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Abstract
Voronoi estimators are non-parametric and adaptive estimators of the intensity of a point process. The intensity estimate
at a given location is equal to the reciprocal of the size of the Voronoi/Dirichlet cell containing that location. Their major
drawback is that they tend to paradoxically under-smooth the data in regions where the point density of the observed point
pattern is high, and over-smooth where the point density is low. To remedy this behaviour, we propose to apply an additional
smoothing operation to theVoronoi estimator, based on resampling the point pattern by independent random thinning. Through
a simulation study we show that our resample-smoothing technique improves the estimation substantially. In addition, we
study statistical properties such as unbiasedness and variance, and propose a rule-of-thumb and a data-driven cross-validation
approach to choose the amount of smoothing to apply. Finally we apply our proposed intensity estimation scheme to two
datasets: locations of pine saplings (planar point pattern) and motor vehicle traffic accidents (linear network point pattern).

Keywords Adaptive intensity estimation · Independent thinning · Machine learning · Point process · Resampling ·
Voronoi intensity estimator

1 Introduction

In the analysis of spatial point patterns (van Lieshout 2000;
Chiu et al. 2013; Diggle 2014; Baddeley et al. 2015),
exploratory investigation often starts with non-parametric
analysis of the spatial intensity of points. The intensity func-
tion, which is a first order moment characterisation of the
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point process assumed to have generated the data, reflects
the abundance of points in different regions and may be seen
as a “heat map” for the events. For most datasets, it is not
realistic to assume that the underlying point process is homo-
geneous, i.e. that its intensity function is constant; rather it
is natural to start by assuming inhomogeneity.

The most prominent approach to non-parametric intensity
estimation is undoubtedly kernel estimation (Diggle 1985;
Silverman 1986; Diggle 2014; Baddeley et al. 2015). The
degree of smoothing is controlled by a smoothing parame-
ter, called the bandwidth, and the resulting estimates heavily
depend on the choice of bandwidth. A small bandwidth may
result in under-smoothing whereas a large bandwidth might
result in over-smoothing the intensity.Data-based procedures
for bandwidth selection have been studied extensively (Dig-
gle 1985; Silverman 1986; Berman and Diggle 1989; Scott
1992; Wand and Jones 1995; Loader 1999) including some
recent advances (Cronie and van Lieshout 2018). A further
problem with kernel estimation is that, if there are wide
variations in intensity across the spatial domain, it may be
impossible to find a single fixed bandwidth value which is
satisfactory for smoothing every part of the spatial domain.
Consequently the bandwidth must be spatially-varying, giv-
ing rise to a spatially “adaptive” kernel estimator (Davies and
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Hazelton 2010; Diggle 2014; Davies et al. 2016; Davies and
Baddeley 2018) at the cost of increased complexity.

Recently there has been increasing interest in point pat-
terns on linear networks (Okabe and Sugihara 2012; Ang
et al. 2012; Baddeley et al. 2015; Rakshit et al. 2018);
examples include street crimes or traffic accidents on a road
network (of a city). Here the matter of kernel estimation is
evenmore delicate due to the geometry of the underlying net-
work. Borruso (2003, 2005, 2008) proposed severalmethods
for kernel smoothing of network data without discussing sta-
tistical properties. Xie andYan (2008) defined a kernel-based
intensity estimator for network point patterns without taking
the topography of the network into consideration and as a
result the estimation errors tended to be large, thus mak-
ing the estimator heavily biased. Okabe et al. (2009) further
introduced a class of so-called equal-split network kernel
density estimators which support both continuous and dis-
continuous schemes. By exploiting properties of diffusion
on networks, McSwiggan et al. (2017) developed a kernel
estimation method based on the heat kernel, which is the
appropriate linear network analogue of the Gaussian kernel.
In addition, Moradi et al. (2018) extended the classical spa-
tial edge corrected kernel intensity estimator to point patterns
on linear networks.

As a consequence of underlying causes such as demog-
raphy and human mobility, it is quite common to encounter
sharp boundaries between high and low concentrations of
events. For example, street crimes and traffic accidents tend to
happen particularly in busy streets, whichmay be surrounded
by quiet neighbourhoods. The classical kernel estimation
approach is often unsuitable for such types of data.

Echoing Barr and Schoenberg (2010), we argue that
kernel-based approaches may be unsatisfactory when there
are sharp boundaries between parts with high and low
intensities. Fixed bandwidth kernel smoothing results in
over-smoothing in high-intensity areas, under-smoothing in
low-intensity areas, and a blurring of sharp boundaries (Bad-
deley et al. 2015). By using a spatially adaptive kernel
estimator wemay reduce such problems when estimating the
intensity function, but optimal bandwidth selection becomes
even more challenging and important (Davies and Hazelton
2010).

As an alternative, one could consider an approach with-
out any choice of tuning parameters, e.g. a tessellation-based
approach (van Lieshout 2012; Schaap 2007). One such
approach is provided by Voronoi intensity estimation (Ord
1978;Barr andSchoenberg 2010;Okabe andSugihara 2012),
defined such that within a given Voronoi cell of the point
pattern the intensity estimate is set to the reciprocal of the
size of that cell (Okabe et al. 2000). When employing the
Voronoi intensity estimator, one thing that quickly becomes
evident is that it often accentuates local features too much, in
particular in regions with high event density. This reflects a

previously observed phenomenon: adaptive estimators, such
as the Voronoi intensity estimator, may smooth too little
whereas kernel estimators may smooth too much in dense
regions (Baddeley et al. 2015, Section 6.5.2). Hence, one
should be able to find some middle ground and we here aim
at providing a contribution to that.

Our idea is simple. In dense parts surrounded by empty
neighbourhoods, Voronoi intensity estimators tend to smooth
too little, thus generating excessive peaks in the intensity
estimate in those parts. By removing points in such a dense
part we reduce the peaks, which results in a smoother inten-
sity estimate, with a shape more similar to the true intensity
function. However, the problem of doing this “manually” is
twofold: (1) it is not clear which specific points we should
remove, and (2) we need to compensate for the reduced
total mass. To solve these issues, we propose to generate
m ≥ 1 independent random point patterns, each obtained by
randomly thinning the original point pattern with the same
retention probability p. From each of the thinned patterns
we compute a Voronoi intensity estimate. In order to com-
pensate for the reduced mass, we then scale each of the m
estimates by the reciprocal of the retention probability, and
use the corresponding average as final estimate of the inten-
sity function. We propose this technique for point patterns in
rather general spaces.

The paper is structured as follows. In Sect. 2 we give a
short backgroundonpoint processes and intensity estimation.
In Sect. 3 we introduce our resample-smoothing technique,
study its statistical properties and discuss ways to choose the
amount of smoothing, i.e. thinning, to apply. In Sect. 4 we
assess the performance of our approach numerically for a few
different planar point processes and in Sect. 5 we apply our
methodology to two datasets: a planar point pattern and a lin-
ear network point pattern. Section 6 contains a discussion and
some directions for future work and in the Electronic Sup-
plementary Material we provide the proofs of the theoretical
results in the paper as well as bias and variance plots together
with box plots for estimation errors for the simulation study
in Sect. 4.

2 Preliminaries

The spatial domain is a general space S, assumed to be a
complete separable metric space with distance metric d(·, ·).
Assume there is a reference measure A �→ |A| for A ⊆
S, which is sigma-finite and locally finite. Integration with
respect to thismeasure is denoted by

∫
du. All subsets A ⊆ S

under consideration are assumed to be Borel sets.
Let X be a simple point process (Daley and Vere-Jones

2008) in S. A realisation of X is a locally-finite set of points in
S. The cardinality of the set X∩A, A ⊆ S, will be denoted by
N (X∩A) ∈ {0, 1, . . .} andwe note that by definitionwe have
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N (X ∩ A) < ∞ a.s. for bounded A ⊆ S and N (X ∩ {u}) ∈
{0, 1} for any u ∈ S.

A point pattern is a finite set x = {x1, . . . , xn} ⊂ S,
n ≥ 0, of distinct points in S. Inside any bounded study
region W ⊆ S, the partial realisation X ∩ W of the point
process is a point pattern.

