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ABSTRACT

The advent of a new generation of low frequency interferometers has opened a direct window into the

Epoch of Reionisation (EoR). However, key to a detection of the faint 21-cm signal, and reaching the

sensitivity limits of these arrays, is a detailed understanding of the instruments and their calibration.

In this work we use simulations to investigate the bias and uncertainty of redundancy based calibration.

Specifically, we study the influence of the flux distribution of the radio sky and the impact of antenna

position offsets on the complex calibration solutions. We find that the position offsets introduce a bias

into the phase component of the calibration solutions. This phase bias increases with the distance

between bright radio sources and the pointing center, and with the flux density of these sources. This

is potentially problematic for redundant calibration on MWA observations of EoR fields 1 and 2. EoR

field 0, however, lacks such sources. We also compared the simulations with theoretical estimates for

the bias and uncertainty in sky model based calibration on incomplete sky models for the redundant

antenna tiles in the MWA. Our results indicate that redundant calibration outperforms sky based

calibration due to the high positional precision of the MWA antenna tiles.

Keywords: Astronomical Instrumentation, Methods and Techniques - early universe - instrumentation:

interferometers - methods: numerical - techniques: interferometric

1. INTRODUCTION

Over the past few years the latest generation of low-

frequency interferometers has pushed down the upper

limits of the 21-cm power spectrum of the Epoch of

Reionisation (EoR) (Beardsley et al. 2016; Patil et al.

2017). However, none of the current instruments, e.g.

the Murchison Widefield Array (MWA) (Tingay et al.

2013), the LOw Frequency ARray (LOFAR) (van Haar-

lem et al. 2013), and the Precision Array for Probing the

Epoch of Reionization (PAPER) (Parsons et al. 2010),

have detected a signal thus far. The signal, emitted by

neutral hydrogen during the EoR, is a direct probe into

the state of the Intergalactic Medium (IGM) (Furlanetto

et al. 2006) and allows us to directly study the conditions

under which the first luminous objects were formed. For
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more in depth reviews see Morales & Wyithe (2010);

Pritchard & Loeb (2012); McQuinn (2015); Furlanetto

(2016).

Foreground sources and instrumental effects pose large

challenges to the detection of this faint signal. The low

frequency foregrounds, e.g. the Milky Way and extra-

galactic sources, are expected to be 4-5 orders of magni-

tude stronger than the neutral hydrogen signal (Furlan-

etto et al. 2006; Bowman et al. 2006; Morales et al. 2006;

Pritchard & Loeb 2008; Jelic et al. 2008). The removal

of these foregrounds requires a detailed understanding

of the instrument and its calibration, because the sub-

traction of these foregrounds, in particular bright com-

pact sources, is sensitive to calibration errors (Datta

et al. 2009). Failing to remove bright sources accu-

rately leads to contamination of EoR data, causing the

so-called “wedge” feature in the 2D-Power Spectrum.

(Datta et al. 2010; Morales et al. 2012; Trott et al. 2012;

Vedantham et al. 2012) This leakage of bright source
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residuals into the power spectrum, makes certain scales

of the EoR signal inaccessible if not dealt with correctly.

Adequate removal of these foregrounds and extraction

of the faint signal from the data puts stringent require-

ments on our calibration accuracy and precision. Stan-

dard calibration schemes correct the sky signal cross-

correlations (or ‘visibilities’) measured by radio inter-

ferometers using sky models, hereby solving for the gain

factors that cause the discrepancy between the mod-

elled visibilities and the measured visibilities (see Rau

et al. 2009, for a review). Sky model based calibration

has undergone tremendous progress in the past years

in order to overcome direction dependent calibration ef-

fects, e.g. varying antenna primary beam shapes, and

ionospheric distortions, that limit this new generation

of instruments. This progress resulted in a large vari-

ety of improved sky based calibration implementations,

e.g. RTS (Mitchell et al. 2008), SAGEcal (Yatawatta

et al. 2009; Kazemi et al. 2011), SPAM (Intema et al.

2009), FHD (Sullivan et al. 2012), and facet calibration

(van Weeren et al. 2016) to name a few. Nevertheless,

at the operating frequency of these new low-frequency

interferometers (80–200 MHz), our limited understand-

ing of the sky leads to incomplete models. Model-based

calibration with incomplete sky models causes calibra-

tion errors that lead to image artifacts, which in turn

limit the dynamic range of observations (Grobler et al.

2014; Wijnholds et al. 2016) and, more relevant to EoR

science, contaminate the power spectrum (Barry et al.

2016; Ewall-Wice et al. 2016; Trott & Wayth 2017). Re-

dundant calibration, however, allows us to escape our

ignorance of the low frequency sky because it does not

require modelling (Wieringa 1992). Because of this rea-

son redundant calibration is undergoing a renaissance,

resulting in further studies by Noorishad et al. (2012);

Liu et al. (2010); Ali et al. (2015); Dillon & Parsons

(2016), showing the applicability and some limitations of

redundant calibration in low frequency radio telescopes.

More recently, redundant calibration was compared to

sky model based calibration by Li et al. (2018). Despite

the inability of redundant calibration to solve for di-

rection dependent effects, it still remains an interesting

alternative to calibrate a radio telescope to first order,

where sky based calibration can resolve higher order ef-

fects.

