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Abstract

A tensor is a multi-dimensional array of real (or complex) numbers. It is a natural

extension of a matrix with many applications in science and engineering fields.

Over the last few years, there have been significant developments on the spec-

tral theory of tensors. Many important characterizations of nonnegative matrices

have been extended to some special classes of tensors such as nonnegative ten-

sors. In particular, the Perron-Frobenius theory and the minmax theorem have

been extended from nonnegative matrices to the class of nonnegative tensors.

Furthermore, the eigenvalue problem for matrices has been generalized to high

order tensors. Eigenvalue problems of nonnegative tensors find applications or

links with higher order Markov chains, spectral hypergraph theory, and the quan-

tum entanglement. In Chapter 3, we present a fast algorithm for computing the

spectral radii of symmetric nonnegative tensors. In particular, by this proposed

algorithm we are able to obtain the spectral radii of weakly reducible symmetric

nonnegative tensors without requiring the partition of the tensors. As we know,

it is very costly to determine the partition for large-size weakly reducible tensors.

Numerical results are reported to show that the proposed algorithm in Chapter 3

is efficient and also it is able to compute the spectral radii of large-size tensors. As

an application, we present an algorithm for testing the positive definiteness of Z-

tensors. By this algorithm, it is guaranteed to determine the positive definiteness

for any Z-tensor. In Chapter 4, we study homogenous polynomial optimiza-

tion problems under the unit sphere constraints. These optimization problems

have wide applications e.g., in signal and image processing, high order statistics,

and computer vision. Since these problems are, in general, NP-hard, we are in-

terested in studying approximation algorithms. In particular, we propose some

polynomial-time approximation algorithms with new approximation bounds. In

addition, based on these approximation algorithms, some efficient algorithms are

presented and numerical results are reported to show the efficiency of our pro-

posed algorithms. In Chapter 5, we study the maximum clique problem (MCP)

which is a well-known example of combinatorial optimization. The MCP has

been proven to be NP-complete, so it is difficult to determine the global solutions
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of this problem. We show that the MCP can be equivalently formulated into

homogeneous polynomial optimization problems under the unit spheres which

are studied in Chapter 4. Then, we develop a computational algorithm that is

called the alternating direction method of multipliers (ADMM) to solve for the

MCP. In particular, we apply the ADMM method to the most popular DIMICS

benchmark graphs of different dimensions, and the numerical results show that

proposed method performs well for some of these graphs.
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CHAPTER 1

Introduction

This chapter consists of three main parts. In the first part of this chapter, we

introduce some basic definitions, concepts, notations and properties about ten-

sor theory and polynomial optimisation problems. In addition, the second part

reviews some important results and developments regarding tensor eigenvalue

problems. The last section of this chapter briefly outlines the contents of this

thesis.

1.1 Preliminaries

Matrix theory is a vast field of fundamental importance to both theoretical and

practical aspects in a various area of mathematics, science and engineering. How-

ever, some scientific and engineering applications are of high dimensional sets (i.e.

multi-indexed data sets) hence the matrix analysis is extended from a second or-

der case to higher orders. A higher order generalization of a matrix is called a

tensor which used to describe the multi-arrays with indices more than two. The

origin of tensor concepts can be traced back to the 18th century, in particular, to

great mathematicians such as Carl Gauss, Bernhard Riemann, William Hamilton,

and Elwin Christoffel. Many relations relating to vectors, matrices and tensors

can be described geometrically by tensor theory. For instance, in 1846, William

Hamilton used tensors in both algebraic systems and differential geometry. Fur-

ther in 1898, Woldemar Voigt a German physicist who extensively studied the

nature of crystals used tensor theory in order to describe the properties of crystals.

Also, tensors treated as physical quantities and the current meaning of tensors in

Mathematical physics were commonly refereed to him. Gregorio Ricci developed

tensor notation as an extension of vectors in absolute differential calculus while

Einstein used tensor analysis for general relativity.
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1.1 Preliminaries 2

Recently, tensors have become increasingly common tool to treat multidimen-

sional arrays as they in general are an adequate generalization of both matrices

and vectors. Tensors have a wide range of interesting applications in various fields,

including natural science, engineering, physics, and mathematics. In particular,

tensors arise in solid mechanics, fluid dynamics, electromagnetism, diffusion ten-

sor imaging, tensorial elastography analysis, computer vision, and diffusion filters.

There has been an increased in theoretical work on tensor theory and its spectral

properties and a detailed survey that explains relative basic definitions and prop-

erties of tensors can be found in [103]. This section presents some definitions and

notations relating to nonnegative tensors and recalls some well-known results.

Throughout this thesis, we use <, <n and Cn, to denote the set of all real

numbers, the n-dimensional real space, and the n-dimensional complex space,

respectively. In addition, let m,n ≥ 2, we use T m,n, T m,n+ , Sm,n, and Sm,n+ to

denote the set of all real tensors of order m and dimension n, the set of all real

nonnegative tensors of order m and dimension n, the set of all real symmetric

tensors of order m and dimension n, and the set of all real symmetric nonnegative

tensors of order m and dimension n, respectively. Also, it is very important to

point out that the italic capitals (A,B, ...) are used to denote matrices, and

calligraphic capitals (A,B, ...) are used to denote higher-order tensors. Let

Pn = {xi ≥ 0 : x ∈ <n, 1 ≤ i ≤ n}

and

int(Pn) = {xi > 0 : x ∈ <n, 1 ≤ i ≤ n}.

A tensor (i.e. hyper-matrix) A = (ai1...im) is simply defined as a multi-

dimensional array of entries. It is a generalization of vectors and matrices. For

instance, scalars are simply zero-order tensors, vectors are tensors of first-order,

matrices are tensors of second-order, and tensors of order three or higher (m ≥ 3)

are called higher-order tensors.

In this thesis, we use A to denote a real m−order n−dimensional square real

tensor that is composed of nm entries in the field <, and has the form such that,

A := (ai1...im), where ai1...im ∈ <, ∀ij ∈ {1, ..., n} and j ∈ {1, ...,m}. (1.1)

A tensor A = (ai1...im) is said to be nonnegative, if its entries are nonnegative

(i.e. ai1...im ≥ 0), positive, if its entries are positive (i.e. ai1...im > 0), and sym-

metric, if its entries ai1...im are invariant under any permutation of their indices
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{i1, ..., im} [144], (i.e. aj1...jm = ai1...im , among all the permutations j1...jm of

i1...im, 1 ≤ i1...im ≤ n). Clearly, A is a symmetric matrix if m = 2 and a higher

order tensor if m ≥ 3.

A symmetric tensorA represents the homogeneous polynomial FA(x) of degree

m with real coefficient: x = (x1, . . . , xn)T ∈ <n as

FA(x) := Axm =
n∑

i1,i2,...,im=1

ai1 i2...imxi1xi2 · · ·xim , (1.2)

where xm can be regarded as a rank one tensor of order m and dimension n with

its entries as xi1 , . . . , xim [89]. Let A ∈ T m,n, for an n-dimensional column vector

x = [x1, x2, ..., xn]T , real or complex, we let Axm−1 ∈ Cn, be an n-dimensional

column vector as:

Axm−1 :=

(
n∑

i2,...,im=1

ai i2...imxi2 · · ·xim

)
1≤i≤n

. (1.3)

Definition 1.1. Let tensor A defined in (1.1) be symmetric, and let m be even,

then:

(i) A is said to be positive definite iff its homogeneous polynomial FA(x) :=

Axm > 0 for all x ∈ <n and x 6= 0 [144],

(ii) A is said to be positive semi-definite iff Axm ≥ 0 for all x ∈ <n [144],

(iii) Axm is said to be a copositive tensor iff x ∈ Pn, then Axm ≥ 0 [147],

(iv) A is said to be a strictly copositive tensor iff x ∈ Pn, then Axm > 0 [147].

It is very important to point out that the symmetric tensor and homogeneous

polynomial are bijectively associated [47, 89]. When the order m is even, the

positive definiteness of (1.2) plays a prominent role in the stability analysis of

nonlinear autonomous system by the direct method of Lyapunov in automatic

control [4,24,71,91,170]. In [24], by using Sturm theorem, a method was suggested

to check the positive definiteness of (1.2) if n ≤ 3, but it is not practically useful

if n > 3 and m ≥ 4. Recently, Qi [144] was motivated to study this issue and

defined eigenvalue concepts, in particular, the H-eigenvalues and Z-eigenvalues of

symmetric tensor A and used them to check for the positive definiteness of tensor

A [see Theorem (2.16)]. Furthermore, authors in [48, 65] established the close

relationship of eigenvalues and eigenvectors of higher order tensor with the theory

of resultants. Independently, Lim [101] defined the same notion of eigenvalues,
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eigenvectors, singular values and singular vectors for real tensors. In particular,

l2-eigenvalues and lk-eigenvalues. The l2-eigenvalues and lk-eigenvalues in [101]

are Z-eigenvalues and H-eigenvalues in [144], respectively.

For a symmetric tensor A, the gradient and the Hessian matrix of FA(x) are

as follows:

∇FA(x) := mAxm−1

= m

(
n∑

i2,...,im=1

ai i2...imxi2 · · ·xim

)
1≤i≤n

,

∇2FA(x) := m(m− 1)Axm−2

= m(m− 1)

(
n∑

i3,...,im=1

aij i3...imxi3 · · ·xim

)
1≤i≤n, 1≤j≤n

.

By this observation, we present a definition of weakly symmetric tensor.

Definition 1.2. [38] A tensor A ∈ T m,n is said to be weakly symmetric if its

associated homogeneous polynomial FA(x) satisfies

∇FA(x) = mAxm−1, ∀x ∈ <n

and the right-hand side of the above equation is not identical to zero.

1.2 Literature Review

Over the last few years, there has been a flurry of work on the spectral tensor the-

ory in which many researchers have been attracted to develop different numerical

studies on tensors of higher order. This is due to its significant roles to address

issues in various fields. In particular, the spectral theory of nonnegative tensors

has found many related applications or links in automatical control [144], spec-

tral hypergraph theory [32,81,138], higher order Markov chains [37,82], magnetic

resonance imaging [151, 152], algebraic geometry [33, 96], Finsler geometry [9],

quantum entanglement [83,146], image authenticity verification [188], multilinear

page rank [101], polynomial optimizations [122] and others. Nonnnegative ten-

sors form a singularly important class of tensors that has gained a lot of attention

recently due to some shared intrinsic characteristics with those of nonnegative ma-

trices. In specific, the Perron-Frobenius theorem and the Minmax theorem are

both two illustrations of those explored properties that play a significant role in

eigenvalue’s computation for nonnegative tensor. Recently, Qi and Lim [101,144]
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expanded the eigenvalue problem from matrices to tensors, and further proved

that many properties of eigenvalues can be generalized to tensors. However, the

tensor eigenvalue problems are almost invariably computationally difficult. Un-

like the matrix eigenvalue problem, the eigenvalue problems for tensors of higher

orders are nonlinear. It has been shown [76] that computing eigenvalues (i.e. the

simplest multilinear generalization) of general higher order tensor (i.e. m ≥ 3)

is an NP-hard problem. Although, for some special classes of tensors, it was

also noted that eigenvalue problem is computable, however, all these methods

quickly become impractical when the tensor order becomes large. A detailed ref-

erence on the computational complexity of tensor eigenvalue is provided in [76].

This poses a challenging task for the spectral theory of tensors and thus, many

researchers have been encouraged to develop the theory and algorithms for eigen-

values of nonnegative tensors. In recent years, there have been many research

works that concentrating on eigenvalues of nonnegative tensors. This is in part

due to its significant role in many practical applications, including higher order

Markov chains [82], spectral hypergraph theory [100] and the quantum entangle-

ment [146], and also in part due to its strong foothold in theoretical concepts. We

refer to [35] for a detailed research study of the spectral theory and computational

algorithms of eigenvalues of nonnegative tensors with some applications. Qi [144]

defined the concepts of eigenvalues for tensors of higher order, and proved that

there exists real and complex eigenvalues and eigenvectors. Also, in [144], it was

proven that eigenvalues exist for an even real symmetric tensor A with practical

importance as indicators to determine the positive definiteness of an even degree

multivariate form and to find the best rank-one approximation of a supersym-

metric tensor. Lim [101] independently introduced eigenvalues and eigenvectors,

but restricted them to be real. Many classical concepts and results for eigenval-

ues of square matrices have been extended to tensors, as they have a wide range

of interesting applications including mechanics, physics, and the classification of

hyper-surfaces and hyper-graphs.

Nonnegative tensors have been classified into seven categories including strictly

nonnegative tensor [78], weakly irreducible nonnegative tensor [63], weakly prim-

itive tensor [63], irreducible nonnegative tensors [39], primitive tensor [39], es-

sentially positive tensor [136], and weakly positive tensors [190]. The relations

among these classes have been studied in [78], and it was found that the weakly

irreducible tensors are strictly nonnegative tensors but not conversely. Further-

more, in [137], it was discovered that essentially positive tensors are primitive

tensors, primitive tensors are irreducible tensors and weakly primitive tensors are
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Strictly nonnegative tensor [Hu, Huang, and Qi, 2014]

Strongly nonnegative tensor [Hu and Qi, 2013]

Weakly irreducible tensor [Friedland, Gaubert, and Han, 2013]

Irreducible tensor
[Chang, Pearson, and Zhang,
 2008]

Weakly positive tensor
[Zhang, Qi, & Xu, 2012] Essentially positive

 tensor [Pearson, 2010]

Weakly primitive [Friedland et. al., 2013]

Primitive tensor
[Chang et al., 2011]

Figure 1.1: Relations among different types of nonnegative tensors

weakly irreducible but not necessarily vice versa. It was also shown that essen-

tially positive tensors are weakly positive tensors, but the converse is false, and

weakly positive tensors are irreducible nonnegative tensors, but the converse is

not valid [190]. The relationships among these classes are shown in Figure 1.1

and a detailed description of the nonnegative tensors is given in [78].

The field of nonnegative tensors has blossomed, especially since the introduc-

tion of eigenvalues and eigenvectors of higher order tensors in [101, 144]. Since

then, the spectral theory of tensors has been developing rapidly and many re-

sults have been established. In particular, the Perron-Frobenius theorem has

been generalized from nonnegative matrices to higher order nonnegative tensors

in [39]. In addition, Yang et al. [185,186] had extended the weak Perron-Frobenius

theorem to general tensors. Also, other research studies on Perron-Frobenius the-

orem exist in [79,193]. In the theory of nonnegative tensors, examples where the

Perron-Frobenius theorem is useful arise in measuring higher order connectiv-

ity in linked objects [101] and hypergraphs [100]. Furthermore, in [39], the well

known minmax theorem of Collatz [46] was expanded from irreducible nonnega-

tive matrices to irreducible nonnegative tensors. Recent work presented in [98] on

the Perron-Frobenius theorem indicated that the eigenvalues with modulus (i.e.

the maximum eigenvalue) have the same geometric multiplicity. On the basis

of graph theory, new bounds were established for the clique number of graphs

and their calculations were based on solving the maximum eigenvalue of a {0, 1}
nonnegative tensor [?]. Lim [101] introduced singular values of non-square ten-

sors, and its related properties have been studied in [36, 101]. Recently, in [36],

the Perron-Frobenius theorem was extended to nonnegative rectangular tensors
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and an iterative method was designed to compute the maximum singular value

of a nonnegative rectangular tensor. Zhou et al. [196] has improved a power type

method proposed in [36] such that it is convergent for any irreducible nonnegative

rectangular tensor. Also, more results were established for the singular values of

nonnegative rectangular tensors in [185]. In particular, they expanded the weak

Perron-Frobenius result (i.e Theorem 2.3, [186]) to nonnegative rectangular tensor

and found out that a generalization of Perron -Frobenius result of positive tensors

does not hold for positive rectangular tensor, but a weaker conclusion was proved

such that it may be hold only for the positive situation. Some other related theo-

retical results of nonnegative tensors can be found in [35,36,100,122,126,148,187].

In recent years, tensor eigenvalue problems have received considerable atten-

tion in numerical multi-linear algebra. Ng, Qi, and Zhou [120] developed an

iterative power type algorithm in order to calculate the highest eigenvalue (i.e.

the spectral radius) and the corresponding eigenvector of an irreducible nonneg-

ative tensor. This computational algorithm is called the NQZ algorithm, which

is an extension of Collatz’s result in [46,179] that has been used to determine the

largest magnitude eigenvalue and its corresponding eigenvector of an irreducible

nonnegative matrix. The NQZ method is an effective method but its conver-

gence is not guaranteed for weakly reducible nonnegative tensors. In [40], the

notion of primitive tensors is introduced and the linear convergence of the NQZ

algorithm is established for primitive nonnegative tensors. Friedland et al. [63]

proved that the power algorithm in [120] converges for weakly primitive nonneg-

ative tensors. In [136], a class called an essentially positive tensors is defined

which is a special class of primitive tensors, and Pearson conjectured that the

NQZ method could be convergent for essentially positive tensors of even order.