Relevant examples of the space S include:

– Euclidean space S = R
d of dimension d ≥ 1 (van

Lieshout 2000; Diggle 2014; Baddeley et al. 2015) with
the Euclidean distance d(u, v) = ‖u − v‖, u, v ∈ R

d ,
where ‖ · ‖ = ‖ · ‖d denotes the Euclidean norm, and
Lebesgue measure | · |.

– The sphere S = αSd−1 = {x ∈ R
d : ‖x‖d = α},

of radius α > 0 in dimension d ≥ 1, where d(·, ·) is
the great circle distance and | · | is the spherical surface
measure (Lawrence et al. 2016;Møller and Rubak 2016).

– A linear network, i.e. a union

S = L =
k⋃

i=1

li

of k ∈ {1, 2, . . .} line segments li = [ui , vi ] = {tui +
(1 − t)vi : 0 ≤ t ≤ 1} ⊆ R

d , d ≥ 1. A common choice
for d(u, v) is the shortest-path distance, which gives the
shortest length of any path in L joining u, v ∈ L (Okabe
and Sugihara 2012; Ang et al. 2012; Rakshit et al. 2017).
Treated as a graph with vertices given by the intersec-
tions and endpoints of the line segments, L is assumed
to be connected. The measure | · | here corresponds to
integration with respect to arc length.

We emphasise that in each of the above cases there exist
other metrics and measures which may be more suited for a
particular context (Rakshit et al. 2017).

At times, we will assume that X is stationary, or invariant.
More specifically, there is a family of transformations/shifts
{θs : s ∈ S}, θs : S → S, along S, which induces a so-called
flow, under which the distribution of θs X = {θs(x) : x ∈ X}
coincides with that of X for any s ∈ S. The underlying
assumption will be that S is a so-called (unimodular) homo-
geneous space with a fixed origin o ∈ S, with d(·, ·) chosen
such that it metrizes S and | · | chosen to be the associated
(left) Haar measure (Last 2010; Schneider and Weil 2008);
each such space is a locally compact second-countable Haus-
dorff space and thereby S becomes a complete separable
metric space. To exemplify, in Euclidean spaces with | · |
chosen to be Lebesgue measure, we let θs(u) = u + s ∈ R

d ,
u, s ∈ R

d , which yields the classical notion of stationarity,
and on a sphere with the corresponding spherical measure we
consider the orthogonal group of rotations. Note that a more
general setting is also possible (Kallenberg 2017, Chapter 7).

2.1 Intensity functions

To characterise the first moment of X , i.e. the marginal dis-
tributional properties of its points, we consider its intensity
function ρ : S → [0,∞). It may be defined through the
Campbell formula (Daley and Vere-Jones 2008) which states
that for any measurable function f ≥ 0 on S,

E

[
∑

x∈X
f (x)

]

=
∫

S
f (u)ρ(u)du.

In particular,

E[N (X ∩ A)] =
∫

A
ρ(u)du

for any A ⊆ S. If X is stationary, then ρ(u) ≡ ρ ∈ (0,∞)

for any u ∈ S. Heuristically, ρ(u)du may be interpreted as
the probability of finding a point of X in an infinitesimal
neighbourhood du of u ∈ S with measure du.

2.2 Independent thinning

A key ingredient in our smoothing technique is the notion
of independent thinning (Chiu et al. 2013, Section 5.1):
given somemeasurable retention probability function p(u) ∈
(0, 1], u ∈ S, we run through the points of X and delete a
point x ∈ X with probability 1− p(x), independently of the
deletions carried out for the other points of X . The resulting
thinned process has intensity

ρth(u) = p(u)ρ(u), u ∈ S,

where ρ(·) is the intensity of the original process X (Chiu
et al. 2013, Section 5.1). For further details on the thinning
of point processes, see e.g. Møller and Schoenberg (2010)
and Daley and Vere-Jones (2008, Section 11.3).

It is worthmentioning that a Poisson process stays Poisso-
nian after independent thinning (Daley and Vere-Jones 2008,
Exercise 11.3.1) and, in addition, the independent thinning
of an arbitrary point process X with low retention probability
results in a point process which, from a distributional point
of view, is approximately a Poisson process (Baddeley et al.
2015, Section 9.2.2).

2.3 Voronoi tessellations

The next key ingredient in our estimation scheme is the
Voronoi/Dirichlet tessellation of a point pattern x =
{x1, . . . , xn} contained in some subset W ⊆ S (Chiu et al.
2013; Okabe et al. 2000). Generally speaking, a tessellation
of W is a tiling such that i) the union of all tiles constitutes
all of W , and ii) the interiors of any two tiles have empty
intersections.
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The Voronoi/Dirichlet cell Vx associated with x ∈ x con-
sists of all u ∈ Swhich are closer to x than any y ∈ x\{x}, i.e.

Vx = Vx (x,W )

= {u ∈ W : d(x, u) ≤ d(y, u) for all y ∈ x\{x}}. (1)

The tiling {Vx }x∈x is termed the Voronoi/Dirichlet tessella-
tion generated by x. Clearly, the shape of each Vx depends
on the distance d(·, ·) chosen for S and its size, |Vx |, depends
on the chosen reference measure | · |.

2.4 Intensity estimation

Given a point pattern x = {x1, . . . , xn} in some study region
W ⊆ S, |W | > 0, we next set out to estimate ρ(u), u ∈ W ,
under the assumption that x is a realisation of X ∩ W .

Before going into details about specific estimators, we
briefly mention how different estimators’ performances may
be evaluated and compared. To evaluate the performance of
an estimator ρ̂(·) = ρ̂(·; X ,W ) of ρ(u), u ∈ W , it is com-
mon practice to employ the Mean Integrated Square Error
(MISE):

MISE = E

[∫

W
(ρ̂(u) − ρ(u))2 du

]

=
∫

W
Var(ρ̂(u))du +

∫

W
bias(ρ̂(u))2du

= IV + ISB, (2)

where bias(ρ̂(u)) = E[ρ̂(u)] − ρ(u). Given k ≥ 1 realisa-
tions of X ∩ W , to obtain an estimate of MISE we average
over the integrated square errors generated by each of the k
realisations.

Alternatively, we may find estimates of the functions
Var(ρ̂(u)) and bias(ρ̂(u)), u ∈ W , based on the k patterns
and integrate these over W . This is the setup chosen for the
numerical evaluations presented in Sect. 4.

2.4.1 Voronoi intensity estimation

In practice, it is often the case that events occur frequently
in specific parts of the study region, e.g. that accidents often
happen in more crowded streets or on specific parts of a
highway, or that trees tend to growmainly in specific parts of
a forest. In other words, there are sharp boundaries between
parts with high and low intensities. We argue, similarly to
Barr and Schoenberg (2010) and Ogata (2011), that in order
not to blur such boundaries, it is preferable to employ an
adaptive intensity estimation scheme, which adapts locally
to changes in the spatial distribution of the events.

Here we focus on a particular kind of adaptive intensity
estimator, the Voronoi estimator, defined as follows.

Definition 1 For a point process X with intensity function
ρ(·), the Voronoi intensity estimator of ρ(u), u ∈ W ⊆ S,
|W | > 0, is given by

ρ̂V (u) = ρ̂V (u; X ,W ) =
∑

x∈X∩W

1{u ∈ Vx }
|Vx |

=
∑

x∈X∩W

1{u ∈ Vx (X ,W )}
|Vx (X ,W )| , u ∈ W , (3)

where Vx is the Voronoi cell defined in (1). If X ∩ W = ∅
then ρ̂V (u) = 0.

The Voronoi intensity estimator, which was introduced by
Brown (1965) and Ord (1978) in the context of Euclidean
spaces, has been considered by Baddeley (2007); Ogata
(2011); Barr and Schoenberg (2010); van Lieshout (2012).
Ebeling and Wiedenmann (1993) have used it to study local
spatial concentration of photons, Duyckaerts et al. (1994)
and Duyckaerts and Godefroy (2000) have employed it to
estimate neuronal density, and it has been applied in the
setting of statistical seismology by Ogata (2011) and Bad-
deley et al. (2015). In the context of linear networks, Okabe
and Sugihara (2012) discussed a Voronoi based density esti-
mator, the network Voronoi cell histogram, for the purpose
of non-parametric density estimation on linear networks.
They further discussed geometric properties of Voronoi tes-
sellations on linear networks. Barr and Schoenberg (2010)
focused on the planar case and particular statistical proper-
ties.

