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Abstract: An optimal robot-environment interaction is designed by transforming an environment model into an optimal 

control problem. In the optimal control, the inverse differential Riccati equation is introduced as a fixed-end-point closed-loop 

optimal control over a specific time interval. Then, the environment model, including interaction force is formulated in a state 

equation, and the optimal trajectory is determined by minimizing a cost function. Position control is proposed, and the stability 

of the closed-loop system is investigated using the Lyapunov direct method. Finally, theoretical developments are verified 

through numerical simulation. 
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1. INTRODUCTION 

2.1. Related Works and Motivation 

Robot-Environment Interaction (REI) has been 
theoretically studied over the last two decades and its 
development exhibits great popularity in recent robotic 
studies. Accordingly, demand for research in control of robots 
that interact with environments has increased. In many 
conventional interaction tasks, such as repetitive applications 
in construction or in industrial factories, the robot is expected 
to track a predefined task trajectory. However, in many of the 
recent applications, robots are likely working with initially 
undefined task trajectories. This brings along several 
challenges to control engineers. 

In addition to its conventional industrial applications, REI 
control is becoming a challenging topic in social research 
issues. It can address emerging aspects of rehabilitation 
robotics, surgery robotic systems, haptic rendering, and 
several fields in human-robot interaction systems [1]. Control 
in REI systems has been studied to cope with different 
problems like impedance adaptation[2], impedance learning 
[3], collaborative manufacturing [4], or assistive human-robot 
interaction [5-7]. However, in most of the research work on 
REI control, desired trajectories in the task space are given, 
then tracking problems are addressed [8, 9] whereas in several 
applications of REI, like pick-and-place operations, two-end 
points are given and the path should be planned according to 
the desired objective.   

Optimal control in robotics refers to control design that causes 

the state trajectories for a dynamic system, satisfying some 

physical constraints followed by extremizing a chosen 

performance criterion. On the other hand, development of an 

optimal control theory for a linear dynamic equation along 

with a performance index with quadratic functions of state 

and control has led to the emergence of the linear quadratic 

regulator (LQR). Such regulators typically abound in 

cylindrical robotic arms [10], mobile robots [11], UAVs [12], 

missiles [13], wind turbine [14], and multi-agent systems 

[15]. Over the last few decades, LQR has been widely 

employed for various robotic applications as in 

manufacturing, mining, aerospace and medical engineering 

[16]. Nevertheless, a considerable amount of LQR research is 

carried out using infinite-time regulators applied in robotic 

systems. However, most of the planning strategies in real 

robotic systems are applied in a fixed execution time. To 

increase the efficiency of such controllers, finite-time LQR 

has been developed based on the differential Riccati equation 

[17-19]. Although these controllers have given rise to far-

reaching mathematical developments [20, 21], they are 

designed to find solutions for problems in the free-end-point 

state regulator systems. However, there are various practical 

examples of optimal planning in engineering for which two 

fixed and non-zero final boundary conditions are required. On 

the other hand, several efficient numerical methods have been 

proposed for solving differential Riccati equation. For 

example, in [22] an algorithm developed for nonnegative, 

stabilizing solutions for the periodic Riccati differential 

equation based on Fourier series expansion and the precise 

integration method. Also, [23] combined Fourier series 

expansion with recursive matrix formulas to propose an 

algorithm for computing solutions of the periodic Riccati and 

Lyapunov matrix differential equations. 
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Motivated by the above-mentioned considerations, this 
paper addresses optimal REI by developing a fixed-end-point 
differential Riccati equation. A closed-loop optimal control 
solution is developed to minimize a cost function combining 
system states, and control input. By that means, a finite-time 
fixed-end-point optimal controller is obtained based on the 
inverse Differential Riccati Equation (iDRE). Environment 
dynamic models are formed in a state equation and using the 
obtained iDRE method, optimal interaction force, and optimal 
trajectories are obtained. Then, the obtained optimal trajectory 
is considered as the desired trajectory, and position control is 
proposed for tracking purpose. The Lyapunov direct method is 
utilized for the stability analysis. The developed controller is 
examined through a numerical simulation study. 

2.2. Contributions and Structure of the Paper 

The contribution of this paper can be highlighted as follows: 

 Different from conventional LQR based methods, the 

presented iDRE approach can tackle planning problems 

with fixed, and no-zero end-point states. Hence, the 

presented method can be useful for robotic systems with 

any fixed boundaries within the desired execution time. 

Also, it should be noted that the paper considers complete 

robot nonlinear dynamics, thus linearization is avoided.  

 In addition, compared with the Pontryagin maximum 

principle, which is a canonical tool for dealing with 

optimal control of nonlinear systems, the paper avoids 

solving tedious two-point boundary value problem which 

involves both states and co-states [24-27]. Also, as the 

presented method leads to closed-loop optimal control, it 

enjoys advantages of simplification of controller’s 

hardware implementation. 