A remarkable result was made by Zhang and Qi [189], as they studied the con-

vergence of the NQZ algorithm for the class of essentially positive tensors. Liu,

Zhou and Ibrahim [107] modified the NQZ algorithm to present the LZI method,

which is always convergent for solving the largest eigenvalue of nonnegative ir-

reducible tensors. In [191], the linear convergence rate of the LZI method was

established for the class of weakly positive tensors. Also in [136] for an even order

essentially positive tensor, it has been proven that the unique positive eigenvalue

is real-geometrically simple (i.e. the corresponding real eigenvector is unique

up to a scaling constant). Friedland, Gaubert and Han [63] identified the con-

cepts of weakly irreducible nonnegative tensors and derived the Perron-Frobenius

theorem and its fundamental properties for such tensors. Moreover, they dis-

covered that there is a very close link between the Perron-Frobenius theorem for
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nonnegative tensors and the Perron-Frobenius theorem for homogenous monotone

maps. Friedland et al. [63] proposed a power algorithm for polynomial eigenvalues

problems, and established the R-linear convergence of this algorithm under the

weak primitivity condition. Recently, Hu, Huang and Qi [78] modified the NQZ

method and proved that this updated version has a global R-linear convergence

for weakly irreducible nonnegative tensors. In addition, there are many existing

efficient numerical algorithms that are well developed for computing eigenvalues

of nonnegative tensors, (see e.g. [38–40, 63, 78, 107, 120, 147, 185, 190, 191, 199] for

additional details).

Furthermore, some researchers have devised a number of power iteration

methods to calculate the spectral radius and its corresponding positive eigen-

vector for the class of weakly irreducible nonnegative tensors. Recently, the NQZ

method was modified in [107] such that the updated version is convergent for any

weakly irreducible nonnegative tensor. Also, the global linear convergence of NQZ

method and the updated version in [107] had been established in [79, 189, 190]

under weakly irreducible conditions. However, if a nonnegative tensor is weakly

reducible, then these iterative power methods are not guaranteed to converge as

shown in [120] for the NQZ method. Consequently, it is suggested in [78, 199]

that if a nonnnegative tensor is weakly reducible, then there always exists a

partition {I1, I2, . . . , Im} of the index set {1, 2, . . . , n} such that every tensor in

{AIj|j ∈ (1, 2, . . . ,m)} is weakly irreducible; and from these induced tensors, we

are able to determine the largest eigenvalue of tensor A. Therefore, these iter-

ative methods can be applied to weakly irreducible tensors to find its spectral

radius. Hu, Huang and Qi [78] modified the power algorithm in [63] such that

it has a global R-linear convergence under the condition of weakly irreducibility.

Furthermore, by (Algorithm 4.1, [78]), it has been shown that the spectral radius

of a general nonnegative tensor can be found by calculating the spectral radii

of weakly irreducible sub-tensors. However, this algorithm does not work if we

consider reducible tensor instead of weakly reducible tensor.

It is important to point out that there is a vital link between symmetric tensor

approximation and polynomial optimization problems. For instance, in [199], it

has been shown that there is a closed connection between solving the maximum

eigenvalue of a symmetric nonnegative tensor and the global solution of a con-

vex polynomial optimization problem. In particular, it is found that solving the

maximum eigenvalue of a symmetric nonnegative tensor is equivalent to solving

the global solution of a convex optimization problems [199]. This feature pro-

vides some generalized forms that are so useful in solving some hardly tractable
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combinatorial optimization problems such as the maximum clique problem and

the labelling problem. More recently in [199], Zhou et al. proved some impor-

tant characteristics for symmetric nonnegative tensors. In [186], the geometric

programming method has been used to determine the maximum eigenvalue for

nonnegative tensors, which has an advantage of a polynomial time complexity.

Numerical studies in [186,197] show that the power type method outperforms the

geometric programming method. Furthermore, a recent treatise on structure ten-

sors was made in [42] to study the so called essentially nonnegative tensor, and it is

shown that the maximum H-eigenvalue can be computed by using a semi-definite

programming to solve for a polynomial optimization problem. In addition, nu-

merical experiments show that their proposed method is efficient and it can be

10 times faster than the NQZ method. In [80], another iterative method was

proposed for calculating the maximum Z-eigenvalue of an even-order symmetric

tensor. This method is regarded as an improvement of methods in [150,152], and

their numerical results indicate its effectiveness. For more details about other nu-

merical methods for computing the real eigenvalues of a symmetric tensors, tensor

decompositions and applications, we refer readers to [47,50,78,90,123,124].

Polynomial optimization simply means that there is a polynomial function

that needs to be optimized subject to a set of equality and inequality constraints.

Recently, polynomial optimization problems have received growing interest both

theoretically as well as numerically due to its extensive applications in a wide

variety of domains such as biomedical engineering, signal processing, material

science, speech recognition, radar waveform design and many more. Polynomial

optimization problems are notoriously challenging as they are typically nonconvex

and highly nonlinear. Nestrov [119] showed that maximizing a cubic polynomial

over a sphere is NP-hard. For a comprehensive survey of the computational

complexity for the polynomial optimization problems over some simple constraint

sets, we refer the reader to De Klerk [51]. In order to cope with this difficulty,

researchers have centred their focus on designing such approximation methods

to solve for polynomial optimization problems. In [109], the first polynomial-

time approximation algorithm was designed to optimize a multivariate quartic

polynomial over a region defined by quadratic inequalities. Later in [104], a

polynomial time approximation algorithm was proposed to optimize a biquadratic

function over two spheres. These findings have triggered a number of scholarly

research in recent years. Specifically, He et al. [74] extended the results in [109],

and studied the homogeneous polynomial optimization problems of any fixed

degree over quadratic constraints.



1.2 Literature Review 10

In terms of computational methods in the literature of polynomial optimiza-

tion, there are various approaches for solving polynomial optimization problems

that are mostly based on non-linear programming and global optimizations. In

particular, there are some available solver programs like KNITRO, BARON, MI-

NOS, SNOPT, and Matlab optimization toolbox. Furthermore, in [94], the sum

of square method (SOS) is one of the most important mathematical tool that has

been designed for solving the general polynomial optimization problem by con-

sidering it as a semidefinite program. Also, in [143], another interesting program-

ming solver called SOSTOOLS is designed based on decomposition of multivariate

polynomials to solve for SOS. Based on SOS, Henrion et al. [75] developed sev-

eral specialized Matlab toolboxes, in particular, the GloptiPoly and its improved

version, GloptiPoly 3. These toolboxes are useful for solving global optimal solu-

tion of general polynomial optimization problems. Many other researchers have

made significant advances into polynomial optimization problems with spheri-

cal constraints. In [66, 168], the method of Lagrange multipliers is one of such

typical solution methods that has been used in order to reach a set of multivari-

ate polynomial equations, namely the Kuhn-Karush-Tucker (KKT) system that

provides the necessary conditions for optimality. Some other researchers aim to

enumerate all solutions of a KKT system and hence design special methods such

as the subdivision methods [116] and generalized normal forms methods [117].

However, these methods can be less effective if the encountered polynomial de-

gree is high. Recently, another entirely different approach was proposed in [150]

to study a tensor eigenvalue-based method for a global polynomial optimization

problem. Particularly, this approach is called the Z-eigenvalue method and it

aims to solve the homogeneous polynomial functions with a degree of at most

three. In addition, in [111], diffusion-based methods are used to solve non-convex

polynomial optimization models that arise in portfolio selection problems. Due

to concavity of polynomial optimization problems, many researchers have focused

on designing efficient algorithms to find good KKT solutions for polynomial op-

timization problems. Based on tensor optimization, Chen et al. [41] developed

an optimization method that is called the maximum block improvement (MBI)

method which guarantees that any cluster point converges to a stationary solu-

tion (hence a KKT point). Also in practice, the MBI method has the feature

that it solves any optimization problem with separate block constraints. Also,

it has been used as a local improvement scheme for polynomial optimization by

starting from any good initial solutions in order to achieve better performance.

Recently, Zhening et al. [99] proved the global and local linear convergence of
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the MBI method under certain conditions. Moreover, another different yet effi-

cient method for finding the KKT point is to use alternating direction method of

multiplier (ADMM). Specifically, in [86], the classical ADMM was used for solv-

ing polynomial optimization problems and proved to be convergent under some

conditions.

1.3 Outline of the thesis

In this research, we conduct a systematic study for tensor optimization problems

which arise widely in many application areas. Issues discussed in this thesis

are considered to be NP-hard problems, hence, they are difficult to solve both

theoretically and numerically for many reasons. First, most of these problems are

large-scale in size, and hence they require much more efficient algorithms with

less computing time to solve them. In addition, the problems are nonlinear and

nonconvex and cover a wide range of applications in different domains. Motivated

by these challenges, we are interested to develop efficient and effective solution

techniques for tensor eigenvalue problem and tensor optimization problems.

This thesis is divided into six chapters and organized as follows: Chapters

1 and 2 summarize the key points and also provide very brief recapitulation of

nonnegative matrices, nonnegative tensors and their spectral properties.

Chapter 3 is devoted to study the tensor eigenvalue problems, in particular,

we focus on finding the spectral radius of a symmetric nonnegative tensor. In

this chapter, we develop an efficient and effective computational Algorithm (i.e.

Algorithm 1 in [200]) for computing the spectral radius of a symmetric weakly

reducible nonnegative tensor. One nice spectral property of this proposed algo-

rithm is that we can obtain the spectral radius without requiring the partition

of the tensors. This Algorithm 1 in [200] is an improved version of the iterative

power method (i.e. NQZ method) proposed in [120] for calculating the maximum

eigenvalue of a nonnegative tensor. The NQZ method has been regarded as one

of the most important developments in the realm of numerical multi-linear alge-

bra. Numerical results showed that Algorithm 1 in [200] is very efficient and also

can compute the spectral radii of large size tensors. In addition, we design an

algorithm that is guaranteed and useful for identifying the positive definiteness

of a Z-tensor.

Chapter 4 is dedicated to study the tensor optimization problem over a unit

sphere. We consider polynomial optimization problems with nonnegative coeffi-

cients. In particular, we study homogeneous polynomial optimization problems
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over a single spherical constraint (P1) or over product of spherical constraints

(P2). The aim of this chapter is to present some new approximation bounds for

problems (P1) and (P2), which improve the current bound derived for general

polynomial optimization problem in the literature. Particular attention is also

paid to establish some polynomial-time approximation methods for these new ap-

proximation bounds. Numerical results reported in Section 4.3 of chapter 4 show

that the proposed approximation methods are practical and able to produce very

high quality solutions.

Chapter 5 is devoted to a special problem in graph theory called the max-

imum clique problem. One of the equivalent reformulations of the maximum

clique problem is an optimization problem (P1) discussed in Chapter 4. How-

ever, a new continuous reformulation based on the Motzkin-Strauss QP is pre-

sented for the maximum clique problem. This new formulation is equivalent to

the multi-linear functions with spherical constraints. We used Alternating Direc-

tion Method (ADM) to solve for the new relaxed problem as in general, ADM is

a local search procedure and found to be efficient for many optimization prob-

lems. Furthermore, we showed extensive computational results on 66 DIMACS

benchmark graphs with different dimensions. The overall results are reported in

Tables 5.1 and 5.2, by comparing ADM performance with the proposed method

in [22] which is based on Penalty formulation.

Finally, Chapter 6 summarizes all key findings and results in this thesis and

provides further research direction and discussions.



CHAPTER 2

Nonegative matrices and nonnegative

tensors

In this chapter, we briefly discuss both nonnegative matrices and nonnegative ten-

sors, as well as their applications. The primary aim is to recall well known results

and important spectral properties about nonnegative matrices and nonnegative

tensors.

2.1 Nonnegative matrices

Over the last few decades, Perron [141] and Frobenius [64] introduced the concepts

of nonnegative matrix theory and laid the foundations for several fundamental

facts about their spectral properties. Since then, nonnegative matrix theory has

been a very active area of research due to its increasingly important roles in diverse

areas including, numerical analysis, linear complementarity problems, Markov

chains [161], the input-output model in economics [95], queuing theory, geometric

convexity [156], transition probabilities in finite Markov chains [161], machine

learning, strategic market games [3], signal processing, and social network analysis

for competitions [157].

Recall that a square matrix A = (aij) with real elements is called nonnegative

(resp. positive) if its elements are called nonnegative (resp. positive), (i.e., A ≥ 0

if aij ≥ 0, and A > 0 if aij > 0 for all i, j = 1, ..., n). This concept and notation

extends to vectors such that a real n-tuple x = (x1, ..., xn) is called nonnegative

(resp. positive) if xi ≥ 0 (resp. xi > 0), i = 1, 2, ..., n. In the following, we will

discuss some important combinatorial properties such as irreducibility and prim-

itivity of nonnegative matrices. In 1912, Frobenius [64] originally introduced the

term irreducible; it is also called unreduced or indecomposable in the literature.

Definition 2.1. [169] A nonnegative matrix A ∈ <n×n is called reducible if there

13
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exits a permutation matrix P such that

PAP T =

[
U B

0 L

]
,

where the diagonal blocks U and L are non-empty square. Moreover, A is reducible

if an ordering (i1, . . . , ir, jr+1, . . . , jn) of (1, . . . , n) exists such that A[i1, . . . , ir|jr+1, . . . , jn]

is equal to zero. Otherwise, A is called irreducible.

Let G(A) be a directed graph that is associated to A = (aij) such that G(A) =

(V,E), with vertices 1, 2, . . . , n, and an edge from i to j iff aij 6= 0 [169]. A

directed graph G(A) is said to be strongly connected if for any pair of distinct

vertices, i and j, there is some path between i and j ( [169], p.20), for more details

about graph theory concepts, we refer to [23, 108]. The notions of irreducibility

and strong-connectivity are also related. The strong connectedness of G(A) is

equivalent to requiring that A is an irreducible matrix, which is stated in the

following result.

Theorem 2.1. [169] Let A be nonnegative matrix of order n × n. Then A is

irreducible iff it has a strongly connected graph G(A).

Further important characterizations of irreducibility of the nonnegative ma-

trices are presented in the next theorem as follows:

Theorem 2.2. [59] If a matrix A is a nonnegative, then the following statements

are equivalent:

(1) A is called irreducible.

(2) (I + A)n−1 > 0.

(3) For any pair i, j (1 ≤ i, j ≤ n) there exists a natural number k = k(i, j) ≤ n

such that (Ak)ij = a
(k)
ij > 0.

It follows from Theorem 2.2 that AT is irreducible whenever A is irreducible.

According to Theorem 2.1, one can observe that a
(k)
ij > 0 iff there is an edge of

length k form vertex i to vertex j in G(A). Also, according to the equivalence of

(1) and (3) in Theorem 2.2, it follows that A is irreducible iff G(A) is strongly

connected. The following corollary is an easy consequence of Theorem 2.2.

Corollary 2.1. [114] If A is an irreducible nonnegative matrix of order n, then

An−1 > 0.
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Definition 2.2. Let A ∈ <n×n. We use a nonzero vector x ∈ <n to denote the

eigenvector of A and λ ∈ C to denotes its corresponding eigenvalue, satisfying

Ax = λx. (2.1)

Computing eigenvalues and eigenvectors of a nonnegative matrix is useful in

various modern applications, including age-specific population growth, animal

population harvesting models, genetics context, and also in determining website

page rankings as per Google’s PageRank. Given a matrix A, let σ(A) denote the

spectrum of A, the set of all eigenvalues of A, and let ρ(A) denote its spectral

radius, which is the maximum distance of an eigenvalue from the origin. Spec-

tral radius plays a major role in investigations of the rapidity of convergence of

different iterative methods. Its calculation is useful in the identification of M -

matrices [178] and in determining the unique positive solutions of a linear system

in Leontief input-output models [176] in Economics. Other applications include

computing the 2-norm of a matrix (that is, ‖A‖2 =
√
ρ(ATA)) and also verifying

a matrix is convergent (i.e. limn→∞A
n = 0, which occurs iff ρ(A) < 1).

Definition 2.3. [169] Let A = (aij) be an arbitrary n × n complex matrix, and

let eigenvalues λi, 1 ≤ i ≤ n. Then

ρ(A) ≡ max
1≤i≤n

{|λi|, λi is an eigenvalue of A}. (2.2)

This can be reformulated based on the formula of Gelfand as follows,

ρ(A) = lim
n→∞

‖An‖
1
n ,

where ‖.‖ denotes the operator norm. Therefore, ρ(A) is entirely found by A

itself and hence is an intrinsic property. The Perron-Frobenius Theorem provides

a simple characterization in the case of the eigenvalues and eigenvectors of ir-

reducible nonnegative matrices. It is very important for two reasons; first, it is

a most useful concept in many real world applications such as economics, pop-

ulation biology, and other areas of science and engineering, including theory of

dynamical systems, Markov chains, economics, statistics and optimizations. Sec-

ond, it plays a crucial role in the convergence analysis of some iterative methods

for the eigenvalue problems. Positive matrices are a special type of irreducible

nonnegative matrices. In 1907, Perron [141] discovered remarkable spectral prop-

erties for positive matrices. In particular, if A > 0, then the its spectral radius is

positive with a corresponding positive eigenvector. Later, in 1912, Frobenius [64]
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extended and generalized Perron’s result to the class of irreducible nonnegative

matrices. The classical Perron-Frobenius theorem for nonnegative matrices is

stated in the following theorem.