3 Resample-smoothing of intensity
estimators

Barr and Schoenberg (2010) pointed out that when there are
abrupt changes in the intensity, kernel-based estimators may
yield substantial bias and high variance, and they showed that
the Voronoi estimator can alleviate these problems. Unfor-
tunately, Voronoi estimators tend to under-smooth in very
dense areas surrounded by nearly empty neighbourhoods.
This may be said about adaptive estimators in general; there
is a tendency of adapting too much to the particular features
of the observed point pattern x, rather than reflecting the fea-
tures of the intensity function of the underlying point process
X . To see how the under-smoothing, i.e. the over accentuat-
ing of local features of theVoronoi intensity estimator occurs,
note that for a pattern x, if x ∈ x is located in a very dense
part then its Voronoi cell becomes small and, consequently,
ρ̂V (u) = 1/|Vx | becomes very large for u ∈ Vx . A further
issue with the Voronoi intensity estimator is that its variance
tends to be quite large, thus resulting in quite unreliable esti-
mates.
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One may further ask whether there are other data-
dependent tessellations {Ci }, ⋃

i Ci = W , giving rise to
estimators ρ̂(u) = ∑

i βi1{u ∈ Ci }, βi > 0, which per-
form better than the Voronoi intensity estimator. In addition,
an advantage of the kernel estimation approach is arguably
in that it generates a smoothly varying intensity estimate, at
least when using certain kernels, as opposed to the possibly
unnatural “jumps” generated by the Voronoi estimator.

As a remedy for these issues, one suggestion is to follow
Barr and Schoenberg (2010) by considering the so-called
centroidal Voronoi intensity estimator. A further idea is to
introduce a smoothing procedure for ρ̂V (·), which would
reduce the unnaturally extreme peaks while smoothing out
the “jumps”. We next propose such a smoothing procedure,
which we refer to as resample-smoothing.

3.1 Definition of resample-smoothing

Recall the independent thinning operation in Sect. 2.2. We
will here focus on the simple case where p(u) ≡ p ∈ (0, 1],
u ∈ W , which is referred to as p-thinning (Chiu et al. 2013,
Section 5.1); we identify the case p = 1 with the unthinned
process X . From Sect. 2.2 we have that

ρ(u) = ρth(u)

p
, u ∈ S,

where we recall the intensity ρth(·) of the thinned process
X p. Hence, dividing by p is exactly what is needed to com-
pensate for the reduced intensity caused by removing points.
We exploit this relationship in the following way. Given a
point pattern x and an estimator ρ̂(·) ofρ(u), u ∈ W , fix some
p ∈ (0, 1] and generatem ≥ 1 independent random patterns,
each obtained by randomly thinning the original data pattern
x with retention probability p. This yields thinned patterns
x1p, . . . , x

m
p , for each of which the intensity is estimated. We

now let the average of these m estimated intensity functions,
divided by p, be reported as the final estimate; note the sim-
ilarities with the approaches considered by Heikkinen and
Arjas (1998); Ferreira et al. (2002); Baddeley (2007). The
resample-smoothed Voronoi intensity estimator is formally
defined as follows.

Definition 2 Consider a point process X in S with inten-
sity function ρ(·). Given some p ∈ (0, 1] and m ≥ 1,
the resample-smoothed Voronoi intensity estimator of ρ(u),
u ∈ W ⊆ S, |W | > 0, is given by

ρ̂V
p,m(u) = ρ̂V

p,m(u; X ,W ) = 1

m

m∑

i=1

ρ̂V
i (u)

p
, (4)

where

ρ̂V
i (u) = ρ̂V (u; Xi

p,W ) =
∑

x∈Xi
p

1{u ∈ Vx (Xi
p,W )}

|Vx (Xi
p,W )|

is the Voronoi intensity estimator based on the i th thinning
Xi

p of X ∩ W . Note that when p = 1, ρ̂V
p,m(·) reduces to

ρ̂V (·) for any m ≥ 1.

Reflecting on the effect of the thinning procedure, for
each thinned version we obtain newVoronoi cells and conse-
quently different locations of the jumps in the corresponding
intensity estimate ρ̂V

i (·). This is what results in the “smooth-
ing” and it is also the remedy for choosing the specific tiling in
a possibly wrong/rigid way. Note also that we in fact simply
are considering the average of m different estimates of ρ(·).

3.2 Theoretical properties

Wenext look closer at some statistical properties of resample-
smoothed Voronoi intensity estimators. The proofs of all the
results presented can be found in the Electronic Supplemen-
tary Material (Online Resource 1).

We stress that in the case of the restriction X ∩ W of a
point process X to a (bounded) region W �= S, the Voronoi
cells Vx (X ,W ) are different than whenW = S. Hereby, dis-
tributional properties of ρ̂V

p,m(·) may be different depending
on how W is chosen.

We start by considering the asymptotic scenario where the
number of thinned patterns,m ≥ 1, in the estimator (4) tends
to infinity. Note that by the result below,we have that the limit
limm→∞ ρ̂V

p,m(u; X ,W ) a.s. exists for a point process X .

Lemma 1 Given fixed p ∈ (0, 1], for any point pattern x ⊂
W ⊆ S we have that limm→∞ ρ̂V

p,m(u; x,W ) a.s. exists.

3.2.1 Bias

Turning to the first order properties of ρ̂V
p,m(·), we note that

∫

W
ρ̂V
p,m(u)du = 1

mp

m∑

i=1

∑

x∈Xi
p

∫
W 1{u ∈ Vx (Xi

p,W )}du
|Vx (Xi

p,W )|

= 1

mp

m∑

i=1

N (Xi
p ∩ W ). (5)

Hence, when p = 1 we have preservation of mass, i.e.∫
W ρ̂V

p,m(u)du = N (X ∩ W ). Taking expectations on both
sides in (5), we obtain

E

[∫

W
ρ̂V
p,m(u)du

]

= 1

m

m∑

i=1

p
∫
W ρ(u)du

p
=

∫

W
ρ(u)du,

(6)

i.e. for any m ≥ 1 and p ∈ (0, 1], ∫W ρ̂V
p,m(u)du is an unbi-

ased estimator of E[N (X ∩ W )], and by the law of large
numbers, Eq. (5) converges to (6) a.s. as m → ∞.
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Noting that E[ρ̂V
p,m(u; X ,W )] = E[ρ̂V (u; X p,W )]/p

for any p ∈ (0, 1] and m ≥ 1, we see that ρ̂V
p,m(u; X ,W ) is

unbiased for the estimation of the intensity of X if and only
if the original Voronoi intensity estimator is unbiased for the
estimation of the intensity of an arbitrary thinning X p. There
is unfortunately not much more to be said without explicitly
assuming something about the distributional properties of X .

When X is stationary (see Sect. 2), all Voronoi cells have
the samedistribution andwemay speakof the typicalVoronoi

cell Vo = Vo(X), which satisfies Vo
d= θ−xVx (X , S) for

any x ∈ X ; here θ−x denotes the transformation/shift such
that x is taken to the origin o ∈ S. In particular, we have
that ρ̂V

p,m(u) and ρ̂V
p,m(v) have the same distribution for any

u, v ∈ S and it can be shown that unbiasedness holds.

Theorem 1 For a stationary point process X in W = S with
constant intensity ρ > 0, the resample-smoothed Voronoi
intensity estimator (4) is unbiased for any choice of p ∈ (0, 1]
and m ≥ 1.

As our main interest lies in estimating non-constant inten-
sity functions, stationary models are of limited practical
interest. We next turn to inhomogeneous Poisson processes
in Euclidean spaces.

Theorem 2 Let X be a Poisson process in W = S = R
d ,

d ≥ 1, with intensity function ρ(u), u ∈ R
d , which satisfies

theLipschitz condition that for someμu > 0, |ρ(v)−ρ(u)| ≤
μuε for v ∈ B(u, ε) and ε > 0 sufficiently small; B(u, ε)

denotes the Euclidean ball with centre u and radius ε > 0.
Denoting by Cu(X) the Voronoi cell containing u ∈ R

d ,
assume further that mκ := supu∈Rd E[|Cu(X)|−κ ] < ∞ for
some κ ≥ 1 + 1/d. Then, for any u ∈ R

d , p ∈ (0, 1] and
m ≥ 1,

∣
∣
∣ρ(u) − E

[
ρ̂V
p,m(u)

]∣∣
∣ ≤ Cp−1(pρ(u))−1/d log(pρ(u))2/d

for some C > 0 that depends on the intensity. The right hand
side tends to 0 as the intensity tends to infinity.

