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Abstract

In this thesis, we investigate a generalized hybrid model to simulate various finan-

cial derivatives including time-independent European options, time-dependent

variance swaps as well as portfolio selection of credit risk. Different from the

existing literature, our modelling framework consists of the equity driven by the

dynamics of stochastic interest rate, stochastic volatility, and jump-diffusion pro-

cesses. In particular, time-scale property of stochastic processes has been taken

into consideration in our thesis with the application of various numerical ap-

proaches.

The contribution of our study consists of main two aspects. The first aspect

in extending the classical Black-Sholes model to a generalized model for various

applications. The multi-factor stochastic volatilities, stochastic interest rate and

the jump-diffusion process are all taken into account in our model to simulate

the behaviour of real financial market. The model is then applied to study both

derivative pricing and portfolio selection. For the derivative pricing, we focus on

the time-independent European option and the time-dependent variance swaps.

The portfolio optimization technique is applied to the critical problem of credit

risk in the bank system. The effect of stochastic volatility, stochastic interest rate

and jump diffusion process have also been studied in this thesis, and we find that

the effects of jump process and stochastic volatility process are significant.

The second aspect of contribution is the development of numerical and an-

alytical solutions for the underlying mathematics problems. The option pricing

problem under our hybrid model generates a high-dimensional partial integral dif-

ferential equation, while the credit risk portfolio optimization problem generates

a high-dimensional non-linear partial differential equation. In this research, we

apply the generalized Fourier transformation, asymptotic approximation, finite

element method and Monte Carlo simulation to solve the associated partial differ-

ential equations. Through numerical examples, we discover that the incorporation

of multi-scale volatility process and jump-diffusion term have a significant impact

on both option pricing and credit risk measuring process. For the variance swap

pricing, the semi-closed solution is derived via generalized Fourier transforma-
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tion, and the integral term arising from jump-diffusion process is solve by Fourier

convolution.
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CHAPTER 1

Introduction

1.1 Background

As derivatives emerge and become the most important aspect of our daily life, it

is important to study the pricing of derivatives. Financial derivatives originally

served as an approach for companies to hedge against the risk exposure. Other

than the risk management, derivatives also help in price speculation and improve

the efficiency of the underlying asset.

Financial derivatives include future, forward, option and swap. The financial

derivatives evolved in the 19th century. A market called ’the Chicago Board of

Trade’ was established to help farmers to conquer the difficulty of reaching the

potential buyers. Forward is the simplest form of derivatives, it is an agreement

to buy or sell an asset at a certain future time for a certain price, and it is always

traded over the counter(OTC). Compared to the forward, the contract of the

future is more standardized and specifies every detailed feature of the underlying

asset. Unlike forward and future, the option provides the investor a right to

buy or sell the underlying asset at a certain time for a certain price, and it is

traded both OTC and on the exchange market. Swaps are newly derived financial

derivatives which aim at exchanging cash flows between two parties.

The pricing techniques are very important in order to trade the derivatives

in the real market. As suggested by its name, the price of derivatives is based

on the underlying assets, including the stock price, the stock index, the com-

modity price, currencies, etc. Since 1950, many research has been conducted for

pricing derivatives. Appell, Boussinesq and Poincare [1] proved that the price

increment follows the normal distribution and it is independent of the present

and past values, which was later developed as the Geometric Brownian motion.

The binomial option pricing model is an option valuation method proposed by

Cox, Ross, and Rubinstein in 1979 [2]. The benchmark of the derivative pricing
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1.1 Background 2

is the Black-Scholes model, in which the author assumed that the stock price is a

geometric Brownian motion and evolves continuously [3]. Under the assumption

of martingale, the backward stochastic differential equation can be solved ana-

lytically and by applying the Monte Carlo simulation, the derivative price can be

calculated by taking the expectation of the underlying asset process [4] [5] [6].

Partial differential equations have also been used to price the derivatives. From

the Feynman-Kac theorem, it has been proved that the solution of the backward

stochastic differential equation can be solved by a partial differential equation

under the assumption of risk-neutral [7].

The classical Black-Scholes model was established on the assumption of a

complete market, which does not really exist in the real market. Thus research

on the Black-sholes model under the incomplete market emerged to relax the rigid

assumptions. The relax of the interest rate leads to the stochastic interest rate

model, and the two most famous interest models are the Hull-White model and

the CIR Model. The Hull-White model assumes that the interest rate follows a

Gaussian process, while the CIR model assumes that the interest rate is driven by

a non-central chi-square process [8] [9]. The relax of the constant volatility results

in the development of local volatility models and stochastic volatility models,

which are widely studied to capture the phenomenon of volatility skew. The

local volatility model assumes that the local volatility of the stock is a function

of stock price and time t, while the stochastic volatility model assumes that the

volatility itself is a stochastic process correlated with the underlying process.

In addition to the stochastic interest rate model and the stochastic volatility

model [10] [11] [12] [13], the jump process has been used to sketch the unexpected

abrupt change of stock price within a short period. The pioneering work of

Merton assumes that the asset return process follows a Brownian motion plus

a jump process [14], and the jump process is a compound Poisson process with

constant jump intensity and normally distributed jump-size distribution. Two

important applications of the jump-diffusion model are the Merton’s model and

the Kou’s model. Different from Merton’s Model, Kou [15] assumed that the

distribution of the jump-size is a double exponential distribution instead of a

normal distribution for the simplicity of computation. Transaction cost is also

studied to make the derivative pricing more reliable. Though the aforementioned

one-factor models play a significant role in derivative pricing, it is not realistic

in some aspects, and it is suggested that all the extensions from the classified

model could be considered together to reach a more realistic result. However, the

combination of all those factors in the extended models will bring difficulties to
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the study of the problem and further research is required.

In this thesis, a general stock model is established by taking account of the

stochastic interest rate, the jump-diffusion process, and the multi-factor stochas-

tic volatility processes. The general model is then applied to price financial

derivatives such as European options and the variance swap. Both numerical and

analytical approaches are studied and compared in our thesis.

1.2 Objectives of the thesis

This thesis focuses on the study of various financial derivative pricing problems

with the underlying stock process driven by a generalized multi-scale volatility

model. The multi-scale volatility model results in a high-dimensional partial

differential equation under the risk-neutral assumption. The main objective of

this research is to obtain analytical solutions and numerical solutions for the

model, investigate the influence of the scale rate and other parameters on the

prices of varies types of derivatives.

The specific objectives of this work are as follows:

(1) Establish the financial derivative pricing model with the underlying asset

driven by the Geometric Brownian motion, and the volatility being assumed to

be a function of two factors, which are driven by a fast-scale and a slow-scale

stochastic volatility process respectively;

(2) Study the boundary value problem of the high-dimensional partial differential

equation(PDE) derived from the corresponding financial derivative pricing mod-

els;

(3) Obtain analytical and numerical solutions for some special cases of the un-

derlying high-dimensional financial based linear/non-linear PDEs;

(4) Investigate the influence of time-scale rate on the price of various types of

options and show the significance of the work.

1.3 Outline of the thesis

The thesis is organized into five chapters.

Chapter 1 gives an overview of the research background and highlights the

objectives of the research.
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Chapter 2 reviews previous work relevant to the scope of this thesis. Some

financial principles and mathematical methods closely related to the research are

also proposed.

Chapter 3 studies the European option with multi-scale volatility correction

and jump-diffusion process. The finite element method and dimension reduction

technique are applied to obtain the approximate solution of the classical Euro-

pean option. The effects of time-scale and jump rate are studied in the Chapter.

Chapter 4 studies the credit risk pricing problem in the framework of the

structural model and utility-based portfolio selection. The payoffs of financial

derivatives are replicated by varying trading strategies of the underlying assets in

a complete financial market. The asymptotic approach is applied to obtain the

approximation of the value function.

Chapter 5 studies the pricing of the discrete sampling variance swap tak-

ing into account the effect of imposing multi-scale stochastic volatility into the

stochastic process.

Chapter 6 investigates the variance swap pricing problem under a hybrid

model. The effect of jump, stochastic volatility and stochastic interest rate on

variance swap pricing is studied in this section. A semi-closed solution is derived

via the generalized Fourier transformation. The integration term arising from the

jump diffusion process is tackled by Fourier convolution.

In Chapter 7, the main results of this thesis are summarized, and discussion

for further research is given.



CHAPTER 2

Mathematics and Finance Preliminaries

2.1 General

The research focuses on the pricing of financial derivatives, which involves the

use of many finance principles and mathematical methods. Thus, in this chap-

ter, we will first review the major types of financial derivatives, then present the

finance and mathematical preliminaries required for the study of derivative pric-

ing, including the risk-neutral pricing, the Feynman-Kac theorem, Monte Carlo

simulation, analytical and numerical methods for option pricing. Then a brief

review of previous work and models for the pricing of derivatives is given.

The rest of the chapter is organized as follows. Section 2.2 describes the major

types of financial derivatives. Section 2.3 introduces the financial essentials for

building up the foundations of option pricing. Section 2.4 is the mathematics

foundation for solving the partial differential equations arising from option pricing

problems, including the Fourier transform method, the finite difference method,

the finite element method, and asymptotic approximation. Section 2.5 briefly

reviews previous work on derivative pricing. A concluding remark based on the

literature review is then given in Section 2.6.

2.2 Types of Financial Derivatives

Financial derivatives refer to securities/contracts which promise to make a pay-

ment at a specified time in the future and the amount of payment depend on the

behaviour of the underlying security/securities up to and including the time of

payment. There are various types of derivatives including forward, future, option,

and swaps.

Forward is the simplest form of derivatives. It is an agreement to buy or sell an

asset at a certain future time for a certain price. Compared to forward, the future

5



2.2 Types of Financial Derivatives 6

is more like an exchange, and the contract of the future is more standardized and

specifies every detailed feature of the underlying asset.

Unlike forward and future, the option gives an investor the right to buy or

sell the underlying asset at a certain time for a certain price. There are two basic

types of options: call options and put options. Call options give the option holder

the right but not obligation to buy the underlying asset at the specified price in

the future. Put options give the holder the right but not the obligation to sell

the asset at the specified price in the future trading day. The price written on

the contract is named the strike price, and the specified date on the contract is

the maturity date. The European options can only be traded at the maturity,

while the American options can exercise at any time before the maturity day.

Generally, the pricing of European options is easier than American options for

the reason that the price of an European option is independent of the path, while

the price of an American option is path dependent. The early exercise of the

American call is unfavourable when there is no dividend paying, while the early

exercise of American put is favourable when there is no dividend payment.

European options and American options are all categorized in the group of

plain vanilla products. Other derivatives, such as Bermuda option, Asian option

and Barrier option are termed as exotic options. A Bermuda option is an in-

termediate product of the European option and the American options, with the

exercise date fixed at a certain date before the maturity date. The value of Bar-

rier option, including knock-in and knock-out options, depends on whether the

price of the underlying asset attains a predetermined level of price or not. The

payoff function of Asian option depends on the average of the underlying asset

price.

Another important exotic option is the variance and volatility swap. Vari-

ance swaps and volatility swaps are financial derivatives which enable us to ex-

change the realized volatility against the implied volatility(see Demeterfi et al.

(1999) [16]). The first variance swap is traded in late 1998, and become increas-

ingly popular with the development of the replication technique. There are two

main reasons for investors to trade variance swap, namely to hedge against risk

exposure of volatility, and to speculate on the difference in volatility across time

and product. Long variance position will benefit when the realized volatility is

higher than the strike price, while the short variance position benefits when the

realized volatility is lower than the strike price. Figure 2.1 is generated by the

VIX option monthly trading volume data downloaded from the Chicago Board

Options Exchange(CBOE) website, and it is clear that the total trading volume
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of the VIX option has been increasing every year. The realized volatility is ap-

proximated by the historical data of the underlying asset price, while the implied

volatility is derived through the pricing formula. The distinction between the re-

alized volatility and implied volatility is shown in figure 2.2. The realized variance

is approximated by the SPX data downloaded from the CBOE website, while the

proxy of implied volatility is the corresponding VIX index. Some properties of

the variance can be observed from figure 2.2: the variance is a mean-reverted

process and anti-correlated with the underlying assets, which is known as ”skew

effect”. The main difference between the variance swap and the volatility swap

Figure 2.1: VIX Options Year Volume

Figure 2.2: Realized volatility Versus Implied Volatility

is the payoff function. The payoff function of the volatility swap is the square

root of the variance swap. Therefore, the payoff of the variance swap is convex
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in comparison to the payoff of volatility swap, and more profitable as shown in

figure 2.3.

Figure 2.3: Convexity Property of Variance Swap

For the pricing of the variance swap, many researchers contribute to the lit-

erature. In Windcliff and Forsyth’s work, the variance swap pricing problem is

described by three different models: i) Geometric Brownian motion with constant

volatility, ii) local volatility surface and iii) jump diffusion model [17]. They sug-

gested that stochastic volatility should be incorporated into the model to obtain a

better estimate of the fair strike price. Swishchuk et al. [18] used the probability

approach to determine the variance swap price based on the CIR process with

non-central χ square distribution ignoring the distribution of the payoff function.

Lian and Zhu [19] applied the Fourier transformation to price variance swaps

with discrete sampling times and obtained a closed-form solution of the Heston’s

two-factor stochastic volatility model [10]. Cao and Lian also obtained the semi-

analytic solution of the variance swap pricing problem based on the Heston-CIR

hybrid model via the generalized Fourier tramsformation [20]. However, Cao and

Lian’s approaches can be used only if the stochastic volatility process is a one

factor CIR process [21].

2.3 Financial Preliminary

2.3.1 Risk-Neutral Pricing

In this subsection, we demonstrate the basic concept of derivative pricing. Risk-

neutral measure, or equivalent probability measure, is a probability measure un-

der which the derivative price can be seen as a discounted value of its final pay-off

function. Under the risk-neutral measure, the stochastic process of the underlying

asset becomes a martingale. The concept of martingale and change of measure

are defined in Definition 2.3.1 and Definition 2.3.1 .
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Definition 1.1. [22] Equivalent Martingale Measure:the measure Q is an equiv-

alent measure to P only if they have the same null sets.

The equivalent martingale measure changes only the drift of the stochastic

process, but the volatility of the process keeps the same.

Definition 1.2. [23] Change of the probability measure: we change the old prob-

ability P to P̃ with the density Z

Z =
dP̃

dP
.

We call the density Z Radon-Nikodym derivative, and we define the new proba-

bility measure by P̃ = ZdP , and it is easy to prove that

ẼX =

ˆ
XdP̃ =

ˆ
XZdP = E(XZ).

There are two reasons of applying risk-neutral measure. First of all, only

when the discounted stock process is a martingale, we can apply the Monte

Carlo simulation to simulate expectation of the discounted payoff to price the

stock or derivatives. Secondly, the risk-neutral measure is the fundamental of

the Feynman-Kac theorem, which connects the stochastic process with the corre-

sponding PDE. In all, the complicated financial problem will reduce to a solvable

mathematical problem under the risk-neutral measure and proper assumptions.

Theorem 2.1. [Girsanov Theorem] [24] Let W(t)(t ∈ [0, T ]) be a Brownian

motion on a probability space(Ω,F ,P), and let {F(t)|t ∈ [0, T ]} be its filtration.

Let Γ(t) be an adapted process. Define

Z(t) = e−
´ t
0 γ(d)dW(s)− 1

2
‖γ(s)‖2ds, (2.1)

W̃ (t) = W (t) +

ˆ t

0

γ(s)ds, (2.2)

and assume that

EP
[ˆ T

0

‖γ(s)‖2

]
<∞

where Z = Z(t) is the Radon-Nikodym. Then EP (Z) = 1, and under the probabil-

ity measure Q generated by Z, the process {W̃(t), t ∈ [0.T ]} is an n-dimensional

Brownian motion.

Girsanov’s theorem provides us a way to change the measure to the risk-

neutral measure, and can be easily proved by applying the Ito formula. To
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demonstrate this, an example is specified based on the one dimensional Black-

scholes model. It is assumed that the stock price S is driven by the following

stochastic process

dSt = µStdt+ σStdWt. (2.3)

The discounted price X̃t = e−rtSt can be rewritten as

dX̃t = (µ− r)X̃tdt+ σX̃tdWt, (2.4)

which is not a martingale since µ 6= r and the expectation of the process is

not zero. If a process is a martingale with no arbitrage chances, we obtain

E∗(e−r(T−t)VT ) = Vt. Applying the Girsanov theorem, we can prove that un-

der the risk-neutral probability Q, the discounted stock price processX̃t = e−rtSt

is a martingale. Let γ(s) = µ−r
σ

in (2.2). (2.4) can be transformed to

dX̃t = σX̃tdW̃t, (2.5)

which is a martingale with no drift.

2.3.2 Feynman-Kac Theorem

The Feynman-Kac theorem is the key theorem of this part. As a preparation of

the Feynman-Kac theorem proof, Markov representation of stock price will be

displayed.

Theorem 2.2. (Markov process) [25] Let X(u),u ≥ 0, be a solution to the

stochastic differential equation (2.4) with initial condition given at time 0. Then,

for 0 ≤ t ≤ T ,

E[h(X(T )) | F(t)] = g(t,X(t)). (2.6)

The Markov property guarantees that the price of derivative is a function of

time and the state processes. The main reason we introduce the Markov process

is that if we want to get the value of the derivative at time t, we should calculate

the expectation of conditional payoff (from the risk neutral assumption). For the

reason that the process is a Markov process, the filtration of F is only related to

the state at time t and independent of the time effect before t, that is why we

call it the state process. In order to obtain the value of the derivative at time t,

we introduce the Markov process, from which the filtration is only related to the

state at time t, so that the derivative value can easily be calculated by taking

expectation of the conditional payoff function.



2.3 Financial Preliminary 11

Theorem 2.3. (Feynman-Kac) [26] Consider the stochastic differential equa-

tion

dX(u) = β(u,X(u))du+ γ(u,X(u))dW (u). (2.7)

Define the function

g(t, x) = Et,xh(X(T )), (2.8)

then g(t, x) satisfies the partial differential equation

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2gxx(t, x) = 0, (2.9)

and the terminal condition

g(T, x) = h(x(T )) for all x. (2.10)

Proof. [7] By applying the Markov property, the Ito formula, and using (2.9),

we have,

dg = gtdt+ gxdx+
1

2
gxx[dx, dx]

=

(
gt + βgx +

1

2
γ2gxx

)
dt+ γgxdW.

For the reason that g(t, x) is a martingale, from the martingale representation

theorem, the tendency of dg should be zero. Thereby, setting the coefficient of dt

to zero leads to the PDE (2.9).

Remark : Even though the proof part of the Feynman-Kac theorem is straight-

forward, there are still two facts we should notice:

• The notation of g represents the value of the derivative, which is denoted

by V or U in our work.

• The terminal condition in Theorem 2.3 is denoted by h(X(T )). In the

classical option pricing, it is always written in a discounted payoff style

under the risk-neutral measure, which is V (t) = Ẽ[e−r(T−t)h(S(T )) | F(t)].

2.3.3 Monte Carlo Simulation

Monte Carlo simulation can be used for derivative pricing. Monte Carlo Methods

are based on the analogy between the probability and the volume. Monte Carlo

calculates the volume by interpreting it by probability. The convergence of Monte
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Carlo simulation is proved by the large number theorem. For instance, the volume

or area is usually written in an integral form, while integral often relates to the

expectation. The derivative pricing can be interpreted as the expected value of

the final pay-off, and this is the reason why we apply the Monte Carlo method

in derivative pricing problems. To apply the Monte Carlo simulation in finance,

the discretization of the stochastic differential equation is vital. Two frequently

used methods are the Euler-Maruyama(EM) method and the Milstein method.

Euler-Maruyama Method

Consider

dS = µ(St)dt+ σ(St)dW (t), (2.11)

where when µ(St) = µSt, and σ(St) = σSt, (2.11) reduces to (2.3).

In Euler-Maruyama Method, we first discretize the stochastic model (2.11)

, then generate random numbers, and scale them according to the definition of

Brownian motion, and then generate thousands of paths in order to obtain an

accurate result.

The stochastic process (2.11) is discretized as

Sj = Sj−1 + µ(Sj−1)∆t+ σ(Sj−1)(wj − wj−1), (2.12)

where wj − wj−1 = W (jRdt) − W ((j − 1)Rdt) =
∑jR

k=jR−R+1 dWk, in which

dWk =
√
dtZ, and Z is a random number with normal distribution.

Milstein Method

The idea of the Euler-Maruyama method is similar to the Euler method, but

with an additional stochastic process. It is a modification of the Euler-Maruyama

method and has a higher order of convergence. The strong convergence of the

EM method is of order 1/2. By considering the expansion of µt and σt via the

Ito Lemma, the order can be increased.

The Milstern discretization of the above equation is

Sj = Sj−1 + ∆t ∗ µj−1 + σj−1(W (τj)−W (τj−1))

+
1

2
σj−1σ

′
j−1((W (τj)−W (τj−1))2 −∆t), j = 1, 2, 3, · · · , L. (2.13)

In comparison with the Euler-Marugama scheme (2.12), the Milstern scheme

(2.13) has an additional term, which can be proved by applying Ito’s formula to

both the drift mut = µ(St) and the volatility of volatility σt = σ(St).
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Figure 2.4: Euler-Maruyama Simulation of 1D

Firstly, the integral of (2.11) is

St+dt = St +

ˆ t+dt

t

µsds+

ˆ t+dt

t

σsdW (s). (2.14)

From the Ito formula, we obtain

dµt = µ′tdSt +
1

2
µ′′t [dSt, dSt]

= [µ′tµt +
1

2
µ′tσ

2
t ]dt+ µ′tσtdW (t).

µs = µt +

ˆ s

t

[µ′tµt +
1

2
µ′tσ

2
t ]dt+

ˆ s

t

µ′tσtdW (t), (2.15)

and

dσt = σ′tdSt +
1

2
σ′′t [dS(t), dSt]

= [σ′tµt +
1

2
σ′′t σ

2
t ]dt+ σ′tσtdW (t),

σs = σt +

ˆ s

t

[σ′tµt +
1

2
σ′′t σ

2
t ]dt+

ˆ s

t

σ′tσtdW (t), (2.16)
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where t < s < t+ dt.

