
 International Journal of 

Molecular Sciences

Review

Pharmacological Utilization of Bergamottin, Derived
from Grapefruits, in Cancer Prevention and Therapy

Jeong-Hyeon Ko 1,2, Frank Arfuso 3, Gautam Sethi 4,* and Kwang Seok Ahn 1,2,*
1 Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu,

Seoul 02447, Korea; gokjh1647@gmail.com
2 Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro,

Dongdaemun-gu, Seoul 02447, Korea
3 Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health

Innovation Research Institute, Curtin University, Perth 6009, Australia; frank.arfuso@curtin.edu.au
4 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore,

Singapore 117600, Singapore
* Correspondence: phcgs@nus.edu.sg (G.S.); ksahn@khu.ac.kr (K.S.A.); Tel.: +65-6516-3267 (G.S.);

+82-2-961-2316 (K.S.A.)

Received: 21 November 2018; Accepted: 12 December 2018; Published: 14 December 2018 ����������
�������

Abstract: Cancer still remains one of the leading causes of death worldwide. In spite of significant
advances in treatment options and the advent of novel targeted therapies, there still remains an
unmet need for the identification of novel pharmacological agents for cancer therapy. This has led to
several studies evaluating the possible application of natural agents found in vegetables, fruits, or
plant-derived products that may be useful for cancer treatment. Bergamottin is a furanocoumarin
derived from grapefruits and is also a well-known cytochrome P450 inhibitor. Recent studies have
demonstrated potent anti-oxidative, anti-inflammatory, and anti-cancer properties of grapefruit
furanocoumarin both in vitro and in vivo. The present review focuses on the potential anti-neoplastic
effects of bergamottin in different tumor models and briefly describes the molecular targets affected
by this agent.
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1. Introduction

There has been considerable interest in the use of dietary compounds for various cancer prevention
and therapy approaches [1–16]. Furanocoumarins are natural plant constituents present in many
types of plants belonging to the Rutaceae and Umbelliferae families. Generally, furanocoumarins
are primarily known to act as plants’ defense mechanism against predators and are regarded as
natural pesticides [17,18]. Bergamottin is a major furanocoumarin and a bioactive component of
grapefruits (Citrus paradisi) and other citrus fruits [19]. It was originally found in the oil of bergamot
(Citrus bergamia), from which its name has been derived [20]. It acts as an inhibitor of some isoforms of
the cytochrome P450 (CYP) enzyme, particularly CYP3A4 [21,22]. Bergamottin is also able to suppress
the activities of CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1, and 3A4 in human liver microsomes [21]. For this
reason, it has been recommended that patients should preferably avoid the consumption of grapefruit
or grapefruit juice when they are taking prescribed medications such as statins, antihistamines,
and several other orally administered drugs. The consumption of a single 6-oz glass of grapefruit
juice can cause the maximal effect with enhanced bioavailability observed up to 24 h after the
administration [23]. These drug interactions are often referred to as the “grapefruit effect” and
can lead to increased concentrations of the affected drugs in the bloodstream, which increases the
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risk of potentially serious side effects from the drugs [20,24–27]. Bergamottin and the chemically
related compound 6′,7′-dihydroxybergamottin are found to be responsible for this effect [20]. However,
recent studies have also explored the potential benefits of CYP enzyme inhibition [28], and thus
bergamottin may also be developed as an agent that can be targeted to increase the oral bioavailability
of other pharmacological drugs [29]. Many studies have also demonstrated that grapefruit juice
can augment the bioavailability of drugs that are CYP3A4 substrates [20,30], whereas no significant
alterations were found for some other drugs [31,32]. It can exhibit a variety of interactions with drugs,
leading to a reduction in therapeutic efficacy and to an augmentation of adverse effects at the same
time. A variety of mechanisms, including the involvement of P-glycoprotein present in intestinal
epithelium, have been proposed to explain the possible interactions of grapefruit juice with different
drugs [33]. Moreover, at high grapefruit juice concentrations, P-glycoprotein-regulated vinblastine
efflux was inhibited [34], whereas at low concentrations, the pumping of P-glycoprotein substrates was
enhanced [35,36]. However, among various reported interactions of drugs with grapefruit juice, only a
few are clinically relevant, whereas others studies predominantly involve the use of large quantities
of the juice, which can be easily avoided in real-life situations to prevent the harmful effects of such
interactions [37].