Remark 1 The moment condition and the Lipschitz assump-
tion on ρ can be relaxed to weaker versions and still have the
left hand side go to 0, but the rate would be different.

It has been conjectured that the size of the typical cell
of a homogeneous Poisson process follows a (generalised)
Gamma distribution (see e.g. Chiu et al. 2013); note in partic-
ular Lemma 2 below. The moment condition in the statement
of the above result, i.e. mκ < ∞, would be satisfied if this is
indeed the case. Under such a conjectured distribution, Barr
and Schoenberg (2010) showed that in the planar case the
original Voronoi intensity estimator is ratio-unbiased for a
given class of intensity functions.

3.2.2 Variance

Regarding the variance of ρ̂V
p,m(u), the next result shows that

by thinning as much as possible we also obtain a variance of
the resample-smoothed Voronoi estimator which is close to
0. We see that for cases where the estimator is unbiased we
should, in theory, smooth asmuch as possible, in combination
with choosing m as large as possible.

Theorem 3 Consider a point process X restricted to W ⊆ S,
where ρ̂V (u) = ρ̂V (u; X ,W ), u ∈ W, has finite variance.
Given p ∈ (0, 1] and m ≥ 1, the variance of ρ̂V

p,m(u) =
ρ̂V
p,m(u; X ,W ) satisfies

Var(ρ̂V
p,1(u))/m ≤ Var(ρ̂V

p,m(u)) ≤ Var(ρ̂V
p,1(u))

and Var(ρ̂V
p,m(u)) converges as m → ∞ to the covariance

between ρ̂V (u; X1
p,W )/p and ρ̂V (u; X2

p,W )/p, where X1
p

and X2
p are two arbitrary p-thinned versions of X.

Let m ≥ 1 be fixed. For a bounded W ⊆ S it follows
that lim p→0 Var(ρ̂V

p,m(u; X ,W )) = 0. Moreover, consider-
ing a sequence Wp ⊆ S, p ∈ (0, 1], which increases (in
terms of inclusion) as p decreases and satisfies E[N (X p ∩
Wp)] = p

∫
Wp

ρ(u)du → 0 as p → 0, we have that

limp→0 Var(ρ̂V
p,m(u; X ,Wp)) = 0.

Turning to the stationary case, from the proof of Theo-
rem 1 (Online Resource 1) we have that the p-thinning X p

of a stationary point process X with intensity ρ > 0 is again
stationary, but with intensity pρ. For X p, the distribution
P̄p(·) of the size of the cell that covers u is the same for
any u ∈ S and it is given by [see Last (2010, Section 8) and
Schneider and Weil (2008, Theorem 10.4.1.)]

P̄p(A) = pρ
∫

A
t P|Vo(X p)|(dt), A ⊆ [0,∞), (7)

where P|Vo(X p)|(·) is the distribution of the typical cell size.
Besides giving us the unbiasedness in Theorem 1, i.e.

E[ρ̂V
p,m(u)] = p−1 pρ

∫ ∞

0
t−1t P|Vo(X p)|(dt) = ρ,

the relationship (7) further yields

E[ρ̂V
p,1(u)2] = 1

p2

∫ ∞

0

1

t2
P̄p(dt)=ρ

p

∫ ∞

0

1

t
P|Vo(X p)|(dt)

= ρ

p
E[1/|Vo(X p)|],

Var(ρ̂V
p,1(u)) = ρ

p
E[1/|Vo(X p)|] − ρ2.
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Through the proof of Theorem 3 (Online Resource 1) we
obtain that the variance of ρ̂V

p,m(u) is given by

ρ

(
E[1/|Vo(X p)|]

p
− ρ

)

×

× 1 + (m − 1)Corr(ρ̂V (u; X1
p, S), ρ̂V (u; X2

p, S))

m
, (8)

where Corr denotes correlation. Unfortunately, we cannot
get much further in the general setup; the problem lies in that
P|Vo|(·) typically is not known.

There is, however, one particular case where we can say
a bit more and that is for Poisson processes on R.

Lemma 2 For a Poisson process on R with intensity ρ > 0,
for any p ∈ (0, 1] and m ≥ 1 the typical cell size of X p

follows an Erlang/Gamma distribution with shape and rate
parameters 2 and 2pρ, respectively. Hence Var(ρ̂V

p,m(u)) ≤
Var(ρ̂V

p,1(u)) = ρ2.

Empirically, we have consistently observed that for a large
enoughm, the variance of ρ̂V

p,m(u) decreases as p decreases,
for u ∈ W located a given distance from the boundary of
W ⊆ S. As this is partly supported by Theorem 3, we are led
to the following conjecture.

Conjecture 1 For an arbitrary point process X in S and a
large enough m, the variance of ρ̂V

p,m(u) is a decreasing

function of p ∈ (0, 1]. In particular, if ρ̂V
p,m(u) is unbiased,

this means that MISE is decreasing with p.

3.3 Choosing the smoothing parameters

When using the resample-smoothed Voronoi intensity esti-
mator (4) in practice, one needs to specify the smoothing
parameters m ≥ 1 and p ∈ (0, 1] prior to finding the inten-
sity estimate. We next discuss how to obtain proper choices
for m and p.

3.3.1 Choosing the number of thinnings

Lemma 1 tells us that for a fixed p ∈ (0, 1] and any point
pattern x ⊂ W ⊆ S, we have that ρ̂V

p,m(u; x,W ) exists
a.s. as m → ∞. The question that remains, however, is
for which m ≥ 1 we are sufficiently close to the limit. In
our numerical experiments in Sect. 4 we illustrate that the
estimated bias and variance of ρ̂V

p,m(u) do not change sig-
nificantly for m ≥ 200. Nevertheless, we propose to fix
m = 400 and then proceed by finding a proper choice for
p ∈ (0, 1].

3.3.2 Choosing retention probability

The selection of p ∈ (0, 1] is clearly themore delicate matter
here; essentially we are faced with problems similar to those
of choosing bandwidths in kernel estimation.

Through our numerical experiments (see Sect. 4) we have
found that the choice p ≤ 0.2 seems to generate the best
intensity estimates in the sense that the variance-bias-tradeoff
is taken into account by keeping both the bias and variance
relatively small. From Sect. 4, Theorem 3 and Conjecture 1 it
seems that the smaller the p, the better the estimate. We refer
to the choice m = 400 and p ≤ 0.2 as our rule-of-thumb.
It should be pointed out that very small values for p may
require larger values for m.

We also propose a cross-validation approach to select
p when a data-driven approach is preferred to the rule-of-
thumb. Recalling a comment in Sect. 2.2 about independent
thinnings yielding approximate Poissonian distributional
properties of the resulting processes, a natural approach to
choosing pwhen the number of thinnedpatterns,m, is fixed is
to consider Poisson process likelihood cross-validation. This
method has a long history in the literature of point processes
and has e.g. been frequently used for bandwidth selection
in kernel-based estimation (Silverman 1986; Loader 1999).
More specifically, given a point pattern x = {x1, . . . , xn} ⊂
W ⊆ S and some fixed m ≥ 1, we choose the correspond-
ing resampling/retention probability as a maximiser of the
cross-validation criterion

CV (p) = CVm(p) =
n∑

i=1

log ρ̂V
p,m(xi ; x\{xi },W )

−
∫

W
ρ̂V
p,m(u; x,W )du, p ∈ (0, 1].

(9)

Note that ρ̂V
p,m(·; x\{xi },W ) is the leave-one-out version of

ρ̂V
p,m(·; x,W ), i.e. the resample-smoothed Voronoi intensity

estimator based on the reduced sample x\{xi }. Computation
ofCV (p), p ∈ (0, 1], can be quite costly. In practice wemay
ignore the integral term in (9) since it is approximately equal
to the number of points in the pattern. Moreover, in practice
we calculate CV (p j ), j = 1, . . . , k, 0 < p j−1 < p j ≤ 1,
sequentially by first generating Xi

pk and then iteratively gen-
erating Xi

p j−1
= (Xi

p j
)p j−1/p j , i = 1 . . . ,m, j = 2, . . . , k.