Theorem 2.3. (Perron-Frobenius Theorem, see Varga [169])

Let A be an n×n irreducible and nonnegative matrix, then the following assertions

hold:

(1) A has a positive real eigenvalue equal to its spectral radius ρ(A),

(2) there exists an eigenvector (i.e., the Perron vector) with strictly positive en-

tries (i.e., x > 0) corresponding to the largest positive eigenvalue of modulus

ρ(A) such that Ax = ρ(A)x,

(3) the spectral radius ρ(A) is an algebraically and (hence geometrically) simple

eigenvalue,

(4) If λ is an eigenvalue, then ρ(A) ≥ |λ|. Moreover, if Q ≥ 0 is a primitive

matrix, then

ρ(Q) > |λ|,∀λ ∈ σ(Q) \ {ρ(Q)},

where σ(Q) denote the spectrum of Q

(5) If any entry of A increases (resp. decreases), then the value of ρ(A) in-

creases (resp. decreases).

(6) Let m(> 1) be the index of a nonnegative irreducible cyclic matrix A, and

let λ1, λ2, . . . , λm be the eigenvalues of A of modulus ρ(A) which have the

form

ρ(A)e2πi.j/m, 0 ≤ j ≤ m− 1.

Furthermore, the entire spectrum of A of index m is invariant under a

rotation of the plane about the origin through the angle of 2π/m, but not

through a positive angle smaller than 2π/m. The m eigenvalues of modulus

ρ(A) are the distinct mth roots of the equation λm − ρm(A) = 0. If m ≥ 2,

there exists a permutation matrix P such that PAP T has the cyclic form

as follows:

PAP T =



0 A12 0 · · · 0 0

0 0 A23 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 Am−1,m

Am1 0 0 · · · 0 0


,
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where there are zero square blocks along the main diagonal.

It is very important to point that if A in Theorem 2.3 is just nonnegative and

not irreducible, then ρ(A) is an eigenvalue of A and there exists a nonnegative

vector (x ≥ 0, x 6= 0) such that Ax = ρ(A)x.

Submatrices of nonnnegative matrices are also nonnegative, and hence there

exists a relation between the maximal eigenvalues of a nonnegative matrix and

its principle submatrices as follows:

Theorem 2.4. [64] Let A be an n×n irrreducible nonnegative matrix, and let B

be any principal submatrix of A, then ρ(A) ≥ ρ(B). That is, max1≤i≤n aii ≤ ρ(A).

A criterion for principal submatrix to be reducible is given in the next theorem:

Theorem 2.5. [114] A nonnegative matrix A with spectral radius ρ(A) is re-

ducible iff ρ(A) is an eigenvalue of a principle submatrix of A.

Primitive matrices have been studied in [14], in particular, its shared spectral

properties with positive matrices. Also, the following result introduced a criterion

to check that if a matrix is primitive without calculating its eigenvalues.

Definition 2.4. [14] Let A = (aij) ≥ 0 be an irreducible matrix, and let m denote

the number of eigenvalues of A of modulus ρ(A). Then A is a primitive matrix

if m = 1, and a cyclic matrix of index m if m > 1.

According to Definition 2.4, a primitive matrix is necessarily both nonnegative

and irreducible. Some other elementary properties about primitive matrices are

stated in the following theorem.

Theorem 2.6. [14] Suppose that a nonnegative matrix A is irreducible, then the

following properties are equivalent:

(1) A is called a primitive matrix. Furthermore, AT is a primitive.

(2) Ak > 0 for some k ≥ 1.

(3) Ak is irreducible for all k ≥ 1.

(4) limk→∞ [ρ(A)−1A]
k

exists.

The following theorems follow immediately from Theorem2.1.

Theorem 2.7. [169] Suppose that A = (aij) ≥ 0 is irreducible, and let G(A)

denote its associated directed graph. Then A is primitive if the largest common

divisor of the lengths of all its closed paths in G(A) equal one.
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The converse of Theorem 2.7 also holds.

As in [169], the spectral norm of A is defined as,

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

,

where ‖.‖ is the vector norm on the vector space <n. The relationship between

the spectral radius and the spectral norm is as follows:

Proposition 2.1. [69,77] Let A be an n× n matrix, then its spectral radius can

be described by

ρ(A) = inf
‖.‖∈N

‖A‖,

where N is the set of spectral norms. In particular, for every ε > 0, there is

‖.‖ε ∈ N such that ‖A‖ ≤ ρ(A) + ε.

It is generally difficult to determine precisely the spectral radius of a given ma-

trix. Nevertheless, upper bounds can be easily found from the following theorem

by Gerschgorin (1931).

Theorem 2.8. (Gerschgorin disks) [169] Let A = (aij) be an arbitrary n × n

complex matrix, and let

λi =
n∑
j=1
j 6=i

|aij|, 1 ≤ i ≤ n. (2.3)

Then, every eigenvalue λ of A lies in the union of the disks

|s− aii| ≤ λi, 1 ≤ i ≤ n.

Based on irreducibility concept, Theorem 2.8 can be refined as follows:

Theorem 2.9. [169] Let A = (aij) be an irreducible n× n complex matrix, and

assume that λ, an eigenvalue of A, is a boundary point of the union of the disks

|s− aii| ≤ λi. Then, all the n circles |s− aii| = λi pass through the point λ.

In the following, we shall discuss some existing bounds for the spectral radius

of nonnegative matrices. Primary results due to Frobenius [64] on the bound

for the spectral radius of a nonnegative matrix is known as Frobenius’ bound as

follows:

Theorem 2.10. [64] Let A = (aij) be an n × n nonnegative matrix with n ≥ 2,
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and x an n-tuple positive vector. Then

min
1≤i≤n

(Ax)i
xi
≤ ρ(A) ≤ max

1≤i≤n

(Ax)i
xi

, (2.4)

where xi is the i-th component of x. Moreover, if A is irreducible, then equality

holds in 2.4 if and only if x is an eigenvector which corresponds to ρ(A).

Another bound for the spectral radius of A is given in [26] and known as

Brauer-Gentry’s bound as follows:

min
i 6=j

MA(i, j) ≤ ρ(A) ≤ max
i 6=j

MA(i, j), (2.5)

where

MA(i, j) =
1

2

aii + ajj +

(
(aii + ajj)

2 + 4
∑
k 6=i

|aik|
∑
k 6=j

|ajk|

) 1
2

 .

Other results on the bound of the spectral radius of nonnegative matrices can

be seen in [25, 26, 114, 128]. The following theorem is a well-known minimax

characterization of the spectral radius for irreducible nonnegative matrices.

Theorem 2.11. [46] Let A ≥ 0 be an irreducible matrix, then

min
x∈int(Pn)

max
{i|xi>0}

(Ax)i
xi

= ρ(A) = max
x∈int(Pn)

min
{i|xi>0}

(Ax)i
xi

.

The importance of the spectral radius ρ(A) in various applications have en-

couraged many researchers to focus on its calculations. In some applications,

the purpose is to calculate all the eigenvalues of matrices. For this kind of ap-

plication, QR method [61, 62, 69, 92] is found to be useful for calculating all the

eigenvalues. However, if the purpose is to only determine the largest eigenvalue

of a large sparse nonnegative matrix, then QR method is required to take pro-

hibitively expensive steps, in particular, the subject matrix will first need to be

reduced to the ‘almost triangular’ or to Hessenberg form which can be done in

O(n3) time, and this would very likely damage the sparsity of the subject matrix.

In this regard, many studies indicated that a more promising technique is to use

a method that computes only the largest eigenvalue (i.e. the dominant), or the

first few largest eigenvalues of the matrix while preserving the sparsity of the

matrix at the same time. For instance, the invariant sub-space method appears

to be more promising, in particular, the Arnoldi [5], and other methods suggested
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in [155, 167]. Furthermore, Saad [154] presented a variation of Arnoldi’s method

in order to calculate large eigenproblems. Another promising way is to further

improve Collatz’s result [46] for bounding the spectral radius of an irreducible

nonnegative matrix. This approach received more attentions and contributions

to the problem of bounding the spectral radius; see e.g. [25, 64, 128]. Further-

more, Wood and O’Neill [179] presented a variation of the method of Collatz [46]

and also compared it with the Arnoldi method [5] for calculating the maximum

eigenvalue of a non-negative matrix.

The power method is one of the most popular iterative methods that has been

used for approximating the dominant eigenvalue (i.e. the largest eigenvalue) of

a nonnegative matrix and its associated eigenvector. By relation (2.1), we have

A(k)x = λ(k)x for all k ∈ N. Assume that {xi} is the set of eigenvectors of A and

{λi} the corresponding eigenvalue set such that |λ1| > |λ2| ≥ ... ≥ |λn|. Also, let

z(0) be an arbitrary vector with ‖z(0)‖ = 1, so, for some c1, ..., cn ∈ <, z(0) can be

written as a linear combination of the eigenvectors of A as follows:

z(0) = c1x1 + c2x2 + ...+ cnxn, where c1 6= 0.

Then

z(1) = Az(0) = A(c1x1 + c2x2 + ...+ cnxn)

= c1Ax1 + c2Ax2 + ...+ cnAxn

= c1λ1x1 + c2λ2x2 + ...+ cnλnxn (since Ax = λx)

z(2) = A2z(0) = c1λ
2
1x1 + c2λ

2
2x2 + ...+ cnλ

2
nxn

...

z(k) = Akz(0) = c1λ
k
1x1 + c2λ

k
2x2 + ...+ cnλ

k
nxn

= λk1

(
c1x1 + c2

(
λ2
λ1

)k
+ ...+ cn

(
λn
λ1

)k
xn

)
,

= λk1

n∑
i=1

ci

(
λi
λ1

)k
xi.

Since |λ1| > |λ2| ≥ ... ≥ |λn|, it follows that

lim
k→∞

(
λi
λ1

)k
= 0.
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When k increases, Akz(0) approaches c1λ
k
1x1, and therefore for large values of k,

x1 ≈
Akz(0)

‖Akz(0)‖
.

Moreover, if we apply the Rayleigh Quotient to the resulting z(k), we have the

eigenvalue as follows:

S = lim
k→∞

z(k)
T
Az(k)

z(k)T z(k)

= lim
k→∞

(
λk1c1z

T
1

) (
λk+1
1 c1z1

)(
λk1c1z

T
1

) (
λk1c1z1

)
= λ1,

where S is the Rayleigh Quotient. Briefly, the power iterative procedure is stated

as follows:

Step 0: Choose an initial vector z(0) with ‖z(0)‖ = 1.

Step 1: For k = 1, 2, ..., compute iteratively

y = Az(k−1),

z(k) =
y

‖y‖
.

Step 2: Set k = k − 1 until convergence.

Wood and O’Neill [177] used two approaches to find the dominant eigenvalue as

follows:

(1) Calculate λ(k) = uTAzk/uT z(k), such that uT z(0) 6= 0.

(2) The differences of these non-zero components z(k) and z(k+1) such that its

ratio tends to λ1.

The power method has a convergence rate of |λ2/λ1|, with λ1 being the dominant

eigenvalue and λ2 being the sub-dominant eigenvalue. This iteration method

is simple and efficient at approximating dominant eigenvalues. However, some

practical challenges exist by consider the following cases; if the matrix A has

two eigenvalues of maximum magnitude, or if |λ1| = |λ2| and if the initial vector

z(0) does not have a component in the direction of the dominant eigenvector, or

if c1 = 0. As a result, the power method will not converge to the dominant

eigenvalue. To overcome these challenges, rounding errors are usually used to
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ensure that the method converges to λ1 [167]. In [177], the power method has

been tested on several irreducible matrices of sizes 2 × 2, 3 × 3 and 4 × 4. In

these tested cases, three conclusions are found, in particular, the power method

does not converge at all, it converges very slowly, or a premature convergence to

a wrong value. In [177], the Colltaz method has been extended to provide bounds

for the limit of the convergent sequence for the spectral radius of an irreducible

nonnegative matrix as follows:

Theorem 2.12. [177] Assume that A ≥ 0 is irreducible matrix and z(0) is an

arbitrary positive n-dimensional column vector. Define

z(k) = Az(k−1) = · · · = A(k)z(0), k ≥ 1, (2.6)

suppose

λk = min
1≤i≤n

{
z
(k+1)
i

z
(k)
i

}
and λk = max

1≤i≤n

{
z
(k+1)
i

z
(k)
i

}
, (2.7)

where the superscript i denotes the ith component of a vector. Then, it follows

that

λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ ρ(A) ≤ · · · ≤ λ2 ≤ λ1 ≤ λ0. (2.8)

This method is adopted from a method of Collatz [46] and is closely related

to the iterative power method and the inverse power method. By applying the

Collatz method for matrix A, the convergence rate is |λ1/λ0| with λ0 be the

dominant eigenvalue and λ1 be the subdominant eigenvalue. If we suppose that

the matrix A is primitive, then a result from [177] is considered as follows:

Theorem 2.13. [177] Both generated sequences {λk}∞k=0 and {λk}∞k=0, produced

by the power method in Theorem 2.12 converge to the spectral radius of A iff the

nonnegative irreducible matrix A is primitive.

Thus, the method of Collatz is always a convergent method for the case that

A is primitive. However, for an irreducible matrix, the method of Collatz is not

guaranteed to converge because irreducible matrices can be either primitive or

cyclic. If it is observed that A is cyclic, of course, then there exists a permutation

matrix P such that PAP T has diagonal blocks which are square zero matrices

[169]. The diagonal elements of an irreducible matrix are entirely zero, and a

simple positive diagonal shift can ensure that a cyclic matrix is converted to a

primitive matrix as follows:

Theorem 2.14. [177] If A ≥ 0 is irreducible, then matrix A + εI is primitive,

where ε > 0, and I is the identity matrix.
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Theorem 2.14 provides an irreducible matrix A with a positive spectral shift

expressed as D = A+ εI, which is primitive. Furthermore, by using the method

of Collatz on matrix D then the convergence of Theorem 2.12 is guaranteed for

an irreducible matrix A. If λ0 is the dominant eigenvalue of D, then λ0− ε is the

dominant eigenvalue of A and both matrices D and A have the same associated

eigenvector.

In [177], the Collatz’s method in Theorem 2.12 has been applied to matrix

(εI − A)−1, and in order to ensure the convergence of this method, the matrix

(εI − A)−1 is very required to be primitive first as follows:

Theorem 2.15. [177] If A is an n×n nonnegative irreducible matrix with ρ(A) <

ε, then the matrix (εI − A)−1 ≥ 0 is irreducible. Moreover, it is primitive.

Interestingly, Theorem 2.15 has similarities to the inverse power method. It

guarantees (εI − A)−1 to be both nonnegative and primitive with convergence

ratio of |(ε− λ0)/(ε− λ1)|. It has several merits, in particular, if the matrix A is

an irreducible then convergence is guaranteed. Also, it provides a reliable estimate

for the error at each step. Note that this method has a merit over the method of

Collatz in Theorem 2.12 as it can be used for any nonnegative irreducible matrix,

not only primitive matrices. This is in fact because ρ(A) ≤ ‖A‖∞, by letting

ε > ‖A‖∞ will provide ρ(A) < ε.

If A is reducible matrix, then the method of Collatz is not guaranteed to

be convergent. In order ensure irreducibility, a perturbation of a matrix A was

suggested in [177] as follows:

E =


0 ε 0 · · · 0
... 0

. . . 0

0
. . . ε

ε 0 · · · 0

 ,

where ε is a small positive quantity, ‖E‖2 = ε. This will ensure that A + E is

irreducible matrix, and the method of Collatz can be applied. A related concern

is about the impacts of the perturbation matrix on the eigenvalues. In [179], it is

suggested that the spectral radius of a nonnegative matrix A is not significantly

affected if the values in E are appropriately small.
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2.2 Nonnegative tensors

A nonnegative tensor is a tensor with nonnegative entries, which has applications

in many areas, including spectral hypergraph theory [?,32], higher order Markov

chains [37], numerical analysis [102], signal processing [149], game theory [3], and

so on. Notably, many spectral properties and concepts pertaining to nonnegative

matrices have been successfully extended to nonnegative tensors. In particular,

the classical Perron-Frobenius theory has been extended to tensors; for example,

see [39, 40, 63, 101, 107, 120, 148, 186]. In literature, two types of extensions exist

based on irreducible nonnegative tensors [39, 186] and weakly irreducible non-

negative tensors [63, 78, 153]. Recently, in 2005, the concepts of square matrix

eigenvalue have been generalized to higher order tensors by Qi [144] and Lim [101].

Tensor eigenvalues problems have received a great deal of interest in the field of

numerical multi-linear algebra and various definitions of tensor eigenvalues ex-

ist. They are applicable to a wide range of potential practical applications in

areas such as blind source separation [89], hypergraphs [102, 148] automatical

control [144], magnetic resonance imaging [151,160], image authenticity verifica-

tion [188], higher order Markov chains [37, 82, 97], molecular conformation [53],

algebraic geometry [33,96], quantum entanglement [83,146], Finsler geometry [9]

and for more recent developments see [100, 145, 148]. This section is devoted to

summarize the Perron-Frobenius theorem for tensors with nonnegative entries, as

well as study some existing computing algorithms for the maximum eigenvalue

and their convergence results.