Substituting (2.15),(2.16) into (2.14) and ignoring the high order term, we

obtain

St+dt = St +

ˆ t+dt

t

µsds+

ˆ t+dt

t

σsdW (s)

= St +

ˆ t+dt

t

(
µt +

ˆ s

t

[µ′tµt +
1

2
µ′tσ

2
t ]dt+

ˆ s

t

µ′tσtdW (t)

)
ds

+

ˆ t+dt

t

(
σt +

ˆ s

t

[σ′tµt +
1

2
σ′′t σ

2
t ]dt+

ˆ s

t

σ′tσtdW (t)

)
dW (s)

= St +

ˆ t+dt

t

µtds+

ˆ t+dt

t

σtdW (s) +

ˆ t+dt

t

ˆ s

t

σ′tσtdW (t)dW (s). (2.17)

Now the next problem is to solve the following double integral,

ˆ t+dt

t

ˆ s

t

σ′tσtdW (t)dW (s) = σ′tσt

ˆ t+dt

t

W (s)−W (t)dW (s)

= σ′tσt[

ˆ t+dt

t

W (s)dW (s)−W (t+ dt)W (t) +W 2(t)]

=
1

2
σ′tσt[(W (t+ dt)−W (t))2 −∆t], (2.18)

where
´ t+dt
t

W (s)dW (s) can be evaluated by applying Ito’s formula to the integral

of Y = W 2(t), that is

dY = 2WdW + dt,

WdW =
1

2
(dY − dt),

ˆ t+dt

t

WdW =
1

2
[Y (t+ dt)− Y (t)− dt]

The difference between the Euler-Maruyama method and the Milstein method

is that the Milstein method adds a correction term to the Euler-Maruyama

method. The convergence rate of the Euler-Maruyama method is 1/2, while

the convergence rate of the Milstein method is 1.

2.3.4 Multiscale Stochastic Volatility

The assumption of the classical Black-Scholes model is too restrictive and has

a lot of drawbacks. One of the drawbacks is the famous volatility ‘smile’ and

‘smirk’. Option ‘smile’ denotes the relationship between the strike price and the

implied volatility, which is visually a curve instead of the flatten one as Black-
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schole’s model assumes. Volatility ‘smile’ is symmetric, but the volatility ‘smirk’

is more realistic with non-symmetric skew. The option ‘smile’ indicates that the

options are preferred in the money or out of the money than at the money. The

empirical study of volatility curve can refer to the estimation by Rubinstein(1985)

and Rubinstein et al. (1996) [27] [28]; the former applied data before the financial

crisis of 1991, while the later research of Rubinstein applied the after crash data.

In order to make a remedy of the unrealistic assumptions of Black-sholes formula,

many attempts have been made to solve the problem by extending the classical

Black-Scholes model to more general and realistic models. One of the most famous

approaches is the volatility model, including the local volatility model and the

stochastic volatility model, which is widely studied to capture the phenomenon

of the volatility skew. The idea of local volatility and stochastic volatility is

motivated by the Leptokurtic characteristic of the asset return distribution with

higher peak and fatter tail, and these characters indicate that the distribution

is not exactly a normal distribution, but a mixture distribution with different

variances. The local volatility model assumes that the local volatility of the stock

is a function of stock price and time t rather than a simple constant. For example,

in Dupire’s Model, the classical Black-Scholes model is modified to include a

time-dependent local volatility rather than a constant volatility [29]. Constant

elasticity of variance models(CEV model) attempts to capture the stochastic

volatility and the leverage effect by assuming the volatility of the stock process

is in the form of σ(St) = Sγt , which was firstly developed by Cox,et,al.(1976) [30],

and then applied to calibrate and estimate the energy commodity market by

Geman, H, and Shih, YF.(2009) [31].

Different from the local volatility model, the stochastic volatility model as-

sumes that the volatility process is related to another stochastic process instead

of the stock price process itself. For the early research of the stochastic volatility

model, we refer the reader to Hull and White (1987) [32], Scott (1987) [33]. The

most popular stochastic volatility model is the Heston model, from which Heston

generalized the Black-Scholes model to a two-dimensional stochastic model by

allowing the volatility to follow a Cox Ingersoll Ross model(CIR) process, and

derived a semi-closed form solution by applying the method of characteristic func-

tion [10]. Besides the Heston model, Stein and Stein also promoted a stochastic

volatility model driven by the Ornstein Uhlenbeck(OU) process, and established

a closed-form solution in their paper ”Stock Price Distributions with Stochastic

Volatility: an analytic approach” [11]. Other stochastic volatility models are pro-

posed for different forms of stochastic volatility. The traditional Heston model
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assumes that the underlying volatility process is a CIR process with the power of

1/2; the 3/2 model assumes that the diffusion of the volatility process is a flipped

CIR process, raising the power of 3/2 [12]. The 4/2 process is the combination

of the CIR process and the flipped CIR process [13].

Most of the volatilities we applied are the one-factor volatility model, which

means we take only one stochastic volatility into consideration. However, the

structure of stochastic volatility is much more complicated than we expect. The

idea that distinguishes the mean reversion rate of low-frequency data and high-

frequency data has been noticed by French, Schwert, and Stambaugh(1987) [34],

Schwert(1989) [35], and Campbell and Hentschel(1900) [36]. Thus, it is concluded

by Chacko and Viceira [37] that at least two volatilities should be considered in the

same model, and according to the authors, the volatilities should be classified into

two groups, including the fast volatility and the slow volatility. The fast volatility

is related to the short period high-frequency date, for instance, the intraday data,

while the slow volatility is observed in the long run with low-frequency data. It is

also proved by Heston that one-factor models are not accurate, and at least two

factors should be taken into consideration. In Heston’s multifactor models, it is

assumed that all volatilities are mutually independent, and the two-factor models

are approximated by principle analysis. The concept of time-scale is developed

by Fouque, et, al. considering the volatility process as a combination of fast-scale

and slow-scale process [38–40], from which they also studied the correlation of the

volatility processes. In 2008, Fouque proposed a numerical algorithm based on

asymptotic approximation and asymptotic homogenization to study the effect of

the fast and the slow scale of the volatility Ornstein Uhlenbeck(OU) process on

option pricing [40]. The definition of time-scale is distinguished by the fluctuation

frequency of the observed volatility process. The fast-scale volatility relates to

the highly frequent short period fluctuation, which is a singular perturbation,

while the slow-scale volatility is a less frequent long-term variation, and relates

to the regular perturbation. The phenomenon of time-scale can be observed by

the stock prices generated by using the 27 years daily SPX data downloaded

from the Chicago Board Options Exchange(CBOE) website, as shown in figure

2.5. The Slow scale volatility can be tracked from the long period variation, and

it does not have to be mean-reverted, while the fast scale volatility is the smaller

but drastic oscillations between the peak and the bottom.

An alternative approach to capture the leptokurtic features and implied volatil-

ity ’smile’ is the jump-diffusion model. The jump process can be used to sketch

the unexpected abrupt change of stock price within a short period. The pioneer-
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Figure 2.5: Variation of SPX price with time

ing work of Merton assumes that the asset return process follows a Brownian

motion plus a jump process [14], and the jump process is a compound Poisson

process with constant jump intensity and normally distributed jump-size distri-

bution. Different from Merton’s Model, Kou assumed that the distribution of

the jump-size is a double exponential distribution instead of a normal distribu-

tion for the simplicity of computation [15]. In 1987, Madan and Seneta stud-

ied the Australia stock market data and suggested that increments of log-prices

follow a variance gamma(VG) distribution [41] [42]. The VG distribution is a

special case of the generalized hyperbolic(GH) distribution, and for other cases,

we refer to the GH distribution in Eberlein and Keller’s model and the nor-

mal inverse Gaussian(NIG) distribution of Barndorff Nielson’s model [43] [44].

More recent work proves that combination of the stochastic model and the tra-

ditional jump-diffusion model leads to more accurate models. Bates introduced

the SVJ(stochastic volatility with jumps) model by allowing both jump diffusion

and stochastic volatility in the return process. The SVJ model is then extended

by Duffie et al. to incorporate the jump term not only in the return process

but also in the stochastic process [45]. The SVJ model is also studied by Pillay

and O’Hara [46], from which they assumed an affine structure of characteristic

function, and applied the Fast Fourier transformation to solve the SVJ problem

to obtain a semi-analytic solution.

Besides the relaxation of volatility, a lot of researchers show interests in mod-

eling stochastic interest rate and its application. The stochastic interest rate was

introduced by Hull& White, and the closed form solution of the Black-Scholes-

Hull-White model was derived by Brigo and Mercurio for European Style op-

tions. However, even though the stochastic interest rate model can describe the

fluctuation and enhance the long-term accuracy, it cannot sketch the skew ef-

fect or the ’option smile’. To overcome the drawbacks, the stochastic interest
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model is always used together with the stochastic volatility model [47] [48] [49].

The Heston-Hull-White model and Heston-CIR model are studied by Grzelak

and Oosterlee, from which they derived an affine structure solution by applying

Fourier transformation. Different from the aforementioned literature, the corre-

lation effects are also considered in their work [49]. Recently, Kim et.al. studied

the multiscale volatility model and stochastic interest rate model by applying the

technique of asymptotic approximation and derived the leading term and the first

order correction term of European type option [49].

2.4 Mathematical Preliminary

From the previous section, the expected payoff can be transformed to the solution

of a parabolic PDE by using the Feynman-kac theorem. In this section, we will

discuss the analytic and the numerical methods commonly used to solve the PDE

arising from financial problems.

2.4.1 Generalized Fourier Transform

The Fourier transform plays a significant role in Quantitative Finance, especially

in solving the partial differential equation arising from the option pricing problem.

In this section, we discuss the fundamental of the generalized Fourier transform.

Definition 1.1. (Fourier Transform [50]) Let U(x) be a payoff function of con-

tingent claim(derivative), which is assumed to be a function of the underlying

asset x. The generalized Fourier transform V (w) is defined by

V (w) = F [U(x)] =

ˆ ∞
−∞

U(x)e−jwxdx, (2.19)

with j =
√
−1 and w being the Fourier transform frequency.

• The differentiation property of the generalized Fourier transform

F(
∂nU(x)

∂xn
) = (jw)nV (w). (2.20)

• The Generalized Fourier transform of delta function

F(δ(x− x0)) = e−jwx0 . (2.21)
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By applying Fourier transform, along with the affine structure assumption of

the underlying asset processes, the complicated high dimensional partial differen-

tial equation reduces to a series of one-dimensional ordinary differential equations.

The generalized partial differential equation is always showing in pairs with the

inverse Fourier transform.

Definition 1.2. The generalized inverse Fourier transform is given by

U(x) = F−1[V (w)] =
1

2π

ˆ ∞
−∞

U(x)eiwxdw. (2.22)

2.4.2 Numerical Method in Option Pricing

Analytic solutions can be derived only for specific models. However, for most

of the time-dependent models, especially American models with free boundary,

and portfolio selection problems with non-linear terms, closed form solutions are

not possible to obtain, thereby the study of alternative numerical methods is

necessary. The commonly used numerical methods, including the finite differ-

ence method and the finite element method, are studied and compared in this

subsection. The classic one-dimensional Black-Scholes PDE and two dimensional

Heston models are selected as examples and the partial integral differential equa-

tion(PIDE) arising from the jump process will be discussed in this section. The

vector form of the parabolic PDE is

∂U

∂τ
−∇ · A∇U −D · ∇U + rU = 0, (2.23)

For the classic Black-Scholes model, we have the corresponding one dimensional

PDE
∂U

∂t
+

1

2
σ2S2∂

2U

∂S2
+ µS

∂U

∂S
− rU = 0, (2.24)

along with the initial boundary conditions

U(S, T ) = [φ(S −K)]+, (2.25)

U(Smin, t) =
1− φ

2
Ke−rT , (2.26)

U(Smax, t) =
1 + φ

2
e−rT . (2.27)

Let τ = T − t, and x = ln(S), we obtain

∂U

∂τ
− 1

2
σ2∂

2U

∂x2
− µ∂U

∂x
+ rU = 0, (2.28)
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The explicit solution of the above problem is

U(S, t) = φ
(
SN(d1)−Ke−r(T−t)N(d2)

)
,

N(x) =
1√
2π

ˆ x

−∞
e−

1
2
y2dy,

d1,2 = φ
log(S/K) + (r ± 1

2
σ2)(T − t)

σ
√
T − t

. (2.29)

{
dSt = rStdt+

√
YtStdB

S
t

dYt = k∗(θ∗ − Yt)dt+ σV
√
YtdB

V
t ,

(2.30)

With the same assumptions, the corresponding two dimensional PDE can be

rewritten as

Ut+rSUS+k∗(θ∗−Y )UY +
1

2
Y S2USS+

1

2
σ2Y UY Y +

1

2
ρσV Y SUSY−rU = 0, (2.31)

For European style options, the Boundary Condition is in the following form:

U(S, T ) = [Φ(S −K)]+ (2.32)

U(0, Y, t) =
1− Φ

2
Ke−r(T−t) (2.33)

US(∞, Y, t) =
1 + Φ

2
(2.34)

U(S,∞, t) =
1 + Φ

2
Se−r(T−t) (2.35)

U(S, 0, t) = UBS(S, t), (2.36)

where UBS(S, t) denotes the Black-Sholes formula(2.29). For European call op-

tions, Φ = 1; for European put options, Φ = 0. Let τ = T − t, x = ln(S), we

obtain

Uτ − rUx − k∗(θ∗ − Y )UY −
1

2
Y Uxx −

1

2
σ2Y UY Y −

1

2
ρσV Y UY + rU = 0. (2.37)

(A) Finite Difference Method

The application of the finite difference method(FDM) has more than 200 years

history. The main idea behind the finite difference method for solving initial

boundary value problems(IBVP) is to discretize the space and the time, and ap-

ply the boundary and initial conditions to retrieve the unknown function values

at internal points. To the IBVP, the boundary type has a vital impact on the final

solution. Generally, there are three different boundary types, including Dirichlet
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boundary, Neunman boundary, and Robin boundary. Dirichlet boundary condi-

tions specify the value of the unknown function on the boundary. The Neunman

boundary conditions specify the value of the normal derivative of the unknown

function on the boundary. The Robin type boundary condition is a combination

of the Dirichlet boundary condition and the Neunman boundary condition. The

discretizing scheme of finite difference method varies through the type of deriva-

tives. Both explicit and implicit schemes will be investigated in our work. The

scheme of explicit methods are conditional stable, and the implicit Euler and

Crank-Nicolson are unconditional stable. Many financial engineering literature

uses the Crank-Nicolson method because it is second order accurate. According

to the FDM method, PDE (2.2) is discretized as follows

Uk+1
i +p∗(AUk+1

i+1 +BUk+1
i +CUk+1

i−1 ) = Uk
i +(1−p)∗(AUk

i+1+BUk
i +CUk

i−1), (2.38)

where

A = −(0.5σ2h̄+ µSl),

B = σ2h̄+ µl + rk,

C = −0.5σ2h̄.

h̄ = k
h2
, l = k

h
, with k denoting the time step size, and h denoting the space step

size. If p = 0, (2.38) is fully explicit; if p = 1, (2.38) is a fully implicit; if p = 1
2
,

(2.38) is a Crank-Nicholson method.

(B) Finite Element Method

The fundamental of the finite difference method(FDM) is based on the strong

form of PDE. The fundamental of the finite element method(FEM) method is

local Taylor expansion, from which the discretization of the differential equation

is very intuitive and straightforward to apply, and the truncation error can be

derived directly from the Taylor expansion. However, with respect to topology,

FDM is fixed to rectangular shapes, and errors expand with dimensions. Different

from the FDM method, the FEM method is based on the weak form of PDE and

is more flexible and accurate.

The variational statement for (2.23) is : Find U ∈ H1
h(Ω), such that U =

constant value on the boundary, and ∀ U ∈ H1
0 (w),

ˆ
Ω

∂U

∂τ
V dΩ−

ˆ
∂Ω

(A∇U ·~n)V dΓ+

ˆ
Ω

A∇U ·∇V dΩ−
ˆ

Ω

D·∇UV dΩ+

ˆ
Ω

rUV dΩ = 0,

(2.39)
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where H1
0 (w) =

{
V |V ∈ Hh

0 (Ω) vanish on the boundary
}

By assuming

Uh(x, y, τ) =
N∑
j=1

uj(τ)Φj(x)

Vh(x, y) =
N∑
i=1

viΦi(x). (2.40)

We obtain

MU̇ +RU = 0, (2.41)

where

M =
N∑
j=1

ˆ
w

ΦiΦjdw (2.42)

R = −
N∑
j=1

ˆ
w

(A∇Φj) · ∇Φi −D · ∇ΦjΦidw (2.43)

This is a general form. In 1D case, A = 0.5σ2S2, D = µS − σ2S.

Compared to the FDM method, the topology of the finite element method(FEM)

is much more flexible, especially for dealing with complicated boundaries and mul-

tidimensional problems. The FEM is based on the weak form of the boundary

value problem, which relaxes the smooth condition of PDE by applying Green

and Gauss formula.

2.4.3 Asymptotic Approximation

In this subsection, the asymptotic approach is demonstrated for the derivative

pricing arising from the multi-scale stochastic volatility model. To specify this

approach, we firstly introduce the multi-scale stochastic volatility model. The dif-

ference between the multi-scale volatility model and the Heston stochastic model

is in the stochastic processes. The Heston model assumes that the volatility

of asset price is driven by a one-factor stochastic process, while the multi-scale

volatility model is driven by a two factor stochastic process (2.44).

dS = rSdt+ f(y, z)Sdw
(0)
t + SdJS,

dy = (
1

ξ
α(y)− 1√

ξ
Λ(y)β(y))dt+

1√
ξ
β(y)dw

(1)
t ,

dz = (σc(z)−
√
σT (y, z)g(z))dt+

√
σg(z)dw

(2)
t , (2.44)
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where r is the risk-free interest rate. Functions T (y, z) and Λ(y) denote market

prices of volatility. According to the Feyman- Kac theorem, the option price is

determined by the solution of the following partial differential equation

Lξ,σP ξ,σ = 0, (2.45)

where t ∈ [0, T ], and the operator Lξ,σ is given by

Lξ,σ = L0 +
1√
ξ
L1 +

1

ξ
L2 +

√
σM1 + σM2 +

√
σ√
ξ
M12 = 0, (2.46)

with 

L0 = ∂t +
1

2
f 2(y, z)S2∂SS + rS∂S − (r + λ)

L1 = ρ1β(y)f(y, z)S∂2
Sy

L2 =
1

2
β2(y)∂2

yy + α(y)∂y

M1 = ρ2g(z)f(y, z)S∂2
Sz

M2 =
1

2
g2(z)∂2

zz + c(z)∂z

M12 = ρ12β(y)g(z)∂2
yz.

(2.47)

According to the asymptotic approximation theory, the option price can be ap-

proximated by the addition of the leading term and the first order correction

terms

P ξ,σ = P0,0 + P ξ
1,0 + P σ

0,1, (2.48)

where P0,0 denotes the option price without the volatility correction, P ξ
1,0 =

√
ξP1,0 is the fast scale volatility correction, and P σ

0,1 =
√
σP1,0 is the slow scale

volatility correction. We prove in this section that P0,0, P1,0, and P0,1 are of the

form of f(t, S, z), which is independent of the fast-scale volatility y.

The asymptotic approximation is made up by the combination of a singular

perturbation with respect to a fast scale volatility and a regular perturbation with

respect to a slow scale volatility. To construct a singular perturbation expansion,

we expand the asymptotic price P ξ,σ in the form of

P ξ,σ =
n∑
i

ξ
i
2P σ

i (t, S, y, z). (2.49)

To construct a regular perturbation expansion, the asymptotic price P σ is ex-
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panded in the form of

P σ =
n∑
j

σ
j
2Pi,j(t, S, y, z). (2.50)

Substituting (2.49) and (2.50) back into Lξ,σP = 0 and collecting the like

terms up to order 1/2, one has

O(1/ξ) : L2P0,0 = 0 (2.51)

O(1/
√
ξ) : L2P1,0 + L1P0,0 = 0 (2.52)

O(1) : L2P2,0 + L1P1,0 + L0P0,0 = 0 (2.53)

O(
√
ξ) : L2P3,0 + L1P2,0 + L0P1,0 = 0 (2.54)

O(
√
σ/ξ) : L2P0,1 = 0 (2.55)

O(
√
σ/
√
ξ) : L2P1,1 + L1P0,1 +M12P0,0 = 0 (2.56)

O(
√
σ) : L2P2,1 + L1P1,1 + L0P0,1 +M1P0,0 +M12P1,0 = 0. (2.57)

As shown in (2.47), the operators L0 and L1 are in terms of y. From (2.51), (2.52),

(2.55), and (2.56), we conclude that P0,0 , P1,0, P0,1 and P1,1 are independent of

y. As the fact that L1P1,0 = 0, equations (2.53),(2.54) and (2.57) are Possion

equations of the form

L2P+ < G >= 0, (2.58)

with < G >:=
´
g(y)Π(dy) according to the centring resolvability of the Possion

equation, and Π is a invariant distribution with respect to y. Thus, one gets

< L0 > P0,0 = 0 (2.59)

< L1P2,0 > + < L0 > P1,0 = 0 (2.60)

<M1 > P0,0+ < L0 > P0,1 = 0. (2.61)

The terminal condition gives P0,0(T, S, z) = max(K − S, 0), and P1,0(T, S, z) =

P0,1(T, S, z) = 0.