 Compared to previous works on REI control like [8, 9], in 

that tracking of the given desired trajectories occurs in the 

task space, in this paper a path between two end points is 

planned according to a desired task cost function, and then 

position tracking is handled. Also, in the presented paper, 

to cope with an optimal REI problem, only environment 

properties are required. By that means the optimal 

trajectory can be obtained according to the task-specific 

information without requiring knowledge of the robot 

dynamics. 

The rest of the paper is organized as follows. Section 2 
reviews the kinematics and dynamics of the system model, and 
the environment model dynamics. The iDRE method is formed 
in Section 3. First, states and performance index are 
formulated, and the optimizing process is developed that leads 
to open loop optimal control. Then, the resultant control is 
converted to closed loop optimal control. In Section 4 the 
optimal trajectory and the optimal interaction force are 
obtained using iDRE, then the position tracking controller is 
proposed and stability of the closed-loop system is studied 
using the Lyapunov direct method. Verification of theoretical 
developments is done by numerical simulation in Section 5. 
The discussion is provided in Section 6 and finally, the paper 
is concluded in Section 7. 

2. SYSTEM OVERVIEW 

2.1. Dynamic Model 

A system where a robotic arm physically interacts with an 

environment is studied in this paper. The kinematics of the 

robotic system can be given by,  

     x t q t ,                           (1) 

where   Cn
x t R , and   n

q t R  are vectors of the end-

effector Cartesian position, and generalized joint coordinates, 

respectively with 
cn  being the dimension of the Cartesian 

space, and n  is the number of joints. Time differentiating of 

(1) results in [28], 

        Jx t q t q t ,                      (2) 

where    
J Cn n

q t R  is the Jacobian matrix. We consider 

the dynamic model of the robot manipulator as [28, 29]: 

              

      

,

,

 

 

H C G

J
T

e

q t q t q t q t q t q t

t q t f t
 (3) 

where    H
n n

q t R ,     , C
n n

q t q t R , and 

  G
n

q t R  denote the inertia, centrifugal and Coriolis 

force matrices, and the vector of gravitational forces/torques, 

respectively, and   n
t R  is the vector of generalized joint 

inputs, and   Cn

e
f t R  represent the interaction forces 

between the environment and robot. 

Assumption 1. The Jacobian matrix   q tJ  is assumed to 

be known and nonsingular in a finite workspace. 

Property 1 [30]: The matrix   H q t
 
is symmetric and 

positive definite. Furthermore, then the matrix 

       2 , C Hq t q t q t
 
is a skew-symmetric matrix. 

2.2. Environment Model 

The environment can be modeled by [3], 

              d d d et x t t x t t x t f t   e e eM C G ,  (4) 

where   n

dx t R  is the desired end-effector trajectory in 

Cartesian coordinates; and  teM ,  teC , and  teG  are  

the mass, damping and stiffness parameter matrices of the 

environment model, respectively.  

Assumption 2. The mass, damping and stiffness parameter 

matrices of the environment model are assumed to be known 

and time-varying matrices in this paper. 

Note that the environment model (4) can represent a large 

range of environments [31]. For example, it can model the 

human limb in the case of physical human-robot interaction 

where  teM ,  teC , and  teG  represent mass, damper 

and spring matrix of the human limb, respectively [6], or the 

dynamics of a viscoelastic object in robotic manipulation [3]. 
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2.3. Problem Statement 

In several studies of REI, the desired trajectory,  dx t , is 

prescribed by the designer. In that case, this trajectory can be 

available for control design generally based on a basic 

understanding of a task. Nevertheless, this trajectory 

assignment typically cannot guarantee a good performance 

due to the lack of flexibility [32]. In REI research under study 

in this paper, the desired trajectory is obtained optimally 

which is unknown in the control design. As discussed in the 

Introduction, iDRE is developed to cope with this problem. 

Then, position tracking control is proposed, and stability 

analysis of the closed-loop system is provided.  

3. INVERSE DIFFERENTIAL RICCATI EQUATION 

3.1. Background 

This section presents an inverse Riccati equation to find the 
closed loop optimal control for a linear system.  

The non-zero fixed boundary conditions are given as, 

 0( ) ; ( )
0 f f

X t t X X t t X    ,   (5) 

and the performance index with mixed state-control quadratic 
functions is formed as, 

 
       

   0

21
E

2

 
  

  


Q S

R

f

T T
t

Tt

X t X t X t U t
dt

U t U t
,   (6) 

 and the state equation for the system is defined by 

          X t t X t t U t A B .   (7) 

In (5) to (7), f
t  is a fixed final time,   n

X t R  and 

  m
U t R  are state and control vectors, respectively; 

  n n
t

A R  is the system matrix,   n m
t

B R  is the input 

matrix, 0
n n Q R , 0 n m S R , and 0 m m R R . Note 

that the details background on optimal control of linear 
systems can be found in [19, 33]. 

3.2. Optimization Problem 

The equations of the optimal control problem can be 
initiated by formation of the Hamiltonian equations as, 

         

             

1
H , , ,

2

1
.