Qi [144] introduced two kinds of eigenvalues (i.e., H-eigenvalues and E-eigenvalues)

for symmetric tensors and described some related results and properties similar

to matrix eigenvalues. Lim [101] independently developed alternate notion for

tensor eigenpair, and tensor singular values and vectors by using a constrained

variational approach. For A ∈ T m,n, let Axm−1 be an n-dimensional vector in

<n such that

(Axm−1)i =
n∑

i2,...,im=1

ai1 i2...imxii2xi2 · · ·xim , i = 1, 2, ..., n. (2.9)

Qi [144] gave the following definition which extends the idea of eigenvalues and

eigenvectors of matrices to higher order tensors.

Definition 2.5. [144] Let A ∈ T m,n, and let C is a complex field, and x[α] =

(xαi )1≤i≤n. Then, a number λ ∈ C and a nonzero vector x ∈ Cn \ {0} are called
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eigenvalue and eigenvector of A respectively, associated with λ if they satisfy

Axm−1 = λx[m−1], (2.10)

Also, note that the pair (λ, x) is called an H-eigenpair if they are both real.

Qi [144] introduced Definition 2.5 by considering an even m and a symmetric

A and also gave an extension to the general case in [39]. Qi also discussed the

concept of positive semi-definite symmetric tensors and showed that an even order

symmetric tensor is positive semi-definite if its H-eigenvalues and (Z-eigenvalues)

are positive (nonnegative), respectively. Lim [101] independently defined tensor

eigenvalues and restricted x and λ to be real. Additionally, Lim studied that when

m is odd, and consider
[
xm−11 sign(x1), ..., x

m−1
n sign(xn)

]T
on the right-hand side

instead. Chang et al. [39] gave a slightly different definition when m is odd as

follows.

Definition 2.6. Let A ∈ T m,n, a pair (λ, x) ∈ C × (Cn \ {0}) is called an

E-eigenvalue-E-eigenvector of A if{
Axm−1 = λx

xTx = 1,
(2.11)

The pair (λ, x) is called a Z-eigenpair if they are both real.

Here, a Z-eigenpair is called sometimes a Z2-eigenpair and If the real eigenpair

(λ, x) satisfies

Axm−1 = λx[m−1], ‖x‖1 = 1,

then it is called a Z1-eigenpair [37]. Furthermore, Chang and Zhang [37] proved

that (λ, x) is a Z1-eigenpair if and only if ( λ
‖x‖m−2

2

, x
‖x‖2 ) is a Z2-eigenpair, where

by ‖x‖1 and ‖x‖2 we denote the l1 and l2−norms respectively for a vector x.

Definition 2.7. [186] Let A ∈ T m,n. Let σ(A) denote the spectrum set of all

eigenvalues of A, and let ρ(A) denote the spectral radius, which is the maximum

modulus of the eigenvalues of A, i.e.,

ρ(A) = max{|λ| : λ ∈ σ(A)}. (2.12)

Unlike matrices, eigenvalue problems for general higher order tensors are non-

linear and considered as NP-hard problems. Eigenvalue problems have gained

great insights and special importance in recent years in the realm of numerical
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multilinear algebra. Several methods have been established to compute the eigen-

values of nonnegative tensors. In particular, many researchers have centred their

focus on studying the Perron-Frobenius theorem and its related algorithms for

nonnegative tensors in order to find the maximum eigenvalue (i.e., the spectral

radius). The following theorem summarized some basic features with respect to

the eigenvalues of a symmetric tensor A. Proof of the following theorem can be

found in [144].

Theorem 2.16. [144]

(1) If λ ∈ C is a root of the characteristic polynomial PA(λ) = det(A − λI),

then it is an eigenvalue of A. An I = (Ii1...im) is the identity tensor such

that

Ii1i2...im =

{
1 if i1 = i2 = ... = im,

0 otherwise.

(2) The tensor A has n(m− 1)n−1 eigenvalues and their product is equal to the

determinant of A.

(3) The sum of all the eigenvalues of A is (m−1)n−1tr(A), where tr(A) denote

the sum of the diagonal elements of A.

(4) All the eigenvalues λ of A lie in the union of the disks:

|λ− ai,i,...,i| ≤
∑
{|ai,i2,...,im| : 1 ≤ i2, ..., im ≤ n, {i2, ..., im} 6= {i, ..., i}},

for i = 1, ..., n.

(5) Furthermore, if A is an even order symmetric tensor, then

(i) H-eigenvalues always exist and A is said to be positive definite (positive

semidefinite) if and only if all of its H-eigenvalues are positive (nonnega-

tive).

(ii) Z-eigenvalues always exist and A is said to be positive definite (positive

semidefinite) if and only if all of its Z-eigenvalues are positive (nonnega-

tive).

There are two types of irreducibility for nonnegative tensors, namely, ir-

reducible nonnegative tensor [39, 101] and weakly irreducible nonnegative ten-

sor [63]. First, let us recall the notion of irreducibility for higher order tensors as

follows.
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Definition 2.8. [39] Suppose that A ∈ T m,n, then A is said to be reducible if

there exists a non-empty proper index subset I ⊂ {1, ..., n} such that

ai1...im = 0, ∀i1 ∈ I, ∀i2, ..., im /∈ I.

A tensor A is called irreducible if it is not reducible.

Let G = (V , E) be a directed graph that is consisting of a vertex set V and an

edge set E . Then, G is said to be strongly connected if for any ordered pair of ver-

tices i and j, there exists a directed path from i to j. Let A = (ai1,...,im) ∈ T [m,n]
+ ,

then its associated directed graph is G(A) = (V , E), with vertices V = {1, 2, ..., n}
and a directed edge (i, j) ∈ E if and only if there exists indices {i2, ..., im} such

that j ∈ {i2, ..., im} and aii2,...,im 6= 0, i.e.,
∑

j∈{i2,...,im}
|aii2,...,im| > 0. Friedland et

al. [63] used the feature of strongly connected graph to introduce weakly irre-

ducible tensor as follows.

Definition 2.9. [63] A tensor A ∈ T m,n is weakly irreducible if its associated

graph G(A) is strongly connected. Otherwise, A is called weakly reducible. Fur-

thermore, A is weakly primitive if G(A) is strongly connected and its greatest

common divisor of the length of its circuits equals one.

In [63], it has been shown that an irreducible nonnegative tensor A is weakly

irreducible. Moreover, if a tensor is of order m = 2, then A is irreducible iff A is

weakly irreducible.

Lemma 2.1. If A ∈ T m,n+ is irreducible. Then

(1) [39]
n∑

i2,...,im

aii2,...,im > 0 ∀ 1 ≤ i ≤ n,

(2) [120] for any positive vector x > 0, x ∈ <n, Axm−1 is a positive vector;

i.e., Axm−1 > 0.

Lemma 2.2. [120] Let A ∈ T m,n+ , with two column vectors x and y are both

nonnegative. Then, the following hold:

(1) If x ≥ y, then Axm−1 ≥ Aym−1;

(2) A(tx)m−1 = tm−1Axm−1, where t > 0.

Furthermore, Chang et al. [39] defined the majorization concept of nonnega-

tive tensors as follows.
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Definition 2.10. [39] Let A ∈ T m,n+ . Its associated nonnegative matrix M(A) is

called the majorization, which is defined as,

[M(A)]ij = aij...j,∀ i, j ∈ {1, ..., n}.

Note that if [M(A)]ij > 0 for all i 6= j, then tensor A is called weakly positive.

Proposition 2.2. [162] Suppose that A ∈ T m,n+ , then it is a primitive tensor

if there exists some positive integer k such that Ak is essentially positive. In

addition, the smallest k is the primitive degree of A. Also, if Ak is essentially

positive, then Ak+1 is also essentially positive.

Remark 2.1. [162] A tensor A ∈ T m,n+ is a primitive if and only if there exists

some positive integer k such that M(Ak) > 0.

Corollary 2.2. [63] Let A ∈ T m,n+ is irreducible, then it is weakly irreducible.

Clearly, irreducible tensors contains weakly irreducible tensor, but the con-

verse may not hold.

Theorem 2.17. [40] If A ∈ T m,n+ is irreducible with aii...i > 0, ∀ 1 ≤ i ≤ n, then

A is a primitive tensor.

In [40], it has been shown that a primitive nonnegative tensor A is an irre-

ducible nonnegative tensor, but not conversely.

Corollary 2.3. [40] If A ∈ T m,n+ , is essentially positive, then it is a primitive

tensor.

Proposition 2.3. [79] Suppose that a nonnegative tensor A is irreducible. Then,

A+ I is weakly primitive.

Let A ∈ T m,n+ . Then let {A(k)x}, be a sequence that is defined for any vector

x ∈ int(Pn), as follows:

y(1) =
(
A(1)x

)[ 1
m−1

]
, A(1)x = A(x)m−1,

y(2) =
(
A(2)x

)[ 1
m−1

]
, A(2)x = A

(
y(1)
)m−1

,

...

y(k) =
(
A(k−1)x

)[ 1
m−1

]
, A(k+1)x = A

(
y(k)
)m−1

, k ≥ 1.
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Definition 2.11. For a tensor A = (ai1...im), we call B = (bi1...im) the diagonal

of A, denoted by B = diag(A), if

bi1...im =

{
ai...i if i1 = ...im = i, i = 1, ..., n,

0 otherwise.

Theorem 2.18. [107] Suppose that A ∈ T m,n+ is irreducible. If diag(A) > 0,

then A is primitive.

Theorem 2.19. [40] Let A ∈ T m,n+ is primitive. If λ is an eigenvalue of A such

that |λ| = ρ(A), then λ = ρ(A), that is, its cyclic index, k = 1.

2.2.1 The Perron-Frobenius Theorem

The Perron-Frobenius theory for nonnegative tensors is well developed as many

important spectral properties have been extended from nonnegative matrices to

nonnegative tensors. It plays a key role to derive many spectral characteriza-

tions of nonnegative tensor that are essential for eigenvalue computations and

its convergence conditions as well as establishing the relations among nonnega-

tive tensor classes. In [39], the Perron-Frobenius theorem has been generalized

from nonnegative matrices to irreducible nonnegative tensors. Later in [186], the

weak Perron- Frobenius theorem is extended to general nonnegative tensors, and

the spectral radius of a nonnegative tensor is shown as an eigenvalue. In [63],

the Perron-Frobenius theorem of nonnegative tensors is shown to have a very

close connection with the Perron-Frobenius theorem for homogeneous monotone

maps. Furthermore, in [63], the Perron-Frobenius theorem has been established

for weakly irreducible nonnegative tensors. Chang, Pearson, and Zhang [39] stud-

ied and established some theoretical properties based on the Perron-Frobenius

theorem for eigenvalues of nonnegative tensors. In the following, we recall the

weak form of the Perron-Frobenius theorem for tensors.

Theorem 2.20. [39] If A ∈ T m,n+ , then there exists λ0 ≥ 0 and a nonnegative

vector x0 6= 0 such that

Axm−1 = λ0x
[m−1]
0 . (2.13)

The pair (λ0, x0) in Theorem 2.20 is a real number and real vector. Further in

[39], the strong form of the Perron-Frobenius theorem is introduced as following:

Theorem 2.21. [39] If A ∈ T m,n+ is an irreducible tensor, then there exists

λ0 > 0 and a nonnegative vector x0 > 0, x0 ∈ <n such that

Axm−10 = λ0x
[m−1]
0 . (2.14)
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Furthermore, it is important to note that if λ is an eigenvalue with nonnegative

eigenvector, then λ = λ0. Also, If λ is an eigenvalue of tensor A, then |λ| ≤ λ0.

However for tensors in general, we note that such λ0 is not necessarily a simple

eigenvalue. Now, let us introduce the geometric multiplicity of an eigenvalue of

A as follows:

Definition 2.12. [40] Suppose that λ is an eigenvalue of A. Then, λ has ge-

ometric multiplicity q if the largest number of linearly independent eigenvectors

corresponding to λ equals q, and it is called simple if its geometrically multiplicity

is equal to one.

The minimax characterization in Theorem 2.11, for the spectral radius of

irreducible nonnegative matrices has been extended to irreducible nonnegative

tensors as follows:

Theorem 2.22. [39] Suppose that A ∈ T m,n+ is irreducible tensor. Then, the

unique positive eigenvalue λ0 such that there is a positive vector x satisfies:

min
x∈int(Pn)

max
xi>0

(Axm−1)i
xm−1i

= λ0 = max
x∈int(Pn)

min
xi>0

(Axm−1)i
xm−1i

, (2.15)

Yang and Yang [186] proved some spectral results for nonnegative tensors as

follows.

Lemma 2.3. [186] Let A ∈ T m,n+ , Then

min
1≤i≤n

∑
i2,...,im=1

aii2...im ≤ ρ(A) ≤ max
1≤i≤n

∑
i2,...,im=1

aii2...im . (2.16)

Furthermore, it has been asserted that the spectral radius of a nonnegative

tensor is an eigenvalue as follows.

Lemma 2.4. Suppose A ∈ T m,n+ , then ρ(A) is an eigenvalue of A with a nonzero

nonnegative eigenvector. Moreover, for any x ∈ int(Pn), we have

min
1≤i≤n

(Axm−1)i
xm−1i

≤ ρ(A) ≤ max
1≤i≤n

(Axm−1)i
xm−1i

. (2.17)

Theorem 2.23. [186] Suppose that A ∈ T m,n+ where m,n ≥ 2. Then

ρ(A) = max
x∈Pn,x 6=0

min
xi>0

(Axm−1)
xm−1i

. (2.18)

The following theorem summarizes some important and basic consequences of

the Perron-Frobenius theorem.
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Theorem 2.24. Let A ∈ T m,n+ . Then, the following facts hold:

• The spectral radius ρ(A) is an eigenvalue with a nonnegative eigenvector,

[186];

• If A is strictly nonnegative tensor, then the spectral radius of A is positive,

i.e. ρ(A) > 0, [78];

• If A is weakly irreducible, then ρ(A) has a unique positive eigenvector, [63];

• If A is irreducible and if λ is an eigenvalue with a nonnegative eigenvector,

then λ = ρ(A), [39];

• If A is irreducible, and A has k distinct eigenvalues of modulus ρ(A), then

the eigenvalues are ρ(A)e2πi.j/k ∀j = 0, 1, . . . , k − 1, and i2 = −1, [186];

• If furthermore A is primitive, then k = 1, [40];

• If A is further essentially positive and m is even, ρ(A) is real geometrically

simple, [136];

• For a nonempty subset I ⊂ {1, ..., n}, we let AI be the induced tensor such

that {Ai1,...,im|i1, ..., im ∈ I}, then ρ(AI) ≤ ρ(A) [78].



CHAPTER 3

Algorithms for computing the spectral

radius of nonnegative tensors

In this chapter, we first present the state-of-art of the spectral theory of nonnega-

tive tensors. This includes the NQZ algorithm [120], the LZI algorithm [107], and

the ZQW algorithm [199]. Then, we propose a fast algorithm for computing the

spectral radii of symmetric nonnegative tensors. In particular, by this proposed

algorithm we are able to obtain the spectral radii of weakly reducible symmetric

nonnegative tensors without requiring the partition of the tensors. As we know,

it is very costly to determine the partition for large-size weakly reducible tensors.

Numerical results are reported to show that the proposed algorithm is efficient

and also it is able to compute the spectral radii of large-size tensors. As an appli-

cation, we present an algorithm for testing the positive definiteness of Z-tensors.

By this algorithm, it is guaranteed to determine the positive definiteness for any

Z-tensor.

3.1 Introduction

In this chapter, we consider an m-order n-dimensional tensor A consisting of nm

entries in < defined in (1.1). For A ∈ T m,n, Qi [144] introduced the nonnegative

tensor eigenvalue problem defined in (2.5) when m is even and C is symmetric. In-

dependently, Lim [101] defined the lk-eigenvalue which is equivalent to Definition

(2.5).

As we know, eigenvectors of matrices are central to linear algebra. Eigen-

vectors of tensors are a natural generalization of eigenvectors of matrices, and

have applications in higher order Markov chains, spectral hypergraph theory,

and the quantum entanglement; See the survey paper [35] for details. Recently,

32
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a number of algorithms for computing tensor eigenpairs have been proposed;

See [35, 44, 78, 90, 122, 192, 199]. In particular, Ng, Qi and Zhou [120] proposed a

power type method for computing the largest eigenvalue of non-negative tensors.

The convergence results of this algorithm have been established in [40,63,107] for

weakly irreducible tensor. For weakly reducible tensors, the proposed algorithm

in [120] may not be convergent. It is shown in [78, 199] that weakly reducible

tensors can be decomposed into some weakly irreducible tensors. Based on this

result, some algorithms for the largest eigenvalue of weakly reducible tensors have

been presented in [78,199]. For the algorithms in [78,199], it is needed to compute

the partition for reducible tensors. As we know, it is very costly to compute the

partition of a weakly reducible tensor A ∈ T m,n+ when n and m are large.

In this chapter, we propose an algorithm for computing the spectral radii of

symmetric nonnegative tensors. This algorithm is a modified version of the al-

gorithm in [120]. In particular, this algorithm has the following nice properties:

(1) It does not require the partition for weakly reducible tensors; (2) It is con-

vergent for any symmetric nonnegative tensor; and (3) It is able to compute the

spectral radius for large-size tensors. As an application, an algorithm for testing

the positive definiteness of Z-tensors is presented.