Definition 1.1. The leading term in (2.59) is determined by

< L0 >= ∂t +
1

2
δ̄2S2∂SS + rS∂S − r, (2.62)

with δ̄2 =< f 2(y, z) >:=
´
f 2(y, z)Π(dy) denoting the mean historical volatility

of stock, and

< L0 > −L0 =
1

2
(δ̄2 − f 2(y, z))S2∂SS. (2.63)
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Subtracting (2.63) by (2.60), and letting

L2φ = −1

2
(δ̄2 − f 2(y, z)), (2.64)

one gets

< L1P2,0 >=< L1L−1
2 (< L0 > −L0)P0,0 >=< L1φS

2∂SSP0,0 >, (2.65)

with φ in the form of φ(t, S, y, z). P0,0 is independent of y.

Definition 1.2. The first order correcting term in (2.60) is determined by

< L0 > P1,0 = − < L1P2,0 >= V0S
3∂

3P0,0

∂S3
+ 2 ∗ V0S

2∂
2P0,0

∂S2
, (2.66)

where V0 = ρ1 < β(y) > σ̄ < Φy >.

We assume

P1,0 = −(T − t)VP0,0, (2.67)

with V = V0S
3 ∂3

∂S3 + 2V0S
2 ∂2

∂S2 . Substituting (2.69) into (2.66), we obtain

< L0 > P1,0 = −VP0,0 + (T − t)V(< L0 > P0,0 = −VP0,0

According to (2.61), we obtain

< L0 > P0,1 = − <M1 > P0,0 (2.68)

Similarly,

P0,1 = −(T − t) <M1 > P0,0 = −(T − t)V∞S∂2
Sz, (2.69)

where V∞ = δ̄g(z).

The accuracy of the asymptotic approximation is given precisely by theorem2.4:

Theorem 2.4. In the case of option pricing problem with smooth payoff h, there

exists a positive constant

|P ξ,σ − ˜P ξ,σ| ≤ C(ξ + σ +
√
ξσ), (2.70)

with ξ ∈ [0, 1]andσ ∈ [0, 1].
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2.5 Pricing of the Financial Derivatives

The history of option pricing can date back to early 1950s. In P.Appell, J.Boussinesq

and H.Poincare’s thesis [51], the authors pointed out that the change of price over

small time intervals is independent of present and past values, and they proved

that the price increment follows the normal distribution by applying the cen-

tral limit theorem. They also derived the Chapman Kolmogorov Equation by

the Markov property and firstly proposed the concept of arbitrage. The concept

of geometric Brownian motion applying in stock price process was first studied

in Paul Cootner’s paper(1964) [1]. Geometric Brownian motion, also called the

Wiener process, is a continuous-time stochastic process and can be applied to

sketch the stochastic movement of stock price along with the drift. The binomial

option pricing model is an option valuation method proposed by Cox, Ross, and

Rubinstein in 1979 [2]. The binomial pricing model traces the evolution of the

option price by the means of binomial trees. The benefit of the method is that

it can handle various situations, especially the time-dependent options, and it is

very straightforward to understand. However, this method is not efficient com-

pared to the Black-Scholes model. The Black-Scholes model is the corner stone

of option pricing theory, in which the author assumed that the stock price follows

a geometric Brownian motion and evolves continuously [3].

The above methods are all based on the assumption of an efficient market.

The efficient market assumes that the interest rate is risk-free, and the volatility

is a constant. Also, the stock does not pay any dividend and the market is

frictionless with no transaction costs. Under all these strict assumptions, they

derived the famous Black-Scholes formula from the corresponding Black-Scholes

partial differential equation. Another option pricing method including the risk-

neutral measure and martingale pricing theory is widely used, especially when

we relax the assumptions of the efficient market. A risk-neutral measure is a

probability measure, under which the option price can be calculated by taking

the expectation of the discounted share price [30]. Martingale pricing works under

the assumption of risk-neutrality and can be applied to a variety of derivatives.

The idea of martingale pricing was firstly developed by Harrison and Kreps,

et.al. [52].

By applying the martingale method, the expectation of martingale price can

be calculated by Monte Carlo simulation. The Monte Carlo simulation method

was first applied to price European option in 1977 [4]. However, European style

options are time independent. In terms of the time-dependent model, Broadie
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and Glasserman priced Asian option by Monte Carlo simulation in 2001, Longstaff

and Schwartz developed a Monte Carlo method to price American-style option

with early exercise [5] [6]. By applying the Monte Carlo approach to evaluate the

option price, we have to discretize the stochastic differential equation and gener-

ate random numbers. There are two ways to discretize the stochastic differential

equation, including the Euler-Maruyama and the Milstein Schemes. The differ-

ence between these two methods is the convergence rate; the Euler-Maruyama

has a convergence rate of order 1/2, while Milstein has a strong convergence of

order 1 by adding a correction to the Euler-Maruyama method. The accuracy of

the Monte Carlo approach is proportional to δ/
√
n, where n denotes the sample

volume and δ denotes the sample variance. Two different ways can be applied to

enhance the accuracy of Monte Carlo methods. The simplest way is to increase

the sample number, and we usually set n = 10, 000 in our work. Another way

is to apply the variance reduction technique. The disadvantage of Monte Carlo

Simulation is that compared to analytical methods, the execution time is too long

and grows exponentially with dimension. Besides, the Monte Carlo method is not

an ideal approach to simulate variance and volatility.

Partial Differential Equations(PDEs) play a significant role in option pricing.

The Black-Sholes formula can be obtained by solving the underlying PDE. Most

stochastic differential equations(SDE) have their corresponding PDEs under the

risk-neutral assumption, and they can be derived from the Ito formula and the

Feynman-Kac theorem. The Ito lemma is widely employed in option pricing and

provides us a way to find differential of a function with stochastic variables. The

Feynman-Kac formula connects the SDE with PDE, and it has been proved that

the solution of the corresponding PDE is equivalent to the expectation of the

payoff function under risk-neutral measurement, as detailed in [7]. To solve the

corresponding PDE, there are four ways worth to mention about. Most works

of literature apply Fourier transform and obtain an analytic or semi-analytic

solution of the governing PDE. Fourier transform has been applied in the field

of Finance by Merton in 1973 [14]. Stein and Stein(1991) applied the Fourier

transform method to find the distribution of the stochastic volatility model [11].

Heston(1993) applied the inversed Fourier transform, along with the characteristic

function, to find semi-analytic solutions for an European style option [10]. In

2000, Bakshi and Madan(2000) laid the foundation for characteristic functions

and extended the valuation formula that could be applied in other more complex

payoff functions [53]. A more comprehensive survey is made by Duffie, especially

on the incorporation of exponential affine jump diffusions [45]. A pioneer work of
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fast Fourier transform(FFT) was done by Carr and Madan(1999), from which they

mapped the Fourier transform directly to call option prices via the characteristic

function of the underlying price process [54]. The FFT is a fast algorithm of

discretized Fourier transform(DFT). This method is then extended by Carr and

Wu(2004) to a more generalized model with time changed Levy processes and

generalized affine models [55].

In financial pricing problems, most problem of solving stochastic differential

equations can be converted to problems of solving the associated partial dif-

ferential equations under risk-neutral assumption, or partial integral differential

equations(PIDE) arising from the jump-diffusion model. Consequently, numer-

ical approaches are applied to approximate the solution of the boundary and

initial value problems(BIVP). Three most widely used approaches are the finite

difference method(FDM), the finite element method(FEM), and the finite volume

method(FVM).

FDM is by far the most popular one with simplest discretization form. The

classical Black-sholes formula is a convection-diffusion parabolic equation, and

the finite difference scheme has been studied in detail by Duffy [56]. In Hull

and White’s paper [57], the authors suggested a modification to the explicit fi-

nite difference method for valuing derivatives, which leads to a more accurate

approximation with small time steps, and the established approach was used to

value bond options under two different interest rate processes [58]. Rama Cont

and Ekaterina Voltchkova presented a finite difference method(FDM) to price

the PIDE arising from a jump-diffusion model, and the authors also proposed an

explicit-implicit(IMEX) FDM scheme for pricing European and Barrier options

with Levy process. The IMEX splits the time step, and solves the stiff matrix

implicitly and the nonstiff matrix explicitly. Convergence and stability are also

considered in their work [59]. The FDM approach, together with a front fixing

method, was applied by Wu and Kwok to price American option and generate

the optimal boundary [60]. Ikonen and Toivanen proposed an operating splitting

method for solving the linear complementarity problem arising from American

option, and their approach is approved to be more efficient [61]. Another impor-

tant paper of the application of FDM method is due to Leif Andersen and Jesper

Andersen [62], from which the alternating direction implicit method(ADI) was

applied to solve the PIDE arising from the Poisson jump. The ADI approach is

proved to be unconditionally stable and efficient when it is combined with the

FFT methods. For other exotic options, Little& Pant(2001) [63] applied the fi-

nite difference method(FDM) to solve the variance swaps problem based on the
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assumption of constant volatility, in which a two-dimensional(2D) problem is re-

duced to a system of one-dimensional partial differential equations, and the price

of variance swap is obtained as an average of all the solutions.

The Finite element method(FEM) ensures more flexibility and adaptivity of

mesh compared to the FDM. The FEM is suitable for pricing almost all option

types. Achdou illustrated three simple applications of the FEM approach in op-

tion pricing, including the standard BS equation, the stochastic volatility model,

and the path-dependent Asian option [64]. The FEM was also applied in study-

ing the multi-asset American type options by Pavlo KovalovVadim Lipetsk [65].

By adding the penalty term with continuous Jacobian and solving the final ordi-

nary differential equations(ODEs) with an adaptive variable order and variable

step size solver SUNDIALS, they proved that their approach is efficient even for

multi-dimensional PDEs.

In finance, it is useful for pricing the Asian options when the PDE becomes

hyperbolic near maturity. The study of the FVM for derivative price is more

advanced and some novel results were obtained by Wang(2004) [66]. In 2007,

Angermann and Wang extended the fitted finite volume spatial discretization to

both European option and American option, and the convergence of the method is

proved in the reference [67]. All these numerical methods result in ODE systems

with respect to time.

For two scale volatility models, a specific approach named perturbation is

applied. The multiscale model introduced above has two stochastic volatility fac-

tors, including the fast scale volatility, and the slow scale volatility. Under the

risk-neutral assumption, the option price can be obtained as a solution of the cor-

responding partial differential equation. Thus, the multiscale model is changed

to solving a high dimensional partial differential equation with small parameters,

which can be viewed as a combination of singular and regular perturbations,

and the asymptotic approach can be applied to derive an approximation of op-

tion price. The main idea behind this approach is to discretize the option price

into a zero-order term and correction terms. The zero-order term, also called

the leading term, is calculated by the underlying asset process with long-term

constant volatility. The correction terms, including the fast-scale correction and

slow scale correction, are calculated by expanding the operator of the PDE into

different power orders. By doing so, the high dimensional problem reduces to

lower dimensional linear problems. An advantage of the perturbation analysis

is that we do not have to calibrate every parameter of the model, but only a

few parameters regarding the volatility skew is needed, and thus, we simplify
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the problem by a large extent. The perturbation technique was firstly adopted

by Fouque in 2000 [68], from which the author derived the first-order approx-

imation with fast-scale correction. The interest models such as the Vasicek or

the CIR model with the fast mean-reverting stochastic volatility were also stud-

ied by Peter Cotton, Fouque and Papanicolaou(2001) [69]. They proved that

small correction can affect the shape of the term structure of interest rate. The

short correction of path-dependent American option was studied by Fouque, Pa-

panicolaou and Sircar in 2000 [70]; by applying the asymptotic approximation,

the governing two-dimensional free-boundary problem was reduced to two one-

dimensional PDEs subject to free-boundary conditions . Regular perturbations

can be found in Fournie et al.(1997) [71], Sircar and Papanicolaou(1999) [72], and

also Hull and White(1988) [57]. Fouque included both fast-scale and slow-scale

volatilities in the stochastic volatility model, and the techniques of singular per-

turbation and regular perturbation are combined to approximate the solution of

the multiscale volatility model [73]. The multiscale model can also be applied

to study default models and credit derivatives. In Fouque [74], et al. the au-

thors studied the specific credit derivative contract CDO under the framework

of singular-regular perturbation and the impact of volatility scales on the default

distribution of the set of firms. The asymptotic technique can also be applied

to price exotic options, Asian option driven by the stochastic volatility with dif-

ferent time scales. Incorporation of two scale processes in the Asian option will

result in a four-dimensional PDE. Using singular-regular perturbation, together

with the change of numeraire, will reduce the dimension of the problem [75]. The

asymptotic techniques we mention above are all first-order correction techniques.

For the second-order correction techniques, we refer the reader to a more recent

work of Fouque et. al. [76]. Asymptotic analysis extending to second order ap-

proximation will bring the difficulty of terminal layer regarding the singular per-

turbation, which is solved by imposing the average terminal condition according

to the ergodic theorem [77]. The multi-scale volatility can also fit in the portfo-

lio optimization, and the corresponding PDE portfolio optimization problem is a

non-linear Hamilton-Jacobi-Bellman PDE. By applying the singular-regular per-

turbation analysis together with the Taylor approximation, the high dimensional

non-linear PDE can be reduced to a low-dimensional linear PDE problem, which

is much easier to handle.
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2.6 Concluding Remark

In this section, we review both the financial and mathematical essentials, which

will be used later in the subsequent chapters. The relationship between the partial

differential equation and the option pricing is detailed in this chapter. According

to the Feynman-Kac theorem, the price of the derivatives can be determined by

a PDE under the risk-neutral assumption. Only if the stochastic process is a

martingale, the expectation of discounted payoff function can be solved from the

PDE. Several mathematical approaches can be used to solve the underlying par-

tial differential equation, including the Fourier transformation method, the finite

difference method, the finite element method, and the asymptotic method. Lit-

erature of derivative pricing problems has been reviewed. Though the extension

of the classical Black-Scholes model has been studied for years, further research

is still worthwhile to make the model more realistic. Thus, in the upcoming

chapters, more realistic models are developed and solved both analytically and

numerically.



CHAPTER 3

Option pricing under the jump diffusion

and multifactor stochastic processes

3.1 General

In this Chapter, we incorporate both multi-scale volatility processes and jump dif-

fusion process to price European options and discretely-sampled variance swaps

and solve the corresponding partial integral differential equation(PIDE) by ab-

sorbing the integral term into the test function of the FEM approach. Inclusion of

both the two-factors and the jump diffusion in the model results in a high dimen-

sional partial integral differential equation(PIDE), which is difficult to solve both

numerically and analytically. In order to reduce the dimension, we embedded our

variance swap problem into Little and Pant’s framework with some modification.

The payoff function of the variance swap is treated as a function of the current

stock price and the previous stock price, with the former following a stochastic

process, while the later being determined at the current time. In this case, four

three-dimensional PIDEs are reduced to a three dimensional partial differential

equation(PDE) in two different periods. For numerical solutions, we apply the

finite element method(PDE) to solve the partial integral differential equation sys-

tem. The chosen element is eight-nodal hexahedron, which can be seen as a tensor

product of three one-dimensional iso-parametric elements. This largely simplifies

the problem by absorbing the integral part in only one tensor(one dimensional

problem). The rest of the chapter is organised as follows. Section (3.2) introduces

the mathematical model and formulation. Section (3.3) presents the numerical

algorithm we apply in this model. Numerical results are given in section (3.4),

followed by a conclusion in section (3.5).

32
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3.2 Mathematical Formulation

The price of stock is assumed to follow the following stochastic process,

dS = rSdt+ f(y, z)Sdw
(0)
t + SdJS, (3.1)

where f(y, z) is a function of y and z which denote respectively the fast and

slow scale volatilities. If f(y, z) =
√
y +
√
z, the volality process is formed by

a CIR process; if f(y, z) =
√
y + 1/

√
z, the volatility is a 4/2 process, which

can be viewed as a combination of the CIR process and the 3/2 process, and the

assumption is in line with the consideration that the volatility should not be too

close to zero [13]. It is assumed that y and z follow the stochastic processes

dy =
1

ξ
α(y)dt+

1√
ξ
β(y)dw

(1)
t , (3.2)

dz = σc(z)dt+
√
σg(z)dw

(2)
t . (3.3)

The fast-scale and slow-scale volatilities are distinguished by the frequencies

of the observed volatility data, and Chacko and Viceria(2005) [37] suggested

to consider these volatilities simultaneously. Additionally, we assume that the

Brownian motion (w
(0)
t , w

(1)
t , w

(2)
t ) are correlated with the following correlation

Cov(w
(0)
t , w

(1)
t ) = ρ1, Cov(w

(0)
t , w

(2)
t ) = ρ2 and Cov(w

(1)
t , w

(2)
t ) = 0 for simplicity.

In this chapter, we consider both the European option and the variance swap.

For the case of European put option, the payoff function at the maturity time is

U(T, S, y, z) = max{K − S, 0}. (3.4)

Variance and volatility swaps are well known financial derivatives which allow

investors to trade the realized volatility against the current implied volatility.

Different from European options, variance swap and volatility swap are time-

dependent. This phenomenon indicates that the variance swap will boost the

gains and discount the losses, which explains why the variance swap is more at-

tractive than the volatility swap. The difference between the realized volatility

and the implied volatility is that the realized volatility σ2
R is calculated by apply-

ing the historical data of option prices, while the implied one is derived from the

prices of options.

The realized volatility is commonly approximated by the following two for-
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mulas:

σ2
R =

AF

N

N−1∑
i=0

(
Si+1 − Si

Si

)2

, (3.5)

or

σ2
R =

AF

N

N−1∑
i=0

(
ln(

Si+1

Si
)

)2

, (3.6)

where Si+1 denotes the underlying stock price at the (i + 1)th time step, AF is

the annualized factor and AF = 12 if the sampling frequency is every month. In

this chapter, we let AF = N
T

as a simplification. The payoff of the variance swap

is

V (T, x, y, z) = L ∗ EQ(σ2
R −K), (3.7)

which is equal to zero under the assumption of zero entry costs. Therefore, the

fair strike price can be defined as K = EQ[σ2
R]. As a result, the variance swap

pricing problem becomes calculating the expected value of the realized variance

in the risk neutral world.

We apply the dimension reduction technique due to Little&Pant[2001] [63] by

introducing a new variable It driven by the underlying process

It =

ˆ t

0

δ(ti−1 − τ)Sτdτ, (3.8)

where δ is the Dirac delta function, which means It = 0 if t < ti−1, and It = Si−1

if t ≥ ti−1. The terminal condition becomes

Ui(T, S, Y, Z, I) = (
Si
Ii
− 1)2. (3.9)

For the reason that we are more interested in the relationship between the ma-

turity time and the strike price, we construct a new variable X = ln(S/I), and

then obtain

Ui(T, S, Y, Z, I) = (eXi − 1)2. (3.10)

According to the Ito formula and (3.1), we obtain a new process

dx = µdt+ f(y, z)dw
(0)
t + dJ, i = 1, 2 (3.11)

If the problem in question is an European put option,

µ =

(
r − 1

2
f 2(y, z) + λ(1− E(ez))

)
, (3.12)
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and the payoff function is

U(T, S, y, z) = max{K(1− ex), 0}. (3.13)

If the investigated problem is a variance swap, we have two different situations,

µ = µ1 =

(
r − 1

2
f 2(y, z) + λ(1− E(ez))

)
, ti−1 ≤ t ≤ ti

µ = µ2 =

(
r − ex − 1

2
f 2(y, z) + λ(1− E(ez))

)
, 0 ≤ t ≤ ti−1, (3.14)

where E(ez) = pη1
1−η1 + (1−p)η2

η2+1
if the jump rate follows the double exponential

distribution as in Kou’s model with the density of

p(z) = pη1e
−η1zIz≥0 + (1− p)η2e

η2zIz<0. (3.15)

In contrast to the model (3.1), which absorbs the jump in the stock process only,

the multidimensional jump process is more interesting. With this motivation,

we include the jump process in both the stock price process and the multi-scale

volatility process, namely

dy =
1

ξ
α(y)dt+

1√
ξ
β(y)dw

(1)
t + dJY , (3.16)

dz = σc(z)dt+
√
σg(z)dw

(2)
t + dJZ . (3.17)

However, incorporating more factors makes the model harder to tackle with, and

thus development of an efficient numerical method for high dimensional PIDE is

of great importance.

3.3 Algorithm of FEM

By using the Feynman-Kac theorem, we obtain the following partial differential

equation,

ut + Du+ Cu+ λ

ˆ
R

[u(x+ η)− u(x)]Γ(dη)− ru = 0 (3.18)
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with the infinitesimal generator of the three-dimensional Markov process (xt, yt, zt).

Let τ = T − t = time to expiry, we obtain

uτ −Du− Cu− λ
ˆ
R

[u(x+ η)− u(x)]Γ(dη) + ru = 0, (3.19)

with

Du(x) =
1

2
f 2(y, z)Uxx +

1

2

1

ξ
β2(y)Uyy +

1

2
σg(z)Uzz +

ρ1
1√
ξ
β(y)f(y, z)Uxy + ρ2

√
σf(y, z)g(z)Uxz + ρ12

√
σ√
ξ
β(z)g(z)Uyz, (3.20)

Cu(x) = µUx +
1

ξ
α(y)Uy + σc(z)Uz + λ

ˆ
R

U(x+ η)Γ(dη)− rU, (3.21)

which can be rewritten in vector form by

∂u

∂τ
−∇ · Ā∇u−D · ∇u+ (r + λ)u− λ

ˆ
R

u(x+ η)Γ(dη) = 0; (3.22)

where

Ā =


1
2
f 2(y + z) 1

2
1√
ξ
ρ1β(y)f(y, z) 1

2

√
σρ2g2(z)f(y, z)

1
2

1√
ξ
ρ1β(y)f(y, z) 1

2
1
ξ
ρ1β

2(y) 1
2
ρ12

√
σ√
ξ
β(z)g(z)

1
2

√
σρ2g(z)f(y, z) 1

2
ρ12

√
σ√
ξ
β(z)g(z) 1

2
σρ2g

2(z)

 ,

D =

 µi
1
ξ
α(y)

σc(z)

 , i = 1, 2.

In order to obtain option price, we have to solve the differential equation (3.22).

