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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract

Fracture morphology and permeability are key factors in enhanced gas recovery (EOR) and Carbon Geo-storage (CCS) in shale 
gas reservoirs as they determine production and injection rates. However, the exact effect of CO2-saturated (live) brine on shale 
fracture morphology, and how the permeability changes during live brine injection and exposure is only poorly understood. We thus 
imaged fractured shale samples before and after live brine injection in-situ at high resolution in 3D via X-ray micro-computed
tomography. Clearly, the fractures’ aperture and connectivity increased after live brine injection.
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1. Introduction

Carbon capture and storage (CCS) in underground geological formations, such as depleted oil/gas reservoirs or
saline aquifers is considered to be an effective approach to trap large amounts of CO2 and thus mitigate climate 
warming [1-3]. CO2 injected into sandstone [4-6], limestone [7-9] and coal seams [10-12] has been extensively 
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investigated. However, shale gas reservoirs - which contributed significantly towards energy security in the past 
years [13-17] - have not been systemically evaluated in this context.

The injected CO2 is partially miscible with the resident brine [18], and reacts with the formation water to 
carbonic acid, thus becoming acidic [19, 20]. This CO2-saturated (live) brine chemically reacts with the host rock 
[21-24]. This is particularly the case for limestone, which is significantly dissolves during live brine injection, which 
thus drastically increases limestone permeability [25-32]. This effect also occurs in the sandstone as some cements 
dissolve (such as calcite, ferrodolomite) [33-37]. It is thus clear that the acidic environment severely impacts on the 
micro structure and permeability of the rock. 

However, no significant attention has been given to the potential structural, morphological changes in shale. We 
thus e imaged the shale in 3D at high resolution in-situ with X-ray micro-computed tomography before and after live 
brine injection to assess the micro structural characteristics and their potential changes.  

2. Materials and experimental methodology

A plug (5 mm diameter and 5 mm length) was drilled out of a larger core sample from a shale gas reservoir in the
Ordos basin in China. The plug was housed in an X-ray transparent high pressure unconstrained flow cell [28, 38],
which was connected to an experimental core flooding apparatus built for fluid permeability measurement. The 
whole system was vacuumed for one day to remove all air from the system. All fluids were heated to 323 K and the 
core was subjected to 5 MPa effective stress. The core was then imaged by x-ray computerized micro-tomography 
(microCT) at a resolution of (3.43 μm)3. Subsequently live brine at a constant flow rate of 0.1 mL/min was injected 
for almost 5 hours, and the plug was microCT imaged again.

Fig. 1. (A) Injection pump, (B) Confining pump, (C) X-ray source; (D) pressurized core holder, (E) Heated tape, (F) Detector panel, (G) Water
bath, (H) computer for data logging, (I) Reactor, (J) Production pump, (K) Pressure sensor, (L) CT images record computer.
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Fig. 2. Raw computerized tomography (CT) image slice showing the core holder cell (1), Teflon sleeve (2) and sample (3).

3. Results and discussion

3.1. Morphology of fracture network

The fracture network in the shale sample is visualized in Figures 3 and 4, before and after live brine injection. 
The black lines are the fractures, white points are high density minerals (such as pyrite and siderite), and grey is the 
clay mineral matrix (Figure 4). A significant change in the fractures morphology was observed before and after live 
flooding. Clearly, the fracture aperture increased after live brine injection, compare also Figure 5. Importantly, the 
fractures’ connectivity also increased after live brine injection. 

Fig. 3. 3D visualizations of the shale sample before (A) and after (B) live brine injection. The dark grey lines are the fractures, and grey is the 
mineral matrix. 
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Fig. 4. 2D slices through the micro CT images of the shale sample before (a, b, c) and after (d, e, f) live brine injection.

Fig. 5. Transparent 3D visualizations of the shale sample before (a, b) and after (c, d) live brine injection.
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3.2. Discussion

This increase in fracture network size and connectivity after live brine injection can be interpreted as follows.

(1) the hydraulic injection pressure of the fluid opened the fractures;
(2) the acidic live brine dissolved some shale minerals, e.g. the carbonate cement [39, 40], this increased the

connectivity.

4. Conclusion

Rock microstructure is an essential factor which determines CO2 storage capacity and injectivity in shale gas
reservoirs. CO2 injected into shale gas reservoirs will cause adsorption, dissolution and molecular diffusion [15, 16, 
41], which will in turn affect the microstructure. 

In order to assess the possibility of the shale reservoirs geosequestration, we thus imaged a shale sample in high 
resolution via 3D microCT before and after 5 hrs live brine injection to investigate the change of the stress regime
acting on the fractures. We observed that the fractures’ apertures and fracture connectivity increased significantly
after live brine injection. Hence, we conclude that CO2 injection into shale reservoirs can cause significant
morphological changes, which will affect storage efficiency. 
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