3.2 Computing methods for the maximum H-

eigenvalue of a nonnegative tensor

3.2.1 Existing Algorithms for weakly irreducible tensor

In fact, there are three existing ways for calculating the maximum eigenvalue of

weakly irreducible tensors as follows.

1. Power-type algorithms

In [39], the classical Perron-Frobenius theorem for nonnegative tensors was

developed. Furthermore, by using Theorems 2.21 and 2.22, Ng, Qi, and

Zhou [120] developed an efficient iterative power method called the NQZ

method in order to calculate the maximum eigenvalue of an irreducible

nonnegative tensor, which is an extension of Collatz’s method for finding the

spectral radius of an irreducible nonnegative matrix. The NQZ algorithm

proceeds as follows:
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Algorithm 3.1. NQZ Method [120]

Given a tensor A ∈ T m,n+ , not necessarily be symmetric.

Step 1. Initialization: choose x(0) ∈ int(Pn). Let y(0) = A(x(0))m−1. Set

k := 0.

Step 2. Compute

y(k+1) := A
(
x(k+1)

)m−1
,

λ̄k+1 := max
1≤i≤n

(
y(k+1)

)
i(

x
(k+1)
i

)m−1 ,
λk+1 := min

1≤i≤n

(
y(k+1)

)
i(

x
(k+1)
i

)m−1 .
Step 3. If λ̄k+1 = λk+1, then the iteration stops. Otherwise, calculate

x(k+1) :=

(
y(k)
)[ 1

m−1 ]∥∥∥(y(k))[
1

m−1 ]
∥∥∥ ,

replace k by k + 1, and go to Step 2.

Next, the convergence of Algorithm 3.1 was established in [120] for irre-

ducible tensor as follows.

Theorem 3.1. [120] Let A ∈ T m,n+ be irreducible and suppose that λ0 is

the unique positive eigenvalue with a corresponding nonnegative eigenvector.

Then, Algorithm 3.1 produced the value of λ0 in a finite number of steps

or generate two sequences {λk} and {λ̄k}. Furthermore, let λ = limk→+∞ λ

and λ̄ = limk→+∞ λ̄. Then, λ and λ̄ are the lower and upper bounds of λ0

respectively. If λ = λ̄, then λ0 = λ = λ̄.

From Theorem 3.1, we can assure that the limit exists as the sequence {λk}
is monotonically non-decreasing and with an upper bound. Hence, the

sequence {x(k)} converges to a vector x. Note that Algorithm 3.1 can only

generate two convergent sequences {λ̄k} and {λk}, both of which are not

guaranteed to converge to λ0 if the underlying tensor A is an irreducible.

In [120], an example of irreducible tensor was given to demonstrate this

case. However, in [40], the convergence of Algorithm 3.1 was established if

the underlying tensor A is primitive and an example was given to show this

for primitive tensor but not for essentially positive tensor.
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For A ∈ T m,n, its associated nonlinear map TA : Pn → Pn was defined

in [40] as

TA(x) :=
(
Axm−1

)[ 1
(m−1) ] for any x ∈ Pn,

then, the following statements hold.

Theorem 3.2. [40, 107]

(1) For all k ∈ N, λ̄k+1 ≤ λ̄k and λk+1 ≥ λk.

(2) If A is irreducible, then λk+1 ↗ λ, λ̄k ↘ λ̄, and λ ≤ ρ(A) ≤ λ̄.

(3) From ‖x(k)‖ = 1, there exists a subsequence x(kj) → x∗ with ‖x∗‖ = 1.

(4) (λk)
[ 1
(m−1)

] x(k) ≤ y(k) = TAx
(k) ≤

(
λ̄k
)[ 1

(m−1)
]
x(k); hence, λ

1
(m−1)x∗ ≤

TAx
∗ ≤ λ̄

1
(m−1)x∗.

(5) For all k ∈ N, there exists 1 ≤ i0 ≤ n such that
(
T k+1
A x∗

)
i0

=

λ
1

(m−1)
(
T kAx

∗)
i0
.

The proofs of Theorem 3.2 are given in [40,107].

The following results find the convergence of the NQZ algorithm if the

underlying tensor A is primitive or weakly primitive tensor.

Lemma 3.1. [40] If A ∈ T m,n+ is primitive, and {λ̄k} is monotonically de-

creasing and {λk} is monotonically increasing. Then, both of the sequences

converge to ρ(A).

Theorem 3.3. [40] Let A ∈ T m,n+ be a primitive and the sequences {λk, λ̄k, x(k)}
are generated by Algorithm 3.1. Then {λk} and {λ̄k} converge to ρ(A), and

{x(k)} converges to x∗, satisfying that ‖x∗‖ = 1, where x∗ is the unique

positive eigenvector corresponding to ρ(A).

Furthermore, Friedland, Gaubert, and Han [63] established the convergence

of Algorithm 3.1 for weakly primitive tensor in the following result.

Theorem 3.4. [63] Suppose that A ∈ T m,n+ is a weakly primitive. Then

the NQZ algorithm generates the sequences {λk, λ̄k, x(k)} such that {λk}
and {λ̄k} converge to ρ(A), and {x(k)} converges to x∗ satisfying ‖x∗‖ = 1,

where x∗ is the unique positive eigenvector corresponding to ρ(A).

Corollary 3.1. [40] If A ∈ T m,n+ is essentially positive, then Algorithm 3.1

converges.
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Corollary 3.2. [40] Suppose A ∈ T m,n+ is irreducible. If A = B + I, then

Algorithm 3.1 converges.

Zhang and Qi [189] established the linear convergence rate of Algorithm 3.1

for essentially positive tensors as follows.

Theorem 3.5. [189] Let A ∈ T m,n+ is essentially positive, then

λ̄k − λk ≤ α
(
λ̄k−1 − λk−1

)
, k = 1, 2, · · · ,

where

α = 1− β

R̄
∈ (0, 1),

β = min
i,j∈{1,2,...,n}

aij...j,

R̄ = max
1≤i≤n

Ri

and

Ri =
n∑

i2,...,im=1

aii2...im .

According to [107, 186], Algorithm 3.1 is not always convergent for some

irreducible nonnegative tensors and hence tensor A can be modified by

adding ρI to tensor A. By Theorems 2.17, 2.21, and Corollary 3 [144], we

have the following Theorem.

Theorem 3.6. [107] Let A ∈ T m,n+ be an irreducible tensor and suppose

B = A+ ρI for any ρ > 0. Then,

(i) B is primitive tensor.

(ii) If λ is the maximum eigenvalue of B, then λ − ρ is the maximum

eigenvalue of A.

Algorithm 3.1 is efficient but not always guaranteed to converge for some

irreducible nonnegative tensors. A counterexample was given in [120] to

show that Algorithm 3.1 may not converge. Later, Liu et al. [107] modified

Algorithm 3.1 such that it is always a convergent method for solving the

maximum eigenvalue of irreducible tensor. We give the details of the refined

algorithm as follows.
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Algorithm 3.2. LZI Method [107]

Step 1. Choose x(1) ∈ int(Pn), and suppose that B = A+ ρI, ρ > 0.

Step 2. For k = 1, 2, ..., calculate

y(k) = B
(
x(k)
)m−1

,

λ̄k = max
x
(k)
i >0

(
y(k)
)
i(

x
(k)
i

)m−1 ,
λk = min

x
(k)
i >0

(
y(k)
)
i(

x
(k)
i

)m−1 .
Step 3. If λ̄k = λk, then let λ = λ̄k and stop. Otherwise, calculate

x(k+1) =

(
y(k)
)[ 1

m−1 ]∥∥∥(y(k))[
1

m−1 ]
∥∥∥ ,

replace k by k + 1, and go to step 2.

Furthermore, it was shown in [107] that the two sequences {λk} and {λ̄k}
converge to λ in the next theorem as follows.

Theorem 3.7. [107] Assume that A ∈ T m,n+ is irreducible, and let B =

A + ρI, where ρ > 0. Then, Algorithm 3.2 produces a value of the spectral

radius λ, or generates the sequence {λk, λ̄k}, which converges to λ, where λ

is the maximum eigenvalue of B. Moreover, λ−ρ is the dominant eigenvalue

of A.

In addition, Zhang et al. [190] established the linear convergence rate of

Algorithm 3.2 under the weakly positive condition as follows.

Theorem 3.8. [190] Suppose that A ∈ T m,n+ , and choose x(0) as the vector

of ones in Algorithm 3.2, then it generates two sequences {λk} and {λ̄k}. If
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A is weakly positive, then

λ̄k+1 − λk+1 ≤ α(λ̄k − λk), k = 1, 2, · · · ,

where

α = 1− β

µ̄
∈ (0, 1), µ̄ = ρ+ max

1≤i≤n
µi,

β = min

{
min

i,j∈{1,2,...,n},i 6=j
Aij...j, ρ+ min

i≤i≤n
Aii...i

}
,

µi =
n∑

i2,...,im=1

Aii2...im .

Furthermore, Zhou et al. [199] designed a variant of Algorithm 3.1 such that

this algorithm is convergent for all weakly irreducible nonnnegative tensors.

For any nonnegative column vector x ∈ <n, we defined φ : Pn → P1 by

φ(x) =
n∑
i=1

xi. (3.1)

Algorithm 3.3. ZQW Method [199]

Step 1. Choose x(1) ∈ int(Pn). Let B = A+ αI, α > 0 and set k = 1.

Step 2. For k = 2, 3, ..., compute

y(k) = B
(
x(k)
)m−1

,

λ̄k = max
x
(k)
i >0

(
y(k)
)
i(

x
(k)
i

)m−1 ,
λk = min

x
(k)
i >0

(
y(k)
)
i(

x
(k)
i

)m−1 .
Step 3. If λ̄k = λk, then let λ = λ̄k and stop. Otherwise, compute

x(k+1) =

(
y(k)
)[ 1

m−1 ]

φ
(

(y(k))[
1

m−1 ]
) ,

replace k by k + 1, and go to step 2.

Theorem 3.9. [198] Suppose that A ∈ T m,n+ is weakly irreducible. As-

sume tensor B = A + I, then by Algorithm 3.3, the maximum eigenvalue

λ of B and the corresponding eigenvector u are produced, or three conver-



3.2 Computing methods for the maximum H-eigenvalue of a nonnegative tensor39

gent sequences {λk}, {λ̄k} and {x(k)} are generated such that limk→∞ λk =

limk→∞ λ̄k = λ, limk→∞ x
(k) = u. Moreover, it follows that λ − 1 is the

maximum eigenvalue of A associated with the eigenvector u.

Define

F (x) = Bxm−1, (3.2)

H(x) =
F (x)[

1
m−1 ]

φ
(
F (x)[

1
m−1 ]

) . (3.3)

Clearly, it can be observed that the sequence {x(k)} in Theorem 3.9 can be

generated by

x(k+1) = H
(
x(k)
)
, k = 1, 2, ..., (3.4)

and φ
(
x(k)
)

= 1 ∀ k = 1, 2, · · · .

The following theorem was established in [198] to show that the ZQW al-

gorithm is Q-linear convergent under the weakly irreducibility conditions.

Theorem 3.10. [198] Suppose that A,B, and {x(k)} defined as in Theorem

3.9. As the sequence {x(k)} converges to u, then its convergence rate is

Q-linear, that is, there exists a vector norm ‖.‖ such that

lim sup
k→∞

‖x(k+1) − u‖
‖x(k) − u‖

< 1. (3.5)

In the light of Theorems 3.5 and 3.8, the linear convergence rate is es-

tablished for the sequences {λk} and {λ̄k}, while Theorem 3.10 gives the

Q-linear convergence rate for the sequence {x(k)} for weakly irreducible ten-

sors. Furthermore, in [78], it has been shown that Algorithm 3.2 is globally

R-linearly convergent under weakly irreducibility conditions.

2. Newton-type algorithms

In 1971, Noda [125] developed a method called the Noda iteration which

has the feature of preserving positivity. This method can compute the max-

imal eigenvalue of an irreducible nonnegative matrix, and its convergence is

proved to be quadratic [56]. For irreducible nonnegative second order ten-

sors (i.e., matrices), there are some existing methods [56,85,125] such that

they maintain faster convergence and positivity preserving for computing

the Perron pairs of tensor A. The Newton type iteration algorithm is one of
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most important computational techniques that has been used to calculate

the eigenpairs of weakly irreducible tensors. In particular, in [121], a local

quadratic convergent method was presented to compute the eigenpair of

irreducible tensor. This method does not preserve positivity, and hence the

line search with additional conditions has been applied to achieve global

convergence, but still not preserve positivity. Recently, Liu et al. [105,106]

combined Newton’s method [121] and Noda’s iteration [125] to present a

method called Newton-Noda iteration (i.e., NNI) which is a positivity pre-

serving method for nonnegative third order tensors. The NNI iteration is

an inverse method with variable shifts that naturally maintains the posi-

tivity of approximate eigenvectors at all iterations. The advantage of the

NNI method is that it is always quadratically convergent for any starting

vector, and able to find eigenpair of a tensor. Moreover, it always shows

global convergence for any positive initial vector and can determine the de-

sired eigenpair [133]. This method shows positivity preserving and requires

the selection of a positive parameter θk in the kth iteration. In addition,

a halving procedure is designed in [106] in order to determine θk, starting

with θk = 1 for each k. Then, such a sequence (λ̄k, x
(k)) produced by NNI

method converges monotonically to (ρ(A), x∗) as long as the sequence {θk}
is bounded below by a fixed positive constant. Thus, it always produces

a monotonically non-increasing sequence of approximate eigenvalues whose

convergence to the maximum eigenvalue is guaranteed. In [106], a compar-

ison was made between the NNI method and the NQZ method by using

flop counts and found that the NNI method has less iterations and faster

convergence.

3. Homotopy methods

Among the various computational iterative methods for solving tensor eigen-

pair problem of an irreducible nonnegative tensor, one can use the classical

approach called the homotopy continuation type algorithm in order to calcu-

late the maximum eigenvalue and its corresponding eigenvector. In partic-

ular, in [44], a homotopy continuation method was used to calculate all real

eigenpairs of a general symmetric tensors. It is also able to find all equiva-

lent classes of isolated eigenpairs and some generalized eigenpairs contained

in the positive dimensional components. Kuo, Lin and Liu [93] developed a

homotopy continuation method for computing nonnegative Z/H-eigenpairs

of A. It has been guaranteed that the homotopy method can calculate a

nonnegative eigenpair and also can ensure the global convergence for non-
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negative Z-eigenpairs. Furthermore, they were able to determine that the

number of positive Z-eigepairs of an irreducible nonnegative tensor is odd

by using degree analysis. Over the last decade, there have been significant

advances on homotopy techniques for polynomial systems of eigenvalues

of tensors, see e.g, [43, 44, 93]. Recently, in [73], homotopy solution tech-

niques are found to be useful to study tensor decomposition and perfect

identification problems.

3.2.2 Existing Algorithms for weakly reducible tensor

Below are two existing ways for calculating the maximum eigenvalue of weakly

reducible nonnegative tensors.

1. Approximation algorithms

In [192], a counterexample was given to show that the Algorithm 3.2 may

not be convergent for some reducible nonnegative tensor. Thus, an ap-

proximation method (Algorithm 4.1, [192]) was designed to find the max-

imum eigenvalue for reducible nonnegative tensors. Some of the existing

approximation algorithms in [107,192] have been used to check the positive

definiteness for the following multivariate form:

f(x) = Axm =
n∑

i1,i2,...,im=1

ai1i2...imxi1xi2 · · · xim

where A = (ai1i2...im) is a symmetric Z-tensor. In [145], it is proved that

f(x) is called positive definite if its real eigenvalues are positive. In addition,

for square tensors, it is well-known that Z-eigenvalues are parallel to M-

eigenvalues as shown in [38, 101, 144, 150]. A tensor A is called a strong

M-tensor if its smallest real eigenvalue of A is positive [192], so, a criterion

is established to check the positive definiteness of f(x).

Theorem 3.11. [192] Suppose that A = (ai1i2...im) is a symmetric Z-tensor

with even m. If tensor A is strong M-tensor, then f(x) = Axm is called

positive definite.

Theorem 3.12. [144] Let tensor B = u(A+ vI), where A is a symmetric

tensor, and u and v are real numbers. If λ is an eigenvalue of A, then

µ = u(λ+ v) is an eigenvalue of B.
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Lemma 3.2. [192] Let A ∈ T m,n. Then, define

LA = min
1≤i≤n

{aii...i − Ci} , UA = max
1≤i≤n

{aii...i + Ci} , (3.6)

where

Ci =
∑

(i,i2,...,im)6=(i,i,...,i)

|aii2...im|, i = 1, 2, ..., n,

where LA and UA are used to denote the lower and upper bounds of real

eigenvalues of A, respectively. For a Z-tensor A, a tensor C is defined as,

C = UAI − A. (3.7)

Recently, Zhang et al. [192] proposed an iterative method (i.e. Algorithm

4.1) in order to calculate the maximum eigenvalue of the tensor C defined

in (3.7). We should note that for any nonnegative tensor C, UA − ρ(C) is

the smallest real eigenvalue of A. Moreover, if the multivariate form f(x)

is positive definite, then it follows that UA − ρ(C) is positive too. It is

important to observe that Algorithm 3.2 is not always guaranteed for some

reducible nonnegative tensors. A counterexample was given in [192] to

demonstrate this issue. Hence, a perturbation term is added to tensor C
in [192] and Algorithm 3.2 has been modified such that it can compute the

maximum eigenvalue of the tensor

B = C + γI + E , (3.8)

where the parameter γ is positive and E is a positive tensor with positive

entries, that is, ε is a very small positive number.