In this paper we will study the theoretical performance

of redundant calibration. We specifically look at how re-

dundant calibration depends on the flux distribution of

the sky and positional errors of the antennas. This al-

lows us to determine which regions of the sky should be

calibrated with sky-based calibration or redundant cali-

bration, to yield the most accurate and precise result for

a given antenna position precision of the array. We do

this by running simulations of redundant calibration in

which we calibrate a redundant array with ideal antenna

responses on a realistic multi-source sky, while changing

the flux and position of a single calibrator source. We

compare the distribution of solutions we obtain from

these simulations with a theoretical estimate of the sky

model calibration bias and an uncertainty due to an in-

complete calibration model.

The structure of the paper is as follows: Section 2 dis-

cusses sky model calibration and our analytic descrip-

tion of the impact of an incomplete sky model on the bias

and uncertainty of the calibration solutions. Section 3

reviews redundant calibration, and describes the set up

of the redundant calibration simulations. We discuss

the influence of the sky flux distribution on redundant

calibration solutions and the impact of position offsets,

using a simple 5-element interferometer to demonstrate

the fundamental issues of redundant calibration. We

conclude our results with a comparison between the bias

and uncertainty of redundant calibration, and sky model

based calibration for the redundant MWA tiles in Sec-

tion 4, and we discuss the implications for the MWA in

Section 5.

2. SKY MODEL CALIBRATION

In this section we describe and derive the impact of

an incomplete sky model on the calibration solutions in

a sky model based approach. Earlier works studied the

effect of calibration on incomplete sky models via analy-

sis and simulations. Salvini & Wijnholds (2014) discuss

the statistical performance, Barry et al. (2016) study the

impact on EoR power spectrum estimation, and Grobler

et al. (2014); Wijnholds et al. (2016) study its impact

on the deconvolution of a 2-point source sky. In this

work we compare redundant calibration with theoreti-

cal estimates for the bias and uncertainty introduced by

calibration on an incomplete sky model.

We can write the measured correlation for a pair of

antennas i and j in the absence of noise Cij as a prod-

uct of the antenna gain factors g∗i and gj , and the true

visibility Vij
Cij = g∗i gjVij , (1)

the superscript ’∗’ indicates complex conjugation. In sky

model based calibration we solve for the gains g by min-

imizing the difference between our modelled visibilities

M and the measured correlations C.

min
g
‖C− gg ×M‖ (2)

Here, we write the minimization in the most general

form, without explicitly choosing a matrix or vector no-

tation for discussion purposes, as we will switch between
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those later on. The caveat of this approach is that the

signals from unmodelled sources are absorbed into the

calibration solutions. To understand how this impacts

the solutions, we first derive the uncertainty of sky based

calibration solutions due to a stochastic sky of point

sources and thermal noise. We then use this result to

derive the bias due to model incompleteness.

2.1. Model Incompleteness Uncertainty

To derive the minimum uncertainty on the estimated

complex gain solutions g we use the Cramér-Rao Lower

Bound (CRLB) on the estimated gain parameters.

Throughout this derivation we assume the model used

for calibration is a single point source with flux density

S(ν) located at some location l in the sky. The model

visibility for a given baseline u at frequency ν is then

given by:

M(u, ν) = S(ν)A(l) exp[−2πiu · l], (3)

A(l) is the antenna beam response, which we choose to

be a Gaussian. We choose an unmodelled source back-

ground described by a broken power-law source count

distribution dN/dS (Gervasi et al. 2008; Intema et al.

2011; Franzen et al. 2016; Williams et al. 2016)

dN

dS
=

k1S
−γ1 if Slow ≤ S < Smid

k2S
−γ2 if Smid ≤ S < Shigh

, (4)

where dN/dS gives the number of sources per Jy per

steradian, and S is the source flux in Jy. Throughout

this paper we will use k1 = k2 = 4100, γ1 = 1.59, γ2 =

2.5, Slow = 400 mJy, Smid = 1 Jy, and Shigh = 5 Jy.

To derive the CRLB on the estimated gain parameters

we first compute the Fisher Information Matrix (FIM) I
(Kay 1993). This takes the following form for a complex

multivariate normal distribution with mean M and gain

independent data covariance Σdata;

Ii,j = 2Re

(
∂MH

∂gi
Σ−1

data

∂M

∂gj

)
, (5)

where the superscript ‘H ’ denotes the Hermitian trans-

pose, the superscript ‘−1’ denotes the matrix inverse, M

is a vector where each entry is the model visibility of

a baseline pair ij for a single frequency channel, and

Σdata is the data covariance matrix. The covariance of

the data is the sum of thermal noise variance Σthermal

and the variance of our stochastic background sky Σsky,

as we assume the thermal noise is baseline independent

and we ignore the compact Fourier beam kernel that cre-

ates correlations between closely-spaced baselines. We

describe the thermal noise as

Σthermal =

√
SEFD

Bt
, (6)

where B is the bandwidth of a single frequency chan-

nel, and t is the integration time of the observation.

Throughout this paper we adopt the MWA EoR pa-

rameters unless stated otherwise, SEFD = 104 Jy,

B = 40 kHz, t = 120 s. For these parameters the ther-

mal noise is Σthermal ∼ 9 Jy. We take the expression for

the visibility variance for a baseline in a single frequency

channel due to a stochastic sky Σsky, from Trott et al.

(2016); Murray et al. (2017)

Σsky = 2π
σ2

2

(
k1

3− γ1

[
S3−γ1

mid − S
3−γ1
low

]
+

k2

3− γ2

[
S3−γ2

high − S
3−γ2
mid

]), (7)

wherein we assume a flat spectral index of our sources

within a single frequency channel, and σ is the fre-

quency dependent beam width. Throughout this paper

we assume a beam width of σ = 30◦, similar to the

MWA beam at 150 MHz, resulting in a sky variance of

Σsky ∼ 2.5 · 103 Jy. Because the noise variance Σthermal

and sky variance Σsky are baseline independent, the to-

tal data covariance matrix Σdata is a diagonal matrix.