However, different from µ1, µ2 is a dynamic process which is related to time. Let

n = T
∇t , than (3.22) is divided into n different partial differential equations. We

can then solve them one by one and then substitute the solutions back into (3.7)

to obtain the σ2
R.

The weak form of (3.22) can be written as,

ˆ
Ω

(
∂u

∂τ
−∇ · Ā∇u−D · ∇u+ (r + λ)u− λ

ˆ
R

u(x+ η)

)
vdΩ = 0 (3.23)



3.3 Algorithm of FEM 37

Thus, by applying Green’s Theorem, we obtain

(
∂u

∂τ
, v)+(Ā∇u,∇v)−(D·∇u, v)−λ(

ˆ
R

u(x+η)Γ(dη), v)+(r+γ)(u, v) = 0 (3.24)

which is derived by using the divergence theorem
´

Ω
Ā∇u·∇v+∇·Ā∇uvdΩ =‚

Ā∇uv · −→n dS, and we assume that the test function vanishes on the boundary,

and (a, b) denotes inner product.

Let u =
∑n

i=1 ui(τ)φi, v =
∑n

j=1 ujφj, then we obtain the following ODE

system,

Mu̇+Du− Cu−Bu = 0, (3.25)

where the mass matrix M =
∑n

i=1(φi, φj), the matrix of the diffusion part D =∑n
i=1(A∇φi,∇φj), the matrix of the convection part C =

∑n
i=1(D · ∇φi, φj),

A = r
∑n

i=1(φi, φj),B =
∑n

i=1(Bφi, φj) denotes the matrix of the integral part,

Bφi = λ

ˆ
R

φi(x+ η, y, z)Γ(dη) = λ

ˆ
R

φi(x+ η, y, z)p(η)dη (3.26)

By applying the 8 node hexahedral elements,

φei =
1

8
(1 + εεi)(1 + ηηi)(1 + ζζi), (3.27)

with εi, ηi,ζi denoting the natural coordinates of the ith nodes. To be specific,

[xi, xi+1] is mapped to [−1, 1].

Therefore, the basis function can be seen as the tensor product of three one-

dimensional linear elements,

φei (x, y, z) = φei (x)φei (y)φei (z) (3.28)

Substituting (3.28) into (3.26), the integral term can be rewritten as

Bφi = λ

ˆ
R

φi(x+ η, y, z)p(η)dη = λ

ˆ
R

φi(x+ η)p(η)dηφi(y)φi(z) = Φi(x)φi(y)φi(z),

(3.29)

with the function Φi(x) = λ
´
R
φi(x + η)p(η)dη approximating by the finite ele-

ment interpolation,

Φi(x) ≈ InΦi(x) =
∑
l

Φi(xl)φl(x), (3.30)
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where

Φi(xl) =

ˆ
R

φi(xl + η)p(η)dη

=

ˆ xi+1

xi

φi(x̄)p(x̄− xl)dη

=
h

2

ˆ 1

−1

φi(ξ)p((
ξ

2
+ i− l)h)dξ

=
h

4

ˆ 1

0

ξp((
ξ

2
+ i− l − 1

2
)h)dξ +

h

4

ˆ 1

0

(1− ξ)p((ξ
2

+ i− l)h)dξ, (3.31)

where p(·) is a double exponential density function and according to (3.28),

Φi(xl) is determined by the relationship between integers i and l. By simple

calculation, we obtain
pλ

4η1h
e−η1(i−l−1)h(e−

η1h
2 − 1)2 i− l ≥ 1

1
4
λ+ pλ

4η1h
(e−fracη1h2 − 1) + (1−p)λ

4η2h
(e−

η2h
2 − 1) i = l

(1−p)λ
4η2h

e−η2(i−l−1)h(e−
η2h
2 − 1)2 i− l ≤ −1

Therefore, B can be seen as a kronnecker product of inner products in three

dimensions,

B = Bx ⊗By ⊗Bz =
n∑
i=1

(Φi(x), φj(x))(φi(y), φj(y))(φi(z), φj(z)), (3.32)

By allowing the jump term in the volatility processes, as shown in model (3.16),

we obtain B in the following form under the assumption of independence,

B = Bx ⊗By ⊗Bz =
n∑
i=1

(Φi(x), φj(x))(Φi(y), φj(y))(Φi(z), φj(z)), (3.33)

Let R = D − C +B, then (3.25) can be written as

Mu̇+Ru = 0. (3.34)

To solve the ODE system (3.34), we simply apply the backward Euler method,

considering its unconditional stability property,

(
M

M t
+R)Un+1 = Un. (3.35)
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3.4 Numerical results and Discussion

In this section, we present our numerical results for European options and variance

swaps taking into account both multiscale volatility and jump properties. Firstly,

we start simulating both the stock price process and the multiscale volatiliy pro-

cesses to show the motivation of our study. Then we apply the FEM algorithm

to solve the three dimensional PIDE. The validity of our algorithm is verified

by comparing our results with the results of the two factors Heston Model [78].

Pricing of variance swap is also studied in this chapter as an application.

3.4.1 Validility and Motivation of Our Model

To show the motivation of our model, we firstly apply Monte Carlo simulation to

generate a sample path of the stock price. Figure 3.1 is the stock price generated

by the model (3.1) and (3.2) by the classic Euler Maruyama Method [79]. As we

can see from the figure, the asset process is a martingale process with upward

sloping. Figure 3.2 shows the underlying trajectory of the fast scale volatility

process, which is highly oscillated due to the small fast-scale rate ξ = 0.01. The

slow scale volatility is simulated in Figure 3.3 with the slow scale rate σ = 0.01.

Figure 3.1: Simulation of Stock Price Process

The jump term is driven by the compound possion process, as shown in Figure

3.4 with the jump intensity λ = 15. The incorporation of the jump process in

both stock price processes has practical significance, as shown in Figure 3.5.

In terms of the algorithm validity , we apply our FEM method to solve the

model and compare the result with the semi-analytical result shown in [78]. It is
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Figure 3.2: Simulation of Fast-scale Volatility Process

Figure 3.3: Simulation of Slow-scale Volatility Process

Figure 3.4: Simulation of Jump

seen from figure 3.6 that our result is well fitted.

dS = rSdt+
√
V1Sdz1 +

√
V2Sdz2, (3.36)

dV1 = (m1 − b1V1)dt+ δ1

√
V1dz3, (3.37)

dV2 = (m2 − b2V2)dt+ δ2

√
V2dz4, (3.38)
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Figure 3.5: Simulation of Stock Price Process with Jump

However, analytic solution only exsited for some special cases if we can find the

characterist function. For other models, it is not possible to obtain.

Figure 3.6: Comparison FEM with Semi-analytic solution
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3.4.2 The Effects of Multiscale Volatility and Jump Term

Our method is applied to solve the option price of the classical European option

model (3.13) as well as the strike price of variance swaps with the payoff function

shown in (3.10). To be specific, let α(y) = k1(a1 − b1 ∗ y), β(y) = δ1
√
y, α(y) =

k2(a2− b2 ∗ y), β(y) = δ2

√
z, f(y, z) =

√
y +
√
z. Both the fast-scale process and

the slow scale process are assumed to be mean reverted process. The parameters

we selected are from the calibrated results of JP.Fouque et. al. [80]. The param-

eters are shown in table 3.1. The jump process here is assumed to be a double

exponential process with η1 = 25, η2 = 50, p = 0.3.

Table 3.1: Parameters of model

k1 m1 ρ1 σ1

17.38863 0.04480 −0.99000 3.70537
k2 m2 ρ2 σ2

16.20866 0.04275 −0.82897 2.77650

For λ = 0, our model reduces to the original multiscale volatility model by

JP.Fouque, et.al. [73]. Figure 3.7(a) and figure 3.7(c) are the surface plot of the

option price and strike price of the variance swap when z is fixed at 0.0278. If

both stock price and volatilities are all variables, we obtain the three dimensional

plot shown in figure 3.7(b) and figure 3.7(d).

When λ 6= 0, it can be seen from figure 3.8a and figure 3.8b that jump intensity

has significant effect onto option. Hence, our model is more general compared to

multi-factor Heston model. The option price increases with the jump intensity

λ, mainly because the growth of jump intensity leads to large uncertainty and

risk exposure rate, which offers investors more possibilities to be in the money.

Also, the jump terms can also be incorporated into both fast scale volatility and

slow scale volatility processes. The change of the option price, though small. can

be seen from figure 3.9. In figure 3.9 , MSJ denotes the multi-scale stochastic

volatility model with jump in the stock price process, MS1J denotes the MSJ

model with one jump term in the fast scale volatility, MSV2J denotes the MSJ

model incorporating jump terms in each of the three processes.

Different from jump, the effects of stochastic volatility is a combination result.

The effects of fast scale rates are displayed in figure 3.10a. while the effects of

the slow scale rate are shown in figure3.10b. As we can see from figure 3.10a,

the option price increases with the fast-scale rate. While in figure 3.10b, the

option price decreases with the slow scale rate, and the effects of the fast-scale

rate outweigh the effects of the slow-scale rate in a short period.
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(a) 2d View of European Put Option (b) 3d View of European Put Option

(c) 2d view of Strike Price of Variance
Swap

(d) 3d view of strike price

Figure 3.7: Option Price

(a) 1d View of Jump Effect (b) 2d View of Jump Effect

Figure 3.8: The Effect of Jump Intensity Rate λ

We also study the fair strike price of variance swap. Figure 3.11 shows the

relationship between the strike price and the maturity time of variance swap,

which is anti-correlated due to the introduction of fast and slow scale volatilities.

The fast scale and slow scale rate chosen in this analysis is ξ = 0.01 and σ = 0.1

separately. The result verifies that volatility provides a measure of risk exposure.
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Figure 3.9: Option price Comparison with Jump including in Different Process

(a) Fast-scale Rate Effect (b) Slow-scale Rate Effect

Figure 3.10: Effects of Fast-scale Rate and Slow-scale Rate

The longer the investors hold the contract, the higher risk they are exposed.

Figure 3.11: Relationship between T and strike price
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3.5 Concluding Remarks

In this chapter, we apply the finite element method and the dimension reduction

technique to obtain the approximate solution for the price of classical European

options and the fair strike price for the prices of variance swaps under both

multi-scale stochastic volatility and jump diffusion process. The time scale rate of

stochastic volatility is used to describe the long term and short term perturbation

of volatility processes. Our numerical results compare well with those by Monte

Carlo simulation. Also, we find that the option price increases with the jump

rate and volatility value, which is in line with the reality. In terms of the effects

of multi-scale volatility, it is a combination result. As assumed in our model, the

volatility of the stock process is driven by both fast scale volatility and slow scale

volatility. The fast scale volatility is related to the short term volatility with high

frequency, while the slow scale volatility is related to the long term volatility and

is more smooth. The option price increases with the fast-scale rate and decrease

with the slow scale rate. The effect of the slow scale volatility outweighs the effect

of the fast scale volatility in a long run. Also, the strike price of variance swap

is anti-correlated with the maturity time. Volatility is a measure of risk, and the

strike price falls when the maturity time increases. The significance of this work

is in two aspects. First of all, the exact solution can only be obtained for specified

models. For most PDE, especially the high dimensional ones, closed form solution

is hard to obtain, which makes the numerical approach necessary. Besides, even

though most work has already considered the stochastic volatility, multi-factors

in volatility has not yet been tackled due to the high dimensional difficulties. We

combine both multi-scale rate and jump process to make the result more reliable.

Furthermore, the numerical method and the dimension reduction technique are

established in this chapter and it can also be applied to solve some other three

dimensional pricing problems.



CHAPTER 4

The Study of Utility Valuation of

Single-name Credit Derivatives with the

Fast-scale Stochastic Volatility

Correction

†

4.1 General

In this work we study the credit risk pricing problem in the framework of the struc-

tural model and utility-based portfolio selection, as the payoff of financial deriva-

tives might be replicated by varying trading strategies of the underlying assets

in a complete financial market. The subject of portfolio optimization has a long

history dated back to 1971 [81], in which the author provided an explicit scheme

to allocate investment capital between risky stocks and riskless bond. Within

the framework, the underlying asset was driven by a stochastic process, which

was later known as the Black-scholes model. Nonetheless, the main disadvantage

of the Black-sholes and Merton’s model is the over-restrictive assumptions, espe-

cially the assumption of constant interest rate and constant volatility. A great

number of extensions had been made in recent years. Heston (1993) [10] took into

account the stochastic volatility and derived a semi-analytic solution for the Eu-

ropean call option by introducing a characteristic function, allowing the arbitrary

correlation between the volatility and asset price. Longstaff and Schwartz (1995)

†Copyright permission: in appendix
Shican Liu& Yanli Zhou, Benchawan Wiwatanapataphee ,YongHong Wu, Xiangyu Ge, ’The
Study of Utility Valuation of Single-Name Credit Derivatives with the Fast-Scale Stochastic
Volatility Correction, Sustainability, 10(4):1027, DOI: 10.3390/su10041027
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incorporated stochastic short-term interest rate, which they found was negatively

correlated to the asset value process [82]. Fouque et al.(2003) [73] developed an

effective approximation of the option pricing problem through the incorporation

of the multiscale volatility. However, attach the corresponding partial differential

equation for option pricing is linear, the equation related to the optimal control

problem is non-linear. For this reason, the asympotic theory was extended to

estimate the non-linear pricing problem by Fouque et al. (2015) [83].

The valuation mechanism used in our work is called indifference prices. The

so called indifference price is the amount of capital that the investor pays today,

so that difference between holding or not holding the derivatives is trivial. The

indifference approach was first introduced by Hodges and Neuberger(1989) [84]

and extended by Davis and Yoshikawa (2012) [85]. Its mechanism is based on the

utility function that is a twice continuously-differentiable one strictly increasing

and concave. Herein we consider the risk attitude of individuals by applying the

utility based models, and specifically assess the single-name credit default swap

(CDS) that could be treated as an insurance against the default of a reference

entity. CDS is written on a single-bond issued by a reference entity. The buyer

pays the seller a risk premium regularly and they in turn will get compensa-

tion if default happens. More details can be found in the work of Papageorgiou

and Sircar(2008) [86]. In comparison with the aforementioned work, our work

mainly features the following aspects. Firstly, we study the credit-derivatives

pricing considering the impact of both the default risk and fast-scale stochas-

tic volatility. Then, the problem is solved within the framework of utility-based

portfolio selection, which will lead to a high dimensional non-linear partial differ-

ential equation (PDE). As high dimensional non-linear PDEs are hard to solve

via existing methods, we then apply asymptotic approximation to reduce the high

dimensional non-linear PDE into low dimensional PDEs. Then, we present and

analyse our results in two specific cases and numerically analyse them.

4.2 Mathematical Model

Generally, there are two approaches for pricing credit derivatives, including the

structural model and the intensity-based model. Our work here is mainly based

on the intensity-based model(or reduced form model), in which defaults happen

at the jump process of Poisson intensity . We start our model with simple single-

name default-able bonds with fast stochastic volatilities and then extend it to

multi-name and multi-scale cases.
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Unlike the traditional structural model, our model is based on the assumption

that default happens at an unpredictable stopping time τ with stochastic intensity

process λ, which incorporates information from the firm’s stock price S and is

called a hybrid model. The stock price S follows a geometric Brownian motion

with the intensity process λ(Zt) ,where λ(·) is a non-negative, locally Lipschitz,

smooth and bounded function. Our model takes the following form:

dSt
St

= µ(Yt)dt+ σ(Yt)dWt, (4.1)

dYt =
1

ξ
b(Yt)dt+

1√
ξ
a(Yt)dW

(1)
t , (4.2)

dZt = g(Zt)dt+ c(Zt)dW
(2)
t , (4.3)

where the Browning motion Wt,W
(1)
t ,W

(2)
t are correlated as follows:

Cov(Wt,W
(1)
t ) = ρ1, Cov(Wt,W

(2)
t ) = ρ2, Cov(W

(1)
t ,W

(2)
t ) = ρ12, (4.4)

in which ρ1 measures the correlation between the Brownian motion for the volatil-

ity Y and the Brownian motion for the stock prices, ρ2 measures the instantaneous

correlation between the Brownian motion for the stock price S and the Brownian

motion for the intensity process Z, and they satisfy |ρ1| < 1, |ρ2| < 1, |ρ12| < 1,

and 1+2ρ1ρ2ρ12−ρ2
1−ρ2

2−ρ2
12 > 0. When the parameter ξ is small, the stochastic

processes Yt and Zt represent the fast volatility process and the intensity process,

respectively. Here we assume that Y
(1)
t
ξ

is an ergodic diffusion process and has the

same unique invariant distribution as Yt , and for more details we refer the reader

to Section 4 of the reference by Fouque et al. [77]. The drift part of dYt is always

assumed to be mean-reverted with the long term drift θ, while the volatility of

volatility could be a constant σ so that the underlying distribution of dYt is a

normal distribution. However, other specific forms can also be fit in volatility, like

the CIR process, the 3
2

stochastic volatility process and the 4
2

stochastic volatility

process. In our work, we assume the constant volatility of volatility for simplicity.

The default time τ of the firm is defined by the first time when the cumulated

intensity reaches the random threshold ε.

τt = inf{s ≥ t :

ˆ s

t

λ(Zs)ds = ε}. (4.5)
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4.2.1 Maximal Expected Utility Problem

Let Xt be the wealth process and πt denote the money we invest in the stock at

time t, where t ∈ [0, T ], t < τ ∧ T , then the wealth process is as follows:

dXt = πt
dSt
St

+ r(Xt − πt)dt

= (rXt + πt(µ(Yt)− r))dt+ πtσ(Yt)dWt, (4.6)

where πt is Ft-measurable and satisfies the integrability constraint E
´ T

0
π2
sds <

∞. Under the utility form Ũ(X), the maximum expected utility payoff takes the

general form of

supπt∈AE{Ũ(e−rTXT )1{τ>T} + Ũ(e−rτXτ )1{τ≤T}}, (4.7)

where A is the set of π.

To simplify the formulation, we denote e−rTXt by Xt and µ − r by µ, then

the wealth process can be described by

dXt = πtµ(Yt, Zt)dt+ πtσ(Yt, Zt)dW
(1)
t . (4.8)

If default happens, stock of the firm cannot be traded, and investors have to liqui-

date holdings in the stock and deposit them in the bank account. For simplicity,

we assume that the investors get full amount of the liquidated pre-default stocks

and invest all of them into the bank account. Therefore, we obtain

XT = Xτe
r(T−τ). (4.9)

The problem here is to maximize the expected utility payoff at time zero, which

takes the form as follows:

V (t, x, y, z) = supπ∈AE{Ũ(XT )1{τt > T}+Ũ(Xτt)1{τt ≤ T} | Xt = x, Yt = y, Zt = z}
(4.10)

Proposition 4.1. The HJB equation of the value function is

Vt +
1

ξ
L†V + L‡V +

1√
ξ
ρ12a(y)c(z)Vyz +max{πµ(y)Vx +

1

2
π2σ2(y)Vxx

+
1√
ξ
πρ1σ(y)a(y)Vxy + ρ2Vxzπσ(y)c(z)}+ λ(z)(Ũ(x)− V ) = 0 (4.11)
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with V (T, x, y, z) = Ũ(x) and the operators L† and L‡ are defined by

L† = b(y)
∂

∂y
+

1

2
a2(y)

∂2

∂y2
(4.12)

L‡ = g(z)
∂

∂z
+

1

2
c2(y)

∂2

∂z2
. (4.13)

where x represents the wealth process, y is a stochastic volatility process, and z is

an intensity process.

Proof. The proof follows by the extension of the arguments used in Theorem 4.1

of Duffie and Zariphopoulou (1993) [87] and thus is omitted here. For more details

and applications, we refer the reader to Sircar and Zariphopoulou (2007) [88] ,

Sircar and Zariphopoulou(2010) [89], and Brémand (1981) [90].

4.2.2 Bond Holder’s Problem and Indifference Price

In this section we assume that the investor owns a bond of the firm, which is

defaultable and pays 1 dollar at maturity. We then construct a similar problem,

i.e.,

U(t, x, y, z) = supπ∈AE{Ũ(XT+c)1{τt > T}+Ũ(Xτt)1{τt ≤ T} | Xt = x, Yt = y, Zt = z}
(4.14)

where c denotes e−rT .

Proposition 4.2. The HJB equation of Bond Holder’s value function is

Ut +
1

ξ
L†U + L‡U +

1√
ξ
ρ12a(y)c(z)Uyz +max{πµ(y)Ux +

1

2
π2σ2(y)Uxx

+
1√
ξ
πρ1σ(y)a(y)Uxy + ρ2Uxzπσ(y)c(z)}+ λ(z)(Ũ(x)− U) = 0, (4.15)

with U(T, x, y, z) = Ũ(x+ c).

We can then have the following definition

Definition 1.1. The indifference price to an investor is defined at time zero by

V (0, x, y, z) = U(0, x− p0, y, z), (4.16)

which aims to keep the utility indifference between holding or not holding the

bond. The bond holder should lower the initial wealth level. And the yield spread

is defined as

y0(T ) = − 1

T
log(p0(T ))− γ, (4.17)
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which is non-negative for all T > 0 and p0(T ) represents the indifference price at

time T .

4.3 Asymptotic approximation

We start our analysis under exponential utility, as we found that the analytic

form of solution can be obtained for an exponential affine structure. Analysis

for the problem with the constant-relative risk aversion(CRRA) utility is shown

in section 4.6. By the necessary condition for extreme values, we obtain the

maximizer π∗ for the optimization problem (4.11), namely

π∗ = −
1√
ξ
ρ1σ(y)a(y)Vxy + µ(y)Vx + ρ2σ(y)c(z)Vxz

σ2(y)Vxx
. (4.18)

Substituting (4.18) into (4.11), we obtain the following non-linear PDE,

Vt +
1

ξ
L†V + L‡V +

1√
ξ
ρ12a(y)c(z)Vyz

−
[θ(y)Vx + 1√

ξ
ρ1a(y)Vxy + ρ2c(z)Vxz]

2

2Vxx
+ λ(z)(−e−γx − V ) = 0,(4.19)

where

θ(y) =
µ(y)

σ(y)
. (4.20)

It is hard to get the explicit solution of the non-linear PDE. Thus, we use the

perturbation method to solve the problem.

