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Abstract. This paper studies the rate of convergence of the weak Euler approximation for
solutions to Lévy-driven stochastic differential equations with nondegenerate main part driven by
a spherically symmetric stable process, under the assumption of Holder continuity. The rate of
convergence is derived for a full regularity scale based on solving the associated backward Kolmogorov
equation and investigating the dependence of the rate on the regularity of the coefficients and driving
processes.
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1. Introduction. Stochastic differential equations arise from a broad variety
of fields [21]. Let T' € (0,00) and (€, F,P) be a complete probability space with
a filtration F = {F;}sc0,7) of o-algebras satisfying usual conditions. Suppose X =
{Xt}iep,m is an F-adapted stochastic process solving a given stochastic differen-
tial equation. When the equation satisfies certain conditions, there may exist a
closed-form expression for X. In general, this is unrealistic, and numerical approxima-
tions are used [10]. Among others, weak Euler is one of the most commonly applied
approximations, provided that it converges.

The Euler approximation Y = {Y; };¢[o,7 is said to converge to X with order x > 0
if for each smooth function g with bounded derivatives, there exists a constant C,
depending only on g, such that

|E[g(Y7)] — E[g(X7)]| < Ck(5) = Co",

where § > 0 is the maximum step size of the time discretization.

For diffusion processes, the problem of estimating the rate of convergence has
been well addressed, for instance, in the case of smooth conditions [19], [20], [26], [27]
as well as in the case of Holder continuity [13].

While diffusion processes are probably the most intensively investigated, they
exhibit almost surely continuous sample paths, which is not necessarily the case in
many applications. On the other hand, stochastic processes with jumps provide more
flexibility in modeling dynamic phenomena with continuous and discontinuous un-
certainty. In particular, Lévy processes [1], [4], [24] are the simplest generic class of
processes having a.s. continuous paths interspersed with random jumps of arbitrary
sizes occurring at random times. Stochastic differential equations driven by Lévy pro-
cesses are therefore widely employed in modeling systems arising from, for instance,
mathematics, science, engineering, and finance [2], [25], [29].
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For Lévy-driven stochastic differential equations under smooth conditions, nu-
merical approximations have been consistently studied in, for example, [8], [9], [11],
[22], [23].

The rate of convergence of the weak Euler scheme has also been estimated under
the assumption that the coefficients are Holder-continuous, with a minor restriction on
the scale of regularity [18]. In the present paper, the restriction is removed, and for the
first time the rate is derived for the whole Holder—Zygmund scale, by looking into the
dependence of the rate of convergence on the Holder regularity of the coefficients and
driving processes. Here, for a driving process a part of its regularity is the variation of
the process. From this perspective, the Wiener process is the most “chaotic” among
a-stable processes.

The paper is organized as follows. In section 2, the stochastic differential equations
under consideration are introduced and the rate of convergence is stated, followed by
the proof of the main theorem, along with the essential technical results, presented in
section 3.

2. Model and result.

2.1. Lévy-driven stochastic differential equations. Let o € (0,2] and Rg =
R?\ {0}. Consider in R? the model

t t t
(1) X;=Xp —|—/ a(Xs_)ds —|—/ b(Xs—)dSs —l—/ c(Xs—)dLs, t € 10,7,
0 0 0
where for z € R?,
a(z) = (ai(x))lgigd’ b(z) = (bij(x))lgi7j§d’ c(x) = (Cij(x))1§i<d7l<j§m
are measurable and bounded, with ¢ = 0 if o € (0,1) and nondegenerate b.

The main part of the equation is driven by S = {S;}sc0,1], a d-dimensional
F-adapted standard spherically symmetric a-stable process defined by

t
St =/ /y[(l —X“(¥)) po(dy. ds) + x“(y) @o(dy,ds)],  a€(0,2),
0
where x*(y) = Lia=131{jy/<1} + L{ae(1,2)}, Po(dy, dt) is a Poisson point measure on
Rg x [0, 00) with

dy dy
Elpo(dy, dt)] = e dt, qo(dy,dt) = po(dy,dt) — e dt.

The process S is a standard Wiener process in R? if o = 2.
The last term is driven by L = {Lt}c[o,7], an m-dimensional F-adapted Lévy
process whose characteristic function is exp{tn(§)} with

n(§) = /Rm (€'Y — 1 —i(&,9)Lne 2y Lijyi<1y] T(dY),
0

that is,

Li— /0 / y[(1 - %)) pldy, ds) + 7°() a(dy, ds)],
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where X*(y) = 1{ac 23 1{jy|<1y, P(dy, dt) is a Poisson point measure on R{* x [0, 00)
with E[p(dy, dt)] = 7(dy) dt, and q(dy, dt) = p(dy, dt) — w(dy) dt is the centered Pois-
son measure. It is assumed that

/ (Il A1) m(dy) < 0.

Mathematical models defined by (1) are used to describe random dynamic phe-
nomena arising from various fields. A typical example is the following intensively
applied jump-diffusion process, the results of which are stated in Corollary 1.