We can therefore rewrite the FIM elements as;

Ii,j = 2Re

(∑
n

1

Σdata

∂M∗
n

∂gi

∂Mn

∂gj

)
, (8)

where we sum over the data index n. For the CRLB we

are only interested in the variance on a gain parameter

Σg, i.e. we only compute I−1
m,n for m = n, which reduces

to

Σg =
Σthermal + Σsky

2[S(ν)A(l)]2(N − 1)
, (9)

where N − 1 is the number of baselines formed by an

antenna in the array. We note that the variance scales

inversely with the number of antennas in the array, and

beam-weighted apparent flux density of the modelled

source squared. We will use this expression to compare

the uncertainty of redundant calibration with sky model

based calibration.

2.2. Model Incompleteness Bias

To derive an expression for the bias, i.e. the mean de-

viation from the true solutions introduced by the model

incompleteness, we follow Wijnholds et al. (2016) and

reformulate Equation 2 explicitly in terms of visibility

matrices and gain vectors;

min
g
‖C− gMgH‖. (10)

C and M are matrices containing the measured and

modelled visibilities, e.g. Cij is the measured visibility
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between antenna i and j, and the vector g contains the

complex antenna gains. We ignore the auto-correlations,

therefore, the diagonals of M and C are zero, and if we

ignore the noise we can write the measurements C in

terms of the modelled M and unmodelled U sky visi-

bilities. We can also write the gain vector g as a sum

of the true gains gt and a deviation introduced by the

calibration process ∆g.

C = gt(M + U)gHt

g = gt + ∆g
(11)

Furthermore we can use the Hadamard product �, i.e.

the element-wise product, to rewrite Equation 10 into

min
∆g
‖gtgHt �U− (gt∆gH + ∆ggHt )�M‖ (12)

where we have dropped all higher order terms of ∆g.

Wijnholds et al. (2016) derive an approximate closed

form solution for ∆g by rewriting Equation 12 into a

least squares form. We will take the solution as the

conclusion of this short review, and point the interested

reader to their work for the detailed derivation. The

closed form solution takes the following form[
∆g

∆g∗

]
≈

[
A B

C D

]−1 [
Egt

Fgt

]
. (13)

The block matrices are given by

A = M∗GtG
H
t M∗ � I B = M∗Gt �GtM

C = B∗ D = A∗

E = M∗GtG
H
t U∗ � I F = GH

t U∗ �MGH
t

, (14)

where Gt = diag(g), and I is the identity matrix. Here,

A and B encode the total modelled power summed over

baselines, and the power in an individual baseline, re-

spectively, whereas E and F are the equivalent expres-

sions for the unmodelled power. Intuitively, these ma-

trices describe the additional bias in the solutions from

correlations between the model and the residual signal,

and the overall power ratio of model to unmodelled sky.

Minimising both of these bias terms is desirable for good

sky-based calibration. We can use Equation 13 to de-

rive the mean gain offset 〈∆g〉 in the case that our sky

model consists of a single point source in the presence

of a more complicated sky.〈[
∆g

∆g∗

]〉
≈

[
A B

C D

]−1 [
〈E〉gt
〈F〉gt

]
, (15)

with
〈E〉 = M∗GtG

H
t 〈U〉∗ � I

〈F〉 = GH
t 〈U〉∗ �MGH

t

. (16)

𝑈

𝑅𝑒

𝐼𝑚 𝐼𝑚

𝑅𝑒
𝑀

𝑈

Figure 1. On the left : an illustration of the random walk
through the complex plane of a stochastic sky. On the right :
The orientation between the modelled visibility M and the
unmodelled visibility contribution U.

We can parametrize the mean unmodelled visibility con-

tribution of our stochastic sky 〈Vu〉 using the sky vis-

ibility variance Σsky. If we consider the Fourier trans-

form of each point source as a phasor in the complex

plane (Re, Im), we can consider a stochastic sky of point

sources as a random walk through this plane (see Fig-

ure 1). Each point source contributes a new complex

phasor to our total unmodelled sky phasor. The path

length of this random walk, i.e. the total amplitude of

our unmodelled visibility, is on average given by the root

mean square of distribution from which the phasors are

drawn. In our analysis we assume this to be a Gaussian

distribution, therefore, the unmodelled visibility ampli-

tude equates to the variance.

Now, we have yet to explore (are still left with) the ori-

entation of the unmodelled visibility component, since

every net orientation has equal probability. For our cal-

culations we choose the unmodelled visibility to have

an angle of 45◦, with respect to the model visibility as

a measure for some average offset introduced into our

visibility amplitude and phase angle. Even though the

true phase angle of the unmodelled visibility is uniformly

distributed, we find that this approximation yields com-

parable results to Monte Carlo simulations with a dis-

tribution of phases. We will use these results in Section

4 where we compare the results from our redundant cal-

ibration simulations with the theoretical performance of

sky model based calibration.

3. REDUNDANT BASELINE CALIBRATION

In this section we provide a short review of Wieringa

(1992) and Liu et al. (2010) to highlight the key features

of redundant calibration. Considering the simplest re-

dundant case, which is a 5 element linear array with

equal spacings ∆x between the antennas, we have four

unique baselines. Four baselines at the shortest spacing,

three at 2∆x, two at 3∆x and only one at 4∆x. Using

only the first two sets of baselines, we can create a de-

termined system of linear equations, solving for the 2

unknown visibilities for each set of redundant baselines
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and 5 unknown antenna gains. One way of doing this is

the logcal algorithm, in which we take the logarithm

of Equation 1, while noting that each quantity is a com-

plex number |g| exp[iφ] with amplitude |g| and phase φ.