Additionally, there are few reports about the possible interactions of anti-cancer agents with
grapefruit juice [38], and these are briefly summarized in Table 1. For example, a study analyzing the
interaction of grapefruit juice with etoposide in six patients reported an unexpected decrease of 26.2%
in the area under the concentration–time curve (AUC) after oral treatment [39]. Another article, which
evaluated the effect of the administration of grapefruit juice with nilotinib in 21 healthy individuals,
reported a 60% increase in the maximum serum concentrations (Cmax) and a 29% increase in the AUC
without a significant effect on the half-life. Moreover, no adverse effects were noted in this study [40].
In another study, the interaction of grapefruit juice with sunitinib was analyzed in eight patients,
and its co-administration increased the bioavailability of sunitinib by 11% without any increase in
toxicity [41]. Interestingly, Cohen and coworkers also analyzed the toxicity and pharmacokinetic profile
of intermittently administered sirolimus in patients with advanced malignancies when sirolimus was
co-administered with two different CYP3A inhibitors, including grapefruit juice. They found that the
grapefruit juice increased the sirolimus AUC by approximately 350%, although different grapefruit
formulations may differ in their interaction profile with prescription drugs depending upon the
content of various furanocoumarins present in them [42]. On the contrary, Schubert et al. reported
that grapefruit juice can increase the 48-hour AUC of estradiol (E2) by approximately 40% after a
single oral dose of E2 in ovariectomized women [43]. Weber et al. elaborated that grapefruit juice
increased the Cmax of ethinylestradiol by 38% and the 24-hour AUC by 28% [44]. Furthermore, Monroe
and coworkers analyzed in a multiethnic cohort study of 46,080 postmenopausal women with 1657
cases of breast cancer whether grapefruit consumption was associated with an increased risk of breast
cancer. They found that the risk was 30% higher in women who consumed the equivalent of one
quarter of a fresh grapefruit or more per day, although the potential effects of diverse interactions
between long-term grapefruit consumption and serum hormone concentrations still remain unclear [45].
Overall, additional studies are needed to investigate the potential interactions of bergamottin with
anti-cancer agents.
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Table 1. Reported interactions between grapefruit juice and selected anti-neoplastic drugs.

Antineoplastic Drug Metabolism Interaction Ref.

Etoposide Metabolized by CYP3A4 Decrease etoposide exposure (area under the
concentration time curve (AUC) 26.2% ↓) [39]

Nilotinib Metabolized by CYP3A4
Increase nilotinib exposure (Cmax 60% ↑,
AUC 29% ↑)
No increase in adverse events

[40]

Sunitinib Metabolized by CYP3A4
Increase sunitinib exposure (Cmax 10.9% ↑,
AUC 11% ↑)
No increase in toxicity

[41]

Overall, the furanocoumarins can exhibit several pharmacological properties, including those of
antioxidant, anti-inflammatory, and anti-cancer activities [19]. Recently, intensive interest has focused
on the chemopreventive and anti-cancer potential of bergamottin. Bergamottin has demonstrated
significant anti-cancer activity in skin, myeloma, leukemia, lung cancer, and other cancer cells.
The present review illustrates the role of bergamottin in chemoprevention and its potential for cancer
prevention and therapy.

2. Chemical Properties of Bergamottin

Furanocoumarins consists of a furan ring fused with coumarin and subdivided into the linear
or psoralen type and the angular or angelicin type. In the linear furanocoumarins, the furan ring is
connected to the benzopyrone in the carbon 6 and 7 positions, whereas the angular furanocoumarins
have it fused in the carbon 7 and 8 positions (Figure 1). Its elementary composition is C21H22O4 and
its molecular weight is 338.4 g/mol.
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Figure 1. The chemical structure of bergamottin.

