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Exploration of wheat and pathogen 
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Abstract 

Objectives:  The fungus Pyrenophora tritici-repentis is the causal agent of tan spot, a major disease of wheat (Triticum 
aestivum). Here, we used RNA sequencing to generate transcriptional datasets for both the host and pathogen during 
infection and during in vitro pathogen growth stages.

Data description:  To capture gene expression during wheat infection with the P. tritici-repentis isolate M4, RNA data-
sets were generated for wheat inoculated with P. tritici-repentis (infection) and a mock (control) at 3 and 4 days post-
infection, when scorable leaf disease symptoms manifest. The P. tritici-repentis isolate M4 was also RNA sequenced to 
capture gene expression in vitro at two different growth stages: 7-day old vegetative mycelia and 9-day old sporulat-
ing mycelia, to coincide with a latent growth stage and early sporulation respectively. In total, 6 RNA datasets are avail-
able to aid in the validation of predicted genes of P. tritici-repentis and wheat. The datasets generated offer an insight 
into the transcriptomic profile of the host–pathogen interaction and can be used to investigate the expression of a 
subset of transcripts or targeted genes prior to designing cost-intensive RNA sequencing experiments, that would be 
best further explored with replication and a time series analysis.
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Objective
The necrotrophic fungal pathogen Pyrenophora tritici-
repentis causes tan spot disease of wheat (Triticum aesti-
vum). Tan spot is an economically significant leaf disease, 
which has a major impact on the wheat industry world-
wide. Here, we present exploratory RNA sequence data 
sets with the following aims: (1) to investigate in planta 
gene expression of both the host and pathogen during 
wheat tan spot infection by P. tritici-repentis, (2) to inves-
tigate in  vitro P. tritici-repentis gene expression during 
vegetative and sporulating growth stages, and (3) to pro-
vide RNA sequencing for bioinformatics support of gene 
predictions in P. tritici-repentis [1] and wheat.

Data description
In total, six RNA libraries were Illumina HiSeq sequenced 
to yield 24 and 25 million read pairs respectively for 3 and 
4  days post-infection with P. tritici-repentis, 28 and 23 

million read pairs respectively for 3 and 4 days post-inoc-
ulation of control wheat, and 23 and 26 million read pairs 
for 7-day old vegetative fungal mycelia and 9-day old 
sporulating mycelia respectively (Data file 1) (Table  1). 
The time points were chosen to maximise the appearance 
of early disease symptoms in planta and capture a latent 
growth and sporulating growth phase in vitro.

To determine host gene expression during P. tritici-
repentis infection, datasets from infected and non-
infected leaf samples were individually aligned to the 
Chinese Spring wheat genome (IWGS V1.0) [2]. Over 
half of the reads for each dataset mapped to the wheat 
genome (Data file 1). A total of 33,449 genes (24%) of 
the 137,056 high-confidence wheat reference genes were 
detected in both the control and infected groups (Data 
file 2).

For P. tritici-repentis expression during host infection, 
datasets from 3 and 4 days post-infection were also indi-
vidually aligned to the P. tritici-repentis genome of isolate 
M4 [1]. Only 0.4–0.6% of the sample reads mapped to the 
genome (Data file 1). A total of 9101 and 9824 transcripts 
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were detected at 3 and 4 days post-infection respectively 
(Data file 3).

To profile P. tritici-repentis genes expressed at differ-
ent mycelia growth stages, the in  vitro vegetative and 
sporulating datasets were individually aligned to the 
M4 genome [1] with approximately half of the reads in 
concordant alignment (Data file 1). A total of 10,933 M4 
transcripts were expressed in  vitro and of these 8548 
transcripts were found expressed in both vegetative and 
sporulating mycelia (Data file 4).

Methodology
Plant and fungal material
The fully extended leaves of the 2-week-old susceptible 
wheat (Triticum aestivum) variety Machete were inoc-
ulated with the P. tritici-repentis race 1 M4 isolate or a 
mock control solution [3]. Infected and control leaves 
were collected at 3 and 4  days post-inoculation (DPI). 
In vitro M4 samples of vegetative mycelia and sporulat-
ing mycelia grown on V8PDA agar [3] were harvested 
at 7 days and 9 days respectively. All samples were snap 
frozen in liquid nitrogen immediately after harvest, and 
stored at − 80 °C prior to RNA extraction.