Firstly, we expand the V as follows

V ξ = V (0) + ξ1/2V (1) + ξV (2) + ξ3/2V (3) + · · · (4.21)

We assume that the fast-scale correcting rate ξ is positive and ξ << 1. According

to Fouque [91], the fast mean reverting stochastic volatility with small time-scale

can be viewed as a singular perturbation. Thus, asymptotic approximation can be

applied to approximate the solution of (4.19), and according to the perturbation

theory, the asymptotic solution of (4.19) consists of the leading term and a first

correction term.

Substituting (4.21) into (4.19) and then extracting the coefficient of the term
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ξ−1 , we obtain

L†V (0) +
(ρ1a(y)V

(0)
xy )2

2V
(0)
xx

= 0. (4.22)

As L†is a differential operator with respect to y as defined in (4.12), we can prove

that V (0) is independent of y.

Similarly, by extracting the coefficients of ξ−
1
2 , we obtain

L†V (1)+ρ12a(y)c(z)V (0)
yz −

ρ1ρ2a(y)c(z)θ(y)V
(0)
z V

(0)
xz V

(0)
xy

2V
(0)
xx

+
(ρ1a(y)V

(0)
xy )2

2V
(0)
xx

∗V
(1)
xx

V
(0)
xx

= 0

(4.23)

We can prove that V (1) is independent of y, which means V (0) and V (1) are

functions of t and x. The variable y is involved only in the expansion of the term

V (2).

By extracting the coefficient of the term ξ0, we obtain

V
(0)
t + L†V (2) + L‡V (0) +NL(1) + λ(z)(−e−rx − V (0)) = 0. (4.24)

By extracting the coefficient of the term ξ
1
2 , we obtain

V
(1)
t + L†V (3) + L‡V (1) +NL(2)− λ(z)V (1) = 0. (4.25)

Now we consider the expansion about NL(i)(i = 1, 2). By using the Taylor

expansion and the fact that V (0)andV (1) are independent of y, we get

NL(i) = −
[θ(y)Vx + 1√

ξ
ρ1a(y)Vxy + ρ2c(z)Vxz]

2

2Vxx

= −[θ(y)(V (0)
x +

√
ξV (1)

x ) +
1√
ξ
ρ1a(y)(V (0)

xy +
√
ξV (1)

xy ) + ξV (2)
xy

+ ρ2c(z)(V (0)
xz +

√
ξV (1)

xy )]2
1

2V
(0)
xx

(1−
√
ξ
V

(1)
xx

V
(0)
xx

− ξV
(1)
xx

V
(0)
xx

)

= − 1

2V
(0)
xx

[θ(y)V (0)
x + ρ2c(z)V (0)

xz ]2 −
√
ξ{− V

(1)
xx

2(V
(0)
xx )2

[θ(y)V (0)
x + ρ2c(z)V (0)

xz ]2

+
1

V
(0)
xx

[θ(y)V (0)
x + ρ2c(z)V (0)

xz ][θ(y)V (1)
x + ρ1a(y)V (2)

xy ]} (4.26)

Then we have

NL(1) = − 1

2V
(0)
xx

[θ(y)V (0)
x + ρ2c(z)V (0)

xz ]2, (4.27)



4.3 Asymptotic approximation 53

and

NL(2) =
V

(1)
xx

2(V
(0)
xx )2

[θ(y)V (0)
x + ρ2c(z)V (0)

xz ]2

− 1

V
(0)
xx

[θ(y)V (0)
x + ρ2c(z)V (0)

xz ][θ(y)V (1)
x + ρ1a(y)V (2)

xy + ρ2c(z)V (1)
xz ].(4.28)

4.3.1 Analysis of the Zero-strategy leading term

From Fredholm’s Alternative solvability condition specified in equation (4.24) in

Fouque et al. (2011) [77], we obtain

V
(0)
t + L‡V (0) − (θ̂V (0) + ρ2c(z)V

(0)
xz )2

2V
(0)
xx

+ λ(−e−γx − V (0)) = 0, (4.29)

where

V (t, x, y, z) = −e−γx (4.30)

The equation(4.24) can be simplified by a distortion scaling

V (0)(t, x, z) = −e−γxM(t, z)
1

1−ρ22 , (4.31)

to become

Mt + L̃‡M − (1− ρ2
2)(
θ2

2
+ λ)M − λ(1− ρ2

2)Mα = 0, (4.32)

where

α =
ρ2

2

ρ2
2 − 1

, L̃‡ = L‡ − ρ2θ̂c(z)
∂

∂z
. (4.33)

The only difference between holding or not holding the bond is the initial condi-

tion of the leading term. The differential equation follows:

U
(0)
t + L‡U (0) − (θ̂U (0) + ρ2c(z)U

(0)
xz )2

2U
(0)
xx

+ λ(−e−γx − U (0)) = 0, (4.34)

where

U(t, x, y, z) = −e−γ(x+c) (4.35)

The above equation can be simplified by a distortion scaling

U (0)(t, x, z) = −e−γ(x+c)N(t, z)
1

1−ρ22 , (4.36)
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to become

Nt + L̃‡N − (1− ρ2
2)(
θ̂2

2
+ λ)N − λ(1− ρ2

2)eλcNα = 0, (4.37)

where

α =
ρ2

2

ρ2
2 − 1

, L̃‡ = L‡ − ρ2θ̂c(z)
∂

∂z
. (4.38)

4.3.2 Analysis of the fast modification term

Firstly, we give the following notations

φ1 = −θ(y)V
(0)
x + ρ2c(z)V

(0)
xz

V
(0)
xx

∂

∂x
, (4.39)

φ2 = [
θ(y)V

(0)
x + ρ2c(z)V

(0)
xz

V
(0)
xx

]2
∂2

∂x2
. (4.40)

Thus, the non-linear term of (4.25) can be rewritten as

L†V (3) +V
(1)
t +L‡V (1) +

1

2
φ2V

(1) +θφ1V
(1) +ρ1aφ1V

(2)
y −λ(z)V (1) +ρ2cφ1V

(0)
z = 0.

(4.41)

Similarly, by using φ1 and φ2, equation (4.24) can be written as

L†V (2)+V
(0)
t +L‡V (0)−λ(z)V (0)+φ2V

(0)+θφ1V
(1)+ρ2cφ1V

(0)
z = λ(z)e−γx. (4.42)

By using the Fredholm Alternative theorem as before, we obtain

V
(1)
t +L‡V (1) +

1

2
φ̂2V

(1) + ˆθφ1V
(1)− λ(z)V (1) + ρ2cφ̂1V

(0)
z = −ρ1

ˆaφ1V
(2)
y . (4.43)

V
(0)
t + L‡V (0) +

1

2
φ̂2V

(0) + ˆθφ1V
(0) − λ(z)V (1) + ρ2cφ̂1V

(0)
z = λe−γx. (4.44)

By comparing the above two equations , we establish that

V (1) = −(T − t)ρ1
ˆaφ1V

(2)
y + c(t, x), (4.45)

where V (2) is a function of V (0) and c(t, x) can be determined by substituting

(4.45) into (4.43) .
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4.4 Analysis of Fast-scale Correction under the

Exponential Utility Assumption

For simplification of the problem, we assume λ to be a constant. Firstly, we

consider our problem under the fast mean-reverting stochastic volatility, namely

assuming that the volatility of the stock process is only related to Y . We then

have the following model:

dSt
St

= µ(Yt)dt+ σ(Yt)dWt, (4.46)

dYt =
1

ξ
b(Yt)dt+

1√
ξ
a(Yt)dW

(1)
t . (4.47)

4.4.1 Fast-scale expansion for single name derivatives

The HJB equation (4.11) is transformed into the following form

V ξ
t +

1

ξ
L†0V ξ + λ(−e−γx − V ) + FV = 0, (4.48)

where

FV = supπt∈A[πtµ(y)Vx +
1

2
(πt)

2σ(y)2Vxx + πt
1√
ξ
ρ1a(y)σ(y)Vxy] (4.49)

By solving the optimization problem in (4.49) , we obtain π∗t as follows

π∗t = − µ(y)

σ2(y)

Vx
Vxx
− 1√

ξ
ρ1
a(y)

σ(y)

Vxy
Vxx

. (4.50)

Substituting (4.50) into (4.48),the non-linear equation becomes

V ξ
t +

1

ξ
L†0V ξ −

(θ(y)V ξ
x + ρ1a(y)√

ξ
V ξ
xy)

2

2V ξ
xx

+ λ(−e−rx − V ) = 0, (4.51)

where

θ(y) =
µ(y)

σ(y)
. (4.52)

Then we can look for an expansion of the value function:

V ξ = V (0) +
√
ξV (1) + ξV (2) + ξ3/2V (3) + · · · . (4.53)
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By Substituting (4.53)into(6.31) and collecting the coefficients of the terms ξ−1

and ξ−
1
2 , we can get the conclusion that V (0) and V (1) are independent of Y .

From the coefficients of the constant term and the term ξ−1, we get the following

two equations:

V
(0)
t + L†0V (2) − 1

2
θ2(y)

(V
(0)
x )2

V
(0)
xx

− λV (0) = λe−rx, (4.54)

V
(1)
t + L†0V (3) −NL(1)− λV (1) = 0, (4.55)

where

NL(1) = −θ(y)

V
(0)
xx

V (0)
x [λ(y)V (1)

x + ρ1a(y)V (2)
xy ] +

V
(1)
xx

2(V
(0)
x )2

θ2(y)(V (0)
x )2. (4.56)

From Fredholm’s alternative solvability condition, we get

V
(0)
t − 1

2
θ̂2 (V

(0)
x )2

V
(0)
xx

− λV (0) = λe−rx, (4.57)

V
(1)
t − < NL(1) > −λV (1) = 0. (4.58)

where < · > denotes the average of y. From equation(4.57),we get the leading

term V (0),and from (4.44), we can get the relationship between V (0) and V (1),and

then we can get the approximation of V ξ.

Proposition 4.3. The explicit solution of equation (4.57) is

V (0)(t, x) = − λ
1
2
θ̂2 + λ

e−γx + (1− λ
1
2
θ̂2 + λ

)e−( 1
2
θ̂2+λ)(T−t)e−γx, (4.59)

where θ̂ is the average value of θ(y) with the distribution of Π, namely

θ̂ =

ˆ
θ(y)Π(dy) (4.60)

Proof. We firstly transform the PDE by averaging θ(y). Because V (0) is indepen-

dent of y, we get the following PDE from (4.57),

V
(0)
t − 1

2
θ̂2 (V

(0)
x )2

V
(0)
xx

− λV (0) = λe−γx, V
(0)
T = e−γx (4.61)
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By making the substitution of V
(0)
T = −e−γxM ,we get the following ODE,

Mt − (λ+
1

2
θ̂2)M = −λ, MT = 1 (4.62)

Then we can obtain the solution of (4.57) by solving the above equation.

We then introduce

R(0) = −V
(0)
x

V
(0)
xx

(4.63)

Dk = (R(0))k
∂k

∂xk
, k = 1, 2, · · · (4.64)

L†et,x,y =
∂

∂t
+

1

2
θ2(y)D2 + θ2(y)D1 − λ (4.65)

L†et,x =
∂

∂t
+

1

2
θ̂2D2 + θ̂2D1 − λ (4.66)

Equations (4.54)and (4.57) become

L†0V (2) + L†t,x,yV (0) = λe−γx, (4.67)

L†t,xV (0) = λe−γx. (4.68)

Subtracting (4.67)by (4.68), we get

V (2) = −η(y)(
1

2
D2 +D1)V (0), (4.69)

η(y) = L†−1
0 (θ2(y)− θ̂). (4.70)

Substituting (4.69)into(4.56), we can get the following proposition

Proposition 4.4. The value of the fast modification form is the solution of the

equation below,

L†et,x,yV (1) =
1

2
ρ1BD

2
1V

(0)(t, x), V (1)(T, x) = 0, (4.71)

whereB = θ(y)a(y)η(y).

Proof. As D2 = −D1,we have

V (2) = −η(y)(
1

2
D2 +D1)V (0) = −1

2
η(y)D1V

(0). (4.72)
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Based on (4.58) and (4.56), we have

V
(1)
t − 〈V

(0)
x

V
(0)
xx

θ(y)[V (1)
x + ρ1a(y)V (2)

xy ]− (V
(0)
x )2

2(V
(0)
xx )2

V (1)
xx θ

2(y)〉 − λV (1)

= V
(1)
t − 〈−θ(y)D1V

(1)
x − ρ1a(y)θ(y)D1V

(2)
y − 1

2
θ2(y)D2V

(1)〉 − λV (1)

= V
(1)
t + θ̂(y)D1V

(1) − 1

2
ρ1BD

2
1V

(0) +
1

2
θ̂2(y)D2V

(1) − λV (1), (4.73)

whereB = 〈a(y)θ(y)η
′
(y)〉.

Lemma 4.1. The operators L†et,x and D1 acting on smooth functions of (t, x)

commute:

L†et,xD1 = D1L†et,x. (4.74)

Proof.

D2D1−D1D2 = (R(0))2 ∂
2

∂x2
(R(0)wx)−R(0) ∂

∂x
((R(0))2wxx) = (R(0))2R(0)

xxwx (4.75)

L†et,xD1w = (
∂

∂t
+

1

2
θ̂2D2 + θ̂D1 − λ)D1w

= D1
∂

∂t
+

1

2
θ̂2D1D2 + θ̂D2

1 − λD1)w + (R
(0)
t +

1

2
θ̂2(R(0))2R(0)

xx )wx

= D1L†et,xw. (4.76)

From lemma 4.1 we can draw the conclusion that L†et,x(Dk
1V

(0)) = Dk
1L†et,xV (0),which

leads to the following proposition.

Proposition 4.5. The solution of (4.71) is

V (1) = −(T − t)1

2
ρ1BD

2
1V

(0)(t, x) + c(t, x), (4.77)

where B = θ(y)a(y)η′(y), and

c(t, x) = (
M ′

N ′
(T − t) +

M ′

N ′2
− M ′

N ′2
eN
′(T−t))e−γx, (4.78)

M ′ =
1

2
ρ1Bλγ

2, (4.79)

N ′ =
1

2
θ̂2(R(0))2 − θ̂R(0)γ − λ. (4.80)
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Proof. We firstly assume that the solution of (4.71) is

V (1) = −(T − t)1

2
ρ1BD

2
1V

(0)(t, x) + c(t, x). (4.81)

Substituting (4.81) into (4.71), we obtain

1

2
ρ1BD

2
1V

(0) − (T − t)1

2
ρ1BD

2
1L†t,xV (0) + L†t,xc(t, x) =

1

2
ρ1BD

2
1V

(0). (4.82)

Then we obtain

L†t,xc(t, x) = (T − t)1

2
ρ1BD

2
1L†t,xV (0). (4.83)

Because L†t,xV (0) = λe−γx, we obtain the PDE as follows

L†t,xc(t, x) = (T − t)1

2
ρ1Bγ

2λe−γx, c(T, x) = 0. (4.84)

Assume c(t, x) = A(t)e−γx, then we obtain

At +N ′A = (T − t)M ′, A(T, x) = 0, (4.85)

where

M ′ =
1

2
ρ1Bλγ

2, N ′ =
1

2
θ̂2(R(0))2 − θ̂R(0)γ − λ. (4.86)

The terminal condition here is arised from the condition V (1)(T, x) = c(T, x) = 0.

By solving the ODE for A,we get

A =
M ′

N ′
(T − t) +

M ′

N ′2
− M ′

N ′2
eN
′(T−t), (4.87)

and

c(t, x) = (
M ′

N ′
(T − t) +

M ′

N ′2
− M ′

N ′2
eN
′(T−t))e−γx. (4.88)

From the expansion (4.53), and the solution of V (0), V (1) and V (2), we obtain

V (ξ) = V (0) +
√
ξV (1) + ξV (2) + o(ξ

3
2 )

= (1−
√
ξ

1

2
(T − t)ρ1BD

2
1)V (0)(t, x) +

√
ξc(t, x) + o(ξ

3
2 ). (4.89)

Then we analyse the approximation of the maximizer π∗ as given in (4.50).
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Using Taylor expansion, we get

Vx
Vxx

=
V

(0)
x +

√
ξV

(1)
x

V
(0)
xx +

√
ξV

(1)
xx

=
1

V
(0)
xx

(V (0)
x +

√
ξV (1)

x )(1−
√
ξ
V

(1)
xx

V
(0)
xx

)

=
V

(0)
x

V
(0)
xx

+
√
ξ(
V

(1)
x

V
(0)
xx

− V
(0)
x V

(1)
xx

(V
(0)
xx )2

)

=
V

(0)
x

V
(0)
xx

+

√
ξ

V
(0)
xx

(cx +R(0)cxx)

=
V

(0)
x

V
(0)
xx

−
√
ξ

1

V
(0)
x

(D1 +D2)c+ o(ξ), (4.90)

and

Vxy
Vxx

=
V

(0)
xy +

√
ξV

(1)
xy + ξV

(2)
xy

V
(0)
xx +

√
ξV

(1)
xx + ξV

(2)
xx

= ξ
V

(2)
xy

V
(0)
xx

= −ξ 1

V
(0)
x

η(y)
1

2
D2D1V

(0)
y . (4.91)

Substituting the above into (4.50) yields

π∗ = −θ(y)

δ(y)

V
(0)
x

V
(0)
xx

+

√
ξ

V
(0)
x

[
θ(y)

δy
(D1 +D2)c+ ρ1η(y)

1

2
D1D2V

(0)
y ] (4.92)

Similarly, the solution of the bond holders’ problem is given in the following

properties,

Proposition 4.6. The leading term of the bond holder’s problem is

U (0) = − λ
1
2
θ̂2 + λ

e−γx + (1− λeγc

1
2
θ̂2 + λ

)e−( 1
2
θ̂2+λ)(T−t)−γ(x+c) (4.93)

where θ̂ is the average of θ(y) with respect to the distribution Π,namely

θ̂ =

ˆ
θ(y)Π(dy). (4.94)

The fast-scale modification term of the bond holder’s problem is

(1−
√
ξ

1

2
(T − t)ρ1BD

2
1)U (0)(t, x) +

√
ξC(t, x) + o(ξ

3
2 ), (4.95)
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where

C(t, x) = (
M ′

N ′
(T − t) +

M ′

N ′2
− M ′

N ′2
eD(T−t))e−γx. (4.96)

So the approximation of the bond holder’s value function is

U (ξ) = U (0) +
√
ξU (1) + ξU (2) + o(ξ

3
2 )

= (1−
√
ξ

1

2
(T − t)ρ1BD

2
1)U (0)(t, x) +

√
ξC(t, x) + o(ξ

3
2 ). (4.97)

4.5 Numerical Study of Exponential Utility

4.5.1 Analysis of the Value Function

The utility we use for Bond seller is exponential and is given by

V (x) = −e−γx, (4.98)

where γ > 0 represents the risk aversion parameter. We can prove that the utility

function is concave and increasing since

V ′(x) = γe−γx > 0, V ′′(x) = −γ2e−γx < 0. (4.99)

The concave property of the utility function implies that the bond seller is risk

aversion. The risk aversion rate is calculated by the Arrow-Pratt index,

AP [U ] := −U
′′(x)

U ′(x)
= γ, (4.100)

where the larger the γ is, the higher risk averse the agent is. The risk-tolerance

function at the terminal time T is

R(T, x) = −U
′

U ′′
=

1

γ
. (4.101)

4.5.2 The Effect of Volatility Correction

The formulation given above is in general form. To demonstrate the result graph-

ically, we consider a special case with all parameters specified at certain given

values, the mean-reverted process with constant volatility of volatility, as given
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Figure 4.1: Value Function of Bond Seller

Figure 4.2: Value Function of Bond Holder

below:

dSt
St

= Ytdt+
√
YtdWt, (4.102)

dYt =
1

ξ
(m1 − Yt)dt+

√
2

ξ
vdW

(1)
t . (4.103)

If Yt is an ergodic process, it has the distribution of N(m1, v
2). Assume that

m1 = 0.01, v2 = 0.25, ξ = 1
200

. Based on the definition of θ̂, we obtain

θ̂ =
1√
2πv

ˆ ∞
−∞

√
ye−

(y−m1)
2

2v2 dy (4.104)

According to (4.59) and (4.81), we get the solution of V (0), and also the fast

modification term of V (1). We then calculate the utility term as V (0) +
√
ξV (1).

The approximations to the value functions for bond seller and bond holder are

plotted respectively in figure 4.1 and figure 4.2.
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Figure 4.3: Leading Term Value Function

Figure 4.4: SV Modification Value Function

Also, since the bond pays $1 on maturity date T if the firm has survived till

then, the bond seller’s value function will be higher than the bond holder’s value

function. The comparison of the value functions of bonder seller and bond holder

are shown in figure 4.3 and figure 4.4. The Stochastic Volatility Model(SVM) in

figure 4.4 represents the Stochastic Volatility(SV) modification form,

The approximate indirect utilities V (0) or V (0)+
√
ξV (1) can also be represented

by their certainty equivalents U−1(V (0)) and U−1(V (0)+
√
ξV (1)), which are shown

in figure 4.5 and figure 4.6, In figure 4.1 and figure 4.2, the original value function

is denoted by blue solid line, while the dashed blue line is the value function with

stochastic volatility correction. We can see clearly that the correction line is

a little lower than the original line. In figure 4.3 and figure 4.4, we make a

comparison of the value function for holding and not holding the bond. Figure

4.3 shows the relationship of the value functions before SV correction while figure

4.4 shows the relationship of bond holder and bond seller’s value functions after

SV correction. Figure 4.5 and figure 4.6 show the certainty equivalent before or
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Figure 4.5: Certainty Equivalents of Bond Seller

Figure 4.6: Certainty Equivalents of Bond Holder
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after the correction. The certainty equivalent is solved from the indifferent utility

function, which is increasing with the wealth. The solid line in figure 4.5 and

figure 4.6 shows the certainty equivalent before the correction and the dashed

line shows the quantity after the correction.