Umbelliferone is often regarded as the parent of the more complex furanocoumarins, both
structurally and biogenetically. The biosynthesis of bergamottin starts with the formation of
demethylsuberosin, which is formed via the alkylation of umbelliferone [46]. Demethylsuberosin
is transformed into marmesin by the CYP monooxygenase catalyst in the presence of NADPH and
oxygen [47]. This process is then repeated to remove the hydroxyisopropyl substituent from marmesin
to form psoralen and then to add a hydroxyl group at the 5-position to form bergaptol [48]. Bergaptol
is next methylated with S-adenosyl methionine to form bergapten. The final step in this biosynthesis is
the attachment of a geranyl pyrophosphate to the newly methylated bergapten to generate bergamottin
(Figure 2).
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3. Metabolism of Bergamottin

There are various prior reports that have highlighted the metabolic profile of furocoumarins [49].
In a pharmacokinetic study in humans, the Cmax values after the administration of 6 and 12 mg
bergamottin were 2.1 and 5.9 ng/mL, respectively, and the times of peak concentrations (Tmax) were
0.8 and 1.1 h, respectively. Interestingly, 6′,7′-dihydroxybergamottin has been detected in the plasma
of some individuals after exposure to bergamottin [50]. In a study to determine the concentrations of
furanocoumarins in healthy young adults before and after the ingestion of grapefruit or grapefruit
juice, bergamottin and 6′,7′-dihydroxybergamottin were predominant compounds found in grapefruit
flesh, juice, and plasma, while bergaptol and 6′,7′-dihydroxybergamottin were major compounds
detected in the urine [51,52].

It has been demonstrated that the metabolism of both bergamottin and the furan ring of the
psoralen moiety by CYPs can result in the formation of reactive intermediates, thereby causing
inhibition of the P450 enzyme, while the metabolism of the geranyloxy chain can produce stable
metabolites [48]. The metabolism of bergamottin by CYP3A4, CYP3A5, and CYP2B6 has been
investigated [48,53]. Interestingly, it was found that CYP2B6 metabolized bergamottin primarily
to 5′-OH-bergamottin, 6′-OH-bergamottin, and 7′-OH-bergamottin as well as to one minor metabolite
(bergaptol). Because 6′- and 7′-OH-bergamottin were the primary metabolites, it was suggested that
CYP2B6 can preferentially oxidize the geranyloxy chain of bergamottin. The CYP3A5 metabolism
of bergamottin can also generate three major metabolites, i.e., bergaptol, 5′-OH-bergamottin, and
2′-OH-bergamottin, as well as two minor metabolites, i.e., 6′,7′-dihydroxybergamottin and 6′- and
7′-OH-bergamottin, whereas CYP3A5 and CYP2B6 induced the formation of bergamottin metabolites
that can form active glutathione conjugates [48].
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4. Bergamottin and Cancer

Exposure to furanocoumarins in large doses combined with ultraviolet radiation, such as through
photochemotherapy, is known to induce skin tumorigenesis in both animals and humans. Recent
epidemiological data suggest that relatively high levels of dietary exposure to furanocoumarins
may also increase the risk of skin cancer [49]. In particular, psoralen, 5-methoxypsoralen (5-MOP),
and 8-methoxypsoralen (8-MOP) are well known for their phototoxic, photomutagenic, and
photocarcinogenic properties [54,55]. Recently, it has been shown that bergamottin does not exert
any significant photomutagenicity on its own, as tested by a model of photomutagenicity of some
furanocoumarins in V79 cells using 5-MOP as a reference compound [56]. Interestingly, the potential
protective effects of furanocoumarins have also been studied in various cancer models. Table 2 briefly
summarizes the potential effects of bergamottin against several cancer types and summarizes the
biological mechanisms underlying its anti-neoplastic actions.

Table 2. In vitro and in vivo effects of bergamottin against malignancies.

Type of Cancers Cell Lines Dose Biological Effect Ref.

In Vitro

Multiple myeloma U266 50 and 100 µM for 24 h Inhibits cell proliferation, induces apoptosis,
and inhibits JAK/STAT3 activation

[57]

Leukemia HL-60 40 µM for 4 days
6.25, 12.5, 25, and 50 µg/mL
for 3 days

Inhibits cell proliferation [58]
[59]

KBM-5 50 µM for 12 h in combination
with 10 µM simvastatin

Combination with simvastatin exhibits
synergistic effects of TNF-induced
cytotoxicity and apoptosis

[60]

Skin cancer Mouse epidermal
keratinocytes

2 nM Inhibits DNA adduct formation induced by
B[α]P) and DMBA

[61]

Lung cancer A549 10, 25, and 50 µM for 48 h Induces apoptosis, cell cycle arrest, and loss
of mitochondrial membrane potential
Inhibits cell migration and invasion

[62]

A549 100 µM for 24 h Suppresses EMT, TGF-β-induced EMT, and
cell invasive potential

[63]