Ezample 1. Consider an F-adapted process X = {X;}sc[0,7) solving

t t t
(2) X;=Xo —|—/ a(Xs_)ds —|—/ b(Xs—) dWs —l—/ (Xs—)dLs, t €0,T],
0 0 0
where for z € R?,

a(z) = (“i(x))1<i<d’ b(z) = (bij(x))1<i,j<d’ co(r) = (cij (x))1<i<d,1<j<m

are measurable and bounded with inf, | det b(x)| > 0, W = {W;}4cj0,7) is a d-dimen-
sional standard Wiener process, and L = {L; }1c[o,7] is an m-dimensional Lévy process
such that there exists a number pu € (0, 3) satisfying

/ 2 m(dy) + / lyl¥ w(dy) < oo.
ly|<1 ly[>1

2.2. Weak Euler approximation. The weak Euler approximation of X defined
in (1) is an F-adapted stochastic process Y = {Y;};c(0,7] defined by the stochastic
equation

t t t
(3) Yt:X0+/ a(YnS)ds+/ b(Yﬂs)dser/ oYy, )dLs,  te[0,T),
0 0 0

where {T}s = {Ti}i=0,...ns i a time discretization of the interval [0, 7] satisfying
D=t < < - < Tnpy = T and maxi(Ti —’7’1‘,1) <6 € (0,1) Here Ti, = Ti if
s € [1i,Ti+1), 1 = 0,...,np — 1. Contrary to the coefficients in (1), those in (3) are
piecewise constant in each time interval [7;, Tit1).

The rate of convergence is stated in Theorem 1. Without being explicitly spec-
ified, C = C(-,..., ) denotes possibly different constants depending only on the
corresponding arguments, and the following notation are used.

Denote H = [0,7] x R? and N = {0,1,...}. For x,y € R? write (z,y) =
E?:l z:yi, |z| = /(x,z), and for B € R4, |B| = E?:l | B

For (t,r) € H, multi-index v € N, and 4,5 = 1,...,d, denote
ol

- a'lel . ..8’ded
2

Opu(t,x) = %u(i,a}), OTu(t, ) u(t, x),

0
ga; (B2), Ot )

dpu(t,z) = Vyu(t,z) = (Oyult,
d
(t,2) =

diu(t,x) =

= t,x
S 0,

). .,Bdu(t,w)),

x)
D*u(t,z) = Au(t, Z OZu(t, ).

=1
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For 3 = [B]~ + {B}* > 0, where [3]~ € N and {3} T € (0, 1], let C°(H) denote
the space of measurable functions v on H such that the norm

lulp= > sup |0Fu(t,x)|

vl<is)- =) €H
|8’Yu(t7 T+ h) — 8’Yu(t7 ‘T)|
+ 1rig1+<11  Sup = =
{B}+< }M:[,@]_, || BT

t,x,h#0

+1gipyt=1y sup —
=181, [l #}
t,x,h#0

is finite. Accordingly, C*(R?) denotes the space on R?. The classes C* are Holder—
Zygmund spaces and coincide with Holder spaces if 5 ¢ N [28].
For u € C#(RY), 8 € (0,1], denote |u|y = sup,, |u(z)| and

_ o Ju() —u(y)|
[ulg = 115e(0,1)} 21;5 iz — g
|u(z + h) — 2u(x) + u(x — h)|

+1r5-11 su

{B=1} th;IZO |h|B

Define C#(R%), 8 > 0, as a space such that for 5 ¢ N, C?(R?) = C(R%) and
for B € N, C#(R?) is a space of functions 4 on R? having 3 — 1 continuous bounded
derivatives and dJu(z), |y| = B — 1, are Lipschitz.

For u € C#(R?), B > 0, denote

dJu(x) — Ju
[ullg = 1{/3¢N}|U|B+1{/36N}[ Z |07ulo + sup | (z) ()l
lv|<B—1 zFy, lz =y
h ly|=p—1

THEOREM 1. Let Y = {Yi}ie0,1) be the weak Euler approvimation with step size
d € (0,1) of the stochastic process X = {Xi}ie(o,1) defined by (1). For a € (0,2], 8 €
(0,3), and p € [B,a + ), assume a*,b" € CPRY), 1<i,j <d, ¢ e CP/WAD (R,
1<i<d, 1 <j<m,inf,|detb(x)] >0, and

/ 1yl n(dy) + / lyl" w(dy) < oo.
ly|<1 [y|>1

Then there exists a constant C' such that
9(Y7)] — E[g(X7)]| < Clglarsr(d,a,8)  Vge CTF(RY),

E[
‘E[/OTf(Ym)dS] _E{/OTf(Xs)ds]

< Clflpr(d.0.8) Y feCRY,

where
0/, B<a,
k0, o, B) = ¢ 5(1+|Ind]), B=aq,
0, B> a.
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Remark 1. The assumption ¢ ¢ C#/(#A1)(R9), 1 < d,1 < j < m, indicates
that if © < 1, a heavier tail of 7 can be balanced by a hlgher regularlty of ¢,
Applying Theorem 1 to Example 1 results in Corollary 1.