Lemma 3.3. [186] Suppose that A ∈ T m,n+ , and ε > 0 is a sufficiently small

number. If Aε = A+ E where E is a positive tensor with every entry being

ε, then

lim
ε→0

ρ(Aε) = ρ(A). (3.9)

It is important to note that for any tensor C ≥ 0, we have tensor B defined

as above is an irreducible nonnegative tensor. According to Lemma 3.3

and Theorem 3.7, the convergence of the proposed algorithm in [192] was

established for any nonnegative tensor as follows.

Theorem 3.13. [192] Suppose that tensor C ≥ 0, and tensor B be defined

as (3.8). Then Algorithm 4.1 in [192] terminates in a finite number of steps
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and produces a value of ρ(B) or yields two sequences {λk} and {λ̄k} which

converge to ρ(B). Moreover, ρ(C) = limε→0 ρ(B)− γ.

The following theorem can be used to determine that the error bound be-

tween the maximum eigenvalues of C + E and C for symmetric nonnegative

tensors.

Theorem 3.14. [192] Let C ∈ Sm,n+ and let Cε = C + E . Then,

0 ≤ ρ(Cε)− ρ(C) ≤ εnm−1. (3.10)

Furthermore, in [192], another iterative algorithm is proposed for testing

the positive definiteness of f(x) with a Z-tensor. This algorithm works as

follow.

Algorithm 3.4. [192]

Step 1. Input a Z-tensor A ∈ Tm,n with even m. Calculate UA = max1≤i≤n {aii...i + Ci}
and let C = UAI − A be as in (3.7).

Step 2. By using [Algorithm 4.1, [192]], find the spectral radius ρ(C) of C.

Step 3. Let µ = UA − ρ(C). If µ > 0, then f(x) = Axm is said to be positive

definite, or otherwise.

However, Algorithm 3.4 may fail to test the positive definiteness for some

Z-tensors. More details about this issue are given in the next Chapter.

2. Decomposition algorithms

Some of the existing iterative algorithms discussed in the previous subsection do

not guarantee convergence if A is weakly reducible. For weakly reducible tensors,

we recall the following results.

Theorem 3.15. [78] Suppose that A ∈ Tm,n+ . If A is weakly reducible, then

there is a partition {I1, ..., Ik} of {1, ..., n} such that every induced tensor in{
AIj |j ∈ {1, ..., k}

}
is weakly irreducible.

Theorem 3.16. [78] Suppose that A ∈ Tm,n+ is weakly reducible, and there is

a partition {I1, ..., Ik} of {1, ..., n} that is determined by Theorem 3.15. Then,

ρ(A) = ρ(AIi) for some i ∈ {1, ..., k}.
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In [199], several important spectral properties have been proven for symmet-

ric nonnegative tensor A. These properties are summarized as follows: (1) the

spectral radius of A is zero if and only if A = 0, but this is not true if A is

not symmetric; (2) A is a weakly irreducible if and only if there exists a unique

positive eigenvalue with a positive eigenvector; (3) A is irreducible if and only

if there exists a unique nonnegative eigenvalue with a nonnegative eigenvector;

(4) weakly reducible A is decomposed into some weakly irreducible tensors; and

finally the minimax theorem is satisfied without requiring the weak irreducibility

condition.

Let us recall the minimax theorem without the weak irreducibility condition

for symmetric nonnegative tensors as follows.

Theorem 3.17. [199] Suppose that A ∈ Sm,n+ . Then,

min
x∈int(P )

max
1≤i≤n

(Axm−1)i
xm−1i

= ρ(A) = max
x∈P\{0}

min
xi 6=0,1≤i≤n

(Axm−1)i
xm−1i

. (3.11)

Let A ∈ Sm,n+ , Zhou et al. [199] gave a procedure to calculate the partition

{I1, I2, ..., Ik} of {1, 2, ..., n} such that each induced tensor AIi , i = 1, 2, ..., k is

either weakly irreducible tensor or a zero tensor. The following Algorithm is

based upon the result that the graph of a weakly irreducible tensor is strongly

connected.

Algorithm 3.5. [199]

1. Let J1 = {1, 2, ..., n} and set j = 1. If Jj = φ, then stop. Otherwise, choose

an element i1 from Jj, and let Ij := {i1}.

2. Check all elements ai1,i2,...,im such that id ∈ Jj, d = 2, 3, ...,m. If all these

elements are zero, then, let Jj+1 := Jj \ Ij, set j := j + 1, and go to Step 1.

Otherwise, for all non-zero elements ai1,i2,...,im and all d = 2, 3, ...,m, Ij :=

Ij ∪ {id} if id /∈ Ij. Let K := {i1}.

3. If φ = Ij \ K, then, let Jj+1 := Jj \ Ij, set j := j + 1, and go to Step 1.

Otherwise, go to Step 4.

4. Choose an ik ∈ Ij \K and check all elements aik,i2,...,im such that id ∈ Jj, d =

2, 3, ...,m. For all nonzero element aik,i2,...,im and all d = 2, 3, ...,m, Ij :=

Ij ∪ {id} if id /∈ Ij. Let K := K ∪ {ik} and go to Step 3.

Furthermore, a power-type algorithm for finding the largest eigenvalue of sym-

metric nonnegative tensors was proposed as follows.
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Algorithm 3.6. [199]

Step 0. Compute the partition {I1, I2, ..., Ik} of the index set {1, 2, ..., n} using Al-

gorithm 3.5 such that each induced tensor AIi , i = 1, 2, ..., k is either a zero

tensor or weakly irreducible tensor.

Step 1. For i = 1, ..., k, compute

If AIi is a zero tensor, then let λ(i) = 0. Otherwise, compute the largest

eigenvalue λ(i) of AIi and a corresponding eigenvector u(i) by using Algo-

rithm 3.1

End

Step 2. Output the spectral radius ρ(A) = maxki=1 λ
(i). Assume that λ(i) = ρ(A),

and u is defined as,

uj = (u(i))j if j ∈ Ii. Otherwise, uj = 0.

Then, ρ(A) is the largest eigenvalue of A and u is its corresponding eigen-

vector.

Clearly as noted in [199], based on Theorem 3.9, if the underlying tensor A
is weakly irreducible, then by using Algorithm 3.3, we are able to compute the

maximum eigenvalue and the corresponding eigenvector of A. Similarly, in Step

1 of Algorithm 3.6, we can use Algorithm 3.3 to find the maximum eigenvalue

λ(i) of induced weakly irreducible tensor AIi and the corresponding eigenvector

u(i). In the light of Theorem 3.15, it is indicated that weakly reducible symmetric

tensors are partitioned into some induced weakly irreducible tensors. Hence, by

using Algorithm 3.6, we are able to obtain the eigenvalue, which is the largest in

modulus, together with its associated eigenvector for any symmetric nonnegative

tensor. Furthermore, in [199], it has been shown that Algorithm 3.6 performs

better than Algorithm 3.2 for weakly reducible tensors.

3.3 An algorithm for the spectral radius of a

symmetric nonnegative tensor

“Publication has been removed due to copyright restrictions”. For more details,

we refer the reader to [200].
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3.4 Testing the positive definiteness of Z-tensors

“Publication has been removed due to copyright restrictions”. For more details,

we refer the reader to [200].

3.5 Conclusion

In this chapter, we proposed algorithm 1 in [200] for computing the spectral radii

of a symmetric nonnegative tensor. This new algorithm is a modified version of

the algorithm proposed by Ng. Qi and Zhou in [120]. In particular, algorithm

1 in [200] has the following important properties. First, it does not require the

partition for weakly reducible tensors. Second, it is convergent for any symmet-

ric nonnegative tensors (cf. Theorem 1 in [200]). Third, it is able to compute

the spectral radius for large-size tensors. Numerical results reported in Table 1

and Figure 1 in [200] have shown that our new algorithm 1 in [200] works very

efficiently. It is able to compute the spectral radii of large-size tensors and used

much less cpu time than Algorithm 4.1 [199].



CHAPTER 4

Approximation methods for nonnegative

polynomial optimization problems

In this chapter, we consider approximation algorithms for non-negative polyno-

mial optimization problems over unit spheres. These optimization problems have

wide applications e.g., in signal and image processing, high order statistics, and

computer vision. Since these problems are NP-hard, we are interested in studying

on approximation algorithms. In particular, we propose some polynomial-time

approximation algorithms with new approximation bounds. In addition, based

on these approximation algorithms, some efficient algorithms are presented and

numerical results are reported to show the efficiency of our proposed algorithms.

4.1 Introduction

“Publication has been removed due to copyright restrictions”. For more details,

we refer the reader to [195].

4.2 Approximation solutions for (P1) and (P2)

“Publication has been removed due to copyright restrictions”. For more details,

we refer the reader to [195].

4.3 Efficient algorithms for (P1) and (P2)

“Publication has been removed due to copyright restrictions”. For more details,

we refer the reader to [195].
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4.4 Conclusion

In this chapter, we studied nonnegative polynomial optimization problems over

unit spheres, in particular (P1) and (P2). Both are NP-hard problems, hence,

they are difficult to solve theoretically as well as numerically. Motivated by this,

we presented some new approximation algorithms for (P1) and (P2) with some

improved bounds. The new approximation bounds obtained in this chapter are

summarized in Table 1 in [195]. We proposed some new efficient algorithms for

(P1) and (P2), and our numerical results indicated the efficiency of the proposed

methods for tested problems.



CHAPTER 5

Maximum Clique Problem

In this chapter, the maximum clique problem is formulated into a polynomial

optimization problem which has been studied in Chapter 4. Based on this for-

mulation, we develop a computational algorithm to solve the maximum clique

problem. We then apply the proposed method to compute the largest clique for

the most popular DIMICS benchmark graphs.

5.1 Introduction

The combinatorial optimization problem is a very important research area that

has many interesting different optimization models arise in operation research,

graph theory, management, engineering and computer science, amongst many

others. In general, many areas of these disciplines need to be designed using

some forms of combinatorial optimization. Even though, many classical prob-

lems in combinatorial optimization are quite challenging and computationally

difficult even to approximate due to theoretical and practical implications of

such issues, in particular, the maximum clique problem, the maximum graph

matching and vertex cover problems. The maximum clique problem (MCP for

short) is a well-known optimization problem that finds numerous applications in

different domains, including coding theory [29,57], computer vision [12,135], fault

diagnosis [15], pattern recognition [127], printed circuit board testing [54, 175],

location problems [28], and social network analysis [11, 134]. Furthermore, it

plays a central role in many combinatorial optimizations such as clique partition-

ing [55], graph clustering [60,159], graph vertex colouring [34,57,180], maximum

diversity [52], optimal winner determination [7,183], set packing [8,184], and sum

colouring [181]. These problems are associated with MCP and can either be di-

rectly formulated as MCP or could be as a sub-problem of the clique problem.

Also, it is important to point out that several intractable combinatorial optimiza-

49
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tion problems such as the independent set problem, the vertex cover problem and

others can be easily reducible to the MCP.

In general, the MCP is a very challenging problem because it has been proven

to be NP-complete [113], unless P = NP. Hence, due to its computational com-

plexity, exact algorithms (such as explicit and implicit enumerative methods) run

in a time that grows exponentially with the dimensionality of the problem, and

return infeasible solutions. Furthermore, it is also found that the MCP remains

intractable to solve even in detecting satisfactory approximate solutions within a

factor of n/2(logn)1−ε for any ε > 0 [58]. This has motivated many researchers to

focus on characterizing the approximation properties of the clique problem and

study its complexity, for instance, [6, 16, 17, 58, 129, 142]. In the light of these

theoretical complexity studies, much recent research efforts have been directed to

develop highly effective heuristics to find the MCP with no guarantee of perfor-

mance, but still viable in practical applications. Despite the inherent difficulty

of the MCP, the last decade has witnessed remarkable developments in problem

formulations, algorithm’s complexity, bounds, and approximation methods. We

refer interested readers to [20,87,182] for comprehensive surveys that include the

exact algorithms and local search heuristics as well as some applications of the

MCP and its links with other combinatorial problems.

Historically, Motzkin and Straus [115] discovered a remarkable result by es-

tablishing the connection between a global maximum of quadratic optimization

problem and the largest clique size in a certain graph. Recently, this result has

been successfully generalized in numerous different directions [19,67,140]. Lately,

there has been a growing interest centered around the Motzkin-Straus continuous

formulation and its related generalizations to solve the MCP. In [130], the MCP

has been successfully formulated as an indefinite quadratic program (QP) with

linear constraints, and a global optimization method was designed to determine

the largest clique sizes by implementing an iterative clique retrieval process, as

well as obtained sharper lower bound for clique size. However, it is found that

computing a largest clique from the optimal objective value of QP is difficult

because of local solutions of QP lack strictness. In [67, 140], different strategies

have been presented to overcome the spurious solutions exist in Motzkin-Straus

formulation. Gibbson et al. [67] developed a continuous-based heuristic (CBH)

based on a parametrization of the Motzkin-Straus program in order to avoid spu-

rious solution. In particular, the sign constraints x ≥ 0 of the Motzkin-Straus

program is replaced with xTx = 1/s, where a parameter s ∈ [1, n]. Their approach

is to optimize a quadratic function over a spherical constraint, which turns the
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problem to be solvable in a polynomial time. Therefore, relaxing from positiv-

ity, rounding, and a careful choice of the parameter can help to achieve good

cliques. Pelillo [139] proposed a new approximation method for the MCP based

on relaxation method, which is closely related to replicator equations. In [18],

replicator equations, a class of dynamic principles of evolutionary game theory,

have been successfully used to treat Motzkin-Straus quadratic program, and fur-

ther applied them to determine the maximal cliques of a graph. The drawback

of this method is that its inherent inability to escape local solutions, and hence

they incorporate some block pivoting methods to overcome this issue. Another

approximation method was developed in [112], which is based on complementary

pivoting method and known as (PBH) for the clique problem.

Some other results available in the literature concerning the approximation

methods of the MCP on arbitrary or special graphs [45, 49]. If the focus is on

graphs with special structure, then the MCP is polynomially solvable in many

cases. For instance, Balas and Yu [10] studied many classes of graphs and indi-

cated that most of these graph problems can be solved in polynomial time with

many maximal cliques, in particular, perfect graphs. In addition, there are some

other common combinatorial optimization heuristics that have been successfully

used to tackle the MCP in order to obtain good solutions within a reasonable

time. Many of these optimization heuristics are related to greedy construction

heuristics, and stochastic local search algorithms. In particular, some existing

stochastic local search heuristics, including simulated annealing [34], neural net-

works [84], genetic algorithms [118], and tabu search [164]. Recently, other devel-

opments have been directed towards devising efficient methods such as penalty-

evaporation approach embedded into a decomposition methods in [166] and the

augmentation method based on the edge projection in [110]. Other approximation

algorithms include the Variable Neighbourhood Search heuristic [70], the k-opt

local search method [88], the Augmentation algorithm [110], the hybrid evolu-

tionary method [163], genetic algorithm [163], multi-neighbourhood tabu search

algorithm [184], the breakout local search method [13], and many more.

The structure of this chapter: In Section 5.1, we review some definitions

and notations that will be used in this chapter. We present an equivalent for-

mulation based on Motzkin-Straus QP formulation in Section 5.2. Based on this

formulation, in Section 5.3, we propose a computational algorithm for the MCP.

Finally, we show the effectiveness of our proposed method by evaluating it on

popular 66 DIMACS benchmark graphs in Section 5.4.
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5.1.1 Notations and Terminologies

Suppose that a graph G = (V,E) is undirected, which composed of a finite set

of vertices or nodes V = {1, . . . , n}, and a finite set of edges or arcs E ⊆ V × V .

We denote by AG ∈ {0, 1}n×n, the adjacency matrix of G, which is a symmetric

matrix defined as

aij =

1, if (i, j) ∈ E,

0, otherwise.
(5.1)

Let d(v) to denote the degree of the vertex v ∈ V , and |V | to indicate the size of

V . The neighbourhood of a vertex v is denoted by N(i) = {j ∈ V : {i, j} ∈ E}
(i.e. the set of all vertices adjacent to v). Let G = (V,E) be the complementary

graph of G, where E = {(i, j)|i, j ∈ V, i 6= j and (i, j) 6∈ E}. A graph G = (V,E)

is said to be complete if every vertex is connected to every other vertex of G

by an edge such that ∀ i, j ∈ V,with i 6= j,we have (i, j) ∈ E. A clique C of

G is a subset of vertices such that every two distinct vertices in the clique are

adjacent. The size of the largest clique in G (i.e. maximum clique) is denoted by

ω(G), which is the number of vertices in the largest clique. The MCP seeks to

find a clique C (i.e. complete subgraph) in a graph G of the largest cardinality

among all the cliques. A clique is said to be maximal, if it is not possible to

add an additional vertex to C and C remains a clique. Also we use this formula
2|E|

(|V |∗(|V |−1)) to find the density of each graph, where |V | and |E| are the number

of nodes and arcs of G, respectively.

