 °C. Since Ni refines the 

microstructure [15], an additional heating step was applied to the 2 and 3 wt% Ni samples to 

obtain comparable microstructures for all Ni contents. After a third austenitization at 930 °C, 

the 2 and 3 wt% Ni samples were not oven cooled, but rather cooled at a fixed cooling rate of 

1.5 °C min-1, i.e. a cooling rate about 5 times slower than that obtained by oven cooling, down 

to 600 °C before air cooling to room temperature. Figure 1 illustrates the heat treatment 

processes.  

 

 

Figure 1. Illustration of the heat treatment process. The solid temperature-time line was 

followed for all samples from 0 to 3 wt% Ni, while the dashed line was followed for the 2 and 

3 wt% Ni samples.  

 

The microstructures of all samples were characterized using scanning electron microscopy 

(SEM). The samples were first ground to U.S. grit 600 (European P1200) for the permeability 

experiments and posteriorly polished using a diamond suspension down to 1 µm particle size, 

before they were electropolished to reveal the microstructures. Secondary electron images were 

captured using a commercially available SEM with a beam energy of 15 kV.  
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Hydrogen permeability experiments 

 

Permeability experiments were carried out on the samples in Table 1 at 15, 45 and 70 °C ± 1 

°C. For each Ni content, the same sample was used at all temperatures, starting with the lowest 

temperature. Three charge/discharge transients were performed at each temperature. 

 

The permeability experiments were carried out in a Devanathan-Stachurski setup. Two 

standards, ISO 17081 [16] and ASTM G148-97 [17], give guidelines on how to execute such 

experiments and how to analyze the data. Electrochemical permeability experiments are 

executed with two individual electrochemical cells that are separated by the sample of interest. 

On one side, hydrogen is charged into the material by applying a cathodic current. Hydrogen 

absorbs into the material and diffuses through the sample due to a concentration gradient. On 

the other side, an anodic potential is applied to the sample. The hydrogen atoms are oxidized 

back to H+, and the oxidation current (called permeation current) is measured. The permeation 

current can change with time and from the first to the subsequent charging transients due to 

hydrogen trapping effects. Hydrogen solubility, effective diffusivity, and reversible and 

irreversible trapping can be evaluated as described later. 

 

The samples were ground on both sides to US grit 600 (European P1200) as recommended in 

ASTM G148-97 [17]. The samples were rinsed in ethanol, put in an ultrasonic bath, and then 

dried. Sample thickness was measured at five evenly distributed locations around the 

circumference, and the average value was used as sample thickness. The thicknesses of the 

samples in the tests were around 1.15 mm. The exposed radius of the disk was 12.45 mm. This 

gives a radius-to-thickness ratio of about 10:1 as recommended in ISO 17081 [16], and shall 

ensure that permeation analysis is based on one-dimensional diffusion. 

 

Figure 2 shows the experimental cell used for the experiments. Two individual cells were 

clamped together with the sample sitting in between. The system was sealed by rubber O-rings 

on both sides of the sample towards the glass walls. The white polymer ring worked as a support 

to keep the setup in place and ensure reproducible mounting. A pin provided electrical 

connection to the sample. Each compartment had a volume of about 98 cm3, hence satisfying 

the recommendation in ASTM G148-97 [17] of a solution volume to metal area ratio greater 

than 20 ml cm-2. 
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Figure 2. Image of electrochemical permeability cell. 

 

Water with controlled temperature circulated through the outer walls of the glass cells. Nitrogen 

gas (5.0 instrumental quality, 99.999 % pure) was bubbled in both compartments before and 

during the experiments to avoid oxygen contamination. Luggin capillaries with reference 

electrodes were inserted into the large openings on both sides seen in Figure 2. The reference 

electrodes were mercury-mercurous electrodes (Hg/Hg2SO4/SO4
2- in saturated K2SO4 solution) 

with potentials +0.41 V vs. saturated Calomel electrode (SCE) and +0.65 V vs. standard 

hydrogen electrode (SHE) [18]. All potentials written in this article are in the mercury-

mercurous scale (MME). The reference electrodes were placed in the Luggin capillaries filled 

with a borax solution, described below. Platinum foil was used as counter electrodes. The 

electrochemistry was controlled using two potentiostats. 