Therefore, we can draw the conclusion that by adding a stochastic volatility

process into the model (4.103), the investor becomes more risk adverse. The

stochastic Volatility is lower than both the utility function and the certainty

equivalent. Also, as the bond holder will get a fixed pay at the maturity date

if default does not happen, the value function of the bond holder will be a little

higher than that of the bond seller. That is why we give the definition of indif-

ference price p0. By cutting down the initial wealth of bond holder, the expected

utility of bond holder should be the same as that of the bond seller. In the fol-

lowing subsection, we will analyse the indifference and yield spread numerically.

4.5.3 Analysis of yield spread

According to the definition 4.1, it is easy to calculate p0 and the yield spread.

Without the modification term, the indifference price p
(0)
0 is given by

p
(0)
0 = e−rT +

1

γ
ln

u− (1− u)e−( 1
2
θ̂2+λ)T

ueγc − (1− ueγc)e−( 1
2
θ̂2+λ)T

, (4.105)

where

u =
λ

1
2
θ̂2 + λ

. (4.106)

If γ takes the value of 0.05,0.1,0.25,0.5 and 0.75 respectively, we obtain the profile

of yield spread y0(T ) = − 1
T
log(p

(0)
0 (T ))− r as shown in Figure 7. It is noted that

the yield spread is not flat even though the intensity is a constant and this is due

to the effect of the intensity rate λ upon T . When T goes to infinity, yield spread

will converge to a long time level and become flat. As we can see from figure4.7,

the yield spread for the investor is upward sloping and is approximated to a long

time level due to the different maturity time.

4.6 Numerical Study of CRRA Utility

The utility we use from Bond seller is exponential and given by

V (x) = c0
x1−γ

1− γ
, (4.107)
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Figure 4.7: Yield Spread

where γ > 0 represents the risk aversion parameter. We can prove that the utility

function is concave and increasing since

V ′(x) = x−γ > 0, V ′′(x) = −γx−γ−1 < 0. (4.108)

The concave property of the utility function implies that the bond seller is risk

aversion. The risk aversion rate is calculated by the Arrow-Pratt index,

AP [U ] := −U
′′(x)

U ′(x)
= γ/x, (4.109)

where the larger the γ is, the higher risk averse the agent is. And the risk-tolerance

function at terminal time T is

R(T, x) = −U
′

U ′′
=

1

γ
x. (4.110)

In order to obtain the first correction of the CRRA utility, we solve the following

parabolic equation numerically,

V
(1)
t +

1

2γ2
θ̂2x2V (1)

xx +
1

γ
θ̂2xV (1) − λV (1) = f(T − t, x), (4.111)

with f(T − t, x) = (T − t)1
2
ρ1Bλc0D

2
1
x1−γ

1−γ , c(T, x) = 0, and terminal condition

V (1)(T, x) = 0. Let τ = T − t, we can obtain the weak form of (6.19),

(V (1)
τ , V ) +

1

2
θ̂2(x2V (1)

x , Ux)− θ̂2 1

γ
(1 +

1

γ2
)(xV (1)

x , U) + λ(V (1), U) = (f(τ, x), U).

(4.112)



4.7 Conclusion and Future Work 67

The basis function V (1) , the test function U and the function f can be approxi-

mated by the following form

V (1)(x, τ) =
N∑
i=1

ui(τ)Φi(x)

U(x) =
N∑
j=1

vjΦj(x),

f(x, τ) =
N∑
i=1

fi(τ) (4.113)

We then obtain the systems of ODEs,

MU̇ +RU = F,

U(0) = 0, τ ∈ [0, T ] (4.114)

where

M = (Φi,Φj);

R =
1

2
θ̂2(x2

i

∂Φi

∂x
,
∂Φj

∂x
)− θ̂2 1

γ
(1 +

1

γ2
)(xi

∂Φi

∂x
,Φj) + λ(Φi,Φj);

F = (fi,Φj) (4.115)

We then apply the backward Euler method to solve the above dynamic ODE

system and obtain

(
M

∆t
+R)Un+1 = M

Un
∆t

+ F. (4.116)

4.7 Conclusion and Future Work

In this paper we study the single-name bond under the stochastic intensity and the

stochastic volatility. In order to solve the non-linear PDE, we use the method of

asymptotic approximation. We establish the expression of leading term V (0), and

fast-scale modification term V (1). By comparing the leading term and the utility

with fast scale modification, we can draw the conclusion that by considering the

effects of the fast-scale volatility, investors become more and more risk aversive,

which lowers down their utility and increases the certainty equivalents. Also,

according to the analysis, we prove that the yield spread of the investor goes up

with the maturity time and converges to a long time level. The advantage of the
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asymptotic method is that it reduces the high dimensional problem into a lower

dimensional problem, which is relatively easy to solve. However, the limitation

of this approach is that it only works for a specific utility model, and for other

utilities, the analytic solutions may not be obtained so that numerical method is

needed. In our future research, the effect of multi-scale volatility and stochastic

interest rate will be taken into consideration.



CHAPTER 5

Variance Swap Pricing Under Multifactor

Stochastic Process

5.1 General

Variance and volatility swap is a well-known financial derivative which allows

investors to trade the realized volatility against the current implied volatility.

Long variance position will benefit when the realized volatility is higher than

the strike price, while the short variance position will benefit when the realized

volatility is lower than the strike price. The first volatility derivative was traded

in 1998 and flourished recently. Demeterfi et al.(1999) listed two main reasons

to trade volatility derivatives [16], such as the variance swap and the volatility

swap. Firstly, investigators may take long/short position of the variance swap

to hedge the risk exposure of trading volatility. Secondly, the variance swap

provides a possibility to speculate the spread of the realized volatility and the

implied volatility.

A lot of attempts have been made to value the variance swap both numerically

and analytically. Carr and Madan showed in their work that the price of a

volatility product can be replicated by a static position of call and put options

[92]. Ian Martin proposed a simple variance swap by letting the denominator

of the variance payoff be a forward price geometrically increased with time, and

derived the analytic solution following the work of Carr and Madan [93]. Broadie

and Jain investigated the analytic approximation of the fair strike price of a

continuous sampling variance swap driven by both the Merton jump and the

stochastic volatility process [94]. Numerical algorithms have also been applied to

study the option pricing problem of the variance swap [18,63]. Little&Pant(2001)

[63] applied the finite difference method(FDM) to solve the variance swap problem

based on the constant volatility assumption [3], in which a two-dimensional(2D)

69
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problem is reduced to a one-dimensional partial differential equation system.

This chapter studies the pricing of the discrete sampling variance swap tak-

ing into account the effect of imposing multi-scale stochastic volatility into the

stochastic process. A dimension reduction technique is applied along with the

generalized Fourier transform to solve the underlying partial differential equa-

tions, and the results show that the proposed model can capture the effects of

the fast and slow scale volatilities. Closed form solutions are obtained in both

partial correlated and full correlated stochastic volatility. Monte Carlo simulation

is also applied as a benchmark and we find that our approach is more efficient

than Monte Carlo simulation.

The rest of the chapter is organized as follows. Section 5.2 describes the model

of the underlying asset price, with the volatility following a multi-scale stochastic

process. Section 5.3 presents the algorithm used for this model. Numerical results

are presented in section 5.4, followed by conclusions in section 5.5.

5.2 Model Setup

The price of stock is assumed to follow the following stochastic process,

dS = µSdt+ f(y1, y2)Sdw
(0)
t , (5.1)

where f(y1, y2) are functions of two factors y1 and y2 respectively representing

fast and slow scale volatilities driven by the following processes,

dy1 =
1

ξ
α(y1)dt+

1√
ξ
β(y1)dw

(1)
t , (5.2)

dy2 = σc(y2)dt+
√
σg(y2)dw

(2)
t . (5.3)

The concept of fast-scale and slow-scale is distinguished by the frequencies of the

observed volatility data, and it is suggested to consider them simultaneously by

Chacko and Viceria[2005] [37]. In addition, we assume that the Brownian motion

(w
(0)
t , w

(1)
t , w

(2)
t ) are correlated with the following correlation Cov(w

(0)
t , w

(1)
t ) =

ρ1, Cov(w
(0)
t , w

(2)
t ) = ρ2 and Cov(w

(1)
t , w

(2)
t ) = ρ12, with ρ1, ρ2, ρ12 satisfying |ρ1| <

1, |ρ2| < 1, |ρ12| < 1, 1 + 2ρ1ρ2ρ12 − ρ2
1 − ρ2

2 − ρ2
12 > 0. Under the risk-neutral



5.2 Model Setup 71

assumption,the dynamic processes for S,y1 and y2 can be described as follows

dS = rSdt+ f(y1, y2)Sdw∗(0),

dy1 = (
1

ξ
α(y1)− 1√

ξ
Λ(y1)β(y1))dt+

1√
ξ
β(Y1)dw∗(1),

dy2 = (σc(y2)−
√
στ(y1, y2)g(y2))dt+

√
σg(y2)dw∗(2), (5.4)

where r is the risk-free interest rate, the functions τ = ρ2
µ−r
f

+ρ̄12ε+
√

1− ρ2
1 + ρ̄2

12η

and Λ = ρ1
µ−r
f

+
√

1− ρ2
1ε denote market prices of volatility.

There are two steps to convert (5.1) and (5.2) to (5.4). The first step is to

change the correlated Brownian motion (w
(0)
t , w

(1)
t , w

(2)
t ) into (w

(0)
t , w

⊥(1)
t , w

⊥(2)
t ),where

the second set is a orthogonal set, from which we can decompose the first set into

the following form,

w
(1)
t = ρ1w

(0)
t +

√
1− ρ2

1w
⊥(1)
t ,

w
(2)
t = ρ2w

(0)
t + ρ̄12w

⊥(1)
t +

√
1− ρ2

2 − ρ2
12w

⊥(2)
t , (5.5)

where it is easy to prove that ρ12 = ρ1ρ2 + ρ̄12

√
1− ρ2

1,

The second step is to change the set (w
(0)
t , w

⊥(1)
t , w

⊥(2)
t ) to (w

∗(0)
t , w

∗(1)
t , w

∗(2)
t ),

where the third set is the Brownian motion under the risk neutral assumption.

Applying the Girsanov Theorem, we obtain

w
∗⊥(0)
t = w

(0)
t +

ˆ t

0

µ− r
f

du,

w
∗⊥(1)
t = w

⊥(1)
t +

ˆ t

0

εdu,

w
∗⊥(0)
t = w

⊥(2)
t +

ˆ t

0

ηdu (5.6)

where µ−r
f
, ε, η are assumed to be the market price of risk. Substituting (5.5) and
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(5.6) into (5.4),we obtain

dS = rSdt+ f(y1, y2)Sdw⊥(0),

dy1 = (
1

ξ
α(y1)− ρ1

β√
ξ

µ− r
f
− β√

ξ

√
1− ρ2

1ε)dt

+
β√
ξ

(ρ1dw
∗⊥(0) +

√
1− ρ2

1dw
∗⊥(1)),

dy2 = (σc(y2)−
√
δg(ρ2

µ− r
f

+ ρ̄12ε+
√

1− ρ2
1 + ρ̄2

12η))dt

+
√
σg(ρ2dw

∗⊥(0) + ρ̄12dw
∗⊥(1) +

√
1− ρ2

1 − ρ̄2
12dw

∗⊥(2)) (5.7)

Then we obtain (5.4) with

Λ = ρ1
µ− r
f

+
√

1− ρ2
1ε,

τ = ρ2
µ− r
f

+ ρ̄12ε+
√

1− ρ2
1 + ρ̄2

12η.

Variance and volatility swap are well known financial derivatives which allow

investors to trade the realized volatility and unrealized variance against the cur-

rent implied volatility. Different from the European options, variance swaps and

volatility swaps are time-dependent.

To price the variance swap, we must distinguish the realized volatility from the

implied volatility. The realized volatility is calculated by applying the historical

data of option prices, while the implied one is derived from the prices of options.

The realized volatility is commonly calculated by the following two formulas, and

the two forms of approximation makes no difference if we assume the stock price

is a stochastic process driven by a Brownian motion.

We apply the dimensional reduction technique, as in Little&Pant[2001] [63],

by introducing a new variable It driven by the underlying process

It =

ˆ t

0

δ(ti−1 − τ)Sτdτ, (5.8)

where δ is the Dirac delta function, which means It = 0 if t < ti−1, and It = Si−1

if t ≥ ti−1. The terminal condition then becomes

Ui(T, S, Y, Z, I) = (
Si
Ii
− 1)2. (5.9)

In the next section, we will show that the use of I will reduce the dimension of

the problem and simplify the problem consequently.
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5.3 Pricing variance swaps under the multi-factor

Heston model

In this section, we derive a semi-closed form solution for the fair strike price Kvar

of a variance swap under a multi-factor Heston model. Kvar is approximated by

the expectation of the realized and unrealised variance,

Kvar = ET
0 [δ2

R] =
∑

i=1,··· ,N

fk, (5.10)

with fk = er∆tET
0 [
(
Sk−Sk−1

Sk−1

)2

].

First we assume T = k ∗∆t, k = 1, · · · , N . As mentioned before, the expecta-

tion value of the realized variance can be reduced to calculating N expectations

of
(
Sk
Ik
− 1)2

)
, with tk = k ∗∆t. There are two different situations:

If k = 1, and T = ∆t, we calculate f0 by the expectation

ET
0

[(
S1

I1

− 1

)2
]

(5.11)

If i = 2, · · · , N , and T = N∆t, we calculate fk by the expectation

ET
0

[
ET
i−1

[(
Si
Ii
− 1

)2
]]

. (5.12)

According to the definition of I, we deduce our problem into a two stage PDE

system, as detailed in the following subsections.

5.3.1 Partial Correlated Volatility

In this section, we assume that there are n different stochastic volatilities with

no correlation. When n = 1, our model is exactly the same as the Heston model

in [19]; when n = 2, it reduces to Heston’s two-factor model. To be more specific,

let αi(i) = ki(ai − bi ∗ y), i = 1, · · · , n, βi(i) = δi
√
yi, and assume both the fast-

scale process and the slow scale process to be the mean reverted CIR process.
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Then the model can be rewritten as

dS = rSdt+
n∑
i=1

fi(yi)Sdw
(i)
s ,

dyi = (
1

ξ
αi(yi)−

1√
ξ

Λ(yi)βi(yi)dt+
1√
ξ
βi(yi)w

i
y,

with Cov(w
(s)
i , w

(y)
i ) = ρi and Cov(w

(y)
i , w

(y)
j ) = 0, wheni 6= j. Here we assume

that the stochastic volatility is a mean-reverted process with the market price

of volatility Λ = βi√
ξδi

, therefore, the specific case of stochastic process can be

rewritten in the form of

dyi = k∗i (a
∗
i − b∗i yi)dt+ δi

√
yiw

i
y,

where a∗i = 1
ξ
ka
k+1

, k∗ = 1
ξ
(k + 1), and δ∗ = δi√

ξ

(A) The first stage of calculation

When T − ∆t < t < T , according to the Feynman-Kac theorem under the risk

neutral assumption, we obtain the following PDE,

Ut+
1

2

n∑
i=1

yiS
2USS+rSUS−rU+

n∑
i=1

[
1

2
δ∗2i yiUyiyi + k∗i (a

∗
i − b∗i ∗ yi)Uyi + ρiδ

∗
i yiSUSyi

]
= 0,

(5.13)

with the terminal condition

U = (
S

I
− 1)2. (5.14)

Let τ = T − t, x = ln(S), then (6.19) can be converted to the following form

Uτ−
1

2

n∑
i=1

yiUxx−(r−1

2

n∑
i=1

yiUx+rU−
n∑
i=1

[
1

2
δ∗2i yiUyiyi + k∗i (a

∗
i − b∗i ∗ yi)Uyi + ρiδ

∗
i yiUxyi

]
= 0,

(5.15)

with 0 < τ < ∆t and the initial condition U(x, yi, 0) = ( e
x

I
− 1)2. Taking the

Fourier transform with respect to x, equation (6.31) becomes

Vτ+
n∑
i=1

[
−1

2
δ2
i yiVyiyi + (k∗i ai − (bi − jwρiδ∗i )) yiVyi +

1

2

(
r − rjw + (w2 + jw)yi)

)
V

]
= 0,

(5.16)

where V (w, yi, t) = F(U(x, yi, t)), and j is the complex number and j2 = −1.

We assume that the solution of (5.16) is an affine process with the structure

of

V = eC(w,τ)+
∑n
i=1Di(w,τ)yiV (w, yi, 0). (5.17)
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Substituting (5.17) into (5.16), we obtain the following ODEs

∂Di

∂τ
=

1

2
δ∗2i D

2
i + (jwρiδ

∗
i − k∗i b∗i )Di −

1

2
(w2 + jw), i = 1, · · · , n (5.18)

∂C

∂τ
=
∑
i

k∗i a
∗
iDi − (r + rjw), (5.19)

with initial conditions C(w, 0) = 0, Di(w, 0) = 0. The above ODEs can be solved

analytically to yield

Di(τ) =
Ai +Bi

δ∗2i

1− eBiτ

1− gieBiτ
, (5.20)

where Ai = −k∗i (jwρiδ∗i − bi), Bi =
√
A2
i + δ∗2i k

∗
i (w

2 + jw), gi = Ai+Bi
Ai−Bi .

Dτ = AD2 −BD + C, (5.21)

where A = 1
2
δ2, B = −(jwρδ − kb), C = −1

2
(w2 + jw). By completing square

Dτ = A(D2 − B

A
D) + C

= A[(D2 − B

A
D)2 − B2

4A2
] + C

= A[(D2 − B

A
D)2 − B2 − 4AC

4A2
]

= A[(D2 − B

A
D) +

√
B2 − 4AC

4A2
][(D2 − B

A
D)−

√
B2 − 4AC

4A2
].

By simplification, we obtain

dD

A[(D2 − B
A
D) +

√
B2−4AC

4A2 ][(D2 − B
A
D)−

√
B2−4AC

4A2 ]
= dτ (5.22)

1

A

A√
B2 − 4AC

[
dD

D − B+
√
B2−4AC
2A

− dD

D − B−
√
B2−4AC
2A

]
. (5.23)

Thus,
2AD − (B +

√
B2 − 4AC)

2AD − (B −
√
B2 − 4AC)

= C0e
√
B2−4ACτ , (5.24)

where C0 can be denoted by the initial condition D(0, w) = 0,

C0 =
B +

√
B2 − 4AC

B −
√
B2 − 4AC

. (5.25)
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Substituting A,B and C into (5.20), and solving for D, we obtain

D =
a+ b

δ2

1− ebτ

1− gebτ
, (5.26)

with g = a+b
a−b .

In order to obtain the solution of U(x, yi, τ), we perform the inverse Fourier

transformation and obtain

U(x, yi, τ) = F−1[V (w, y, z, τ)] = F−1[eC(w,τ)+
∑2
i=1Di(w,τ)yiF [(

ex

I
− 1)])2], (5.27)

From the generalized Fourier transform defined by

F [eimx] = 2πδm(w), (5.28)

with δm(w) satisfying ˆ
δmφ(x)dx = φ(m), (5.29)

after some derivations, we obtain

U(x, yi, τ) =

ˆ
eC(w,τ)+

∑2
i=1Di(w,τ)yi

1

2π

[
δ−2j(w)

I2
− 2

δ−j(w)

I
+ δ0(w)

]
dw

=
e2x

I2
eC(−2j,τ)+

∑2
i=1Di(−2j,τ)yi − 2

ex

I
eC(−j,τ)+

∑2
i=1Di(−j,τ)yi + C(0, τ)

=
e2x

I2
eC(−2j,τ)+

∑2
i=1Di(−2j,τ)yi − 2

ex

I
eC(−j,τ) + e−r∆. (5.30)

with Di(−j, yi, τ) = 0.∂Ci(0,yi,τ)
∂τ

= −r.

(B) The second stage of calculation

When 0 < t < T − ∆t, we have ∆t < τ < T . We also know that Ii = Si−1 at

time ti−1. Thus, the maturity condition at time ti−1 reduces to

F (yi) = eC(−2j,∆t)+
∑2
i=1Di(−2j,∆t)yi − 2eC(−j,∆t) + 1, (5.31)

We assume that y1 and y2 are independent processes, then,

fk = ET
0 (F (yi)) = eC(−2j,∆t)g1g2 − 2eC(−j,∆t) + 1, (5.32)
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with gi = ET
0 (eDi(−2j,∆t)yi). According to the Feynman-Kac formula, fi, i = 1, 2

can be obtained by solving the following PDE,

∂gi
∂τ

=
1

2
δ∗2i

∂g2
i

∂y2
i

+ k∗i (a
∗
i − b∗i yi)

∂gi
∂y

, (5.33)

gi(yi,∆t) = eDi(−2j,∆t)yi ,∆t < τ < T. (5.34)

Similarly, we assume that the solution of (6.46) has an affine form of

gi = eLi+Hiyi . (5.35)

Substituting (6.48) into (6.46), we obtain the following ODEs,

∂Li
∂t

= k∗a∗1Hi, (5.36)

∂Hi

∂t
= −k∗Hi +

1

2
σ∗2H2

i , (5.37)

with the initial condition Li(Di(−2j,∆t),∆t) = 0 and Hi(Di(−2j,∆t),∆t) =

Di(−2j,∆t). By solving the equation, we obtain

Hi =
2k∗i
σ∗2i

e−lτ

e−k
∗
i τ − c0

, (5.38)

Li =
−2k∗i a

∗
i

σ2
∗i

ln(1− e−k
∗
i τ

c0

), (5.39)

with c0 = 1− 2k∗i
σ2
iDi(−2j,∆t)

.