This yields two equations,

ln|Cij | = ln|gi|+ ln|gj |+ ln|Vij |
arg|Cij | = φj − φi + arg|Vij |

(17)

where |gi| is the gain amplitude and φi is the gain phase

of antenna i, ln|Vij | is the true visibility amplitude and

arg|Vij | is the true visibility phase measured by a base-

line pair i and j. Because the amplitude and phase

decouple, we can rewrite this into two different matrix

equations that can be solved independently, see Equa-

tion 18.

cα = Aαxα, (18)

where the index α = {η, φ}, η for the amplitude equa-

tions and φ for the phase equations, c are the measured

correlation amplitude and phase vectors, xη contains the

gain amplitude ln|gi| and visibility amplitude ln|Vij |, xφ
contains the gain phase φj and visibility phase arg|Vij |.
A is the matrix that maps the gain and visibility into

the measured correlations. Equation 19 shows this ex-

plicitly for the phase,

arg|c12|
arg|c23|
arg|c34|
arg|c45|
arg|c13|
arg|c24|
arg|c35|


=



−1 1 0 0 0 1 0

0 −1 1 0 0 1 0

0 0 −1 1 0 1 0

0 0 0 −1 1 1 0

−1 0 1 0 0 0 1

0 −1 0 1 0 0 1

0 0 −1 0 1 0 1





φ1

φ2

φ3

φ4

φ5

arg|v1|
arg|v2|


(19)

arg|v1| is the phase of the visibility measured by the

∆x spacings and for the 2∆x spacings we have arg|v2|.
This system is, however, degenerate and needs to be

constrained by setting a reference antenna for which the

amplitude gain and phase gain are specified. In the spe-

cific case of phase calibration we need two additional

constraints because a tilt in the array is equivalent to a

rotation of the sky.

0 = ln|g1| 0 = φ1

0 = Σxi φi

0 = Σyi φi

, (20)

where xi and yi represent the ideal redundant position

coordinates of the antenna within the array. Now that

the degeneracies have been broken both system of equa-

tions can be solved using the general least square solu-

tion for a linear equation: x̂ = [ATA]−1AT c.

Another way of linearising Equation 1 is lincal,

in which we take a Taylor expansion around solution

guesses g0
i and v0

ij of the true solutions gi and vij . This

yields one single equation in which we solve for the gains

in their complex forms,

cij = g0
i g

0∗
j v

0
ij + g0∗

j v
0
ij∆gi + g0

i v
0
ij∆gj + g0

i g
0∗
j ∆vij

(21)

In lincal we solve for the differences between true so-

lutions and the guesses ∆gi and ∆vij . Allowing us to

iteratively correct our guesses. Similarly to logcal we

can rewrite this into a matrix equation containing the

real and imaginary components of the gains and visibil-

ities, for the details see the appendix of Li et al. (2018).

Current implementations of redundant calibration use

logcal to find an initial estimate and further refine the

solutions with lincal. (Zheng et al. 2014) In this work

we will do the same.

3.1. Simulating the Bias and Uncertainty

To estimate the bias and uncertainty of redundant cal-

ibration we simulate the calibration of the antennas in a

(nearly) redundant array. In our simulations we define a

group of redundant baselines when they lie within 1/6λ

of each other in the uv-plane. This is well within the

linear regime of sinusoidal centred at exp [2πul]. How-

ever, we will show that deviations from non-redundancy

within this threshold impact the calibration accuracy

and precision. We also assume a Gaussian beam, simi-

lar to our sky model derivation, and assume the beams

are identical for each antenna. This is not strictly true

for phased arrays (Wijnholds et al. 2010), however, it

suffices as a first-order approximation.

We generate a background of radio sources with a flux

distribution according to Equation 4, and uniformly dis-

tribute them over the sky. Finally, we add a source

with arbitrary flux and location, similar to the calibra-

tor source in Section 2. These sources are gridded onto

an (l,m)-grid, and Fourier transformed to generate vis-

ibilities using powerbox (Murray 2018), a tool written

to simulate EoR datasets and forward-model them to

power spectra. We interpolate the visibilities to pro-

duce the measurements for each baseline. Finally, we

assume Gaussian-distributed noise in the real and imag-

inary components with a variance according to Equation

6. These visibilities are then passed to our redundant

calibration module, which is a direct implementation of

the algorithm described in Section 3. The code is pub-

licly available (Joseph 2018).

3.2. The Sky Dependent Uncertainty

We first study the influence of the sky, and show how it

affects the uncertainty of the estimated gain solutions.
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Figure 2. From left to right: the logcal amplitude gain, the logcal +lincal amplitude gain, the logcal phase gain solutions,
and logcal +lincal phase gain solutions for a single antenna in an nearly redundant 5 element interferometer as a function
of strong source position l. The dark line represents the mean of the solutions, the shaded area indicates the 1-sigma solutions
variance. The amplitude solution variance inversely follows the shape of the beam, i.e. the variance increases when the beam
response decreases. The mean of the phase solutions fluctuates around φ = 0 and jumps along with the variance at so-called
phase wrapping points, which are further explained in the text.