 

In both compartments, the electrolyte was a mix of glycerin/glycerol, borax (di-Sodium 

tetraborate decahydrate) and distilled water. The solution was prepared by mixing 620 grams 

borax powder with glycerin to a total of 1 liter solution. The borax/glycerin was then mixed 

with distilled water to a volumetric 80/20 ratio. Prior to experiments, the pH was about 7 and 

the electrical resistivity was approximately 450 Ω cm. Because LAS remain passive in the borax 

solution, a palladium coating was not applied on either side. The potential on the anodic side 

during permeability experiments was 0 VMME. The cathodic side was polarized to 0 VMME 

during hydrogen discharge. A fixed cathodic current density of 45 µA cm-2 was applied to the 

cathodic side during hydrogen charging. The selections of anodic potential and cathodic 

charging current are discussed later. A stable background current was obtained before all 

charging transients. 

 

Electrochemical polarization experiments 

 

Polarization curves were obtained in the borax electrolyte to determine the anodic potential and 

the cathodic charging current density for the permeability tests. 0 and 3 wt% Ni samples were 

tested at 15 and 70 °C. Before polarization, samples remained at the open circuit potential 

(OCP) for 1 hour with continuous nitrogen bubbling to remove oxygen. The cathodic current 
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density at which hydrogen bubbles formed was visually determined during polarization from 

OCP in the cathodic direction at 0.2 mV s-1 (12 mV min-1). A full polarization curve was 

recorded from -1.6 to 1.2 VMME with a scan rate of 0.2 mV s-1. As-received samples were used 

for the polarization curves. The surfaces were prepared following the procedure described for 

the permeability samples. 

 

Analysis of the results 

 

The sub-surface hydrogen concentration at lattice sites in the material, C0 in mol m-3, can be 

calculated from Equation (1) [16]. The sub-surface lattice hydrogen concentration is a direct 

consequence of the severity of the environment [19]. 

 

𝐽𝑠𝑠 =
𝐼𝑠𝑠

𝐹 𝐴
=

𝐷𝑙  𝐶0

𝐿
 (1) 

 

Jss is the steady-state hydrogen permeation flux in mol m-2 s-1. Iss is the corresponding steady-

state current in Ampere. Jss is independent of trapping [20]. A is the exposed area in m2. Dl is 

the ideal lattice diffusion coefficient in m2 s-1. As long as the metal is not highly alloyed [17], 

or no longer has a bcc structure [21], Dl is independent of metallurgical treatment and alloying, 

and can be considered to be the same as for pure annealed iron [21]. The lattice diffusion 

coefficient is defined by Equation (2) [19]. 

 

 𝐷𝑙 = 𝐷0 exp (
−𝐸𝑙

𝑅 𝑇
) (2) 

 

Where D0 is the frequency factor in m2 s-1, El is the activation energy for jumps between 

interstitial lattice sites in J mol-1, R is the gas constant in J mol-1 K-1 and T is the temperature in 

Kelvin [19]. From ambient temperature and up to 80 °C, when the preferred trapping site in bcc 

iron is tetrahedral interstitial, values for D0 and El of 7.23 10-8 m2 s-1 and 5.69 kJ mol-1
, 

respectively, can be used [19]. 

 

If only reversible trapping is important and the trap occupancy is low during a permeability 

experiment, so that the permeation transient is described by Fick’s law, the sub-surface 

concentration of hydrogen atoms in lattice and reversible trap sites, COR in mol m-3, can be 

approximated by Equation (3) [17, 19]. 

 

𝐽𝑠𝑠 =
𝐷𝑒𝑓𝑓 𝐶0𝑅

𝐿
 (3) 

 

Deff is the effective diffusion coefficient describing the permeation transient in m2 s-1, and L is 

the sample thickness in meters. One of three methods suggested in ISO 17081 [16] can be used 

to determine Deff. The tlag method defines the effective diffusion coefficient from the time (tlag 

in seconds) it takes to reach J(t) Jss
-1 = 0.63, and is calculated from equation (4).  