Thus, the fair strike price is

Kvar = ET
0 [δ2

R] =
1002

T

[
f1 +

N∑
k=2

fk

]
, (5.40)

where

f1 = eC(−2j,∆)+
∑2
i=1Di(−2j,∆)yi − 2eC(−j,∆) + 1, (5.41)

fk = ET
0 (F (yi)) = eC(−2j,k∆t)g1g2 − 2eC(−j,k∆t) + 1, (5.42)

with gi, i = 1, · · · , n calculated by (6.48).
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5.3.2 Full Correlated Stochastic Volatility

In model (6.2), it is more realistic to assume that the fast-scale volatility and

slow-scale volatility are not mutually independent. However, the derivation of

the solution to the problem becomes more complex.

(A) The first stage of calculation

To specify our algorithm in detail, we assume that there are two volatilities.

When T − ∆t < t < T , according to the Feynman-Kac theorem under the risk

neutral assumption, we obtain the following PDE,

Ut + rSUS − rU +
1

2
δ∗1δ
∗
2ρ12
√
y1y2Uy1,y2 +

2∑
i=1

[
1

2
δ∗2i yiUyiyi + k∗i (a

∗
i − b∗i ∗ yi)Uy + ρiδ

∗
i yiSUSyi +

1

2
yiS

2USS

]
= 0, (5.43)

Let τ = T − t, x = ln(S), then (5.43) can be converted to the following form

Uτ − rUx + rU − 1

2
δ∗1δ
∗
2ρ12
√
y1y2Uy1,y2 −

2∑
i=1

[
1

2
δ∗2i yiUyiyi + k∗i (a

∗
i − b∗i ∗ yi)Uyi + ρiδ

∗
i yiUxyi +

1

2
yiUxx −

1

2
yi

]
= 0, (5.44)

By the Fourier transform with respect to x, from (5.44) we obtain

Vτ −
1

2
δ1δ2ρ12

√
y1y2Vy1,y2 +

2∑
i=1

[
1

2

(
r − rjw + (w2 + jw)yi)

)
V

]

+
2∑
i=1

[
−1

2
δ2∗
i yiVyiyi + (k∗i a

∗
i − (b∗i − jwρiδ∗i )) yiVyi

]
= 0, (5.45)

where V = F(U(x, y1, y2, 0)) is the Fourier transform of U with respect to x.

Substituting (5.17) into (5.45), we find that the Di is exactly the same as (5.20),

while Ci satisfies the following ODE,

∂C

∂τ
=
∑
i

k∗i a
∗
iDi − (r + rjw) +

1

2
δ∗1δ
∗
2ρ12
√
y1y2D1D2, i = 1, 2 (5.46)

with initial conditions Ci(w, 0) = 0.
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(B) The second stage of calculation

When 0 < t < T − ∆t, we have ∆t < τ < T . We also know that Ii = Si−1 at

time ti−1. Thus, the maturity condition at time ti−1 reduces to

F (yi) = eC(−2j,∆t)+
∑2
i=1Di(−2j,∆t)yi − 2eC(−j,∆t) + 1, (5.47)

As y1 and y2 are not independent processes, we have

fk = ET
0 (F (yi)) = ET

0 (eC(−2j,∆t)+
∑2
i=1Di(−2j,∆t)yi)− 2ET

0 (eC(−j,∆t)) + 1

= ET
0 (eC(−2j,∆t))ET

0 (e
∑2
i=1Di(−2j,∆t)yi)− 2ET

0 (eC(−j,∆t)) + e−r∆t,

(5.48)

with

ET
0 (eC(−2j,∆t)) = eE

T
0 (C(−2j,∆), (5.49)

ET
0 (eC(−j,∆t)) = eE

T
0 (C(−j,∆t), (5.50)

where C(w, τ) satisfies

∂C

∂τ
=
∑
i

k∗i a
∗
iDi − (r + rjw) + ρ12

1

2
δ∗1δ
∗
2E

T
0 (
√
y1y2)D1D2. (5.51)

As
√
y1y2 is not an affine structure, based on the work of [49], the variable yi(t)

is approximated by the normal distribution with

E(yi(t)) = ci(t)(di + λi(t)),

V ar(yi(t)) = c2
i (t)(2di + 4λi(t)), (5.52)

where ci(t) =
δ∗2i
4k∗i

(1− e−k∗i t), di(t) = 4k∗ai
δ∗2

, λi(t) = 4a∗iy0
δ2i

e−k
∗
i t

1−e−k
∗
i
t .

Therefore,

E(
√
yi(t)) = ci(di + λi − 1) +

cidi
2(di + λi)

(5.53)

V ar(
√
yi(t)) = ci −

cidi
2(di + λi)

(5.54)

Proof. According to the Taylor expansion, V ar(
√
yi(t)) can be approximated by

V ar(
√
yi(t)) ≈

V ar(yi(t))

4E(yi(t))
= ci −

cidi
2(di + λi)

; (5.55)
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As V ar(
√
yi(t)) = E(yi(t))− E2(

√
yi(t)), we obtain

E(
√
yi(t)) =

√
E(yi(t))− V ar(

√
yi(t)) = ci(di + λi − 1) +

cidi
2(di + λi)

, (5.56)

Let Z =
∑2

i=1Di(−2j, r)yi. Now we discuss the approximation of ET
0 (eZ),

ET
0 (eZ) =

ˆ ∞
i=−∞

eZe−(
Z−E(Z)
V ar(Z)

)2 ≈ eE(Z)+ 1
2
V ar(Z), (5.57)

with

E(Z) = Di(−2j, r)
2∑
i=1

E(yi) = Di(−2j, r)
2∑
i=1

ci(t)(di + λi(t)), (5.58)

V ar(Z) =
2∑
i=1

D2
i (−2j, r)V ar(yi) + 2D1(−2j, r)D2(−2j, r)ρ12Cov(y1, y2)

=
2∑
i=1

D2
i (−2j, r)c2

i (t)(2di + 4λi(t))

+ 2D1(−2j, r)D2(−2j, r)ρ12

√
c2

1(t)(2d1 + 4λ1(t))
√
c2

2(t)(2d2 + 4λ2(t))

(5.59)

Thus, the fair strike price

Kvar = ET
0 [δ2

R] =
1002

T

[
f1 +

N∑
k=2

fk

]
, (5.60)

where

f1 = eC(−2j,∆)+
∑2
i=1Di(−2j,∆)yi − 2eC(−j,∆) + 1, (5.61)

fk = ET
0 (eC(−2j,τ)+

∑2
i=1Di(−2j,τ)yi)− 2ET

0 (eC(−j,τ)) + 1, (5.62)

5.4 Numerical result

5.4.1 Partial Correlation Stochastic Volatility

The parameters shown in table 5.1 is calibrated by Christoffersen and Heston [78],

from which they distinguished the two factors model by the principal analysis.

We calculate the fair strike price Kvar by (5.60), and compare our result with the
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Table 5.1: Calibrated Parameters

b1 a1 σ1 ρ1

0.1500 0.0059 1.9829 −0.9902
b2 a2 σ2 ρ2

0.2335 0.1621 0.1971 −0.8918

approximation value by the continuous model by Swishchuk formula [18]. The

Swishchuk formula is extended to incorporate two factors, as shown in (5.63).

From figure 5.1, we find that the result from our approach is reasonable and the

fair strike price(Kvar) will approach 270 in a long run.

Kvar =
2∑
i=1

yi ∗
1− e−ki∗T

ki ∗ T
+ ai ∗

1− (1− e−ki∗T )

ki ∗ T
; (5.63)

Figure 5.1: Strike Price of Variance Swap

We also investigate the effect of fast-scale rate ξ and the slow-scale rate σ. In

table 5.2, we assume that it is daily sampled with AF = 252, and we find that

the effect of the scale-rate of the stochastic volatility is significant. The fair strike

price increases with the fast-scale rate ξ and decreases with the slow scale rate

σ, and the effect of the slow-scale rate outweighs the effect of the fast-scale rate.

5.4.2 Full Correlation Stochastic Volatility

In order to study the validation of our result, we firstly set ρ12 = 0, thus the full

correlated model reduces to a partial correlated model. We obtain the result as

shown in figure 5.2, and compare the result calculated by the second approxima-

tion(full correlated volatility) with the solution calculated by the first approxi-
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Table 5.2: The effects of fast and slow scale rate

ξ = 1 ξ = 0.5 ξ = 0.1 ξ = 0.05 ξ = 0.01
σ = 1 277.9368 278.8180 280.4146 284.5397 379.3164
σ = 0.5 237.5771 238.4511 240.0597 244.1794 338.9487
σ = 0.1 195.7911 196.6649 198.2734 202.3927 297.1543
σ = 0.05 152.5218 153.3956 155.3956 159.1228 253.8764
σ = 0.01 107.7001 108.5738 108.5738 114.3005 209.0458

mation(partial correlated volatility). The numerical integration of the Ci term is

calculated by the trapezoidal rule by MATLAB. We also compare our results with

those obtained from Monte Carlo simulation and the continuous approximation

(5.63). For the reason that the Monte Carlo simulation serves as a benchmark

in this section, we simply use the Euler Maruyama method without considering

the variance reduction technique. We find that our results are in good agreement

with those obtained by other methods, and the speed of our method is thousand

times faster than any kinds of numerical methods. The parameters we use is this

section is ki = 11.35, ρi = −0.64, yi = 0.005, ai = 0.022, bi = 1, sigmai = 0.618,

which satisfy Feller’s condition 2ka >> σ2. In this section, we also study the

Figure 5.2: Strike Price of Variance Swap

effect of the correlation. As shown in table 5.3, we compare the monthly, weekly,

and daily sampled fair strike price with different correlation rate ρ12. We find

that the incorporation of correlation rate will slightly change the value of fair

strike price.
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Table 5.3: The Effect of Correlation

ρ12 = 0 ρ12 = −0.5 ρ12 = 0.5
AF = 12 994.9997 994.5535 995.4609
AF = 52 506.6148 506.574 506.6557
AF = 252 421.345 421.3383 421.3518

5.5 Conclusion

This chapter incorporates both fast-scale volatility and slow-scale volatility to

study the pricing of the discrete sampled variance swap problem. A semi-closed

form solution is obtained by applying the generalized Fourier transform in both

the partial correlated model and the full correlated model. The Monte Carlo

simulation result and approximation of the continuous variance swap price are

used for the verification of our formula. we find that the effect of scale-rate is

significant. The fair strike price increases with the fast scale rate and decreases

with the slow scale rate. The effect of fast scale rate surpasses the effect of slow

scale rate in a short run. We also study the effect of the correlation rate, and

find that the effect of the correlation rate, though small, does exist. Negative

correlation between two volatility processes will lower down the fair strike price,

while the fair strike price increases slightly when the correlation value between

the two volatilities is positive.



CHAPTER 6

The Variance Swap Pricing Under

Hybrid Jump Model

6.1 General

This chapter investigates the pricing of discretely sampled variance swaps driven

by a generalized stochastic model taking into account both stochastic volatility

and jump. By proper selection of parameters, our model includes various existing

models as special cases, including the CIR model, the Heston-CIR model, and

the multifactor-CIR model. We deal with the integral term arising from the jump

diffusion process with the characteristic function through Fourier convolution, and

a semi-analytic solution is derived for pricing variance swap based on a generalized

high-dimensional hybrid model. The effects of stochastic interest rate, stochastic

volatility and jump rate are studied in this chapter.

The contribution of this work includes the following three aspects. Firstly, we

consider a more general model. With proper selection of parameters, our proposed

model covers various existing models as special cases, including the jump diffusion

model, the CIR interest rate model [21], the one-factor Heston-CIR model, and

the multi-factor-CIR Heston model. Besides, we take into consideration not only

the jump diffusion effects, but also the stochastic interest rate and the multi-

factor stochastic volatility process in the model. Different from Brodie&Jain’s

work [94], a semi-analytic solution of the discrete sampling variance swap is de-

rived by relating the associated partial integral differential equation with the

generalized Fourier transform. The integral term arising from jump diffusion is

solved by the Fourier convolution and the characteristic function. Furthermore,

inclusion of multi-factor processes results in a high dimensional partial differential

equation(PDE). We successfully reduce the dimension of the equation by embed-

ding our problem into the framework of Little and Pant(2001). The skew effects

84
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of correlation between different volatility processes are also investigated. To be

more specific in detail, the payoff function of the variance swap is treated as a

function of the current stock price and the previous stock price, with the former

following a stochastic process, while the later being determined at the current

time. In this case, the n-dimensional PDE is reduced to a n−1 dimensional PDE

in two different periods. We then apply the generalized Fourier transformation

based on the Cox and Ross work [21] to solve the first stage PDE system. In

comparison, the work by Lian and Zhu [19] only solves the problem involving

only the one-factor CIR process. For the partial correlated model, a semi-closed

form solution is derived by the assumption of affine structure. However, when

the model is fully correlated, non-affine item is included in our model, and in this

case, we approximate the expectation of the non-affine term utilizing the result

of Grzelak and Oosterlee’s work [49].

The rest of the chapter is organised as follows. In section 6.2, we first present

the models for stock price, volatility and interest rate, taking into consideration

of volatility and jump, then demonstrates the change of measure under the risk-

neutral assumption. In section 6.4, a semi-analytic solution is derived by applying

the generalized Fourier transform. Numerical results are given in section 6.5,

followed by a conclusion in section 6.6.

6.2 Mathematical Modelling

The price of stock is assumed to follow the following stochastic process,

dS = µSdt+ f(yi)Sdws + SdJS, i = 1, · · · , n (6.1)

It should be addressed that the return rate µ of the stock price is not necessary

equal to the risk-free rate r before the risk-neutral adjustment. By a careful

selection of the market price of the volatility term, it turns to r, and thus the

discount stock process becomes a martingale. We can apply the Feynman-Kac

theorem to obtain the associated PDE if the underlying process is a martingale.

fi(yi) is a function of volatility, and we assume that the volatility is driven by

more than one stochastic process.

dyi = αi(yi)dt+ βi(yi)dw
i
yi
, (i = 1, · · · , n). (6.2)
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The interest rate is assumed to follow the stochastic process

dr = m(r)dt+ n(r)dwr. (6.3)

The fast-scale and slow-scale volatilities are distinguished by the frequencies of the

observed volatility data, and have to be considered simultaneously as suggested

by Chacko and Viceria[2005] [37]. In addition, we assume that the Brownian

motions (ws, wyi , wr) are correlated with the following correlation matrix

C =



1 ρsy1 . . . ρsyn ρsr

ρsy1 1 . . . ρy1yn ρy1r
...

...
. . .

...
...

ρsyn ρyny1 . . . 1 ρynr

ρsr ρy1r . . . ρynr 1


(6.4)

with
[
ρsyi , ρsr, ρyiyj , ρyir

]
satisfying |ρsyi | < 1, |ρsr| < 1, |ρyiyj | < 1, |ρyr| < 1, |ρzr| <

1, along with the positive definite property, Def(C) > 0. According to the

Cholesky decomposition C = LLT , we obtain the lower triangle matrix L

L =



1 0 . . . 0 . . . 0

ρsy1 ρ̄y1 . . . 0 . . . 0
...

...
. . .

...
. . .

...

ρsyi ¯ρy1yi . . . ρ̄yi . . . 0
...

...
. . .

...
. . .

...

ρsr ¯ρy1r . . . ¯ρyir . . . ρ̄r


, (6.5)

where

ρ̄y1 =
√

1− ρ2
sy1

ρ̄yi =

√√√√1− ρ2
syi
−

i−1∑
k=1

¯ρykyi
2

ρ̄r =

√√√√1− ρ2
sr −

n∑
k=1

¯ρykr
2

¯ρyjyi =
ρyiyj − ρsyiρsyj −

∑i−1
k=1 ρ̄yjyk ρ̄ykyi

ρ̄yi
, i > j

¯ρyir =
ρyir − ρsrρsyi −

∑j−1
k=1 ¯ρyiykρykr

ρ̄r
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Let Υ = [dws, dwy, dwr]
T with wy = [wy1 , wy2 , · · · , wyn ]T . By implementing

the numeraire change from measure P to measure Q, we obtain the risk neutral

vector satisfying

Υ̂ = Υ + Πdt (6.6)

where Υ̂ = [dŵs, dŵy, dŵr]
T ,Π = [µ−r

f
,Γ(t), γr(t)]

T , Γ(t) = [γ1(t), γ2(t), · · · , γn(t)]

denote the market price of risk from stochastic volatility, γr(t) denotes the mar-

ket price of risk from stochastic interest rate. Similar technique was applied

in [95] [96] [97].

Under the risk-neutral measure and the above adjustment, (6.1)-(6.3) can be

rewritten as

D = Updt+ ΣΥ = UQdt+ ΣΥ̂, (6.7)

where D = [dS/S, dy, dr]T denotes the change of the underlying process, UP =

[µ, α(y),m(r)]T denotes the drift part under the measure P ,UQ = UP−Π denotes

the drift under the risk neutral measure Q. Σ is an n× n matrix which denotes

the volatility part

Σ =

f(yi) 0 0

0 B(y) 0

0 0 n(r)

 , (6.8)

with

B(y) =


β1(y1) 0 0

...
. . .

...

0 0 βn(yn)

 . (6.9)

Now we change the numeraires form Q to QT together with the orthogonal de-

composition. Let Υ∗ = [dw∗s , dw
∗
y, dw

∗
z , dw

∗
r ]
T denote the orthogonal vector,

Υ̂ = LΥ∗ (6.10)

Note that the numeraire under Q is e
´
r(s)ds, the numeraire under the T for-

ward measure QT is A(t, T )e−B(t,T )r(t). T -forward measure is a pricing measure

absolutely continuous and under which the pricing process is a martingale; how-

ever, rather than using the money market as numeraire, it uses a bond with

maturity T .

Thus, the drift part UT can be obtained by the formula below

UT = UQ + ΣCΣQT , (6.11)

where ΣQT = [0, 0, · · · ,−B(t, T )n(r)]T . Therefore, the SDE can be rewritten
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by the following forms under the measure QT ,

dS = (r − ρsrB(t, T )n(r)))Sdt+ f(yi)Sdw
∗
s + SdJs, (6.12)

dy = (α(y)− Λ(y, r)β(y)) dt+ β(y)dw∗y, (6.13)

dr = (m(r)− (γr(r) +B(t, T )n(r))n(r)) dt+ n(r)dw∗r (6.14)

with Λ = [λ1(y1, r), · · · , λn(yn, r)] and λi(yi, r) = γi(yi) + ρyirB(t, T )n(r).

Different from the European options, variance swaps and volatility swaps are

time-dependent. The payoff function of a variance swap is as shown below

V (T, x, y, z) = L ∗ EQ(σ2
R −K). (6.15)

However, under the risk-neutral assumption, we are more interested in the

fair strike price Kvar of the variance swap, which can be calculated by taking

the expectation of the realized variance. In our work, we assume that the realized

variance is calculated discretely by the formula below

σ2
R =

AF

N

N−1∑
i=0

(
Si+1 − Si

Si

)2

. (6.16)

For the reason that our general model will result in a high dimensional prob-

lem, we apply the dimensional reduction technique, as in Little&Pant[2001] [63],

by introducing a new variable It driven by the underlying process

It =

ˆ t

0

δ(ti−1 − τ)Sτdτ, (6.17)

where δ is the Dirac delta function. It is only related with the value of St at time

ti−1 , which means It = 0 if t < ti−1, and It = Si−1 if t ≥ ti−1. The terminal

condition under the fast and slow scale correction becomes

Ut(T, S, Y, Z, I) = (
St
It
− 1)2. (6.18)

Let x = log(S), τ = T − t, then according to the standard no-arbitrage argument,

the following PDE can be derived from the Feynman-Kac theorem [7]

LU + UI = 0, (6.19)
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for t ∈ [0, T ], where the operator L is given by

L = ∂τ − (Ũ)TP−PTΣCΣP, (6.20)

in which Ũ = UT − [−1
2
f 2 + λ(1− E(ez))]

P =

∂s 0 0

0 ∂y 0

0 0 ∂r

 , (6.21)

with

∂y =


∂y1 0 0
...

. . .
...

0 0 ∂yn

 . (6.22)

With the incorporation of a new variable I, the above PDE(6.19) can be

equivalently expressed by the following system of equations,{
LU = 0,

Ui(S,y, r) = (S
I
− 1)2, ti−1 ≤ t ≤ ti

(6.23)

and {
LU = 0,

limt↑ti−1
Ui(S,y, r) = limt↓ti−1

Ui(S,y, r), 0 ≤ t ≤ ti−1

(6.24)

A semi-analytic solution will be derived by the generalized Fourier transfor-

mation in the subsequent section.

6.3 Algorithm of Partial Correlation Case

To obtain a solution of the model given by (6.1) to (6.3), we firstly assume a

partial correlated case with the correlation matrix

C =



1 ρsy1 . . . ρsyn 0

ρsy1 1 . . . 0 0
...

...
. . .

...
...

ρsyn 0 . . . 1 0

0 0 . . . 0 1


. (6.25)

The stochastic processes are assumed to be a multi-factor stochastic volatility

process with a mean reverted drift α(y) = a(m − y), and a 1/2 volatility of
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volatility β(y) = b
√

y, where a = [a1, a2, · · · , an]T ,m = [m1,m2, · · · ,mn]T and

b = [b1, b2, · · · , bn]T are n dimensional vectors. The stochastic interest rate pro-

cess is a CIR process with m = k∗(θ− r(t)), n = η
√
r(t), and B(t, T ) is assumed

to have the following specific form [49]

B(t, T ) =
2
(
e(T−t)

√
k∗2+2η2 − 1

)
2
√
k∗2 + 2η2 +

(
k∗ +

√
k∗2 + 2η∗

)(
e(T−t)

√
k∗2+2η2 − 1

) (6.26)

Let γi(yi) = λi
√
yi
bi

and γr(r) = Λr

√
r
η

dS =

(
r − 1

2
(
n∑
1

√
yi)

2 + λ(1− E(ez))

)
dt+

n∑
i=1

√
yidw

∗
s , (6.27)

dyi = a∗i (m
∗
i − yi)dt+ bi

√
yidw

∗
yi, i = 1, · · · , n (6.28)

dr =
(
k∗(θ∗ − r)−B(t, T )η2r

)
dt+ η

√
rdw∗r , (6.29)

where a∗i = ai + λi,m
∗
i = aimi

ai+λi
, i = 1, · · · , n, and k∗ = k + Λr, θ

∗ = kθ
r+Λr

When

n = 1 and λ = 0, the model reduces to the model of Cao & Lian [20].