Fibrosarcoma HT-1080 5, 25, and 50 µM for 24 h Reduces PMA-induced MMP-9 and MMP-2
activation
Inhibits cell invasion and migration

[64]

Liver cancer HepG2 6.25, 12.5, 25, and 50 µg/mL
for 3 days

Abrogates cell proliferation [59]

Gastric cancer BGC-823 6.25, 12.5, 25, and 50 µg/mL
for 3 days

Inhibits cell proliferation [59]

NCI-N87 4, 20, and 100 µM for 48 h Attenuates cell proliferation [65]
Breast cancer MDA-MB-231 100 µM for 6 h

100 µM for 75 h
100 µM for 24 h

Inhibits STAT3 activation
Suppresses cell proliferation
Attenuates cell invasion

[57]

MCF-7 40 µM for 24 h Inhibits DNA adduct formation induced by
B[α]P and DMBA

[66]

Prostate cancer DU145 100 µM for 6 h
100 µM for 75 h
100 µM for 24 h

Suppresses STAT3 activation
Inhibits cell proliferation
Inhibits cell invasion

[57]

Neuroblastoma SH-SY5Y BEO (0.01, 0.02, and 0.03%) for
24 h

Suppresses cell proliferation [67]

Glioma U87, U251 2 and 10 µM for 48 h Exhibits anti-invasive activity through the
inactivation of Rac1 and the downregulation
of MMP-9

[68]

In Vivo

Type of Cancers Animal Models Dose Biological Effect Ref.

Skin cancer SENCAR mice (B[α]P) 400 nmol; 5 min pretreatment Suppresses B[α]P-induced tumor initiation [69]
Lung cancer BALB/c nude mice

xenograft model (A549)
25, 50, and 100 mg/kg; daily;
18 days

Inhibits lung cancer growth [62]

Abbreviations: B[α]P: Benzo[α]pyrene; DMBA: 7,12-Dimethylbenz[a]anthracene; JAK/STAT3: Janus-activated
kinases/Signal transducer and activator of transcription 3; TNF: Tumor necrosis factor; EMT:
Epithelial-to-mesenchymal transition; TGF: Transforming growth factor; PMA: Phorbol 12-myristate 13-acetate;
MMP: Matrix metalloproteinase.
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4.1. Multiple Myeloma

Our group has investigated the anti-cancer potential of bergamottin in multiple myeloma (MM)
cells [57]. In this study, bergamottin inhibited proliferation and induced apoptosis in human U266
MM cells through the downregulation of the signal transducer and activator of transcription 3 (STAT3)
signaling pathway, which has been closely associated with tumorigenesis [70–80]. This suppression
was mediated through the inhibition of phosphorylation of Janus-activated kinases (JAK) 1 and 2
and c-Src, as well as the induction of tyrosine phosphatase SHP-1. Furthermore, bergamottin caused
a substantial down-modulation of the expression of various oncogenic proteins and significantly
promoted the apoptotic effects of bortezomib and thalidomide, two drugs commonly used to treat
MM. [57].

4.2. Leukemia

The anti-proliferative activity of bergamottin against promyelocytic leukemia HL-60 cells has
also previously been reported by our group [58,59]. We observed that the combination of bergamottin
and simvastatin produced synergistic effects on the tumor necrosis factor (TNF)-induced cytotoxicity
and apoptosis in human chronic myelogenous leukemia KBM-5 cells. The anti-proliferative and
pro-apoptotic effects of this combination therapy were found to be mediated through the suppression
of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a master transcription
factor regulating tumor growth and survival [60,81–92].

4.3. Skin Cancer

Polycyclic aromatic hydrocarbons (PAHs) such as benzo[α]pyrene (B[α]P) and
7,12-dimethylbenz[α]anthracene (DMBA) are routinely employed to initiate skin cancer in
mouse models [93]. Bergamottin has been reported to reduce the formation of water-soluble
metabolites of B[α]P and to abrogate the binding of B[α]P to DNA. It also abrogated the formation of
DNA adducts derived from the anti-diol-epoxide diastereomers from both B[α]P and DMBA [61].
In another study, bergamottin was analyzed for its potential effects on the formation of B[α]P and
DMBA DNA adducts in mouse epidermis. Moreover, bergamottin was noted to significantly decrease
the covalent binding of B[α]P to DNA in a dose-dependent fashion, but did not significantly affect the
covalent binding of DMBA to epidermal DNA at two different concentrations [69].