 

𝐷𝑒𝑓𝑓 =
𝐿2

6 𝑡𝑙𝑎𝑔
 (4) 
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With only reversible trapping and low trap occupancy, it is possible to estimate the trap density, 

Nr in sites m-3, and trap strength, Eb in J mol-1, using Equation (5) [22]. 

 

𝐷𝑒𝑓𝑓 =
𝐷0 𝑒𝑥𝑝 (

−𝐸𝑙

𝑅 𝑇)

1 +
𝑁𝑟

𝑁𝑙
 𝑒𝑥𝑝 (

−𝐸𝑏

𝑅 𝑇 )
 (5) 

 

Nl is the density of lattice sites in sites m-3 [22]. At high temperature, the second term in the 

denominator will decrease towards zero and lattice diffusion will dominate [22]. At low 

temperature, the second term in the denominator will dominate and trapping becomes the main 

factor [22]. In this situation, for metals with only one type of reversible trap sites, Deff can be 

described by Equation (6) [23, 24]. 

 

𝐷𝑒𝑓𝑓 = 𝐷0  
𝑁𝑙

𝑁𝑟
 𝑒𝑥𝑝 (

−(𝐸𝑏 + 𝐸𝑙)

𝑅 𝑇
) (6) 

   

If Deff is measured at different temperatures, a plot of the value on a logarithmic scale against 

the inverse of the temperature should make a straight line with the expression Deff = A exp (-B 

(RT)-1) [24]. Constants A and B are obtained from the plot, and Equations (7) and (8) can be 

used to calculate the number and strength of traps [24]. A value of Nl of 5.2 1023 sites cm-3 has 

been used in literature at ambient temperatures [20]. 

 

𝑁𝑟 =
𝐷0 𝑁𝑙

𝑨
 (7) 

  

𝐸𝑏 = 𝐵 − 𝐸𝑙 (8) 

 

Low occupancy of trap sites corresponds to low lattice sub-surface hydrogen concentrations; 

lower than those measured for steel in acidified H2S solutions [20]. If trap occupancy is not 

low, the permeation transient cannot be described by a single effective diffusion coefficient 

[19]. Deff will constantly change during the permeation transient, and its value will depend on 

which part of the curve is used for the fit [19]. Another complicating factor is that Deff is a 

function of the hydrogen content due to a concentration dependency on trap occupancy [25]. 

Despite the limitations, it can be pragmatically useful to calculate Deff based on the tlag method 

[26] e.g. to compare material variables under the same environmental severity [20].  

 

Results 

 

Material characterization 

 

All the tested samples had ferritic/pearlitic microstructures. The grain size decreased from 0 to 

1 wt% Ni and from 2 to 3 wt% Ni. The fraction of pearlite increased with increasing Ni content 

(the 0 wt% Ni sample could have become slightly decarburized during the heat treatment). SEM 

micrographs obtained from electropolished surfaces are shown in Figure 3. 
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0 wt% Ni 1 wt% Ni 

  
2 wt% Ni 3 wt% Ni 

Figure 3. SEM micrographs of samples from the permeability experiments. Microstructures 

were revealed by electropolishing.  

 

Electrochemical polarization experiments 

 

Polarization curves of 0 and 3 wt% Ni samples in the borax solution at 15 and 70 °C are 

presented in Figure 4. The materials had an active-passive behavior in the borax solution, 

similar to that of stainless steels in reducing acids.   
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Figure 4. Polarization curves of 0 and 3 wt% Ni samples at 15 and 70 °C in borax solution, 

recorded with scan rates of 0.2 mV s-1. 

 

Table 2 lists some key values obtained from the polarization curves. The passive potential 

region was smaller, and the passive current density was higher, at 70 °C than at 15 °C. The 3 

wt% Ni sample had a lower corrosion current density than the 0 wt% Ni sample at both 15 and 

70 °C. 