COROLLARY 1. Let Y = {Yi}ieco,r) be the weak Euler approrimation of the
stochastic process X = {Xi}ie(0,1) defined by (2). For B € (0,3) and p € [3,2 + ),

assume a', b7 € CP(RY), 1 <i,j < d, ¢ e CA/WADRY), 1<i<d 1<j<m
inf, |det b(x)| > 0, and

L/ wauw+1/ lyl" (dy) < oo.
ly|<1 ly|>1

Then there exists a constant C' such that

|Elg(YT)] — E[g(X7)]| < Clglatsr(0, B) Vg e C*P R,

o 1] ]

<C|flgn(6,8) Y feCPRY,

where
5872, B8<2,
k(0,8) =1 d6(1+|Ind|), B=2,
6, 8> 2.

Similarly, Theorem 1 can also be applied directly to other representative cases,
for instance, u = « and that of heavy tails.

Remark 2. The same rate of convergence is obtained in Theorem 1, while the
assumptions are much weaker compared with a previous study [22]. For the special
case of diffusion processes, Corollary 1 improves the rate of convergence obtained
previously [13].

For the case when 8 ¢ N and  # «, the result was proved in [18]. This paper
focuses on what is left.

3. Proof. To prove Theorem 1, standard techniques such as stochastic flows
cannot be applied due to the lack of regularity. Instead, the solution to the cor-
responding backward Kolmogorov equation is used. The operators of the equation
associated with X; are defined as follows.

For u € C*TA(H), denote

d
Azu(t, ) = gy (a(2), Voul(t,z)) + 1ae 25 Z B(2)0%ult, x)
+1iac(o 2)}/[u(t x4 b(z) )—u(t,a“)
dy

Au(t,z) = Ayu(t,z) = Au(t, )|

z=x’
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with x*(y) = 1ia=131{jy<1} + L{ac(1,2)}, B = b*b, and
Bzu(ta JJ) = 1{a€(1,2]}(a(2)7 vzu(tv f))
+ / [u(t,z + c(2)y) — u(t, z)
Ry
— Laeap i<y (Vault, 2), c(2)y)] 7(dy),
Bu(t,z) = Byu(t, z) = Bu(t, x)|

The operator £ = A+ B is the generator of X; defined in (1); A is the principal
part and B is the lower-order or subordinated part. The corresponding operator for
u € C*TA(RY) is defined similarly.

Remark 3. Under the assumptions of Theorem 1, there exists a unique weak so-
lution to (1), and the stochastic process

z=x"

u(Xy) — /Ot(.A + B)u(X;)ds Yu e C*tH(RY)

is a martingale [14].
If v(t,z), (t,z) € H, satisfies the backward Kolmogorov equation
(Or + A+ B)u(t,xz) =0, 0<t<T,
v(T,z) = g(x),
then by It6’s formula,

Elg(Yr)] — E[g(X7)] = E[v(T, Y) — v(0, Y)]
T
_ EUO (00 + Ly, Ju(s,Ys)ds|.

The regularity of v determines a one-step estimate and the rate of convergence of
the approximation. For 8 € (0,1), the result for the Kolmogorov equation in Holder
classes is available (see [15], [16]). In a standard way it can be extended to the case
B = 1. The main difficulty is to derive the one-step estimate stated in Lemma 3.

3.1. Backward Kolmogorov equation. For the one-step estimate, consider
in Holder-Zygmund spaces the backward Kolmogorov equation associated with X,

(0r + A+ B)o(t,z) = f(t,z),

) o(T,z) = 0.

Given a measurable and bounded function f on H, u € C*T#(H) is said to be a
solution to (4) if

T
u(t,x):/t [Cu(s,z) — f(s,2)]ds V()€ H.

THEOREM 2. Let 8 € (0,3) and p € [B, o0+ 8). Assume o', b € CP(R), 1 <
i, <d, ¥ e CPIM)(RY), 1<i<d, 1<j<m,inf,|detb(z) >0, and

/ 1] n(dy) + / lyl" w(dy) < oc.
ly|<1 ly|>1

Then, for each f € CP(H), there exist a unique solution v € CTP(H) to (4) and
a constant C independent of f such that |ula+s < C|f|s.
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Corollary 2 follows directly from Theorem 2.

COROLLARY 2. Let € (0,3) and p € [B,a + B). Assume a',b¥ € 6’5(Rd),
1<i,j<d, 7 e CP/WRY, 1<i<d, 1<) <m,inf,|detb(z)| >0, and

/ 1yl n(dy) + / lyl" w(dy) < oo.
ly|<1 [y|>1

Then for each f € CP(RY) and g € C*TP(RY), there exist a unique solution v €
C**tB(H) to the Cauchy problem

(0 + A+ B)o(t,z) = f(z),

®) o(T, 2) = g(x)

and a constant C' independent of f and g such that |v|as+s < C(|f|g + |glats)-

For the proof of Theorem 2 and Corollary 2, the equation with constant coefficients
is solved first. The result is then extended to (4) by handling variable coefficients using
partition of unity and deriving a priori Schauder estimates in Holder—Zygmund spaces.

3.1.1. Kolmogorov equation with constant coefficients. By changing the
variable of integration, the principal operator A can be rewritten as

d
Asu(t, ) = 1{a—y (a(z), Vou(t,z)) + 1jazy > BY(2)0}u(t, )
i,j=1
+ 1{046(0.,2)} /[U(t, T+ y) - ’U,(t, {E)

— X ) (Vult, 2),9)]m(z,y) Md—ﬁ

where B = b*b and

1 1
o ) = Tadn) b e ¢ <O

It holds that
@ L vml ) s ) = 0.