We start out with a simple sky model of a statistical

background sky while moving a high flux density source

with respect to phase centre and trying to calibrate on

each realization of the sky. This allows us to study the

performance of redundant calibration in drift-scan mode

, and simultaneously study the performance of redun-

dant calibration in the MWA EoR fields, which depend-

ing on the field have strong in-beam sources. Figure

2 shows the dependence of the calibration solutions for

an ideal interferometer, i.e. perfect gains g = 1 and

perfect redundancy, as a function of source position in

terms of the direction cosine l, the native interferometry

sky coordinate. We show the results for a pure logcal-

calibration, similar to Wieringa (1992), and for a logcal

+ lincal-calibration.

The results show that overall the solution variance for

both the gain amplitude solutions behave better when

the strong source is near the centre of the beam, be-

cause the signal to noise ratio (S/N) is higher at the

pointing centre. We do note that our implementation of

the lincal algorithm seems slightly biased in the pres-

ence of noise, the mean of the solution is 1% below the

true value. We filtered out < 1% of the solution re-

alisations due to bad convergence, i.e. solutions with

unrealistically high gain amplitudes.

The gain phase solutions show a similar dependence

with some additional structure in the variance due to a

problem which is inherent to logcal: phase wrapping.

The logcal implementation can only determine phases

between −π ≤ φ ≤ π, in which the arctan is defined.

When a certain redundant set of baselines measures a

visibility phase of |φv| = π, due to the location of the

dominant source on the sky, the solutions become very

sensitive to noise. The visibility phase starts to “jump”

between −π and π causing large variances in the phase

calibration solutions. These phase wrapping points can

be determined by solving 2πul = πn for odd numbers of

n, i.e. solving for the source coordinate l when a given

baseline with length u measures a phase of π.

We can understand the effect of phase wrapping by

adding a noise vector nα to the measurement equation,

see equation 22.

cα = Aαxα + nα (22)

The phase noise nφ ∝ N/S (Liu et al. 2010), however,

when the measured visibility phase approaches π, this

noise vector diverges |nφ| → 2π. Because the noise of a

single baseline is mixed into all solutions when estimat-

ing x̂ we get large offsets in the calibration solutions:

x̂ = xα + [ATA]−1ATnα. (23)

Looking at the logcal + lincal solutions in Figure

2 we see similar behaviour in the phase solutions and

amplitude solutions. We also note that our implemen-

tation of the algorithm seems to be very sensitive to

noise. This results in large variations in the amplitude

solutions when the dominant source moves away from

phase center. Figure 2 shows the mean and the vari-

ance of the solutions, even though the solutions do not

strictly follow a Gaussian distribution. Figure 3 shows

the distribution of logcal solutions for antenna 2 at

the first phase wrapping point. The distribution has 7

distinct peaks, each peak represents a combination of

phase wrapping baselines. The first phase wrap occurs

in the set of three long redundant baselines, and there-

fore there are at maximum Σnk=1n!/(k!(n−k)!) different

combinations and solutions peaks possible. The actual

spectrum depends on the array geometry, which is en-

capsulated in the matrix A. These solutions are the

starting point for the lincal algorithm, and our imple-
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mentation of it is not able to recover the true solutions

when given a bad starting point.
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Figure 3. The distribution of gain phase solutions for an-
tenna 2 at the first phase wrapping point l ∼ 0.1. The dis-
crete set of solutions peaks is caused by phase wrapping in
the set of three long baselines. Each peak represents a com-
bination of phase wrapping baselines as marked above the
peak

We attempted to circumvent the phase wrapping of

a specific baseline in a single channel by extending

the logcal algorithm to incorporate the measurements

of neighbouring frequency channels while assuming the

gain solutions remain the same. However, due to the

same mixing that takes place in the single frequency

channel implementation, phase wrapping will still re-

main a problem unless a clever selection of frequencies

is used to circumvent phase wrapping. We discuss this

in the Appendix. We also note that current implemen-

tation do apply a pre-calibration step to unwrap the

visibility phases by averaging over baselines within a

redundant group (Zheng et al. 2014), or by using the

products of visibilities to construct a system equations

to solve for the phases (Li et al. 2018).

3.3. The Position Offset Bias

In the previous section we described the results for an

ideal radio interferometer. However, in reality all anten-

nas will have slight position offsets from their perfectly

redundant positions. To understand the impact of posi-

tions offset we simulate redundant calibration under the

same conditions as before, but now we offsetting one an-

tenna in the x-direction by δx = 20 cm. The results are

shown in Figure 4.

We can clearly see that both the amplitude and phase

solutions are affected by the position offset. We can un-

derstand the oscillatory behaviour of the amplitude so-

lutions by returning to the complex plane. Imagine the

complex visibility of the main calibrator as measured

by a baseline as a phasor in this plane, we can think of

the total sum of background sources as a similar pha-

sor. Each redundant baseline should measure the same

amplitude of the sum of these phasors. However, due to

the non-redundancy introduced by position offsets the

non-redundant pairs measure a different amplitude, this

difference propagates through to the solutions. As the

primary source moves across the sky its phasor will ro-

tate in the complex plane, constructively and destruc-

tively interfering with the background visibility creating

this oscillatory behaviour. These oscillations are damp-

ened as the primary source becomes attenuated as it

moves outside of the primary beam.The behaviour of

the mean phase solutions can be explained in a similar

fashion, using the phase of the phasors rather than the

amplitude.