 

Table 2. Key values obtained from the polarization curves of 0 and 3 wt% Ni samples in 

borax solution at 15 and 70 °C. 

 15 °C 70 °C 

 0 wt% Ni 3 wt% Ni 0 wt% Ni 3 wt% Ni 

EOCP [mVMME] -1100 -1100 -1100 -1100 

EFlade [mVMME] -812 -739 -993 -962 

Epitting/transpassive [mVMME] 565 566 310 316 

iFlade [µA cm-2] 1.47 0.78 83.03 8.93 

ipass  at 0 VMME [µA cm-2] 0.27 0.24 2.25 0.43 

 

Hydrogen permeability experiments 

 

The permeation transients for the tested materials were analyzed using the framework presented 

in the experimental part. The effective hydrogen diffusion coefficients (Deff) are presented in 

Figure 5. Figure 6 shows the hydrogen concentrations in lattice and reversible sites (COR), and 

Figure 7 shows the steady state thickness normalized hydrogen fluxes (Jss L) for the tested 

samples. For each sample at a given temperature, each value is the average of the three 

permeation transients. The error bars represent the standard deviations in the results. Deff 

decreased, and COR increased, with increasing Ni content. There was a weak trend towards 

increasing Jss L with increasing Ni content. 
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C0, calculated from Equation (1), ranged from approximately 5 10-5 to 5 10-4 ppm (wt) from 15 

to 70 °C. The trend with regards to Ni content was the same as for Jss L shown in Figure 7. 

 

 

Figure 5. Effective hydrogen diffusion coefficients calculated by the tlag method. The bullets are 

average of three permeation transients. Error bars show the standard deviations. Lines added 

to aid visualization.  

 

 

Figure 6. Hydrogen concentrations in lattice and trap sites. The bullets are average of three 

permeation transients. Error bars show the standard deviations. Lines added to aid 

visualization.  
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Figure 7. Thickness normalized steady-state hydrogen permeation fluxes. The bullets are 

average of three permeation transients. Error bars show the standard deviations. Lines added 

to aid visualization. 

 

With 36 permeation transients conducted in total, it is not practical to present them all 

graphically. As recommended in ASTM G-148 [17], a representative sample and temperature 

was chosen to describe the transients. Figure 8 shows the permeation transients for the 3 wt% 

Ni sample at 45 °C plotted as steady-state normalized permeation flux vs. the logarithm of 

normalized time. The time is normalized to the sample thickness (L) and to the bcc lattice 

diffusion coefficient (Dl). Ideal bcc lattice diffusion, calculated from the solution of Fick’s law 

given in ISO 17081 [16], is plotted for comparison. 
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Figure 8. Permeation transients for 3 wt% Ni sample at 45 °C plotted as steady-state 

normalized permeation flux vs. the logarithm of normalized time. Ideal bcc lattice diffusion is 

plotted for comparison and is labeled “Ficks”.  

 

A challenge sometimes encountered in the permeability experiments was that the permeation 

current would continue to rise instead of stabilizing at a steady-state value. This is illustrated 

by the difference between the third permeation transients for 0 and 1 wt% Ni samples at 45 °C, 

Figure 9.  
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Figure 9. Permeation current vs. time for 0 and 1 wt% Ni samples at 45 °C. Both are the third 

charging transient at that temperature. The blue line shows the expected steady-state current 

stabilization that was not achieved for the 1 wt% Ni sample in this case. 

 

Figure 10 shows the potentials on the cathodic side during the two charging transients in Figure 

9. The potentials on the cathodic side during galvanostatic charging were not stable, but had a 

similar development with time.  

 

 

Figure 10. Potentials on cathodic side during the third hydrogen charging transients at 45 °C 

for 0 and 1 wt% Ni samples.  
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Discussion 

 

Material characterization 

 

As seen from the SEM micrographs in Figure 3, all samples had ferritic/pearlitic 

microstructures. The effect of Ni on refining ferrite grain size and morphology in low alloy 

steels is clear when comparing samples 0 to 1 wt% Ni and 2 to 3 wt% Ni. 