Here S%1 is the unit sphere in R% and 14— is the Lebesgue measure.

For various estimates, the representation of difference stated in Lemma 1, which
is Lemma 2.1 in [12], and the result given in Lemma 2 need to be employed.

For u € C*tA(RY), a € (0,2), define the fractional Laplacian

O%u(x) = /[u(:r +y) —u(@) — x*(y)(Vu(z),y)] WTZ%’ r € R

LEMMA 1. Let 6 € (0,1) and u € Cg°(R?). Denote

Ky, 2) = |z +y| 0 — 2|40
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Then there exist constants C and K = K(d,d) such that
/|k‘*(y,z>|dz <Cl”  vyeR!
and
u(z +y) —u(zr) = K/k‘;(y, 2) u(x — z) dz.

By taking pointwise limit and applying the dominated convergence theorem, the
result of Lemma 1 can be extended to u € C°(RY).
Given a measurable and bounded function m(y) on R?, define

e = [ [ua ) = ule) =) (Vo)) Jmy) s, we O

The following result holds.

LEMMA 2. Let o € (0,2), B > 0, u € C*TA(RY), and |m| < K. Assume, for
a=1,

dy
ym(y) —— =0 Vre (0,1).
/r<|y|<1 |y|d+1
Then there exists a constant C independent of u such that
£ uls < CKulars.

The result was proved for 8 € (0,1] (see [17]). If 8 > 1, for any multi-index
Iv| = [8], 07u € CoHBF~18] and

107 (L™ u)|g—15)- = [L™(07)|p—1g)- < CK[0"ularp—(5]-

The statement then follows.
Denote A%u(x) = A, u(z) for zp € R? and consider a backward Kolmogorov
equation with constant coefficients

(0 + A” = Nw(t,z) = f(2),

®) o(T,z) =0,

where \ > 0.

PROPOSITION 1. Let 8 > 0, f € CP(RY), and let Ky and Ks be two constants
with |det b(z)| = K1 and 1,—1y]a(2)] +|b(z)| < K2 for any z € R%. Then there exist
a unique solution u € C*P(H) to (8) and constants C (which may be different) such
that

|u|a+,8 < C(O[,ﬂ,T, da K17K2)|f|,37
lulg < C(a,d) A" AT)|f]g,
u(t, -) = u(s, ajas < CE—9)?[fls Vs <t<T.

Proposition 1 was proved for 5 ¢ N [18]. For 8 € N, the result follows by exactly
the same steps.
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3.1.2. Kolmogorov equation with variable coefficients. For Schauder es-
timates in the case of variable coefficients, it is essential to derive an estimate for the
lower-order operator, as stated in Proposition 2.

PROPOSITION 2. Let 8 € (0,3) and p € [B,a + ). Assume a € CP(R9), ¢ e
CB/ (A (R, and

/ 1y w(dy) + / lyl" 7 (dy) < oo.
ly|<1 [y|>1

Then for each € > 0, there exists a constant C(e) such that
Bfls <éelflass + C@E)lflo,  feCP(RY).

For § ¢ N, Proposition 2 was already proved [18]. For g € N, it can be verified
by following similar steps.

With the estimate of B f, Theorem 2 is proved in a standard way by using partition
of unity and the estimates for constant coefficients, which allow us to obtain a priori
estimates. The continuation by parameter method is then applied to transfer from
constant to variable coefficients. Corollary 2 follows naturally from Theorem 2. They
are proved in a way similar to that in [18]. The details are thus omitted here.

Remark 4. If the assumptions of Corollary 2 hold and v € C**#(H) is the solution
to (5), then Oyv = f — Agv — Byv, and by Lemma 2 and Proposition 2, |0v|g <
C(lglats + 1f15)-

3.2. One-step estimate. To determine the rate of convergence, a key step is to
estimate the conditional expectation of each increment of the Euler approximation,
which is provided in Lemma 3.

LEMMA 3. Let Y = {Yi}ie(o,1) be the weak Euler approzimation with step size
6 € (0,1) of the stochastic process X = {Xi}ie(o,1) defined by (1). For a € (0,2], 8 €
(0,3), and p € [B,a + B), assume a’, b € éﬁ(Rd), 1<4,j<d, ¢ e 53/(“A1)(Rd),
1<i<d, 1<j<m,inf,|detb(z)| >0, and

/ 1] n(dy) + / lyl" w(dy) < oc.
ly|<1 ly|>1

Then there exists a constant C' such that
[E[f(Y:) = f(Yr) | Fr ]| <CIflsr(0,a,8) V¥s€[0,T], VfeC’(RY),

where is =i if 7, < 8 < Tip1 and k(5, «, B) is defined as in Theorem 1.

The proof of Lemma 3 is based on applying It6’s formula to f(Ys) — f(Y~,),
f € ChRY).