Note that for smallm the graph ofCV (p)may not be smooth
and might contain local extrema.

Finally, if the value obtained for p through the cross-
validation would deviate too much from the rule-of-thumb,
we recommend following the rule-of-thumb; see the log-
GaussianCoxprocess example inSect. 4 for a situationwhere
this occurs.
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3.4 Large scale data and sparsity

In general, when the number of events, n, of an observed
point pattern x = {x1, . . . , xn} is very large, it is often natural
to consider an adaptive intensity estimator as the scales of
intensity likely vary a lot.

Itmaynot be computationally feasible to compute ρ̂V
p,m(·),

p ∈ (0, 1], for an arbitrary m ≥ 1 (or any other intensity
estimator for that matter). An alternative way of exploiting
the proposed setup is to consider ρ̂V

p0,m(·) for some p0 ≤ 0.2
and m = 1. This means that we would introduce sparsity by
only having to generate Voronoi cells for less than 30% of
the original number of points. The results in Sect. 4 indicate
how good an estimate one would typically obtain. Moreover,
if the computation of ρ̂V

p0,1
(·) is reasonably quick, one could

generate a further estimate ρ̂V
p0,1

(·) and average over these

to obtain ρ̂V
p0,2

(·). One could then continue like this in a
stepwise fashion, given a total computation timeframe. This
approach could also be useful in machine learning settings
(cf. Holmström and Hamalainen 1993); note that ρ̂V

p,m(·)/n
is a density estimate for a sample x = {x1, . . . , xn} ⊂ W .

4 Numerical experiments

As previously pointed out, we assess our intensity estima-
tion approach numerically, which we choose to do in the
Euclidean setting.

In our simulation study, we consider four different types
of models with varying degrees of variation in intensity and
spatial interaction; clustering, spatial randomness and regu-
larity. For eachmodelwe use 500 realisations onW = [0, 1]2
to generate numerical estimates of relevant quantities such
as bias, variance, Integrated Variance (IV), Integrated Square
Bias (ISB) and Integrated Absolute Bias (IAB) for ρ̂V

p,m(u),
u ∈ W ; recall that Mean Integrated Square Error (MISE) is
obtained as the sum of IV and ISB.

The resample-smoothed Voronoi estimators in the two-
dimensional plane and on linear networks were implemented
in the R language using the package spatstat (Baddeley
et al. 2015) and will be released publicly in a future version
of spatstat. Our simulation experiments and figures were
generated using this implementation.

For each model considered, in the Electronic Supplemen-
tary Material (Online Resource 2), we provide plots of the
estimated bias and variance for m = 400 and a range of
values of p ∈ (0, 1], together with the estimated biases
and variances obtained through kernel estimation. There, we
additionally provide box plots related to point-wise estima-
tion errors.

The overall conclusion is that we clearly reduce the esti-
mation errors by resample-smoothing the Voronoi intensity
estimator. Moreover, the cross-validation approach to select-

ing p on average yields slightly poorer intensity estimates
than the rule-of-thumb, in particular if the model is clustered.
Looking at the box plots in the Electronic Supplementary
Material (Online Resource 2), we argue that when e.g. p =
0.01 our proposed approach outperforms the two competing
kernel estimation approaches, when we are considering clus-
tering or spatial randomness. Under regularity the picture is a
bit more varied—the proposed method performs better than
the kernel based approaches in terms of extreme over and
under estimation. Note that in some situations even a larger
p yields similar results.

4.1 Homogeneous Poisson process

Here we consider a homogeneous Poisson process X inW =
[0, 1]2 with intensity ρ = 60. Table 1 provides estimates of
IAB, ISBand IV for ρ̂V

p,m(u),u ∈ W ,m = 200, 300, 400 and
a range of values for p; recall that we use 500 realisations of
X . Indeed, the bias seems fairly stable over the rangeof values
for p and the variance is clearly decreasing with p; choos-
ing p according to the rule-of-thumb keeps MISE small. For
illustrational purposes, in Fig. 1 we provide estimation error
plots for one of the realisations, for p = 0.01 and p = 1
with m = 400. One can clearly see the gain of the resample-
smoothing. In addition, in the Electronic Supplementary
Material (Online Resource 2) we provide plots of the esti-
mated bias and variance for p = 0.01, 0.1, 0.3, 0.5, 0.7, 1
and m = 400, together with estimation-error-based box
plots, and they essentially confirm what has been observed
in Table 1.

Turning to the cross-validation approach to selecting p,
with m = 400, based on 500 realisations of the model we
obtain IAB = 3.1, ISB = 13.3 and IV = 177 which are
in the range of what one obtains when p is less than 0.3. In
Table 2 we further provide the 500 selected values for p and
we see that the majority of them fall within the range of our
rule-of-thumb.

Comparing with kernel estimation under uniform edge
correction, usingPoisson likelihood cross-validation (Loader
1999, Sec. 5.3, pp. 87–95) to select the bandwidth, we obtain
IAB = 0.24, ISB = 0.11 and IV = 126.05. By instead
employing the bandwidth selection method of Cronie and
van Lieshout (2018), we obtain IAB = 0.87, ISB = 1.12 and
IV = 688.25. Hence, when p is small enough the proposed
approach outperforms both kernel approaches in terms of
MISE.

4.2 Inhomogeneous Poisson process

More interestingly, we next consider 500 realisations of an
inhomogeneous Poisson process X in W = [0, 1]2 with
intensity ρ(x, y) = |10 + 90 sin(16x)|; the expected total
point count is 58.6. Table 3 provides estimates of IAB, ISB
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Table 1 Estimates of IAB, ISB
and IV for ρ̂V

p,m(u),

u ∈ W = [0, 1]2,
m = 200, 300, 400 and a
sequence of p, based on 500
realisations of a homogeneous
Poisson process in W = [0, 1]2
with intensity ρ = 60

IAB ISB IV

m

p 200 300 400 200 300 400 200 300 400

.01 2.21 2.20 2.21 6.86 6.85 6.91 97.83 85.04 77.99

.03 4.71 4.69 4.68 30.63 30.42 30.35 92.59 87.18 85.34

.05 5.63 5.64 5.64 43.09 43.1 43.17 108.05 105.11 100.95

.1 5.7 5.7 5.7 43.5 43.2 43.0 158.4 154.8 152.5

.2 4.6 4.6 4.6 28.4 28.5 28.4 264.1 260.3 257.9

.3 3.9 3.9 3.9 22.5 22.2 22.2 375.3 370.6 368.8

.4 3.5 35 3.5 19.7 19.6 19.6 490.6 488.8 487.8

.5 3.2 3.2 3.2 18.1 18.1 18.1 672.0 623.9 622.9

.6 3.0 3.0 3.0 17.1 17.1 17.0 781.9 779.4 779.0

.7 2.9 2.9 2.9 16.5 16.5 16.5 960.0 958.7 958.8

.8 2.9 2.9 2.9 16.0 16.0 16.0 1172.2 1171.8 1171.1

.9 2.9 2.9 2.9 15.8 15.8 15.8 1422.2 1419.6 1418.9

1 2.9 2.9 2.9 15.8 15.8 15.8 1733.2 1733.2 1733.2

Fig. 1 Estimation error plots for
a realisation of a homogeneous
Poisson process X in
W = [0, 1]2 with intensity
ρ = 60. Left: p = 0.01 and
m = 400. Right: p = 1. The
underlying point pattern has
been superimposed in all plots

Table 2 Cross-validation selections of p for m = 400 in a geometric
sequence, based on 500 realisations of a homogeneous Poisson process
in W = [0, 1]2 with intensity ρ = 60

p 0.01 0.02 0.03 0.07 0.12 0.23 0.43 0.80

Frequency 214 113 60 30 23 30 24 6

and IV for ρ̂V
p,m(u), u ∈ W , m = 200, 300, 400 and a range

of values for p. Moreover, in Fig. 2 we provide estimation
error plots for one of the realisations, for p = 0.01 and
p = 1 with m = 400, and in the Electronic Supplementary
Material (Online Resource 2), we provide plots of the esti-
mated bias and variance for p = 0.01, 0.1, 0.3, 0.5, 0.7, 1
and m = 400, together with estimation-error-based box
plots, and they likewise indicate the advantage of resample-
smoothing.