 

The amount of pearlite appeared to increase with increasing Ni content. The 0 wt% Ni sample 

was somewhat oxidized during homogenization due to cracking of the quartz glass and might 

have become slightly decarburized. Still, the fraction of pearlite appears to increase with 

increasing Ni content for the other three samples. This can be explained by physical metallurgy. 

Because Ni is an austenite stabilizing element, it expands the austenite region in the phase 

diagram [27]. Ni also lowers the eutectoid temperature and reduces the carbon content of the 

eutectoid composition as described in [27]. The lever rule suggests that the amount of pearlite 

increases at the expense of ferrite for increased Ni contents. 

 

Electrochemical polarization curves 

 

A potential of 0 VMME was chosen as the oxidation potential at the anode side in the permeability 

experiments because it was in the middle of the passive potential range and sufficiently anodic 

for hydrogen oxidation. 

 

During cathodic polarizations, hydrogen bubbles were visually observed at current densities 

around 150 µA cm-2 at 15 °C and around 50 µA cm-2 at 70 °C. A hydrogen charging current 

density of 45 µA cm-2 was chosen for all permeability experiments. The choice of cathodic 

current density, below what would give hydrogen bubbles on the surface, was with the 

assumption that this would provide as stable conditions as possible on the cathodic side, hence 

maintaining a constant sub-surface hydrogen concentration.  

 

Hydrogen permeability experiments 

 

Effect of nickel in solid solution 

 

The effective diffusion coefficient decreased with increasing Ni content as seen in Figure 5. 

The variations between the consecutive transients, indicated by the standard deviations, were 

much smaller than the variations between Ni contents. The trend was independent of 

temperature. The magnitude of Deff in the literature ranges from 10-7 to 10-4, and direct 

comparison is not straightforward since Deff depends on hydrogen charging conditions. In this 

work, Deff decreased by 58, 61 and 45% from 0 to 3 wt% Ni at temperatures of 15, 45 and 70 

°C, respectively. 

 

Figure 7 showed the thickness normalized steady-state permeation fluxes (Jss L) through the 

materials. As indicated by the standard deviations, Jss L varied somewhat between consecutive 



15 
 

charging transients. There was a weak trend towards increasing Jss L with increasing Ni content. 

As described in the literature [20], the steady-state permeation flux should be independent on 

trapping. Although the charging current density was the same on all samples, the surface 

coverage of Hads could be different due to the effect of Ni on the catalytic properties of the 

surfaces. The reason for the occasional rising in steady-state permeation current, discussed later, 

might also be a part of the explanation. 

 

The hydrogen concentrations in lattice and trap sites in the samples were presented in Figure 6. 

Even though some of the standard deviations were of similar magnitude as the difference 

between Ni contents, the trend was clear to increasing hydrogen solubility with increasing Ni 

content. Since the values were calculated by Equation (3), the trend is mostly a result of the 

decreasing effective diffusion coefficients with increasing Ni content. The limitations of this 

approach are that it considers reversible trapping only, and that trap occupancy is low. As 

discussed below, there was no irreversible trapping in the alloys. The trap occupancy should be 

low, given the low sub-surface lattice hydrogen concentrations (C0) [20]. However, it was found 

by analyzing the shape of the permeation transients, discussed below, that trapping probably 

affected the transients to some degree. A strange result was seen for the 3 wt% Ni sample where 

the hydrogen solubility was higher at 45 °C than at 70 °C. For some reason, most likely 

experimental error, the steady-state flux of hydrogen was quite high for the 3 wt% Ni sample 

at 45 °C compared to the other samples at 45 °C as seen in Figure 7. 

 

No differences were found between the first and subsequent transients at the same temperature, 

as exemplified in Figure 8. Since the same samples were used at all three temperatures, all 

irreversible traps could have been filled after the first transients at 15 °C, but no differences 

were seen between the first and subsequent transients at 15 °C either. According to Turnbull et 

al. [20], it is unlikely that irreversible traps can be neglected in steels. The same author observed 

a clear displacement to shorter times from the first to the second and third permeation transients, 

when testing a martensitic stainless steel. Other authors have failed to observe this time shift. 