For low-N arrays similar to this 5 element toy model

this error propagates to all antennas solutions, due to

the coupling of all gain solutions to the visibilities. How-

ever, when increasing the number of antennas in the ar-

ray the coupling becomes weaker increases as the num-

ber of measurements increases.

cα = Aαxα + nα + bα (24)

Inverting this equation using the standard least square

solution, and not taking into account this extra term,

leaves us with an additional residual. We can calculate

these residuals for different antenna offsets. Figure 5

shows the magnitude of the offset residuals b̂ in the

phases of the estimated gain and visibilities when off-

setting different antennas by the same amount. These

results show that offsetting the antenna with the highest

baseline participation does not propagate to all antenna

solutions and leaves the visibilities unaffected. Offset-

ting the reference antenna, in this case antenna 1, has

the strongest impact on the solutions of all other anten-

nas. This implies that the choice of reference antenna

is not as arbitrary as one might think.

4. COMPARING SKY AND REDUNDANCY BASED

CALIBRATION

Having varied several parameters within our redun-

dant calibration simulations we can now move forward

and apply this formalism to the MWA ”hexes”. The

hexes contain 72 antenna tiles arranged in 2 hexagons,

see Figure 6. The shortest baseline, defining the hexago-

nal lattice, has a length of 14 metres. The hexagons are

also placed to be redundant with each other, i.e. they

have the same orientation. This provides extra sensitiv-
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Figure 5. The magnitude of the offset residual b̂ for an off-
set in a given antenna. The first column shows the residual
when offsetting the first antenna, i.e. the reference antenna,
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etc. We see that offsetting the 3rd antenna, e.g. the middle
antenna, impacts only its calibration solution. Its solutions
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ity on scales relevant for the EoR experiment, and adds

redundancy for calibration purposes. Due to a lack of

redundant baselines connecting one hex to the reference

antenna in the other hex, we either need to invoke an-

other degeneracy parameter to encapsulate a phase off-

set between the two or calibrate them separately. Li

et al. (2018) calibrate the hexes simultaneously, how-

ever, for simplicity and speed we calibrate a single hex

in our simulations. A single hex forms 630 baselines,

of which 601 are redundant, organized in 71 redundant

groups.1

1 Theoretically we can also include non-redundant antennas
in the calibration, as long as the number of unknowns is lower
than the number of measurements. For each redundant hex in
the MWA we can add 6 non-redundant tiles before the system
becomes unsolvable.

Figure 6 also shows the non-redundancy of each antenna

within the hexes, the antennas are placed with an ac-

curacy on the order of centimetres. This is an order of

magnitude below the redundant calibration threshold of

1/6λ at 150 MHz, i.e. ∼30 cm.

In our final set of redundant calibration simulations we

will offset each tile in a single hex according to Gaussian

distributions with mean µx = 0, and σx = 10−4−10 cm.

Now we calibrate while moving a 100 Jy source across

the sky, and run a separate set of simulations where we

fix the location of the source at 3◦ off-zenith while chang-

ing its flux density instead. Figure 7 shows the bias and

uncertainty we derive from these simulations. To com-

pute these from the distribution of solutions we obtain

we calculate the median offset from the true gain solu-

tions for the bias, i.e. g = 1 and we take the standard

deviation for the uncertainty. All results are averaged

over all antennas.
To compare with traditional sky-based calibration we

use the bias and uncertainty derived in Section 2. The

contour lines in Figure 7 are the ratios between either

the bias or uncertainty of redundant calibration and sky

model calibration. To make the comparison slightly

easier we take two cuts through the plots in Figure 7

at an antenna position precision of σx = 0.02 m and

σx = 0.10 m, these cuts are shown in Figure 8. From

Figures 7 and 8 we can conclude the following state-

ments. The amplitude bias depends strongly on the

flux density of the primary source and its location on

the sky. Redundancy-based calibration has a lower am-

plitude bias when the sky is dominated by a single point

source, and it quickly reaches the accuracy of our imple-

mentation of the algorithm as the source moves out of

the field of view.
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Figure 6. left : The MWA antenna lay-out, with MWA hex antennas in blue and the random antennas in black. Right : a
zoom-in plot on the MWA hex tiles. The colour of each tile indicates its offset from its redundant position. We see that the
position deviations from redundancy do not exceed 3 cm.

The amplitude uncertainties of redundancy-based and

sky-based calibration are comparable. For both redun-

dant and sky model based calibration, they decrease

comparably as a function of primary source flux density.

However, as a function of source location redundant cal-

ibration quickly reaches the noise floor when the source

is beyond the FHWM of the primary beam.

Interestingly, the phase bias increases with primary

source flux density and distance of the bright source

to phase centre. The bias reaches a maximum when

the source is at the FWHM of the primary beam, if

the source moves beyond this the bias decreases again.

When the sky is dominated by a single source that is off-

centre, the bias of redundant calibration becomes com-

parable or larger to that of sky-based calibration. The

flux at which the two become comparable is dependent

on the magnitude of the position offsets in the array.

The phase uncertainty depends strongly on the source

flux density and its location on the sky. When the

primary source brightness becomes comparable to the

background sky the uncertainties of redundant become

larger than that of sky model based calibration. Also

note that the behaviour of the uncertainty as a func-

tion of source elevation changes for different positional

precisions. When the primary source is between phase

centre and the FWHM of the primary the uncertain-

ties of redundant calibration are larger for arrays with

large positional offsets. Particularly when the brightest

source is at the FWHM of the primary, the uncertainties

become larger than that of sky model based calibration.

This increase in uncertainty can be explained by phase

wrapping as discussed earlier. As the sources moves the

measured visibilities phases start wrapping around 2π

creating a spectrum of solutions that widens the distri-

bution.