Interestingly, Kleiner et al. reported that bergamottin can suppress the metabolism of DMBA to
DMBA-3,4-diol and block DNA adduct formation in mouse hepatoma-derived 1c1c7 (Hepa-1) cells but
had a relatively minimal effect in mouse embryo fibroblast C3H/10T1/2 (10T1/2) cells. The findings
of this study also indicated that bergamottin can function as a more selective inhibitor of P450 1a1
but appeared to be less potent in blocking the metabolic activation of DMBA in mouse epidermis [94].
In another study by the same group, it was found that although bergamottin was not effective at
blocking DMBA bioactivation in the mouse skin model, it could abrogate the bioactivation of both
DMBA as well as B[α]P in breast cancer MCF-7 cells [66].

4.4. Lung Cancer

The anti-cancer properties of bergamottin were also evaluated in human non-small cell lung
carcinoma A549 cells. The anti-cancer effects of bergamottin were linked to an inhibited activity
of colony formation, cell invasion, and cell migration in A549 cells. Furthermore, bergamottin
induced apoptosis and cell cycle arrest at the G2/M phase, and it caused a significant reduction
in the mitochondrial membrane potential [62]. In the mouse xenograft model of A549 cells,
bergamottin showed a significant decrease of the tumor volume and weight after 18 days of consecutive
treatment [62]. In a recent study from our group, bergamottin was shown to exhibit an inhibitory effect
on the epithelial-to-mesenchymal transition (EMT) process in lung cancer cells [63]. EMT can facilitate
the transition from a sessile epithelial state to a motile, invasive mesenchymal state and thereby cause
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the tumor cells to undergo metastasis to distant sites [95,96]. Interestingly, bergamottin was found to
suppress transforming growth factor beta (TGF-β)-induced EMT and the cell invasive potential. This
effect was found to be mediated by its inhibitory effect on PI3K, Akt, and mTOR kinases [63].

4.5. Fibrosarcoma

The inhibitory effects of bergamottin on metastasis and its possible mechanisms of action were also
investigated in human fibrosarcoma HT-1080 cells [64]. Matrix metalloproteinases (MMPs) are actively
involved in the metastasis of cancer cells, and the drug was found to substantially reduce the phorbol
12-myristate 13-acetate (PMA)-induced activation of MMP-9 and MMP-2 and to inhibit cell invasion
and migration. Its anti-metastatic effects were mediated via the downregulation of NF-κB activation
and the phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase.

4.6. Other Cancers

The anti-proliferative activity of bergamottin against human liver cancer HepG2 cells and gastric
cancer BGC-823 cells has also been reported [59]. The cytotoxic effect of bergamottin on gastric cancer
NCI-N87 cells has also been reported [65]. Additionally, studies have indicated that citrus fruit intake
may reduce the risk of gastric cancer [97–99]. Bergamottin inhibited the proliferation of human breast
cancer MDA-MB-231 and prostate cancer DU145 cells [57]. In human neuroblastoma SH-SY5Y cells,
bergamot essential oils (BEOs) were also found to exhibit significant anti-proliferative effects [67] and
it was hypothesized that bergamottin and 5-geranyloxy-7-methoxycoumarin may have substantially
contributed to the BEO-induced anti-proliferative effects. Bergamottin also exhibited anti-invasive
activity in human glioma cells through the inactivation of Rac1 activity and the downregulation of
MMP-9 [68].

In summary, several studies using animal models and different cancer cell lines provide substantial
evidence that bergamottin has beneficial effects against a variety of cancers. These effects are mostly
attributed to its ability to regulate several cancer-related pathways including chemical detoxification,
cell cycle arrest, apoptosis, migration, invasion, and angiogenesis. Figure 3 provides a concise summary
of the anti-cancer effects of bergamottin with possible underlying molecular mechanisms. Bergamottin
appears to be a promising natural agent for cancer prevention and therapy, and its evaluation in human
clinical trials is needed to investigate its possible anti-cancer applications either as a therapeutic agent
or as adjuvant therapy.
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5. Conclusions

The anti-cancer activity of bergamottin has been reported against many types of cancers, as
briefly summarized in this review. Bergamottin may be a suitable candidate for the development of
novel agents for cancer prevention and therapy. Further studies should be undertaken to examine the
pharmacokinetics, ideal dosage, long-term safety, and adverse effects of bergamottin.
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