Turning to the cross-validation approach to selecting p,
based on m = 400 and 500 realisations of the model, we
obtain IAB = 25.3, ISB = 867.4 and IV = 174.8, with

the majority of the selected p’s coinciding with the rule-of-
thumb (see Table 4).

Hence, the conclusions here are essentially the same as
for the homogeneous Poisson process in Sect. 4.1, with the
main difference arguably being that inhomogeneity enforces
slightly harder thinning in the cross-validation.

Comparing with kernel estimation under uniform edge
correction, usingPoisson likelihood cross-validation (Loader
1999, Sec. 5.3, pp. 87–95) to select the bandwidth, we obtain
IAB = 25.16, ISB = 853.24 and IV = 158.00. By instead
employing the bandwidth selection method of Cronie and
van Lieshout (2018), we obtain IAB = 24.43, ISB = 797.02
and IV = 636.63. Thus, for p < 0.1, the proposed approach
outperforms both kernel methods in terms of MISE. In par-
ticular, for both the homogeneous and the inhomogeneous
Poisson process examples, when p ≤ 0.4 our proposed
method shows a better performance in terms of MISE than
the kernel approach with the bandwidth selection method of
Cronie and van Lieshout (2018).
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Table 3 Estimates of IAB, ISB
and IV for ρ̂V

p,m(u),

u ∈ W = [0, 1]2,
m = 200, 300, 400 and a
sequence of p, based on 500
realisations of an
inhomogeneous Poisson process
on W = [0, 1]2 with intensity
ρ(x, y) = |10 + 90 sin(16x)|

IAB ISB IV

m

p 200 300 400 200 300 400 200 300 400

.01 25.3 25.3 25.3 867.0 866.8 867.1 96.7 84.7 79.8

.03 25.4 25.5 25.4 881.7 881.8 882.2 93.6 85.1 80.9

.05 25.5 25.5 25.5 891.7 891.8 891.9 104.8 99.4 97.6

.1 25.6 25.6 25.6 892.3 891.8 891.7 154.2 150.1 147.6

.2 25.5 25.5 25.5 882.8 883.2 883.3 249.1 247.3 245.6

.3 25.6 25.5 25.5 881.5 881.5 881.5 360.1 356.3 356.2

.4 25.5 25.5 25.5 878.8 879.0 879.0 479.9 477.2 475.0

.5 25.5 25.5 25.5 872.6 872.5 872.6 609.8 609.6 609.8

.6 25.4 25.4 25.4 862.7 862.7 862.7 762.6 764.3 764.1

.7 25.2 25.2 25.2 849.9 850.0 850.0 952.0 948.3 949.0

.8 25.0 25.0 25.0 835.1 834.8 834.8 1171.9 1172.3 1172.1

.9 24.7 24.7 24.7 817.7 817.6 817.6 1440.1 1440.9 1440.0

1 24.4 24.4 24.4 799.3 799.3 799.3 1783.8 1783.8 1783.8

Fig. 2 True intensity and estimation error plots for a realisation of an inhomogeneous Poisson process on W = [0, 1]2 with intensity ρ(x, y) =
|10 + 90 sin(16x)|. Left: p = 0.01 and m = 400. Middle: p = 1. Right: true intensity. The underlying point pattern has been superimposed in all
plots

Table 4 Cross-validation selections of p in a geometric sequence for
m = 400, based on 500 realisations of an inhomogeneous Poisson
process in W = [0, 1]2 with intensity ρ(x, y) = |10 + 90 sin(16x)|
p 0.01 0.02 0.03 0.07 0.12 0.23 0.43 0.80

Frequency 221 116 66 34 12 25 17 9

4.3 Log-Gaussian Cox process

Turning to the scenario where the underlying point pro-
cess exhibits clustering, we next consider 500 realisations
of a log-Gaussian Cox process X in W = [0, 1]2 where
the driving Gaussian random field has the mean func-
tion (x, y) �→ log(40| sin(20x)|) and covariance function
((x1, y1), (x2, y2)) �→ 2 exp{−‖(x1, y1) − (x2, y2)‖/0.1}.
Hereby, the intensity is given by ρ(x, y) = 40| sin(20x)| e1.
Table 5 provides estimates of IAB, ISB and IV for ρ̂V

p,m(u),

u ∈ W , m = 200, 300, 400 and a range of values of p.
We see that the rule-of-thumb, i.e. p ≤ 0.2, seems to be
the preferable choice. In Fig. 3 we provide estimation error
plots for one of the realisations, for p = 0.01 and p = 1
with m = 400, and in the Electronic Supplementary Mate-
rial (Online Resource 2), we provide plots of the estimated
bias and variance for p = 0.01, 0.1, 0.3, 0.5, 0.7, 1 and
m = 400 together with estimation-error-based box plots.
Here it becomes visually clear that the resample-smoothing
is improving the estimation quite significantly.

The cross-validation approach to selecting p, based on
m = 400 and 500 realisations of the model, yields IAB =
26.3, ISB = 948.2 and IV = 23,580.7, which may be
comparable to the choice p ≈ 0.7. In Table 6 we further
provide the 500 selected values for p. The phenomenon that
too little smoothing tends to be applied (p is mainly chosen
large) is not extremely surprising; as our cross-validation
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Table 5 Estimates of IAB, ISB
and IV for ρ̂V

p,m(u),

u ∈ W = [0, 1]2,
m = 200, 300, 400 and a
sequence of p, based on 500
realisations of a log-Gaussian
Cox process in W = [0, 1]2
with mean function
(x, y) �→ log(40| sin(20x)|) and
covariance function
((x1, y1), (x2, y2)) �→
2 exp{−‖(x1, y1) −
(x2, y2)‖/0.1} for the driving
random field

IAB ISB IV (×102)

m

p 200 300 400 200 300 400 200 300 400

.01 29.2 29.2 29.2 1144.2 1144.6 1144.4 10.0 10.2 10.1

.03 29.6 29.7 29.7 1186.7 1186.6 1187.1 18.0 17.5 17.3

.05 29.8 29.7 29.7 1199.2 1199.5 1199.1 26.5 26.5 26.7

.1 29.5 29.5 29.5 1181.5 1181.9 1180.9 48.8 48.8 48.7

.2 28.8 28.8 28.8 1127.3 1127.4 1127.3 87.8 87.2 88.0

.3 28.2 28.2 28.2 1081.4 1081.7 1081.6 123.8 122.6 123.1

.4 27.6 27.6 27.6 1038.8 1039.2 1039.4 153.2 153.0 152.6

.5 27.1 27.1 27.1 1000.1 999.6 999.7 181.3 182.2 182.0

.6 26.5 26.5 26.5 963.9 963.7 963.5 212.4 212.5 212.1

.7 26.0 26.0 26.0 930.5 930.4 930.6 243.1 243.0 243.2

.8 25.6 25.6 25.6 901.1 900.6 900.7 278.8 279.2 279.3

.9 25.2 25.2 25.2 874.4 874.3 874.2 321.4 321.5 320.9

1 24.7 24.7 24.7 852.3 852.3 852.3 371.4 371.4 371.4

Fig. 3 True intensity and estimation error plots for a realisation of a
log-Gaussian Cox process inW = [0, 1]2 withmean function (x, y) �→
log(40| sin(20x)|) and covariance function ((x1, y1), (x2, y2)) �→

2 exp{−‖(x1, y1) − (x2, y2)‖/0.1} for the driving random field. Left:
p = 0.01 and m = 400. Middle: p = 1. Right: true intensity. The
underlying point pattern has been superimposed in all plots

Table 6 Cross-validation selections of p in a geometric sequence for
m = 400, based on 500 realisations of a log-Gaussian Cox process
in W = [0, 1]2 with mean function (x, y) �→ log(40| sin(20x)|)
and covariance function ((x1, y1), (x2, y2)) �→ 2 exp{−‖(x1, y1) −
(x2, y2)‖/0.1} for the driving random field

p 0.01 0.02 0.03 0.07 0.12 0.23 0.43 0.80

Frequency 7 4 6 1 10 22 207 243

approach is based on a Poisson process likelihood function,
it treats a realisation x of X as a realisation of a Poisson
process which has the corresponding realisation of the driv-
ing (random) intensity field as intensity function. In other
words, it tries to perform state estimation, i.e. it tries to recon-
struct each realisation of the driving intensity field through
x. This phenomenon, and that the Poisson process likelihood
cross-validation approach is not performing well for clus-
tered inhomogeneous point processes, has previously been

observed in the context of kernel intensity estimation (Cronie
and van Lieshout 2018). Hence, if one suspects that there
is clustering in addition to inhomogeneity, or if the cross-
validation generates large values for p, then it is wiser to stick
with the proposed rule-of-thumb, p ≤ 0.2. In fact, cross-
validation-generated deviations from the rule-of-thumb may
be seen as a possible indication of clustering or inhibition.