5. DISCUSSION

The most notable results from our simulations are the

results for the phase bias. Redundant calibration was

proposed as an alternative to a sky model based ap-

proach because it is agnostic of the sky and therefore it

does not suffer from the systematics introduced by an

incomplete sky model. However, this work shows that

systematics arise in a different way, because we impose

the condition that our telescope is perfectly redundant.

This manifests itself in systematic phase offsets in our

calibration solutions because redundant calibration ab-

sorbs antenna position offsets into the calibration solu-

tions. These phase offsets become more prominent when

there is a high flux density source away from the point-

ing center.

Barry et al. (2016); Ewall-Wice et al. (2016); Trott &

Wayth (2017) show that calibration on incomplete sky

models causes contamination in the EoR power spec-

trum. Similarly redundant calibration can introduce

contamination. The relative position offset changes as a

function of wavelength. Therefore, the measured phase

offset will therefore also vary as a function of frequency
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Figure 7. From left to right : the bias and uncertainty of the amplitude solutions |g|, and the bias and uncertainty of the
phase solutions |φ| of redundant calibration on an MWA hex-like array. Top row : we vary the position deviations σx and source
peak flux Speak of a source located 87◦ above the horizon. Bottom row we vary the position deviations σx and source elevation
of a 100 Jy source. All results are averaged over all antennas in the hex. The contour lines are the ratios between the bias
and uncertainty of redundancy based and sky model based calibration, e.g. an uncertainty contour line of 2.0 indicates the
uncertainty is twice as large for redundant calibration as compared to sky model based calibration.

that can introduce a contamination to the EoR power

spectrum.

We demonstrated the influence of the sky flux dis-

tribution on the performance of redundant calibration.

Figure 9 shows a map of the radio sky at 408 MHz

(Haslam et al. 1982) with the MWA EoR target fields.

We can clearly see that these fields are not devoid of

high flux density sources. EoR field 1 contains For-

nax A and Pictor A, and EoR field 2 contains Hydra

A amongst others. However, the results of the redun-

dant calibration simulations for a single MWA hex show

that position offsets at the position precision levels of the

MWA are not a large source of bias and uncertainty for

the phase solutions. Redundant calibration even outper-

forms sky based calibration on a single source. However,

if a redundant array, such as HERA, has positional off-

sets in the order of 10 cm, careful consideration has to

made on when to do redundant calibration. As demon-

strated the phase bias can go up to an order of mag-

nitude higher than that of the MWA-like array under

these conditions. Fortunately for HERA the primary

beam is narrower than that of the MWA, the latter suf-

fers from significant side lobes, this and its large number

of redundant baselines makes HERA somewhat robust

against positional offsets (Liu et al. 2010). However, the

exact trade off is still unclear.

We do note we have simplified the sky model based

approach for analytic tractability. In reality a sky model

will contain more than 1 calibration source, therefore

the bias and uncertainty for a sky based approach will

certainly be lower than presented here. But as a general

lesson we can conclude that for redundant calibration it

is preferable to have strong sources like those present in

the EoR1 and EoR2 fields either at the pointing center

or at the edge of the beam. EoR field 0 would therefore

be an excellent field for redundant calibration.

In this work we have not considered the differences in

the antenna response of different antenna tiles. Work

by Line et al. (2018)) shows that the tile beam differ-

ences are on the order of 10%. This poses most likely

the largest hurdle for redundant calibration. Studying

the effect of these beam differences and how it impacts

the redundancy of the MWA hexes and other radio tele-

scopes is therefore crucial to understand the limitations

of redundant calibration in realistic telescopes.

This is also where the true strength of sky based cal-

ibration methods comes into play. Because redundant

calibration relies on the assumption that each antenna

observes the same radio sky, it also is unable to solve for
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Figure 8. From left to right : the bias and uncertainty of the amplitude solutions |g|, and the bias and uncertainty of the phase
solutions |φ| of redundant calibration on an hex array with a position precision σx ∼ 2 cm . Top row : we vary the position
deviations σx and source peak flux Speak of a source located 87◦ above the horizon. Bottom row we vary the position deviations
σx and source elevation of a 100 Jy source. All results are averaged over all antennas in the hex. The blue lines are the bias and
uncertainties for an array with positional offsets σx = 0.02 m, in orange the bias and uncertainties for an array with positional
offsets σx = 0.1 m, and in green the theoretical estimates for the bias and uncertainty of sky based calibration.

direction dependent effects introduced by different an-

tenna responses and ionospheric distortions. The field

of direction dependent calibration faced quite a number

of challenges, e.g. diffuse emission detected by shorter

baselines, solving for enough different directions to cap-

ture variations in the ionosphere or the primary beam

responses, optimizing the calibration time scale to re-

duce computational load, and the observed curvature of

the sky (w-correction) due to the wide FoVs of these new

arrays. A large effort has gone into solving these issues,

e.g. SAGEcal resolved the computational load of solving

for a large number of directions by using the SAGE al-

gorithm rather than traditional least squares optimiza-

tion (Yatawatta et al. 2009), facet calibration divides

the sky in facets to reduce the number of parameters to

solve for simultaneously (van Weeren et al. 2016), RTS

employs the MWA’s uv-coverage to perform snapshot

imaging tackling the w-term problem (Mitchell et al.