5.2 Modeling formulation

The MCP has many equivalent formulations available in literature, and most

of these formulations are based on the integer programming formulation and

non-convex continuous optimization. In this section, we mainly focus on the

continuous-based formulation of the MCP. In particular, the Motzkin-Strauss

formulation of the MCP is as follows:

maximize f(x) = xTAGx

subject to x ∈ ∆n.
(5.2)
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The superscript xT stands for transportation; AG denote the adjacency matrix of

G as in (5.1); and ∆n is the standard simplex of <n defined as

∆n = {x ∈ <n : xi ≥ 0 ∀ i ∈ V, eTx =
n∑
i=1

xi = 1},

where e =
∑

i∈V ei = [1, . . . , 1]T , (i.e. e is the n-vector of the appropriate length

of all ones, consisting of unit entries) and ei used here to indicate the i-th stan-

dard basis vector in <n. In mid sixties, Motzkin and Straus [115] found that

a connection exists between the MCP and an indefinite quadratic programming

(5.2).

Theorem 5.1. [115] The global optimal value of (5.2) is determined by this

following relation 1
2
(1− 1

ω(G)
), where ω(G) is the clique number of G.

Specifically, if x∗ is a global solution of (5.3), then it is proved that the clique

number ω(G) is related to the optimal value f(x∗) as follows

ω(G) =
1

1− f(x∗)
≥ 1

1− f(x)
, ∀ x ∈ ∆n. (5.3)

Its proof can be found in [1]. In addition, let S be a subset of vertices and xS be

its characteristic vector, which is defined as

xSi =

 1
|S| , if i ∈ S,

0, otherwise.

As proved in [115], a subset S ⊆ V is the largest clique of G if and only if its xS is

a global solution of f on ∆n. Gibbons et al. [68], and Pelillo et al. [140], extended

the results of [115] in order to provide a characterization of maximal cliques in

terms of local solutions of f on ∆n, however, not all local solutions were in the

form of a characteristic vector. Additionally, the first and second-order optimal-

ity conditions of the Motzkin-Straus quadratic program were described in [68].

Furthermore, the Motzkin-Straus result has been expanded to hypergraphs [165],

and recently been generalized to r-graphs by considering a continuous character-

ization of maximal cliques other than Lagrangians of hypergraphs [31,32].

The Motzkin-Straus theorem has become increasingly important due to its

intriguing computational significance in many combinatorial problems. It pro-

vides a new technique to tackle the MCP, by allowing a shift from the discrete to

continuous setting. It is noted in [131] that the continuous formulations of dis-

crete problems have greatly caught some attention, because they not only allow
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us to discover the full arsenal of continuous optimization methods, thereby lead-

ing to the novel development of new and effective strategies, but would also lead

to explore unexpected theoretical aspects and properties. Despite its drawback,

the Motzkin-Straus and its related theorems have played a fundamental role in

the development of many great optimization algorithms and heuristics especially

the largest clique finding techniques [18,19,21,67,130,132,165]. It has also been

successfully used to determine several and better bounds for the largest clique

size of graphs [2,30,171–174]. In addition, the Motzkin-Straus theorem has been

extended to some other applications and problems of combinatorial optimization

such as the vertex weighted graphs [67], and the edge weighted graphs [135].

The formulation of Motzkin and Straus has a major drawback associated with

it due to the existence of spurious solutions, namely, local or global solutions of

f which are not in the form of characteristic vectors, i.e., the local solutions

that are not in a one-to-one correspondence with maximal cliques of the original

combinatorial problems [140]. This has been detected empirically by Pardalos

and Philips [132] and later in 1996, Pelillo and Jagota [140] confirmed this find-

ing. Fortunately, in an attempt to circumvent the Motzkin-Straus formulation

drawback, Bomze [19] solved the spurious solution problem and introduced the

following regularized variant formulation of (5.2) for the MCP.

max g(x) = xT
(
AG +

1

2
I

)
x

s.t. x ∈ ∆n,

(5.4)

where I is the n×n identity matrix. This is just a standard quadratic optimization

problem (StQP) with matrix A = −2(AG + 1
2
I). More importantly, Bomze [19]

proved the following fundamental result for the spurious free counterpart of the

Motzkin-Straus theorem.

Theorem 5.2. [19] For a graph G, let S and xS to denote a subset of vertices,

and its characteristic vector respectively, then the following assertions hold:

(i) S is said to be the largest clique of G iff xS is a global solution of problem

(5.4). Thus, we have ω(G) = 1
2(1−g(xS)) .

(ii) S is said to be a maximal clique of G iff xS is a local solution of problem

(5.4).

(iii) All local and global solutions x of problem (5.4) over the standard simplex

∆n are strict and of the form x = xS for some S ⊆ V .
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Theorem 5.2 guarantees that all local and global solutions of g on ∆n are

strict, and are characteristic vectors of maximal/maximum cliques of G. More

precisely, it establishes a one-to-one correspondence between local (global) solu-

tions of problem (5.4) and maximal (maximum) cliques of G.

Lemma 5.1. [119] With appropriate change of variables, Motzkin-Straus quadratic

problem (5.2) can be reformulated in terms of quartic or cubic maximization prob-

lem over the Euclidean ball as follows:

(a) Quartic maximization problem:

max
u∈<n

{
m∑
k=1

(uTAku)2 : ‖u‖ = 1

}
. (5.5)

where Ak =
eTik

eik+e
T
jk
ejk√

2
, (ik, jk) ∈ E, 1 ≤ k ≤ m, and ei, 1 ≤ i ≤ n, are the

basis vectors of <n.

(b) Cubic maximization problem:

max
u∈<n,w∈<m

{
m∑
k=1

wk(u
TAku) : ‖u‖ = 1, ‖w‖ = 1

}
. (5.6)

Lemma 5.2. [197] Assume that (u∗, w∗) is a global solution of problem (5.6).

Then, it follows that (u∗, u∗, w∗) is a global solution of the following optimization

problem:

max
u,v∈<n,w∈<m

{
m∑
k=1

wk(u
TAkv) : ‖u‖ = 1, ‖v‖ = 1, ‖w‖ = 1

}
. (5.7)

From the Motzkin-Straus formulation (5.2), the second constraint xi ≥ 0 can

be eliminated by considering the square of the variable x (i.e. xi = y2i , y
2 =

(y21, y
2
2, ..., y

2
n)T ∈ <n) in the optimization problem. Hence, an equivalent formu-

lation of (5.2) is as follows:

maximize (y2)TA(y2)

s.t.
n∑
i=1

y2i = 1,
(5.8)
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Furthermore, we use the following notation:

uv =


u1v1

u2v2
...

unvn

 , wz =


w1z1

w2z2
...

wnzn

 . (5.9)

Then, (5.8) is equivalent to the following multi-linear optimization problem:

max (uv)TA(wz)

s.t.
n∑
i=1

u2i = 1, u ≥ 0,

n∑
i=1

v2i = 1, v ≥ 0,

n∑
i=1

w2
i = 1, w ≥ 0,

n∑
i=1

z2i = 1, z ≥ 0,

where u, v, z, w ∈ <n.

(5.10)

Moreover, since A is a nonnegative symmetric matrix, there exists a nonnegative

symmetric fourth order tensor A = (aijkl), 1 ≤ i, j, k, l ≤ n, such that (5.10) can

be rewritten into the following optimization problem:

max F (u, v, w, z) = Auvwz =
∑

1≤i,j,k,l≤n

aijkluivjwkzl,

s.t. ‖u‖ = ‖v‖ = ‖w‖ = ‖z‖ = 1, u, v, w, z ≥ 0,

where u, v, w, z ∈ <n.

(5.11)

Simply, we compute the gradients of F with respect to u, v, w, and z as follows:

∇uF (u, v, w, z) = Avwz,

∇vF (u, v, w, z) = Auwz,

∇wF (u, v, w, z) = Auvz,

∇zF (u, v, w, z) = Auvw.
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Then, we have

(∇uF (u, v, w, z))T u = F (u, v, w, z),

(∇vF (u, v, w, z))T v = F (u, v, w, z),

(∇wF (u, v, w, z))T w = F (u, v, w, z),

(∇zF (u, v, w, z))T z = F (u, v, w, z).

Theorem 5.3. Problems (5.8), (5.10) and (5.11) have the same optimal values.

Proof. By Theorem 2.1 [194] or Theorem 4.1 [41], this theorem holds.

5.3 An algorithm for problem (5.11)

In this section, we present an alternating direction method (ADM) to solve prob-

lem (5.11) which is stated as follows.

Algorithm 5.1.

• Initialization: Given u0 > 0, v0 > 0, w0 > 0 and z0 > 0, set k = 0;

• Iteration: For k = 1, 2, . . . , do,

u(k) := arg maxF
(
u, v(k−1), w(k−1), z(k−1)

)
s.t. ‖u‖ = 1, u ≥ 0,

v(k) := arg maxF
(
u(k), v, w(k−1), z(k−1)

)
s.t. ‖v‖ = 1, v ≥ 0,

w(k) := arg maxF
(
u(k), v(k), w, z(k−1)

)
s.t. ‖w‖ = 1, w ≥ 0,

z(k) := arg maxF
(
u(k), v(k), w(k), z

)
s.t. ‖z‖ = 1, z ≥ 0.
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Remark 5.1.

(i) In Algorithm (5.1), u(k), v(k), w(k) and z(k) can be calculated easily as follows:

u(k) =
∇uF

(
u, v(k−1), w(k−1), z(k−1)

)
‖∇uF (u, v(k−1), w(k−1), z(k−1)) ‖

=
Av(k−1)w(k−1)z(k−1)

‖Av(k−1)w(k−1)z(k−1)‖
,

v(k) =
∇vF

(
u(k), v, w(k−1), z(k−1)

)
‖∇vF (u(k), v, w(k−1), z(k−1)) ‖

=
Au(k)w(k−1)z(k−1)

‖Au(k)w(k−1)z(k−1)‖
,

w(k) =
∇wF

(
u(k), v(k), w, z(k−1)

)
‖∇wF (u(k), v(k), w, z(k−1)) ‖

=
Au(k)v(k)z(k−1)

‖Au(k)v(k)z(k−1)‖
,

z(k) =
∇zF

(
u(k), v(k), w(k), z

)
‖∇zF (u(k), v(k), w(k), z) ‖

=
Au(k)v(k)w(k)

‖Au(k)v(k)w(k)‖
.

(ii) Note that u(k), v(k), w(k), and z(k) satisfy the following systems.

∇uF
(
u, v(k−1), w(k−1), z(k−1)

)
= λ(k)u u(k)

s.t. ‖u(k)‖ = 1,

∇vF
(
u(k), v, w(k−1), z(k−1)

)
= λ(k)v v(k)

s.t. ‖v(k)‖ = 1,

∇wF
(
u(k), v(k), w, z(k−1)

)
= λ(k)w w(k)

s.t. ‖w(k)‖ = 1,

∇zF
(
u(k), v(k), w(k), z

)
= λ(k)z z(k)

s.t. ‖z(k)‖ = 1.

(iii) We terminate Algorithm (5.1), when

max
{
‖uk − uk−1‖, ‖vk − vk−1‖, ‖wk − wk−1‖, ‖zk − zk−1‖

}
≤ ε,

where ε is very small number (i.e., 10−6).

Pre-multiply the above with u(k), v(k), w(k) and z(k) respectively, thus we have

F
(
u(k), v(k−1), w(k−1), z(k−1)

)
= λ(k)u

F
(
u(k), v(k), w(k−1), z(k−1)

)
= λ(k)v

F
(
u(k), v(k), w(k), z(k−1)

)
= λ(k)w

F
(
u(k), v(k), w(k), z(k)

)
= λ(k)z .

(5.12)
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Furthermore,

F
(
u(k−1), v(k−1), w(k−1), z(k−1)

)
≤ F

(
u(k), v(k−1), w(k−1), z(k−1)

)
≤ F

(
u(k), v(k), w(k−1), z(k−1)

)
≤ F

(
u(k), v(k), w(k), z(k−1)

)
≤ F

(
u(k), v(k), w(k), z(k)

)
.

(5.13)

Next, we state the convergence of Algorithm 5.1 as follows:

Theorem 5.4. Let {u(k), v(k), w(k), z(k)} be a sequence generated by Algorithm

5.1. Suppose limk→∞
(
u(k), v(k), w(k), z(k)

)
= (u∗, v∗, w∗, z∗) . Then, (u∗, v∗, w∗, z∗)

is a KKT point of problem (5.11).

Proof. Since the sequence
{
F
(
u(k), v(k), w(k), z(k)

)}
is non-decreasing together

with the fact that F (u, v, w, z) is bounded over unit spheres, we know that the

sequence
{
F
(
u(k), v(k), w(k), z(k)

)}
converges and

lim
k→∞

(
F
(
u(k), v(k), w(k), z(k)

)
− F

(
u(k−1), v(k−1), w(k−1), z(k−1)

))
= 0. (5.14)

From (5.12), (5.13), (5.14), {λ(k)u }, {λ(k)v }, {λ(k)w } and {λ(k)z } are convergent. Sup-

pose that (u∗, v∗, w∗, z∗) is a limit point of (u(k), v(k), w(k), z(k)). Then, we have

lim
k→∞

u(k) = u∗, lim
k→∞

v(k) = v∗, lim
k→∞

w(k) = w∗, lim
k→∞

z(k) = z∗,

lim
k→∞

λ(k)u = lim
k→∞

λ(k)v = lim
k→∞

λ(k)w = lim
k→∞

λ(k)z = λ∗.

From the iterative step of Algorithm 5.1, we have

∇uF
(
u, v(k−1), w(k−1), z(k−1)

)
= λ

(k)
u u(k),

∇vF
(
u(k), v, w(k−1), z(k−1)

)
= λ

(k)
v v(k),

∇wF
(
u(k), v(k), w, z(k−1)

)
= λ

(k)
w w(k),

∇zF
(
u(k), v(k), w(k), z

)
= λ

(k)
z z(k),

‖u(k)‖ = ‖v(k)‖ = ‖w(k)‖ = ‖z(k)‖ = 1.

(5.15)

Then, it holds that 

∇uF (u∗, v∗, w∗, z∗) = λ∗u∗,

∇vF (u∗, v∗, w∗, z∗) = λ∗v∗,

∇wF (u∗, v∗, w∗, z∗) = λ∗w∗,

∇zF (u∗, v∗, w∗, z∗) = λ∗z∗,

‖u∗‖ = ‖v∗‖ = ‖w∗‖ = ‖z∗‖ = 1.

(5.16)
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Thus, u∗, v∗, w∗ and z∗ are KKT points of the problem (5.11), which completes

the proof.

Remark 5.2. In Theorem (5.4), we assume that the sequence
{
F
(
u(k), v(k), w(k), z(k)

)}
is convergent. In our future research, we will study under which conditions this

assumption will be satisfied.

5.4 Numerical Experiment

To properly evaluate the alternating iterative algorithm for optimization problem

(5.11), it is important to carry out practical experiments to test the efficiency of

the proposed method. Hence, this section is devoted to show the performance of

Algorithm 5.1 for DIMACS benchmark graphs. The proposed method is tested

extensively on various instances (i.e. 66 graphs) obtained from DIMACS challenge

benchmarks due to Johnson and Trick [87].

DIMACS benchmark: There are many different graphs and instances pre-

sented at the second DIMACS Implementation challenge. These instances are the

most frequently used to evaluate the performance of MCP algorithms in order

to achieve the optimum/best values for ω(G). We will conduct our experiment

on the following popular families of DIMACS benchmark. These instances have

varying degree of complexity in terms of the graph size, and here is the description

as follows:

• Brock- instances are generated by Brockington and Culberson [27] which

have large cliques hidden among nodes where the expected clique size is

much smaller. In brock- graph family, there are about 12 graphs of different

sizes, the smallest (brock200-1) consists of 200 vertices and 14834 edges and

the largest (brock800-4) has 800 vertices and 207643 edges.

• p-Hat graphs, these are random instances generated by Patrick Soriano and

Michel Gendreau [164] which have wider vertex degree spread and larger

cliques. The p-hat generator of the random instances is a generalization of

the classical uniform random graphs generator. In pHat- graph family, there

are about 15 graph instances of different sizes, the smallest (i.e. p-Hat-300-

1) consists of 300 vertices and 10933 edges, and the largest (i.e.p-Hat1500-3)

has 1500 vertices and 847244 edges.

• MANN instances: Clique formulation of the Steiner Triple problem, and

generated by Carlo Mannino, translated from the set covering formulation.
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The MANN instances range from 45 vertices and 918 edges up to 3321

vertices and 5506380 edges.