If 8 < a, f is first smoothed by using w € C§°(R?), a nonnegative smooth func-
tion with support on {|z| < 1} such that w(z) = w(|z|), € R?, and [w(z)dz = 1.
Thanks to the symmetry,

(9) / rlw(z)dr = 0, i=1,...,d.
R4
For x € R% and ¢ € (0, 1), define w®(x) = e~%w(x/e) and consider the convolution

fo(@) = / )l (e —y)dy = / flr—yuf@)dy, xR
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If B > a, the inequality is clear from Remark 3 and It6’s formula.
In the following proof of Lemma 3, we will call Lemma 6 and Corollary 3, which
provide, respectively, the estimates for A, f¢ and B, f¢.

Proof. 1f f < a, by Remark 3, applying It6’s formula to f< yields
E[f*(Yy) = f*(Yr,) | Fr.]
- E[/ (Av,, f(Yr) + By, fo(Yr))dr

s

]-"Tis], s5€[0,7T].

By Lemma 6 and Corollary 3, for ¢ € (0,1),

E[f(Ys) = f(Ye, ) | Fr N S B[ = fOYe) = (F = f)(Ya,) | Fo.]
+ |E[fs(}/5) - fs(YTis) | ]:ng] < OK(&‘,(S,O[,ﬁ”fm,

where C' is a constant independent of ¢, f and

eP 4 fe—otB, B < a,
K(e,0,0,8) = P +6(1 —Ing), B=a<?2,
(2 +6)(1—Ine), B=a=2.

Minimizing K (e, d, o, 3) with respect to € € (0,1) gives

< Ck(0, a, B)| £l

where (0, «, 8) is defined as in Theorem 1.
If p > «a, by Remark 3, a direct application of Itd’s formula yields

BIF(Y) ~ 10, | 7o ] = B| [ (A, £00) 4 B, 500)) ar

s

-]

Lemmas 2 and 6 then imply

[Elf(Ye) = f(Yz) | Fr ]l < COlfs.

The conclusion of Lemma 3 follows.

The integral estimates provided in Lemma 4 will be useful for the estimate
of A.f°. Recall that m(z,y) defined by (6) in operator A, is bounded, smooth,
and 0-homogeneous and symmetric with respect to y.

LEMMA 4. Let v € C§°(RY). Then
(i) for a € (0,2),

L[ o9 = o)~ @T0l). D) | s dy < o,
Rd JRY [yl

where X (y) = La=1}1{jy1<1} + L{ae(1,2)};
(ii) for B € (0,1], if B < o,

sup [ (AWl dy < .
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and if B = «,

sup/ [(A.0)(W)|(Jy|* Ak)dy < C(1 +1nk) Vk>1;
Rd

z

(iii) for B € (1,2), if B < a < 2,

1 ~
dy
_ p—1
L/ g | 1vt+ 58— o)yl ds g dy < o
and if f=a < 2,
dy
/ / / lo(y + s7) — v(y)|(Jy|’~* A k) ds d+ya = dy<C(1 +Ink) VE>1.
R JRYZ |y|
Proof. (i) Clearly,
[y +9) —v(y) — x* @) (Vo(y). vl
1
< tmen{ [ b 020+ DIFFE + Locton T+ 5711 ds

+ Lygsu{ vy + D + [v@)| + Liae@ 2y Vo @)l (71} y,y € R%

The claim then follows.
(ii) For 8 € (0,1), B < a, z € RY,

-
/|<sz><y>||y|ﬂdy<// oy + DIyl —L_ dy
R4 Re J|g|>1 0]
dy
B
Yy dy
# o o Il

"
+max// /| oy + sPIF2lY|° ds —— dy
R J|y|<1 | |

and
[ s pll? 2
R Jig>1 |y|dte
. dy
C[/ / |U(y+@||y+y|6mdy
R J|y|>1 | |
oy +)llgl’ -
~/R,d /y|>1 | |d+
For 5 € (0,1], f = «, assume v(z) = 0 if || > R. Then for k& > 1 with
A= (R+1)Ye,

0y
vy +9)(Jyl* Nk) = d
/Rd/w'( DIyl 1 b) =
. g
<[ Dl A AR = dy
R J|g)>1 ]

4y
=/ / vy + DI = dy
< (R DR/ J|g1>1 |yl

dy
w [ty Dl S dy = A+ 4
lyl>(R+1D)k > Jig1>1 |9l
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where

4] < // oy + ) L dy < C(1 + Ink)
<‘y|<(R+l)(1+kl/D‘) | |

and

2] < // 9l = d+a dy < Ckk™' = C,
|>k1/ﬂ ] |

since for |y + 7| < R and |y| > (R + 1)EY, [g] > (R + 1)kY* — R > kY/*,
Then

J [ o) = o) = oy (o). D1 8 e

1
a dy
<[] [ 19+ ) - ey Vol ds ey <
lgl<1 Jo |3/|

Assertion (ii) follows.
(ili) For 1 < f < a < 2,

_ B-1
/R/R/ oty -+ 57) — o))"~ ds =ty |d+a Iy
v(y + s9)||y|?t ds =——— dy
/R/|/ oty -+ syl ds = |d+a 1
5-1
v(y)||y ds ————dy
/R/|/ RO s s
- dj
+ |Vv(y+sr@||y| desmdy
R J|g|<1Jo Jo Y]