RNA extraction and sequencing
RNA was extracted using TRIzol Reagent (Thermo Fisher 
Scientific, USA), further purified using Zymo-Spin col-
umns (Zymo Research, USA) as per the manufacturer’s 
guidelines prior to LiCl precipitation. RNA samples were 
pooled from 3 biological replicates. Isolated RNA was 
ribo-depleted and sequenced as un-stranded, 100  bp 
pair-end (PE) reads on an Illumina HiSeq2000 machine. 
A total of 30.6  Gb of raw sequence of 6 libraries was 
obtained. Further method details can be found in Supple-
mentary file 1.

Sequence analysis
Reads were quality checked with FASTQC [4] and trimmed 
using TrimmomaticPE V0.32 [5]. The trimmed reads were 
aligned to the P. tritici-repentis M4 reference genome 
(NCBI GenBank accession NQIK00000000.1) [1] and 
wheat Chinese Spring genome IWGS V1.0 [2] using Bow-
tie2/TopHat2 version 2.0.9 [6, 7]. Expression analysis was 
conducted with the Cufflinks package guided by the refer-
ence genes for M4 and high confidence genes in wheat [8].

Table 1  Overview of data files/data sets

Label Name data set File types (file extension) Data repository and identifier

Supplementary file 1 Methodology description Word document (.docx) https​://doi.org/10.6084/m9.figsh​are.70198​43

Data file 1 Table of RNA sample collection and statistics Spreadsheet (.xlsx) https​://doi.org/10.6084/m9.figsh​are.70198​43

Data file 2 Wheat gene expression 3 and 4 days post-
infection

Spreadsheet (.xlsx) https​://doi.org/10.6084/m9.figsh​are.70198​43

Data file 3 Pyrenophora tritici-repentis gene expression in 
planta at days 3 and 4 days post-infection

Spreadsheet (.xlsx) https​://doi.org/10.6084/m9.figsh​are.70198​43

Data file 4 Pyrenophora tritici-repentis (isolate M4) gene 
expression in vitro of vegetative and sporulat-
ing mycelia

Spreadsheet (.xlsx) https​://doi.org/10.6084/m9.figsh​are.70198​43

Data set 5 Sample C1, 3 days post-control inoculation in 
planta

Fastq (fastq.gz) European Nucleotide Archive (ENA) Run 
accession ERR2822756 (https​://www.ebi.
ac.uk/ena/data/view/ERR28​22756​)

Data set 6 Sample C2, 4 days post-control inoculation in 
planta

Fastq (fastq.gz) European Nucleotide Archive (ENA) Run 
accession ERR2822757 (https​://www.ebi.
ac.uk/ena/data/view/ERR28​22757​)

Data set 7 Sample M1, 7-day in vitro vegetative mycelia Fastq (fastq.gz) European Nucleotide Archive (ENA) Run 
accession ERR2822758 (https​://www.ebi.
ac.uk/ena/data/view/ERR28​22758​)

Data set 8 Sample M2, 9-day in vitro sporulating mycelia Fastq (fastq.gz) European Nucleotide Archive (ENA) Run 
accession ERR2822759 (https​://www.ebi.
ac.uk/ena/data/view/ERR28​22759​)

Data set 9 Sample P1, 3 DPI P. tritici-repentis infection in 
planta

Fastq (fastq.gz) European Nucleotide Archive (ENA) Run 
accession ERR2822760 (https​://www.ebi.
ac.uk/ena/data/view/ERR28​22760​)

Data set 10 Sample P2, 4 DPI P. tritici-repentis infection in 
planta

Fastq (fastq.gz) European Nucleotide Archive (ENA) Run 
accession ERR2822761 (https​://www.ebi.
ac.uk/ena/data/view/ERR28​22761​)
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Limitations
The data sets generated were pooled from three biologi-
cal RNA samples and therefore have no replicates for dif-
ferential expression studies. The downloadable sequence 
data is stored raw and requires quality filtering before 
use.

Abbreviations
DPI: days post-inoculation; RNA-seq: RNA sequencing; PE: paired-end.
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