• Hamming graph problems defined as H(n, d), of size n and hamming dis-

tance d. Each graph H(n, d) consists of 2n vertices, 2n−1
n∑
i=d

(
n

i

)
edges

and the degree of each vertex is
n∑
i=d

(
n

w

)
. Its generating procedure can be

found in [72]. In hamming- instances, there are about 6 graphs of different

dimensions, the smallest (i.e. hamming6-2) consists of 64 vertices and 1824,

and the largest (i.e. hamming10-4) has 1024 vertices and 434176 edges.

• Keller graph instances are created by Peter Shor which based on Keller’s

conjecture on tilings using hypercubes. There are about three keller graph

instances of different dimensions, the smallest (i.e. keller4) consists of 171

vertices and 9435 edges and the largest (i.e. keller6) has 3361 vertices and

4619898 edges.

• Johnson graphs: Johnson graphs J(n,w, d) are similar to Hamming graphs

H(n, d), with additional parameter w used to indicate the weighted vertex.

J(n,w, d) graphs consist of n vertices,

1
2

(
n

w

) ∑w
k=d d

2
e

(
w

k

)(
n− w
k

)
edges and the degree of each vertex

is defined by
∑w

k=d d
2
e

(
w

k

)(
n− w
k

)
, and we say that two vertices are

adjacent if their Hamming distance is at least d. More details about its

generated procedure can be found in [72].

• Sanchis graphs: (san for short) Sanchis [158] developed the generation pro-

cedures to produce the graphs prefixed with san.

• Sanr: are random graphs with dimensions similar to those in Sanchis graphs,

and developed by Laura Sanchis [158].

In the following, we will compare ADM algorithm performance with the com-

peting method based on unconstrained non-convex formulation that was pre-

sented by (Bomze, Grippo, & Palagi, 2012) [22]. They used the non-monotone

Barzilai-Borwein gradient method to solve for the penalty formulation of the

StQPs and for the MCP. All solution techniques are implemented in MATLAB

(R2015b) and all the numerical computations are conducted using personal laptop

with processor Intel (R) Core (TM) i7-4510U CPU@ 2.00 GHz, with installed
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RAM of 8.00 GB. However, We use the most popular-tested problems of DI-

MACS clique benchmark with different types of problems ranging from easy to

difficult in order to compare the efficiency of the proposed ADM algorithm and

the penalty-based unconstrained formulation presented in [22].

The results of our proposed method are shown in Tables 5.1 and 5.2, each

table contains graph’s name, |V (G)| “the number of vertices in each graph”,

|E(G)| “the number of edges”, “density” , ω(G) “the best known clique”, “ADM”,

and finally penalty-based relaxation results extracted from [22]. We perform

150 random runs for most of these problems, and each problem has been solved

starting with randomly generated points u0, v0, w0, and z0 satisfying ‖u0‖ =

‖v0‖ = ‖w0‖ = ‖z0‖ = 1 respectively. In these tables, we compare the ADM

algorithm with the results presented in [22], and the best performance for the

MCP are presented in a bold face. We found that both methods are efficient

and return best cliques in c − fat, Hamming and Johnson graph categories

in most instances of different sizes. Furthermore, the ADM algorithm returns

better maximum cliques for hamming10−2, and hamming10−4 graphs, whereas

proposed method in [22] finds better maximum cliques for some of brock and

keller graphs. However, both methods do not have a performance guarantee for

solutions provided for other classes such as brock, keller, San, and Sanr in most

dimensions.

5.5 Concluding Remarks

In this chapter, we presented a continuous reformulation for the maximum clique

problem (MCP) based on the Motzkin-Strauss QP. This formulation is equivalent

to the multi-linear function with spherical constraints. We used an Alternating

Direction Method (ADM) to solve the new relaxed problem as in general ADM has

been shown to be efficient for many optimization problems. Finally, we showed

extensive computational results on 66 DIMACS benchmark graphs with different

dimensions. The overall results are reported in Tables 5.1 and 5.2, to compare the

performance of ADM (i.e., Algorithm 5.1) with a method presented in [22] based

on Penalty formulation. In fact, the superiority of any computational method for

the MCP is measured by the best value obtained. Hence, in terms of clique size

found, it seems that none of these proposed solution methods can be considered

better than the other one.
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Table 5.1: Numerical results and comparison of ADM and Penalty formulation
[22] on the 66 DIMACS instances
.

Class Graph |V (G)| |E(G)| Density ω(G) ADM [22]

Brock brock200-1 200 14834 74.5 21 20 20
brock200-2 200 9876 49.6 12 10 10
brock200-3 200 12048 60.5 15 13 13
brock200-4 200 13089 65.8 17 15 15
brock400-1 400 59723 74.8 27 23 24
brock400-2 400 59786 74.9 29 23 22
brock400-3 400 59681 74.8 31 21 21
brock400-4 400 59765 74.9 33 22 23
brock800-1 800 207505 64.9 23 18 19
brock800-2 800 208166 65.1 24 18 18
brock800-3 800 207333 64.9 25 18 18
brock800-4 800 207643 65.0 26 18 18

c-fat c-fat200-1 200 1534 7.7 12 12 12
c-fat200-2 200 3235 16.3 24 24 24
c-fat200-5 200 8473 42.6 58 58 58
c-fat500-1 500 4459 3.6 14 14 14
c-fat500-2 500 9139 7.3 26 26 26
c-fat500-5 500 23191 18.6 64 64 64
c-fat500-10 500 46627 37.4 126 126 126

hamming hamming6-2 64 1824 90.5 32 32 32
hamming6-4 64 704 34.9 4 4 4
hamming8-2 256 31616 96.9 128 128 128
hamming8-4 256 20864 63.9 16 16 16
hamming10-2 1024 518656 99.0 512 499 453
hamming10-4 1024 434176 82.9 40 35 34

johnson johnson8-2-4 28 210 55.6 4 4 4
johnson8-4-4 70 1855 76.8 14 14 14
johnson16-2-4 120 5460 76.5 8 8 8
johnson32-2-4 496 107880 87.9 16 16 16

keller keller4 171 9435 69.9 11 9 10
keller5 776 225990 75.2 27 15 19
keller6 3361 4619898 81.8 59 31 36



5.5 Concluding Remarks 64

Table 5.2: Numerical results and comparison of ADM and Penalty formulation
[22] on the 66 DIMACS instances
.

Class Graph |V (G)| |E(G)| Density ω(G) ADM [22]

MANN MANN-a9 45 918 92.7 16 16 16
MANN-a27 378 70551 99.0 126 117 119
MANN-a45 1035 533115 99.6 345 330 330
MANN-a81 3321 5506380 99.8 1100 1064 1080

p-hat p-hat300-1 300 10933 24.4 8 8 8
p-hat300-2 300 21928 48.9 25 25 25
p-hat300-3 300 33390 74.5 36 36 33
p-hat500-1 500 31569 25.3 9 9 9
p-hat500-2 500 62946 50.5 36 36 34
p-hat500-3 500 93800 75.2 50 48 48
p-hat700-1 700 60999 24.9 11 9 9
p-hat700-2 700 121728 49.8 44 43 43
p-hat700-3 700 183010 74.8 62 60 60
p-hat1000-1 1000 122253 24.5 10 8 10
p-hat1000-2 1000 244799 49.0 46 46 45
p-hat1000-3 1000 371746 74.4 68 64 63
p-hat1500-1 1500 284923 25.3 12 10 10
p-hat1500-2 1500 568960 50.6 65 65 62
p-hat1500-3 1500 847244 75.4 94 92 91

San san200-0.7-1 200 13930 70.0 30 15 17
san200-0.7-2 200 13930 70.0 18 12 12
san200-0.9-1 200 17910 90.0 70 49 46
san200-0.9-2 200 17910 90.0 60 39 47
san200-0.9-3 200 17910 90.0 44 35 34
san400-0.5-1 400 39900 50.0 13 7 7
san400-0.7-1 400 55860 70.0 40 20 20
san400-0.7-2 400 55860 70.0 30 15 16
san400-0.7-3 400 55860 70.0 22 12 12
san400-0.9-1 400 71820 90.0 100 50 69
san1000 1000 250500 50.2 15 8 8

Sanr sanr200-0.7 200 13868 69.7 18 17 17
sanr200-0.9 200 17863 89.8 42 40 37
sanr400-0.5 400 39984 50.1 13 12 12
sanr400-0.7 400 55869 70.0 22 19 20



CHAPTER 6

Conclusions and Further Research Work

In this chapter, we summarize our theoretical approach and methodology that

have been used and tested in this thesis. We also discuss future research directions

for the tensor eigenvalue problems and tensor optimization problems.

6.1 Summary of the results

In this thesis, we have conducted a systematic study on the tensor eigenvalue

problems and tensor optimization problems which arise widely in many applica-

tion areas.

In Chapter 3, we developed an efficient and effective power type algorithm

(i.e., Algorithm 1 in [200]), which is able to calculate the spectral radius of any

nonnegative super-symmetric tensor. This new computational algorithm is an im-

provement over the NQZ method (i.e., Algorithm 3.1), which consists of several

important properties. Firstly, it can find the spectral radius of weakly reducible

nonnegative symmetric tensor without partitioning the tensor. Next, it converges

under mild conditions for any symmetric nonnegative tensor, (cf. In particular,

algorithm 1 in [200] produces a sequence of numbers that always converges mono-

tonically to the spectral radius of the tensor. Finally, it is useful for finding the

largest eigenvalue of large-size tensors and for testing the positive definiteness of

a Z-tensor particularly when the size of the tensor is large. Numerical results

reported in Table 1 and Figure 1 in [200] show that our new Algorithm 1 in [200]

outperforms Algorithm 3.6.

In Chapter 4, we considered the following two polynomial optimization prob-

lems with nonnegative coefficients:
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(1) Homogeneous polynomial problem over a single spherical constraint

(P1) maxx∈<n
n∑

i1,i2,...,id=1

ai1 i2...idxi1xi2 · · · xid

s.t. ‖x‖2 = 1,

where ai1 i2...id ≥ 0.

(2) Bi-quadratic homogeneous polynomial optimization problem over a product

of spherical constraints

(P2) maxx∈<n,y∈<m
n∑

i,j=1

m∑
k,l=1

bijklxixjykyl

s.t. ‖x‖2 = 1, ‖y‖2 = 1,

where bijkl ≥ 0.

In this chapter, we presented some new approximation bounds for problems (P1)

and (P2). In addition, we proposed polynomial-time approximation algorithms

with new approximation bounds for those optimization problems. Numerical

results reported in Section 4.3 show that the proposed approximation algorithms

are efficient in terms of speed and efficiency and may produce global solutions for

some testing problems.

In Chapter 5, we systematically studied the maximum clique problem which

plays an important role in graph theory. One of the equivalent reformulations

of the maximum clique problem is the optimization problem (P1) discussed in

Chapter 4. We proposed an alternating direction method (ADM) to solve this

reformulated optimization problem and reported our extensive computational re-

sults on 66 DIMACS benchmark graphs with different dimensions. Our numerical

results show that the proposed method is encouraging.

6.2 Directions for further research

In this section, we will give some research directions that are worthy to investigate

in future.

1. In Chapter 3, we proposed an algorithm for computing the spectral radii of

nonnegative tensors and we proved that it is convergent for any symmetric

nonnegative tensors. However, when the tensors are not symmetric, we do
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not know if the proposed algorithm is convergent. This is worthy to be

investigated in future.

2. In Chapter 4, we proposed some approximation algorithms for nonnegative

polynomial optimization problems. Numerical results reported in this chap-

ter show that the proposed algorithms are efficient and may produce global

solutions for some testing problems. For these algorithms, an important

issue to be investigated in future is how to choose a “good” starting point.

To this end, we may try to find a way to generate a set of points on the

unit sphere. We expect this set of points will be evenly distributed on the

unit sphere. Among these points, we will choose a “good” starting point.

In our future research, we will study how to generate this set of points.

3. In Chapter 5, we studied the maximum clique problem (MCP) and proposed

an alternating direction method (ADM) to solve the MCP. However, like

the approximation algorithms in Chapter 4, the ADM algorithm proposed

in Chapter 5 may not lead to a global solution. In our future research, we

will investigate some global algorithms for the MCP by combining these

local algorithms with some global strategies used in [41]. Furthermore, we

will consider solving the MCP using combinatorial optimization techniques

and compare with ADM and the penalty variation as well.
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[1] R. Aharoni, P. Erdős, and N. Linial. Optima of dual integer linear programs.

Combinatorica, 8(1):13–20, 1988.

[2] A. Amin and S. Hakimi. Upper bounds on the order of a clique of a graph.

SIAM Journal on Applied Mathematics, 22(4):569–573, 1972.

[3] R. Amir, S. Sahi, M. Shubik, and S. Yao. A strategic market game with

complete markets. Journal of economic theory, 51(1):126–143, 1990.

[4] B. Anderson, N. Bose, and E. Jury. Output feedback stabilization and

related problems-solution via decision methods. IEEE Transactions on Au-

tomatic control, 20(1):53–66, 1975.

[5] W. E. Arnoldi. The principle of minimized iterations in the solution of the

matrix eigenvalue problem. Quarterly of applied mathematics, 9(1):17–29,

1951.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. On the in-

tractability of approximation problems. Preliminary Draft, University of

Rochester, NY, 1992.

[7] L. M. Ausubel, P. Cramton, P. Milgrom, et al. The clock-proxy auction:

A practical combinatorial auction design. Combinatorial auctions, 115:138,

2006.

[8] S. M. Baas, M. Bonvanie, and A. J. Verschoor. A relaxation method for

the set packing problem using polyhedral characteristics. 1988.

[9] V. Balan and N. Perminov. Applications of resultants in the spectral m-root

framework. Applied Sciences, 12:20–29, 2010.

[10] E. Balas and C. S. Yu. Finding a maximum clique in an arbitrary graph.

SIAM Journal on Computing, 15(4):1054–1068, 1986.

68



[11] B. Balasundaram, S. Butenko, and I. V. Hicks. Clique relaxations in social

network analysis: The maximum k-plex problem. Operations Research,

59(1):133–142, 2011.

[12] D. H. Ballard and C. M. Brown. Computer vision, article, 4 pages prentice-

hall. Englewood Cliffs, New Jersey, believed to be published more than one

year prior to the filing date of the present application, 1982.

[13] U. Benlic and J.-K. Hao. Breakout local search for maximum clique prob-

lems. Computers & Operations Research, 40(1):192–206, 2013.

[14] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical

sciences. SIAM, 1994.

[15] P. Berman and A. Pelc. Distributed probabilistic fault diagnosis for mul-

tiprocessor systems. In Fault-Tolerant Computing, 1990. FTCS-20. Digest

of Papers., 20th International Symposium, pages 340–346. IEEE, 1990.

[16] P. Berman and G. Schnitger. On the complexity of approximating the

independent set problem. STACS 89, pages 256–268, 1989.

[17] P. Berman and G. Schnitger. On the complexity of approximating the

independent set problem. Information and Computation, 96(1):77–94, 1992.

[18] I. Bomze, M. Pelillo, and R. Giacomini. Evolutionary approach to the maxi-

mum clique problem: Empirical evidence on a larger scale. In Developments

in global optimization, pages 95–108. Springer, 1997.

[19] I. M. Bomze. Evolution towards the maximum clique. Journal of Global

Optimization, 10(2):143–164, 1997.

[20] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum

clique problem. In Handbook of combinatorial optimization, pages 1–74.

Springer, 1999.

[21] I. M. Bomze, M. Budinich, M. Pelillo, and C. Rossi. Annealed replica-

tion: a new heuristic for the maximum clique problem. Discrete Applied

Mathematics, 121(1):27–49, 2002.

[22] I. M. Bomze, L. Grippo, and L. Palagi. Unconstrained formulation of stan-

dard quadratic optimization problems. Top, 20(1):35–51, 2012.

69



[23] J. A. Bondy, U. S. R. Murty, et al. Graph theory with applications, volume

290. Citeseer, 1976.

[24] N. Bose and P. Kamat. Algorithm for stability test of multidimensional

filters. IEEE Transactions on Acoustics, Speech, and Signal Processing,

22(5):307–314, 1974.

[25] A. Brauer et al. The theorems of ledermann and ostrowski on positive

matrices. Duke Mathematical Journal, 24(2):265–274, 1957.

[26] A. Brauer and I. C. Gentry. Bounds for the greatest characteristic root

of an irreducible nonnegative matrix. Linear Algebra and Its Applications,

8(2):105–107, 1974.

[27] M. Brockington and J. C. Culberson. Camouflaging independent sets in

quasi-random graphs. Cliques, coloring, and satisfiability: second DIMACS

implementation challenge, 26:75–88, 1996.

[28] L. Brotcorne, G. Laporte, and F. Semet. Fast heuristics for large scale

covering-location problems. Computers & Operations Research, 29(6):651–

665, 2002.

[29] A. E. Brouwer, L. B. Shearer, N. Sloane, et al. A new table of constant

weight codes. In IEEE Trans Inform Theory. Citeseer, 1990.

[30] M. Budinich. Exact bounds on the order of the maximum clique of a graph.

Discrete Applied Mathematics, 127(3):535–543, 2003.

[31] S. R. Bulo and M. Pelillo. A continuous characterization of maximal cliques

in k-uniform hypergraphs. In International Conference on Learning and

Intelligent Optimization, pages 220–233. Springer, 2007.
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