Also,
// /l|v<y+sm||y|“dsd—?7dy
R J|g|>1J0 y|dte—t
' ~1B—1 dy
<C [v(y + sy)lly + syl”™ " ds =or— dy
R J|g|>1J0 ]
' 1 dyj
+/ / / oy + )75 ds 2 ay
R J|g>1 Jo y|dta=1
an

/ / //|Vv (y + st)||y|°~tdr ds d+ 2d
R J|jI<1 [yld+e-
- dy
<C[/ / / / |Vv(y+ST§)||y+STy|'B*1d7dsTya_Qdy
re Jigi<tJo Jo 1Yl
1 1 d’g
+/ / / / |Vv(y+57§)||§|ﬁ_1d7dsmdy
Rra Jigi<iJo Jo |9l

If 1 < = a <2, the same argument as in assertion (ii) applies.
Assertion (iii) follows. Lemma 4 is proved.
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Remark 5. The estimate in assertion (iii) implies that (ii) can be extended to all
B € (0,a] with a < 2.

Lemma 5 states the modulus of continuity estimate of a function f€CY(R?) [5],[6].
The proof follows that of Lemma 5.6 in [5].

LEMMA 5. Let f € C*(RY) and [f]; < K. Then there exists a constant C such
that for all x,h € R, h # 0,

[f(z+h) = f(2)] < CIp|(L+ [ |A[])|f]-

Proof. Fix x,h € R%, h # 0 with 0 < |h| < 1/2, let k be a positive integer such
that

27k Chl < 27k,

and set 79 = 2¥h. Then 27% < 2|h|, In|h| < —kIn2 or k < —In|h|/In2, and 1/2 <
7o < 1. Define for 7 € R4

o(r) = flz+7) = f(2).

Then
U(T)_zv@ :‘f(x+7)—2f<9c+%>+f(x) <Lﬂl%'
Hence
2ot ) - 2o )| < Uhe =2
and

Since [v(70)| < 2|f|o or |[v(70)| < [f]1/2, then

[o(h)] < 27F[2%0(h) — v(mo)| + 27 Ju(ro)| < [fl1k27F|mo| +2- 27| flo

<
< [f1ik|h] + 4[R[ flo < Clf1|AI(1 — In]h]).

The statement follows.
In what follows, some estimates for Af¢ and Bf¢ are proved.

LEMMA 6. Let f € CP(R%) and e € (0,1). The following statements hold.
(i) For B € (0,2], there exists a constant C such that

|f°(@) = f(@)| < ClflsK(e,8)  VazeR,

where K (g,8) =P if B < 2 and K(¢,2) = &*(1 — In¢).
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(ii) For « € (0,2), there exists a constant C such that
(10) Ao (@) < Clf|sK (s, 8) ¥z eRY,
where K (g,a,8) = e P if B < a and K(e,a,8) = 1 —Ine if B = . In particular,
(11) 0% ()] < CIf|sK(s,0,8) Ve R
(iii) For 8 € (0,2], there exists a constant C' such that

|0k f2 ()| < C|f|sK (g,1,B) VeeRY k=1,....d, if <1,
(12) |03, (x)| < C|f|pK(s,2,8) VzxeRY kil=1,....4d,
[£¢1 < Clf|h;

for a € [1,2), B € (0, 1],
(13) [l < Clflse,
and for a € (1,2), € (0,a], B# a -1,
(14) 0V ()| < CIf|sK(s,0,8) Vo € RY,
Proof. (i) For § € (0,1],
£@) ~ f@) = [ U@ —3) = S @ dy = [ [ +3) - @l 0)dy
and

F@) = f@) = 5 [ 17+ 9) + f@ )~ 26 @) () dy

Hence, |f*(z) — f(z)| < C|f|ze”.
For 5 € (1,2), by (9),

fo(@) — flz) = / @ —y) — f@)o (y) dy
- / [f(z+v) - f(2) - (VI(z),9)]ws () dy
// V(o + sy) - VF(@),y) dsw (y) dy

and
1F5(@) — £(@)] < CIV fls—s / IV (y) dy < C|f| 5.
For § = 2, by Lemma 5,

[f*(z) = f(=)] <CIVf|1/Iy|2(1+|1n|y||)w5(y)dy<C|Vf|1€2(1—1n5)~
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(ii) Changing the variable of integration with ¥ = y/¢ and using (7) for a = 1
gives

A w (z) = l{azl}(a(z), Vw‘s(x))
+ [ ) = ) = ) (V). ) meo0)

= e % Y Aw) (g) Vz,xeRY,

where x*(y) = 1{a=1}1{jy|<1} T L{ac(1,2)}- It then follows from Lemma 4(i), Fubini’s
theorem, and changing the variable of integration with 7 = y/e that

A = [ et (T2t dy

€
= /s_as_d(Azw)<g>f(x —y)dy
= /670‘(Azw)(y)f(x —ey)dy Vz,z € R4
By Lemma 4(i) and Fubini’s theorem,

A, w(y) dy = 0.
Rd

Hence, if 5 € (0,1], 8 < «, then

A f5(x) = [ e (Asw)(y) f(z — ey) dy

wl»—t\

/ e (M) W) (= — ey) + Fla+ ey) — 2(2)] d,

and by Lemma 4(ii)