6.3.1 The First Stage of Calculation

When T −∆t < t < T , or 0 < τ < ∆t, (6.19) can be expanded as the following

PDE

Uτ − [r − 1

2
(ŷTŷ)2 + λ(1− E(ez))]Ux −

1

2
((ŷTŷ))2Uxx − [k∗(θ∗ − r)−

B(T − τ, 0)η2r]Ur −
1

2
η2rUrr − λ

ˆ
R

[u(x+ η)− u(x))]Γ(dη)− LyU = 0 (6.30)

with ŷ = [
√
y1,
√
y2, · · · ,

√
yn]T ,

Ly =
n∑
i=1

{
[a∗i (m

∗
i − yi)]∂yi +

1

2
b2
i yi∂yiyi + ρsyibi

√
yi(

n∑
i=1

√
yi)∂xyi

}

and the initial condition U(0, x, yi, z) = ( e
x

I
− 1)2.

Let V be the Fourier transform of U with respect to x, i.e. V = F(U), then,
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by taking the Fourier transform of (6.30) , we obtain the following PDE,

Vτ =

{
[r − 1

2
(ŷTŷ)2 + λ(1− E(ez))](jw)− 1

2
(ŷTŷ)2w2 − λ+ λφη(w)

}
V+{

k∗(θ∗ − r)−B(T − τ, 0)η2r
}
Vr +

1

2
η2rVrr + L̃yV,

(6.31)

where

L̃y =
n∑
i=1

{
[a∗i (m

∗
i − yi) + ρsyibi

√
yi(

n∑
i=1

√
yi)(jw)]∂yi +

1

2
b2
i yi∂yiyi

}

and the initial condition is V (0, w,y, r) = F
(
( e
x

I
− 1)2

)
. φη(w) =

´
R
eiwηΓ(dη)

denotes the characteristic function of the underlying process of the jump size.

The commonly used jump model includes Merton’s jump model and Kou’s double

exponential model, as shown in table 6.1. Merton’s model assumes that the jump

size follows a normal distribution, while the jump size of Kou’s model is assumed

to be a double exponential distribution. The generalized Fourier transform of

the integral term arising from the jump diffusion process is equivalent to the

characteristic function of the underlying distribution of jump size:

F
ˆ
R

U(x+ η)Γ(dη) = F
ˆ
R

U(x+ η)p(η)dη

=

ˆ
R

ˆ
R

U(x+ η)p(η)e−iwxdηdx

=

ˆ
R

p(η)

ˆ
R

U(x+ η)e−iwxdxdη

=

ˆ
R

p(η)

ˆ
R

U(y)e−iw(y−η)dydη

=

ˆ
R

p(η)eiwηdη

ˆ
R

U(y)e−iwydη

= φη(w)V (6.32)

Similar results can be obtained from the Fourier convolution theorem if we let
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p(η) = g(−s).

F
ˆ
R

U(x+ η)Γ(dη) = F
ˆ
R

U(x+ η)p(η)dη

= −
ˆ
R

ˆ
R

U(x− s)g(−s)e−iwxdsdx

= −F(U(x)⊗ g(−s))

= −V (w)F(g(−s))

= φη(w)V (w) (6.33)

Table 6.1: Jump Model

Model Γ(dη) φη(w)

Merton exp(−(η−µ)2)√
2πδ

dη exp(jµw − w2

2
δ2)

Kou pλ1exp(−λ1η)Iη>0 + (1− p)λ2exp(λ2η)Iη<0dη
pλ1

λ1−jw + (1−p)λ2
λ2+jw

By assuming that the solution has affine structure and following the procedure

of Heston [10], the solution can be assumed to have the following form

V (τ, w,y, r) = exp(C(w, τ) + DT(w, τ)y + E(w, τ)r)V (0, w,y, r), (6.34)

Then by substituting (6.34) into (6.31), we obtain the following ODEs,

Dτ = −1

2
(jw + w2) +

1

2
b2
iD

2
i + (ρsyibijw − α∗im∗i )Di, i = 0 · · ·n (6.35)

Eτ = wj +
1

η2
E2 − (k∗ +B(T − τ, 0)η2)E (6.36)

Cτ =
n∑
i=1

α∗im
∗
iDi + k∗θ∗E + λ(1− E(ex))(jw)− λ+

λφη(w) +
n∑
i=1

∑
j 6=i

{
−√yiyj(jw +

1

2
w2) + biρsyi

√
yiyj(jw)Di

}
, i = 0 · · ·n

(6.37)

with initial conditions C(w, 0) = 0, Di(w, 0) = 0, E(w, 0) = 0. The E can be

solved numerically by using MATLAB. While D can be solved analytically to

yield

Di(τ) =
Ai +Bi

b∗2i

1− eBiτ

1− gieBiτ
, (6.38)

where Ai = −α∗i (jwρsyi]b∗i −m∗i ), Bi =
√
A2
i + b∗2i α

∗
i (w

2 + jw), gi = Ai+Bi
Ai−Bi . The
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calculation of C will be given in detail in the second stage of calculation.

In order to obtain the solution of U(τ, x,y, r), we perform the inverse Fourier

transformation and obtain

U(τ, x,y, r) = F−1[V (τ, w,y, r)] = F−1[exp(C(w, τ)+DT(w, τ)y+E(w, τ)r)]U0,

(6.39)

with

U0 = F−1(V0) = F−1

{
F [(

ex

I
− 1))2]

}
; (6.40)

Based on the generalized Fourier transform,

F [eimx] = δm(w), (6.41)

with δm(w) satisfying ˆ
δmφ(x)dx = φ(m), (6.42)

after some derivation, we obtain

U(x, yi, τ) =

ˆ
exp(C(w, τ) + DT(w, τ)y + E(w, τ)r)

[
δ−2j(w)

I2
− 2

δ−j(w)

I
+ δ0(w)exp(jwx)

]
dw

=
e2x

I2
exp( ˜C(τ) + D̃(τ)Ty + Ẽ(τ)r)− 2

ex

I
exp(Ĉ(τ) + Ê(τ)r) + 1.

(6.43)

where C̃(τ), D̃(τ) and Ẽ(τ) denote C(−2j, τ),D(−2j, τ), E(−2j, τ) respectively,

whereas Ĉ(τ) and Ê(τ) denote C(−i, τ) and D(−i, τ) respectively.

6.3.2 The Second Stage of Calculation

When 0 < t < T − ∆t, and ∆t < τ < T , we know that Ii = Si−1 at time ti−1.

Thus, the maturity condition at time ti−1 reduces to

F (yi) = exp( ˜C(∆t) + D̃(∆t)Ty + Ẽ(∆t)r)− 2exp(Ĉ(∆t) + Ê(∆t)r) + 1. (6.44)

For the reason that the correlated matrix is assumed to be partial correlated, we

obtain

fk = ET
0 (F (yi)) = eC̃(∆t)

n∏
i=1

gih̃− 2eĈ(∆t)ĥ+ 1, (6.45)
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with gi = ET
0 (eD̂i(∆t)yi). According to the Feynman-Kac formula [7], gi, i =

1, · · · , n, can be obtained by solving the following PDE,

∂gi
∂τ

=
1

2
b∗2i
∂g2

i

∂y2
i

+ α∗i (mi − yi)
∂gi
∂y

, (6.46)

gi(yi,∆t) = eD̃i(∆t)yi ,∆t < τ < T. (6.47)

Similarly, we assume that the solution of (6.46) has an affine form of

gi = eLi+Hiyi . (6.48)

Substituting (6.48) into (6.46), we obtain the following ODEs,

∂Li
∂t

= α∗im
∗
iHi, (6.49)

∂Hi

∂t
= −α∗i +

1

2
b∗2i H

2
i , (6.50)

with the initial condition Li(D̃i(∆t),∆t) = 0 and Hi(D̃i(∆t),∆t) = D̃i(∆t). By

simple derivation, we obtain

Hi =
2α∗i
b∗2i

e−lτ

e−α
∗
i τ − c0

, (6.51)

Li =
−2α∗im

∗
i

b∗2i
ln(1− e−α

∗
i τ

c0

), (6.52)

with c0 = 1 − 2α∗i
b∗2i D̃i(∆t)

. Similarly, h(w,∆t), w = −j,−2j can be calculated

through the assumption

h = eM+Nr, (6.53)

which can be resolved trough the following PDE

∂h

∂τ
=

1

2
η∗2

∂2h

∂r2
−
{
k∗(θ∗ − r)−B(T − τ, 0)η2r

} ∂h
∂r
, (6.54)

h(w,∆t, r) = eD(w,∆t)r,∆t < τ < T, (6.55)

when w = −j, h = ĥ, when w = −2j,h = h̃.

By some derivation, we obtain

M =
2k∗

η∗2
e−lτ

e−θ∗τ − c1

, (6.56)

L =
−2θ∗m∗

η∗2
ln(1− e−m

∗τ

c1

), (6.57)
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with c1 = 1− 2θ∗

η∗2D(w,∆t)
, and C satisfies

Cτ =
∑n

i=1 α
∗
im
∗
iDi + k∗θ∗E + λ(1− E(ex))(jw)− λ+ λφη(w)

+
∑n

i=1

∑
j 6=iE

T
0

{
−√yiyj(jw + 1

2
w2) + biρsyi

√
yiyj(jw)Di

}
=
∑n

i=1 α
∗
im
∗
iDi + k∗θ∗E + λ(1− E(ex))(jw)− λ+ λφη(w)

+
∑n

i=1

∑
j 6=i
{
−(jw + 1

2
w2)ET

0 (
√
yiyj) + (jw)biρsyiE

T
0 (
√
yiyjDi)

}
(6.58)

Based on the independence property, we obtain

E(
√
yiyj) = E(

√
yi)E(

√
yj) (6.59)

with E(
√
yi(t)) determined by the following form

E(
√
yi(t)) = ci(di + λi − 1) +

cidi
2(di + λi)

, (6.60)

with ci(t) =
δ2i

4k∗i
(1 − e−k

∗
i t), di(t) = 4k∗ai

δ∗2
, λi(t) = 4aiy0

δ2i

e−k
∗
i t

1−e−k
∗
i
t . Thus, the ODE

(6.58) can be solved numerically by using Matlab.

6.4 Numerical Result of One Factor Model

If λ = 0, i = 0, our model reduces to the basic model studied in Little&Pant [63].

If λ = 0, i = 1, it reduces to the one factor stochastic volatility model in [19].

However, compared to the aforementioned work, our model is more general and

realistic by considering both the jump process and the stochastic interest rate.

Also, our stochastic volatility can be extended to a multifactor case. As illustrated

in Heston [78], one factor stochastic models are cannot capture the phenomenon

of option smirk, and at least two factors are needed for a more realistic model. In

this section, we will compare the numerical results obtained respectively by the

one-factor stochastic model and the two-factors stochastic volatility model.

6.4.1 Study of Stochastic Interest Rate Effects

Let λ = 0, and i = 1, our model reduces to a Heston-CIR model. The parameters

of the stochastic interest rate process and the stochastic volatility process are

presented in table 6.2, which satisfy Feller’s condition. The correlation of the

stochastic volatility process and the stock process is assumed to be −0.4. Figure

6.1 shows the fair strike price with different long term interest rate θ, and figure
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6.2 shows the fair strike price for different volatility of the interest process. It is

noted that the effects of stochastic interest rate is very small.

Table 6.2: Calibrated Parameters

k θ σr r0

1.2 0.05 0.01 0
a1 m1 b1 y0

2 0.05 0.05 0

Figure 6.1: The Effects of Long-term Interest Rate

Figure 6.2: The Effects of Volatility of CIR Process
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6.4.2 Effects of Jumps on Fair Strike Price

In this subsection, λ is chosen from a range of numbers. We study both the

double exponential jump and the Merton jump, and the parameters related to

the jump processes are presented in Table 6.3. The results for different λ values

are compared in Figure 6.3 and Figure 6.4, from which we know that the jump

rate has a significant effect on the fair strike price. No matter which distribution

we choose, the fair strike price increases dramatically with the jump rate. This

result is in line with the result in [94].

Table 6.3: Calibrated Parameters of Jump Diffusion Process

Kou λ1 λ2 p
40 12 0.3

Merton µ δ
−0.05 0.086

Figure 6.3: The Effects of Jump Intensity with Double Exponential Distribution

6.5 Numerical Result of Multifactor-CIR Model

In this subsection, assume that i = 2 and λ = 0, then our model reduces to a two-

factor-CIR model. We compare our numerical result with the result of the MC

simulation with 200,000 paths and the initial value of the stock price is assumed

to be 1. The stochastic process is discretized by the Euler-Maruyama scheme, and

the parameters are selected as in table 6.4: b1 = 0.1500, a1 = 0.0059, σ1 = 1.9829,

ρ1 = −0.9902, b2 = 0.2335, a2 = 0.1621,σ2 = 0.1971,ρ2 = −0.8918 . The red
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Figure 6.4: The Effects of Jump Intensity with Normal Distribution

Figure 6.5: Comparison of Three Methods

horizontal line of figure 6.5 is calculated by the continuous approximation of

Kvar as in [94]. For a more realistic situation, we absorb the jump into the stock

process, and apply the parameters calibrated by Heston et. al(Table6.4). [78].

We assume that the stochastic volatility process is independent of each other.

According to L’Hopital rule, for the reason that C̃(∆t) = 0, D̃(∆t) = 0, Ẽ(∆t) =

0, Ĉ(∆t) = 0, Ê(∆t) = 0, we obtain

lim∆t→0
exp( ˜C(∆t) + D̃(∆t)Ty + Ẽ(∆t)r)− 2exp(Ĉ(∆t) + Ê(∆t)r) + 1

∆t

= lim∆t→0

(
˜C ′(∆t) + D̃′(∆t)y + Ẽ ′(∆t)r − 2(Ĉ ′(∆t) + Ê ′(∆t)r)

)
= lim∆t→0

(
C̃ ′(∆t)− 2Ĉ ′(∆t)

)
+ lim∆t→0

(
Ẽ ′(∆t)− 2Ê ′(∆t)

)
+ lim∆t→0D̃′(∆t)y(6.61)
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From the Taylor expansion and the Merton jump assumption, we can verify that

lim∆t→0

(
C̃ ′(∆t)− 2Ĉ ′(∆t)

)
= λ+ λ(E(e2x)− E(ex))

= λ+ λ(−1 + E(X2))

= λ(E2(x) + V ar(x))

= λ(µ2 + δ2) (6.62)

and

lim∆t→0

(
Ẽ ′(∆t)− 2Ê ′(∆t)

)
= −2j ∗ j − 2 ∗ (−j) ∗ j = 0, (6.63)

According to the expression of Di, we obtain

lim∆t→0D̃′(∆t)y = y, (6.64)

Thus, due to the property of the variance process, the limit (6.61) is equivalent

to λ(µ2 + σ2) + y. For a continuous case, we have

Kvar = limn→∞
AF

N

i=n∑
i=1

fi = lim∆t→0
1

T

i=n∑
i=1

1

∆t
∗∆t ∗ fi

=
1

T

ˆ T

0

(λ(µ2 + δ2) + E(yt))dt

=
1

T

ˆ T

0

(
λ(µ2 + σ2) +

m∑
j=1

(yje
−ajt +mj(1− e−aj(i−1)t)

)
dt

= λ(µ2 + σ2) +
m∑
j=1

(yj
1− eajT

ajT
+mj(1−

1− eajT

ajT
)).

(6.65)

This result is in line with the result in Brodie et. al. [94], but proved by the

result of Fourier transform. The above result is obtained by the assumption

of the Merton jump. If the underlying process is a double exponential process

instead of a normal distribution, we derive that

Kvar = λ

(
(
p

λ2
1

+
q

λ2
2

)(p+ q + 1)− 4pq

η1η2

)
+

m∑
j=1

(yj
1− eajT

ajT
+mj(1−

1− eajT

ajT
)).

(6.66)

The continuous fair strike price with Merton jump satisfies equation (6.67).

We then compare the result with λ = 0 and λ = 0.1 in Figure 6.6. It is noted that
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the inclusion of the jump diffusion process shifts the fair strike price up discretely

and continuously.

Table 6.4: Calibrated Parameters

b1 a1 σ1 ρ1

0.1500 0.0059 1.9829 −0.9902
b2 a2 σ2 ρ2

0.2335 0.1621 0.1971 −0.8918

Kvar = λ(µ2 + σ2) +
m∑
j=1

(yj
1− eajT

ajT
+mj(1−

1− eajT

ajT
)), (6.67)

Figure 6.6: Comparison of Jump Effects in Multi-factor-CIR Model

6.6 Concluding Remark

In this chapter, we study the pricing of variance swaps in a generalized hybrid

financial model. A semi-analytic solution is obtained by using the generalized

Fourier transform. With proper selection of parameters, our model includes var-

ious existing financial models as special cases, including the CIR model, the hy-

brid Heston-CIR model, the multi-factor-CIR model and the jump model. Monte

Carlo simulation and approximation of continuous strike price is set as a bench-

mark of our numerical results, and we find that our model is more accurate and

efficient with the discrete sampled variance swap. The effects of stochastic in-

terest rare and the effect of jump are also studied in our work, We find that



6.6 Concluding Remark 101

compared to the stochastic interest rate, the effect of jump is more significant,

and this result is in line with Brodie et al. 2008 [94], in which the jump effects

are studied via probability technique with continuous sample assumption. In this

work, we deal with the integral term arising from the jump diffusion process with

the characteristic function via Fourier convolution.



CHAPTER 7

Summary and Future Research

7.1 Summary

In this thesis, we study various financial derivatives pricing problem via estab-

lishing a generalized hybrid multi-factor stochastic volatility model. Our gener-

alized model takes into account of stochastic interest rate, multi-factor stochastic

volatility rate and jump diffusion process, and include various existing models as

special cases. Our hybrid model results in a high-dimensional partial differential

equation under risk-neutral assumption. Various approaches have then been ap-

plied to get the approximate solutions. Various results has been obtained and

summarized as below.

(i) The finite element method has been applied to obtain the approximate solu-

tion of classical European option and the fair strike price of variance swaps

under both multi-scale stochastic volatility and jump diffusion process. The

time scale rate of stochastic volatility is used to describe the long term and

short term perturbation of volatility process. Consequently, the option price

increases with the jump rate, while the effects of multi-scale volatility is a

combination result of both fast scale volatility and slow scale volatility. The

option price increases with the fast-scale rate and decreases with the slow

scale rate. The effect of slow scale volatility outweighs the effect of fast

scale volatility in a long run. Also, the strike price of variance swap is anti-

correlated with the maturity time. The significance of the numerical ap-

proach is mainly in two aspects. Firstly, the work establishes a generalized

hybrid model, which takes account of stochastic interest rate, multi-factor

stochastic volatility rate and jump diffusion process. Comparison has been

made between our hybrid model and existing models. Our hybrid model

results in a high-dimensional partial differential equation under risk-neutral

assumption. Various approaches have been applied to get the approximate

102
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solution. Exact solutions have been obtained for some models. Secondly,

even though most existing literatures have already considered the stochastic

volatility, multi-factors in volatility have not yet been tackled due to the

high dimensional difficulties, while we combine both multi-scale rate and

jump process in our work to make the result more reliable.

(ii) In addition to evaluating the traditional European option, the hybrid model

can also be applied to study the portfolio selection and optimization prob-

lems. The single-name bond under the stochastic intensity and the stochas-

tic volatility has been studied in this thesis. The non-linear PDE arising

from the optimal problem has been studied by the method of asymptotic

approximation. The approximated solution has been decomposed into the

leading term V (0), and the fast-scale modification term V (1). Consequently,

we find that consideration of the fast-scale volatility will lower down the

utility and increases the certainty equivalents. We prove that the yield

spread of the investor goes up with the maturity time and converges to a

long time level.

(iii) Besides the traditional option pricing problem, the pricing of variance swap

in our generalized hybrid financial model has been studied by the gener-

alized Fourier transform. With proper selection of parameters, our hybrid

model reduces to the CIR model, the hybrid Heston-CIR model, multi-

factor-CIR model. The jump diffusion process is also considered in our

research, and the integral term arising from the jump diffusion process has

been solved via Fourier convolution. The effects of stochastic interest rate

and the effect of jump have also been studied in our work. We find that

the effects the jump term and stochastic volatility is vital, in comparison

with the stochastic interest rate. It is also shown that our numerical result

converges to continuous model of variance swap.

In brief, in this thesis, a hybrid model is studied and applied to study both the

derivative pricing and credit risk optimization. The study is significant because

the hybrid model is more realistic and applicable to many other financial area.

However, the consideration of more factors will add the complexity of the problem.

In this research, multiple approaches are applied and the results are compared to

show the accuracy and efficiency of the problem.
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7.2 Future research directions

In this thesis, our main objective is to develop a hybrid financial model for option

pricing. It is observed that our model is more effective and realistic. However,

further improvements could be made as detailed below.

(i) In spite of the option pricing problem and credit risk optimization problem,

our model can also been applied to other portfolio optimization problems,

such as the time inconsistent mean-variance problem;

(ii) For the reason that the real financial markets is dynamic rather than static.

More accurate and practical models such as regime switching model should

also been taken into consideration in our future research;

(iii) Fractional Brownian motion will be utilized in our future research by taking

the long-memory and short-memory effects into consideration;

(iv) The model calibration of our hybrid model and the effects of the multi-

factor and jump term on implied volatility should also been taken into

consideration in our future research.
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