Comparing with kernel estimation under uniform edge
correction, usingPoisson likelihood cross-validation (Loader
1999, Sec. 5.3, pp. 87–95) to select the bandwidth, we obtain
IAB = 27.75, ISB = 1031.03 and IV = 9952.85. By instead
employing the bandwidth selectionmethod ofCronie and van
Lieshout (2018), we obtain IAB = 28.97, ISB = 1117.94
and IV = 3856.79. We see that our proposed method outper-
forms both of the kernel-based approaches in terms of MISE
when p is small enough. Note, in particular, that in terms of
MISE it outperforms the kernel approach with the bandwidth
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selection based on the likelihood cross-validation approach
when p ≤ 0.2.

4.4 Thinned simple sequential inhibition point
process

To study inhomogeneity in combination with inhibition,
we consider a simple sequential inhibition point process in
W = [0, 1]2 with a total point count of 450 and inhibition
distance 0.3, which we thin according the retention proba-
bility function p(x, y) = 1{x < 1/3}|x − 0.02| + 1{1/3 ≤
x < 2/3}|x − 0.5| + 1{x ≥ 2/3}|x − 0.95|, x, y ∈ W .
This results in an inhomogeneous point process with inten-
sity ρ(x, y) = 450p(x, y), which yields an expected total
point count of 53.6. Table 7 provides estimates of IAB, ISB
and IV for ρ̂V

p,m(u), u ∈ W , m = 200, 300, 400 and a range

of values for p. Just as for the previous models, we argue that
p should be chosen within the range of the rule-of-thumb.

In Fig. 4 we provide estimation error plots for one
of the realisations, for p = 0.01 and p = 1 with
m = 400. Plots of the estimated bias and variance, for
p = 0.01, 0.1, 0.3, 0.5, 0.7, 1 and m = 400 together with
estimation-error-based box plots can be found in the Elec-
tronic Supplementary Material (Online Resource 2). Also
here the improvements caused by the resample-smoothing
are visually clear.

The cross-validation approach to selecting p based on
m = 400 and 500 realisations of the model yields IAB =
26.5, ISB = 1033.6 and IV = 508.1, which is comparable to
choosing p ≈ 0.5.Moreover, Table 8 lists the selected values
for p and we see that they tend to be either very large or very
small. It thus seems that approximately half of the time the

Table 7 Estimates of IAB, ISB
and IV for ρ̂V

p,m(u),

u ∈ W = [0, 1]2,
m = 200, 300, 400 and a
sequence of p, based on 500
realisations of an independently
thinned simple sequential
inhibition process in
W = [0, 1]2 with intensity
ρ(x, y) = 450p(x, y),
p(x, y) = 1{x <

1/3}|x − 0.02| + 1{1/3 ≤ x <

2/3}|x − 0.5| + 1{x ≥
2/3}|x − 0.95|, x, y ∈ W

IAB ISB IV

m

p 200 300 400 200 300 400 200 300 400

.01 31.9 31.9 31.9 1458.2 1458.2 1458.4 81.5 69.6 62.4

.03 32.3 32.3 32.3 1493.9 1493.7 1493.4 69.2 65.4 63.0

.05 32.4 32.4 32.4 1511.2 1510.9 1510.4 78.4 75.1 72.2

.1 32.4 32.4 32.4 1502.2 1502.7 1502.2 109.4 105.9 103.4

.2 31.2 31.2 31.2 1385.7 1385.2 1384.5 176.2 173.8 172.2

.3 29.2 29.2 29.2 1223.6 1223.0 1222.8 253.4 251.2 250.3

.4 27.0 27.0 27.0 1060.4 1060.7 1060.3 348.8 345.3 345.3

.5 25.0 25.0 25.0 919.5 919.8 920.6 457.3 455.6 454.1

.6 23.1 23.1 23.1 803.3 803.3 803.0 584.4 582.7 581.9

.7 21.5 21.5 21.5 707.9 707.7 707.8 734.2 733.9 732.8

.8 20.0 20.1 20.1 628.5 628.9 629.1 916.3 914.2 913.4

.9 18.9 18.9 18.9 567.2 567.5 567.7 1120.5 1118.5 1117.5

1 24.7 24.7 24.7 852.3 852.3 852.3 1382.4 1382.4 1382.4

Fig. 4 True intensity and estimation error plots for a realisation
of an independently thinned simple sequential inhibition process in
W = [0, 1]2 with intensity ρ(x, y) = 450p(x, y), p(x, y) = 1{x <

1/3}|x − 0.02| + 1{1/3 ≤ x < 2/3}|x − 0.5| + 1{x ≥ 2/3}|x − 0.95|,

x, y ∈ W . Left: p = 0.01 and m = 400. Middle: p = 1. Right: true
intensity. The underlying point pattern has been superimposed in all
plots
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Table 8 Table Cross-validation selections of p in a geometric sequence
for m = 400, based on 500 realisations of an independently thinned
simple sequential inhibition process in W = [0, 1]2 with intensity
ρ(x, y) = 450p(x, y), p(x, y) = 1{x < 1/3}|x − 0.02| + 1{1/3 ≤
x < 2/3}|x − 0.5| + 1{x ≥ 2/3}|x − 0.95|, x, y ∈ W

p 0.01 0.02 0.03 0.07 0.12 0.23 0.43 0.80

Frequency 142 83 22 8 3 8 79 155

cross-validation performs as it should do and approximately
half of the time it chooses p too large.

Comparing with kernel estimation under uniform edge
correction, usingPoisson likelihood cross-validation (Loader
1999, Sec. 5.3, pp. 87–95) to select the bandwidth, we obtain
IAB = 20.5, ISB = 663.94 and IV = 485.48. By instead
employing the bandwidth selectionmethod ofCronie and van
Lieshout (2018), we obtain IAB = 23.97, ISB = 860.67 and
IV = 308.47. We see that the proposed approach performs
slightly poorer than kernel approaches.

5 Data analysis

We next apply our proposed intensity estimator (4) to two
real datasets, in two types of spaces. We first study a linear
network dataset of traffic accidents in an area of Houston,
USA, and then a planar dataset of spatial locations of Finnish
pines.

5.1 Houstonmotor vehicle traffic accidents

The dataset consists of motor vehicle traffic accident loca-
tions in a given area of Houston, USA, during the month of
April 1999. The linear network L describing the road net-
work in question (see Fig. 5) has a total length of 708,301.7
feet, and has 187 vertices (road intersections) with a maxi-
mum vertex degree of 4, and 253 line segments, i.e. pieces
of streets connecting the intersections.

Table 9 Houston motor vehicle traffic accidents: Cross-validation
selected values for p, based on the sequence m = 100, 150, . . . , 400

m 100 150 200 250 300 350 400

p 0.15 0.15 0.15 0.20 0.15 0.20 0.20

Figure 5 (left) shows the reference points of the 249 acci-
dents over the street network. The data have been collected
by individual police departments in theHoustonmetropolitan
area and compiled by the Texas Department of Public Safety.
The compiled data have been obtained by the Houston-
Galveston Area Council and then geocoded by N. Levine.
Between 1999 and 2001, in the eight-county region consid-
ered, there were 252,241 serious accidents, with an average
of 84,080 per year. From these accidents, 1882 were person
related. See Levine (2006, 2009) for details.