2008), with the diffuse emission of the Milky Way re-

maining as a major challenge. We have only mentioned

a few implementations available as each science case has

its own goal accompanied with its own implementation

of sky based calibration. But the result of this large

effort are impressive high-fidelity images, required to ei-

ther study foreground sources or to subtract them. The

latter being the goal for the EoR experiment. Solving for

these higher-order calibration features is, however, out

of reach for redundant calibration. Furthermore, redun-

dant calibration does not truly escape the need for a sky

model, because the degenerate parameters in Equation

20 need to be constrained by external information, i.e

sky-based calibration. Li et al. (2018) directly compare

redundant calibration using OMNICAL and sky model cal-

ibration using FHD and find that they perform similarly

on data from real MWA EoR observations, that include

the position offsets and tile beam differences. Li et al.

(2018) also investigate the complimentary nature of the

two different calibration techniques and find that com-

bining the two methods improves the sensitivity to the

EoR power spectrum, demonstrating that “hybrid ap-

proaches” are the best way forward. However, this final

step can also introduce errors with spectral structure

due to an incomplete sky model. Redundant calibra-

tion is, at best, a way to add another constraint for a

first order calibration step. Higher order effects require

a pure sky based calibration that include direction de-

pendent effects. Nevertheless, redundant calibration can

still add useful information if carefully applied. Sievers

(2017) propose a calibration algorithm that sits in the

middle ground between agnostic redundant calibration
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and pure sky model based calibration maximally using

the information in the data of a generic radio telescopes.

This methodology seems to be a promising avenue for

the MWA and the future SKA.

6. CONCLUSION AND FUTURE WORK

In this work we use a rudimentary implementation

of the logcal and lincal algorithm to understand

the fundamental limitations of redundant calibration on

nearly redundant telescopes. We simulate redundant

calibration under different radio sky conditions and find

that the phase solutions are systematically impacted by

position offsets in a redundant telescope. Based on our

simulations we conclude the following key statement: re-

dundant calibration performs best when strong radio

sources are either at field center or at the edge of the

primary beam. We also compare redundant calibration

to sky model based calibration and find that for the

MWA redundant calibration of the redundant hexes per-

forms better than a sky based approach. However, we

require further work to understand the impact of non-

redundancies introduced by differences in tile beam re-

sponses that may be of larger concern to the MWA EoR

experiment. Moreover we also assumed that the sky

model consists of only a single source. More work would

be required to understand the completeness threshold

above which a sky based approach truly outperforms

redundant calibration on a nearly redundant array. Fi-

nally, to optimally calibrate our radio telescopes we re-

quire a hybrid approach that bridges the gap between

redundancy based and sky based calibration, and we see

this as the way forward in the calibration of the current

and next generation of radio telescopes.
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APPENDIX

A. MULTI FREQUENCY IMPLEMENTATION

Redundant calibration is typically presented on a channel-by-channel basis in contrast with standard model based

calibration schemes that operate over a range of frequencies. The multi frequency approach uses all of the information

available in other frequency channels. In this section we will discuss the multi-frequency implementation of logcal,

allowing it to benefit from the multi-frequency information available in radio interferometry data. Another motivation

is that a multi-frequency implementation has the prospect of resolving the phase wrapping problem. Earlier, we

described that phase wrapping occurs when a specific baseline u observes a source on a specific coordinate l = 1/2u,

the phase becomes ill-defined at this point. That same baseline should measure a defined phase when observing that

same source at a different frequency. This property has motivated us to extend the classical redundant calibration

framework by solving for the gain and visibilities simultaneously at different frequency channels. We will assume that

the gain is the same at those frequencies, as a first order approximation, but the visibilities are different.

We extend Equation 18, by stacking the measurement vectors at different frequencies and adding the visibilities from

the additional frequency channels. We then construct the matrix accordingly by realizing that A can be split into two

components:

Ag =



−0 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1

−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 0


Av =



1 0

1 0

1 0

1 0

0 1

0 1

0 1


, (A1)
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Figure 9. A view of the radio sky at 408 MHz (Haslam et al. 1982), the plate carrée projection was created by Skyview, and
the location of the three MWA EoR target fields: EoR0 centered at R.A. 0h and dec. −27◦, EoR1 centred at R.A. 4h and dec.
−30◦ and EoR2 centred R.A. 10h and dec. −10◦. The circular areas represent the FHWM of the MWA beam at 150 MHz.
EoR1 and EoR2 clearly have some strong radio sources away from the point center, e.g. Fornax A and Pictor A in EoR1 and
Hydra A in EoR2.

where Ag maps the gains onto the measurements and Av maps the visibilities onto the measurements. We can

construct a multi frequency matrix combining Ag and Av, e.g. for a two-channel solutions estimation.

A =

(
Ag Av 0

Ag 0 Av

)
(A2)

Using this extended version of redundant calibration we return to the 5-element interferometer, while varying the

number of channels involved to calibrate our antennas. Figure 10 shows the results when we attempt to calibrate 5

antennas using 2 frequency channels spaced around the actual frequency channel we are interested in. We observe a

significant change in the structure of the variance of the phase solutions. The peaks around the phase wrapping points

have severely decreased in width. However, it has not resolved the the phase wrapping point, which was the aim of

this multi frequency implementation.

To understand why a multi frequency extension of redundant calibration does not solve the problems immediately

we have to return to Equation 18. The matrix [ATA]−1AT mixes the phase wrapping and the non-phase wrapping

channels into the calibration solutions. Although adding extra frequency channels does adds another set of constraints

to the calibration solutions, the solutions do no escape the impact of the phase wrapping channel. Adding more

channels therefore would decrease variance, but not resolve a phase wrapping point. To really resolve phase wrapping

in redundant calibration we require the inclusion of knowledge of the sky.
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