Bolzoni et al. [28] tested two pipeline steel materials (X65 and F22) in as received conditions, 

fully quenched and annealed conditions, and found no differences between permeation 

transients. Chan [29] reported permeability tests on a martensitic steel with various carbon 

contents. As the carbon content increased, quenching produced more lattice imperfections that 

acted as irreversible traps. The difference between the first and second permeation transients 

increased as the carbon content increased from 0.23 to 0.93 wt%. Chan suggested that 

microcracks, microvoids, and retained austenite were irreversible traps in his steels. 

 

When the time was normalized to Deff instead of Dl (as in Figure 8), the experimental 

permeation curves in the normalized plot matched the curve for ideal lattice diffusion at J Jss
-1 

= 0.63, and the shape of the permeation transients could easily be compared with the curve for 

ideal lattice diffusion. If experimental curves are steeper than that of ideal lattice diffusion, it 

may indicate that trap occupancy is significant. If permeation transients are less steep than the 

ideal lattice diffusion curve, it may indicate unsteady surface conditions [17]. The majority of 

the 36 permeation transients were slightly steeper than the ideal lattice diffusion curve, several 

of the curves had the same steepness, and a few curves were less steep. 

 

Trap number and energies were estimated using Equations (5) - (8). The number of traps ranged 

from 9.89 1022 to 6.27 1023 sites cm-3. The trap energies ranged from 9.2 kJ mol-1 to 15.4 kJ 
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mol-1. Both the number of reversible traps, the trap energy, and the total trapping energy 

(number of traps multiplied with trap energy) varied without a clear trend between Ni contents. 

The result was the same if using data only from 15 to 45 °C or from 45 to 70 °C. The reason 

for the lack of correlation is unknown and remains the scope of ongoing research activities. 

 

Experimental challenges 

 

As seen in Figure 9, the permeation current would sometimes continue to increase with time 

instead of stabilizing. Among the 35 permeation transients recorded, 17 had fairly well-defined 

steady-state currents, while 18 displayed a monotonous increase in permeation currents. The 

rise in permeation current was encountered more often at 15 °C than at 70 °C. The probable 

explanation is unsteady surface conditions on the cathode side. When switching to anodic 

potential after OCP before the first permeation transients, the current densities decreased with 

time. As seen in Figure 4, the material exhibited an active-passive behavior in the electrolyte. 

How the material obtains passivity was not investigated, but there is indeed a time-dependent 

alteration of the surface. The cathodic side shifted between anodic and cathodic potential, and 

it is likely that the surface conditions on the cathodic side changed with time after switching to 

cathodic potentials. 

 

The changes in potential on the cathodic side with time during hydrogen charging, seen in 

Figure 10, support that the surface conditions were not stable.  However, the cathodic potentials 

appeared the same for the permeation transients that stabilized and those where the current 

continued to increase. As seen in Figure 10, the cathodic potentials had close to identical 

courses with time even though the anodic permeation transients, seen in Figure 9, were quite 

different. In Figure 10, the cathodic potential was lower for the 0 wt% Ni sample than for the 1 

wt% Ni sample at the same charging current. This varied from transient to transient at the same 

material, and there was no overall trend towards a Ni content having a higher or lower potential 

during galvanostatic charging. 

 

Challenges with unsteady surface conditions on the hydrogen charging side have been reported 

previously by Zakroczymski [30], who investigated the permeability of iron by cathodically 

generating hydrogen in a 0.1 M NaOH solution. In this case, a barrier layer formed on the 

surface at OCP, which hampered the entry of hydrogen into iron after switching to cathodic 

charging. During cathodic charging, the film was gradually removed by a reduction process 

[30] (although probably never completely removed [31]). It was shown using ellipsometry that 

the surface layer changed with time during cathodic charging [31]. The result was that the 

permeation current on the anodic side continued to increase for up to 50 h before a constant 

flux was obtained. Casanova and Crousier [32] suggested that such changes can be related either 

to the diffusion coefficient of the surface layer, or to the surface coverage of adsorbed hydrogen. 