In Fig. 5 (right) we also provide the resample-smoothed
Voronoi intensity estimate obtained for m = 400 and p =
0.20. The specific choice p = 0.20 has been motivated by
the rule-of-thumb p ≤ 0.2 and Table 9, which shows the
selected values for p ∈ (0, 1] obtained by carrying out cross-
validation for the sequence m = 100, 150, . . . , 400. We see
that selected values for p are given by either 0.15 or 0.20.

Visually, there seems to be a good correspondence
between the observed pattern and the obtained estimate. Note
that for bigger values of p, in the right panel of Fig. 5 we
would have obtained more significant blobs in the parts cor-
responding to the dense parts in the left panel of Fig. 5.

5.2 Finnish pines

The dataset, which consists of the locations of 126 pine
saplings in a Finnish forest, within a rectangular window
W = [−5, 5]×[−8, 2] (metres), can be found in the R pack-
age spatstat (Baddeley et al. 2015). It was recorded by S.
Kellomaki, Faculty of Forestry, University of Joensuu, Fin-

Fig. 5 Left: motor vehicle
traffic accidents in an area of
Houston, US, during April,
1999. Right: resample-smoothed
Voronoi intensity estimate for
m = 400 and p = 0.20
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Fig. 6 The estimate ρ̂V
p,m(u), u ∈ W , m = 400, for p = 0.01 (left), p = 0.1 (middle) and p = 0.45 (right), together with the locations of 126 pine

saplings in a Finnish forest, within a rectangular window W = [−5, 5] × [−8, 2] (metres)

Table 10 Finish pines: cross-validation selected values for p, based on
the sequence m = 100, 150, . . . , 400

m 100 150 200 250 300 350 400

p 0.65 0.50 0.50 0.50 0.45 0.50 0.45

land, and further processed by A. Penttinen, Department of
Statistics, University of Jyväskylä, Finland.

In Fig. 6 we illustrate the estimate ρ̂V
p,m(u), u ∈ W , m =

400, for p = 0.01, p = 0.1 and p = 0.45, together with
the locations of the saplings. We further provide the cross-
validation results for the sequence m = 100, 150, . . . , 400
in Table 10; it suggests the choice p = 0.45. We argue that
p = 0.01 and p = 0.1 result in pretty similar intensity maps
and they better respect the global features of the data than
p = 0.45.

6 Discussion and future work

Wehaveproposed ageneral approach for resampling, or addi-
tional smoothing, of Voronoi intensity estimators. It is based
on averaging over intensity estimators generated by a set of
thinned samples. We believe that its strength lies in that it
filters out sporadic/local features in order to accentuate the
structural information contained in the sample. In addition,
viewing the reciprocal of a point’s Voronoi cell size as a type
of kernel (cf. van Lieshout 2012), centred at the point, each
time we thin the pattern we change the support of that kernel.
Having averaged over the thinned estimators, in essence we
end up using an “average” support for each such kernel.

In order to determine how much smoothing, i.e. thinning,
should be applied, we have proposed both a rule-of-thumb
(m = 400 and p ≤ 0.2) and a data-driven cross-validation
approach. We have observed that for Poisson and log Gaus-
sian Cox processes, by using resample-smoothed Voronoi
intensity estimation together with our rule-of-thumb, we

outperform kernel estimation in terms of Mean Integrated
Square Error (MISE) and point-wise over-/under-estimation,
based on the state-of-the-art in bandwidth selection. The
over-/under-estimation has been illustrated by means of
point-wise estimation error box plots which can be found
in the Electronic Supplementary Material (Online Resource
2). For regular point process models the picture seems to
be a bit more varied—our proposed approach outperforms
the kernel approaches in terms of over-/under-estimation and
performs slightly poorer in terms of MISE. In essence one
could say that if we employ the expected supremum distance
to compare the functions then the new method outperforms
the kernel method. For the expected L2 distance, reflected by
MISE, however, this is not true for the regular setting.

The performance of the proposed estimator depends on
the tuning parameters p and m. The guidelines for choosing
p and m have been based on the present examples with a
sample size of roughly n = 60. In particular, a combination
of a smaller sample size and a very small choice of p may
call for an increase of m. This should be computationally
feasible since each thinned pattern then will consist of very
few points and the corresponding Voronoi tessellation will
be fast to compute.

It should be noted that we alternatively may employ some
retention probability function p(u), u ∈ W , other than
p(u) ≡ p ∈ (0, 1]. It is, however, not clear what the benefits
of such a change would be, other than possibly decreasing
the computational time. Also, how to make a good choice for
the function p(·) is not evident.

6.1 Future work and extensions

It would be relevant and interesting to study the proposed
setupwhenwe replace theVoronoi tessellation by some other
tessellation, generated by the point pattern in question. One
such example is provided by Delaunay tessellations, as they
enjoy more tractable distributional properties in Euclidean
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spaces. Another idea is to consider some other adaptive
intensity estimator, e.g. nearest neighbour estimators (Silver-
man 1986; van Lieshout 2012). Another relevant idea might
be applying the resample-smoothing procedure to adaptive
kernel estimators (Davies and Hazelton 2010; Davies et al.
2018).

Further possible extensions are discussed below.

6.1.1 Sequential resample-smoothing

Since choosing the smoothing parameter p ∈ (0, 1] accord-
ing to the cross-validation approach in Sect. 3.3 can be quite
computationally demanding, and thereby also time consum-
ing, we propose an alternative and simpler version of the
estimator in (4).

Definition 3 Given some pm = (p1, . . . , pm) ∈ (0, 1]m ,
m ≥ 1, the sequentially resample-smoothed Voronoi inten-
sity estimator of the intensity ρ(u), u ∈ W ⊆ S, |W | > 0,
of the underlying point process X is defined as

ρ̃V
pm (u) = ρ̃V

pm (u; X ,W ) =
m∑

j=1

ρ̂V (u; X pj ,W )

mp j
, u ∈ W ,

where X p1 , . . . , X pm is a sequence of independent thinnings
of X , with the respective retention probabilities p j , j =
1, . . . ,m. In particular, ρ̂V

p,m(·) = ρ̃V
(p,...,p)(·).

The challenge here is clearly how to choose the sequence
pm ; we have seen that more weight clearly should be put
on smaller retention probability values so an equally spaced
grid over (0, 1] may not be the best choice. By proposing
some stepwise sequencing of (0, 1], where we at each step
m ≥ 1 obtain some pm = (p1, . . . , pm) ∈ (0, 1]m , one
could keep going until supu∈W |ρ̃V

pm (u) − ρ̃V
pm+1

(u)| < ε or

supu∈W |ρ̃V
pm (u) − ρ̃V

pm+1
(u)|/ρ̃V

pm (u) < ε for some prede-
fined ε > 0.

6.1.2 Edge correction in the linear network case

Although we have neglected edge effects here, it still seems
that the smoothing takes care of a significant part of the edge
effects (Chiu et al. 2013). But, as noted in the data analy-
sis, even after applying the smoothing there may be a need
for edge correction (Cronie and Särkkä 2011; Baddeley et al.
2015). In the case where X is sampled on L , and is a subset of
a process on a larger network, in which L is a sub-network,
edge effects come into play since the points closest to the
boundary have their Voronoi cells cut off through the map-
ping/sampling of L and the points. InDefinition 4we propose
an edge correction approach, which could be viewed as a ver-
sion of Ripley’s edge correction idea.

Definition 4 Given apoint patternx ona linear network L , for
each boundary point u ∈ ∂L of L ⊂ S, first find its closest
neighbour xu = argminx∈x d(u, x) in terms of the short-
est path distance d(·, ·). If βu = minx∈x\{xu} d(xu, x)/2 −
d(u, xu) > 0, extend L by a new (set of) non-overlapping
edge(s) connected to the node u, with total length βu . Denote
the resulting extended network by L̃(x) and treat x as a lin-
ear network point pattern on/restricted to L̃(x). The edge
corrected resample-smoothed Voronoi intensity estimate is
given by ρ̃V

p,m(u; x, L) = ρ̂V
p,m(u; x, L̃(x)) for u ∈ W .

Note that p = 1 results in an edge corrected version of
ρ̂V (·).
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