A5 (@) < C|f|sK (e, o, B) /Rd|(Azw)(y)|(|ylﬁ/\E_ﬁ)dy<CIfIBK(€7aaﬁ)~

If 3 €(1,2), B < a, then by Theorem 2.27 in [7], switching differentiation and
integration gives

Aculy) = [ [ol+5) — () - (Fu).5)]m=5) md—fi

- //O (Vyw(y + sy) — Vyw(y), ﬂ) dsm(z,7) w{l%

a5 . ~ N
=Y 5 J | wty+ 5~ wii dsm(e. ) =

Clearly,

1 o~
~ dy

w(y + sy) —w(y)| ds =— dy < o
/Rd/Rg/o' TR
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and
/W@+ﬂﬂ—wmwy=0
It then follows from integrating by parts and Fubini’s theorem that, for z, z € R,

Afo(z) = / e Aw(y) f(z — ey) dy

ot / / / [w<y+s@_w<y>]<w<x—sy>,§>m<z,§>ds|y~%dy

:s‘”{éﬁl%ﬁww@+sm—w@ﬂ

X (Vf(;r —ey) — Vf(x),ﬂ)m(z,@ds w{l% dy.

Thus by Lemma 4(iii)

1
| A, f€(2)] < Cs*a“sﬁfllvfl,@fl///o lw(y + s7) — w(y)|

dy

X (|y|'871 A 57(671)) ds W

dy < C|f|pK (e, a, B).

Relation (11) is obtained by taking m = 1.
(iii) If 8 < 1, by changing the variable of integration,

8kf€(a:)zs_1/ s_dakw(a:;y)f(y)dy

Rd

=1 /Rd 5d8kw(§)f(gc—y)dy

=c ' | Owy)lf(z—ey) - f(2)]dy.

Rd

fA=1,

fe@+h)+ [z —h) —2f(z)

— 5 [ Wl -y )+ fo -y 0~ 27 - )] dy
and |f*[1 < [f]1.

Since 0Z,w(y) = 0Zw(—y), k,l=1,...,d,y € R¢,

s o) =< [ oS

Rd

=e7? /Rd E_daﬁzwg)f(x —y)dy

= | kel —ey) — f(a)]dy
=57 [ Rl +en) + 1o =)~ 2@y,
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then if B € (0,1], [0 f°(x)] < Ce ' *F|f|, and |9, f*(x)| < Ce=2*P|f|5 for any
r € RY. Similarly, if 3 € (1, 2],

ouf ()= [ )ousa -y = [ T2E ot ay

o) =< [ ¢ aw( )akf@r— ) dy
— / Ow(y)[Onf (x — ey) — O f ()] dy

and

Hence, by Lemma 5, |02, f¢(z)| < C|f|3K (e,2, B).
Formula (13) is obtained by applying (12) and the interpolation theorem. For
B € (0,1], consider an operator on C* defined by T°(f) = f<. By (12),

T°(N)le < Ce™PIfls, k=12 feC’RY).

Hence, 7¢: C#(R?) — CFR?), k = 1,2, is bounded. By Theorem 6.4.5 in [3],
Te: CB(Rd) — C%(R?) is bounded and

IT%(f)]a < CeCT1HAICm)(=248)(a=D) 1| o
=C|flpK(e, o, B), fe CPRY).

Depending on the value of 3, (14) is proved separately for three cases.
(a) If B € (0,1], v € (1,2), B < a— 1, then

fe = ‘1‘d/Vw<) -y y—sl_d/Vw<> —y)dy

o1Vt = [0 (V) (o - cy) dy

and

As in the proof of assertion (i) of Lemma 6, by Lemma 4,
0071V ()] < O|f[ge™ P
(b) If B € (0,1], € (1,2),8 > o — 1, then

9oV = ! / V()0 f(z - cy) dy

=t [ Vu)lon (o - e) - 0 (o)) dy
and
09IV < Cem Mm99 oy < Clflpe™ P
(c) If B € (1,a], then 9°~ 1V f¢ = 9>~ 1(Vf) and by (11),
0° IV (@) = 10°7H (V) (2)| < CK(e,a— 1,8 = )|V f|s-1.

The statement thus follows.
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COROLLARY 3. Let o € (0,2], 8 < «, and € € (0,1). Assume a(z) is bounded
and

[l Ay mtan) < .
Then there exists a constant C' such that
B.f*(z)| < C|f|sK (e, 0, 8) Vz,z€RY, VfeC'(RY,
where K (g,a, ) = P if B < a and K(¢,a,3) =1 —1Ine if B = a.
Proof. If a € (0,1), then by Lemma 1,
oty - @) = [ R 0D0 @ -5 di
Then by Lemma 6,

[f5(@ +y) = f(@)] < Olfls(lyl* ANDK (e, 8),  z,y € RY,

and

5 (z + c(@)y) — (@) < Clf[s(|le(x)yl* AN1)K (e, a, B)
< CIfls[Lgyi<ayle@)yl™ + Lyysay(le(@)yl* A D] K (e, o, B).