 

When calculating Deff, COR and Jss L, steady-state was selected where it was expected to 

stabilize as indicated in Figure 9. The curves with normalized permeation flux vs. logarithm of 

normalized time then had shapes similar to the ideal diffusion curve (only delayed in time) as 

seen in Figure 8. When Jss was selected at the end of the charging period, the curves had ideal 

appearance up to some point, before the slope would change the last part up to J Jss
-1 equal to 

one. Despite the probable error when using the current at the end of the transients (regardless 
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of curve shape) to calculate Deff and COR, the relations with regards to Ni content were the same: 

Deff decreased, and COR increased, with increasing Ni content. 

 

When comparing the permeation current in Figure 9 to the passive current densities from the 

polarization curves, given in Table 2, they appear as of similar magnitude. This was not the 

case as the background passive current decreased with time before the charging transients 

started in the permeability experiments. While the background current for the transients in 

Figure 9 was about 10 nA, the steady-state permeation current was higher than 400 nA.  

 

Effect of microstructure 

 

As already discussed, Ni refined the microstructure and increased the pearlite fraction. Several 

investigators have found that the amount, location, and morphology of cementite affects 

hydrogen diffusion and solubility within steels [33-36]. Chan and Charles [33] found that with 

increasing carbon content in a ferritic/pearlitic steel, the hydrogen solubility increased, and the 

effective diffusion coefficient decreased. Similarly, a reduced grain size has been found to 

increase hydrogen pick-up in pure iron [37].  

 

Using data from literature to remove the effects of varying pearlite contents and grain sizes in 

the current results is difficult. One of the problems is the hydrogen concentration dependency 

of Deff. Additional investigations should be done with variations in grain sizes and, if possible, 

decarburized samples to confirm that the trend found in this work is indeed the effect of Ni in 

solid solution, and not an effect of cementite content or grain size variations.  

 

Implication of the results 

 

The relation between experimental results such as Deff and COR and the materials resistance to 

HSC is not fully understood. Diffusible hydrogen enhances crack propagation, and threshold 

concentrations of hydrogen can be defined [38]. Similarly, HSC susceptibility generally 

increases with increasing hydrogen diffusion rates [39].  

 

For a given steel in different environments, good correlation has been found between increased 

thickness normalized steady-state permeation flux and reduced cracking resistance [40]. 

However, this simply means that a more severe environment enhances the risk of cracking, and 

does not provide a criterion to compare and evaluate different alloys or microstructures.  

 

As stated by Koh et al. [39], SSC results from the combined action of hydrogen and 

metallurgical defects that are sensitive to hydrogen embrittlement. If an added microstructural 

characteristic is a critical crack initiation point in itself, the susceptibility to HSC may increase 

even if both Deff and COR decrease. If nickel, in this case, is not a crack initiation point in itself, 

reduced Deff and COR values are desired. When Deff decreases while COR increases, the effect on 

in-service cracking resistance is not apparent. Fracture testing could provide additional 

information on the effect of Ni in solid solution on the HSC susceptibility of the ferrite phase. 
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Conclusions 

 

Electrochemical hydrogen permeability experiments were used to investigate the effect of solid 

solution nickel (Ni) on hydrogen diffusion, solubility, and trapping in steels. Ferritic/pearlitic 

research grade low alloy steels with nominal Ni contents from 0 to 3 wt% were tested at 15, 45 

and 70 °C with three permeation transients at each temperature.  

 

The following conclusions were made based on the results presented herein: 

 

 The effective diffusion coefficient decreased, and the hydrogen solubility in lattice and 

reversible sites increased, with increasing Ni content at all tested temperatures.  

 Irreversible trapping was not found in any of the tested samples as evidenced by the 

negligible difference between the first and the subsequent permeation transients.  

 The effect of Ni on the microstructure might be superimposed the effect of Ni in solid 

solution. This should be investigated in further work. 
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