If a = 1, then, by Lemma 6(ii) and (12),
[f*(z +y) — £ (@) < Csup[|f(z)] + [V (@)]](Jyl A 1)
<Clfls(lyl ADK(e,1,8),  z,y € RY,
and

(@ + c(@)y) — f5(@)] < Clfl(|e(x)yl A1)K (e, 1, B)
< OlflsLiyi<ale@)yl + 1> (le(@)yl A DK (e, 1, 8).

If « € (1,2], then
ff@+y) = fx) = (Vi(@),y)
1
:/ (Vfe(z+ sy) — Vf(x),y) ds Va,ye R4
0
For € (1,2) and 8 # a — 1, by Lemmas 1 and 6,
lfo(@+y) = f(x) = (Vo (@), y)] < Clflslyl* K (e, o, B).
For a € (1,2) and 8 = o — 1,
VFe+ D) - Vi) = e [Vu()ife 4T - oy
and

IVf(z +7) = V()] < O gl"| fls = Clflslgl* e TP,
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For a = 2, by Lemma 6,
V(@ +y) = VI(z)] < sup |02 £ ()19l < C|f16l71 K (e, e, B).
In all cases, it holds that
[f* (@ +y) = f7(2) = (V@) 9)| < Clfply|* K (e, . B).
Hence, for |y| <1
(@ + c(@)y) — f*(2) = (VI(2), c(2)y)| < C|flple(x)y|* K (e, o, B).
Also, for |y| > 1,
[ (z + c(@)y) — F2(2)] < 2Ifls.

Therefore, the statement follows by the assumptions and Lemma 6.

3.3. Rate of convergence. With results on the backward Kolmogorov equa-
tions and one-step estimates, the rate of convergence stated in Theorem 1 is proved
by applying It6’s formula.

Proof. Let v € C**#(H) be a unique solution to (5). By It&’s formula and
Remark 3,

E[U(Ov XO)] = E[U(Tv XT)]

T
_E [/ (Oev(s, Xs) + Ax,v(s, Xs) + Bx,v(s, X)) ds
0

_® [g(XT) -/ " ds]

E[’U(O, XO)] = E[U(Ov YO)]

and

By Proposition 2, Corollary 2, Remark 4, and Lemma 2, for s € [0, T,

| AL v(s, )|B + |B.v(s, )| X C|U|a+ﬁ O|g|a+ﬁa
10:v(s, )|g < Clglatp-

Then, by It6’s formula and Corollary 2,

Bly(v7) - Bly(Cxr)] - B [ " i) &) +8| [ " rx a
— Eo(T, Y7)] - E[v(0, Yo)] [/ Ay ds}—kE[/ FX }

T
—E {/ {[0v(s,Ys) — Bpv(s, Yy, )] + Ay, v(s,Ys) = Ay, v(s, V)]
0

+ [By,, v(s,Ys) — By, v(s,Yr,) }ds}
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Hence, by Lemma 3, there exists a constant C' independent of g and f such that

[Elg(Yr)] - Elg(X7)]| < Clglasr(d,a, )

®[ ' 105~ ' eary

The statement of Theorem 1 follows.

and

< C|flpk(6, o, B).

4. Conclusions. This paper studies weak Euler approximation for stochastic
differential equations driven by Lévy processes. The dependence of the rate of conver-
gence on the regularity of the coefficients and driving processes is investigated under
the assumption that the coefficients are S-Hélder continuous. The main part of the
stochastic differential equation is driven by a spherically symmetric a-stable process,
and the tail of the Lévy measure of the lower-order part has a p-order finite moment
with p € [8,a + ). Depending on the values of a and S, three scenarios are looked
into to derive the rate of convergence for a full regularity scale. To estimate the rate,
the existence of a unique solution to the corresponding backward Kolmogorov equa-
tion in Holder space is first proved. The assumptions on the regularity of coefficients
and test functions are weaker than those in the existing literature.

One possible improvement could be to consider the asymptotic of the tails at
infinity instead of the tail moment p. Another direction could be to consider stochastic
differential equations driven by point and martingale measures. That is, for a € (0, 2]
and a measurable space (U,U) associated with a nonnegative o-finite measure 7 such
that there exists a decreasing sequence U,, € U, U = |J, U:, and 7(US) < oo for

n?

each n, consider an F-adapted stochastic process X = {X;}4c[0,7) solving
t t
Xy :X0+/ a(XS,)ds—k/ b(Xs—) dWy
0 0
t
+/ /Rd (X, ) [(Liae,2)y — X*(¥)) p*(ds, dy) + x*(y) ¢* (ds, dy)]
0 0

t
+/ / X, 0)[(1 = X¥(v)) p(ds, dv) + X *(v) g(ds, dv)],
0 JuU
where a and b are measurable and bounded, ¢ and [ are measurable,

X*(Y) = o=y 1{yi<1} T Laea2)}, X“(V) = Liae 2y L{wety)
W = {Wi}iejo,r) is a standard Wiener process, and p®(dt, dy) and p(dt,dv) are in-
dependent Poisson point measures on [0,7] x R¢ and [0,7] x U, respectively, with
q®(dt,dy) = p®(dt,dy) — dydt/|y|?T and q(dt,dv) = p(dt,dv) — 7(dv) dt being the
corresponding martingale measures.
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