2

 

    

Q S

R A B

T T

T T

X U λ t X t X t X t U t

U t U t λ t t X t t U t

 (8) 

This is followed by verifying the state and co-state vector 
equations and defining the minimality conditions for the 
Hamiltonian as [33, 34], 

  
 

 
*

H , , ,
,*

X U λ t
X t

λ t

 
    

 (9) 

  
 

 
*

H , , ,
,*

X U λ t
λ t

X t

 
    

  (10) 

 
 

 
*

H , , ,
0 ,

X U λ t

U t

 
    

  (11) 

where the symbol  *  denotes the optimality conditions and 

  n
λ t R  is known as the co-state vector. From (11), the 

optimal control  *
U t  can be obtained as, 

         1   R S B
T* T *

U t X t t λ t . (12) 

Eliminating optimal control (12) from (9), and (10), gives 
the following equation  

 
**

Y GY , (13) 

where     , T
X t λ t   Y , and 

       

   

1 1

1 1

TT

T TT

t t t t

t t

 

 

  
 
     

A B R S B R B
G

Q SR S A SR B
. 

The state and co-state system (13) along with the boundary 

conditions given by (5) construct a two-point boundary value 

problem. Substituting the solution into (12) gives an open-

loop optimal control formulation for the system. However, 

open-loop optimal control has some disadvantages, such as 

the inability to compensate for system changes and 

difficulties with a hardware implementation. Accordingly, 

this work focuses on finding closed-loop optimal control 

realization for the fixed-end-point system. 

3.3.  Closed-Loop Optimal Control 

The Riccati transformation between the state and co-state 
functions is formed as, 

 ( ) ( ) ( )λ t t X t
  P ,  (14) 

where  0 n n
t

 P R  is the matrix Riccati coefficient. The 

Riccati transformation (14) is employed to obtain the 

differential Riccati equation. This equation was widely used 

for path planning of the system with free final endpoints [12, 

15, 35]. To find the optimal control for the two fixed end-point 

system, we adopted the inverse Riccati transformation as in 

[36, 37] between the state and costate variables. By that means, 

we arrived at the matrix inverse differential Riccati equation 

to handle the closed loop path planning of a system in a finite 

time horizon.  

In the absence of knowledge on final conditions of a co-state 

function, the inverse Riccati transformation between the state 

 *
X t  and co-state  *

λ t can be defined as 

 ( ) ( ) ( ) ( )* *
X t t λ t t   ,  (15) 

where   n n
t

 R
 
and   n

t R  are yet to be determined. 

Substituting (15) in (13) and eliminating  *
X t  yields, 

 ( ) ( ) ( ) ( ) ( ) ( )* * *
X t t λ t t λ t t    ,  (16) 

which leads to,  
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     

   

  

    

1

1

1

1

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( ).

( )









  

   

    
  
   
 

A B R S

B R B

Q SR S

A SR B

T *

T * *

T *

T T *

t t t λ t t

t t λ t t λ t t

t λ t t
t

t t λ t

  (17) 

Rewriting (17), results in, 

     

         
   

   

1

1

1

( ) ( ) ( ) ( )
( )

( )
0.

( ) ( ) ( ) ( )







      
 
     
 

   
  
       

A A Q

S B R S B

B R S

Q SR S A

T

*

TT

T

T

t t t t t t t
λ t

t t t t

t t t

t t t t t t

  (18) 

The above equation is valid for any arbitrary value of 

optimal co-state  *
λ t . This gives the definition of the inverse 

matrix differential Riccati equation  t as in,  

 
     

         1

( ) ( ) ( ) ( )

.

     

    

A A Q

S B R S B

T

TT

t t t t t t t

t t t t
  (19) 

Moreover, the vector differential equation in ( ) t  is obtained 

as: 

     1 1( ) ( ) ( ) ( ).      A B R S Q SR S
T T

t t t t t t
(20)

 

The set of equations (19) and (20) can be solved either using 
the initial or final boundary conditions. 

At a given fixed final point, (15) can be changed to  

 0 0 0 0 0: ( ) ( ) ( ) ( ),

: ( ) ( ) ( ) ( ).

* *

* *

f f f f f

t t X t t λ t t

t t X t t λ t t

   

   
  (21) 

Since the values of optimal co-states are arbitrary, the final 
boundary conditions can be obtained as, 

 
0 0 0 0: ( ) 0, ( ) ( ),

: ( ) 0, ( ) ( ).
f f f f

t t t t X t

t t t t X t

    

    
  (22) 

Finally, using the transformation (15) and the state 
equation in (13), the optimal control laws and optimal states 
are obtained as:  

 
      

     

1 1

1 1

( )

,

T* T *

T

U t t t X t

t t t

 

 

   

  

R S B

R B

  (23) 

 
         

       

1 1

1 1

( )

.

 

 

   

  

A B R S B

B R B

* T T *

T

X t t t t X t

t t t t
  (24) 

The set of optimal controls in (23), and optimal trajectory 
in (24) with general boundary conditions can be used to solve 
the path planning problems of linear systems defined by (7).  

4. OPTIMAL  ROBOT-ENVIRONMENT CONTROL  

In this section, first, the iDRE method developed in Section 
3 is applied to the environment model (4) to find the optimal 
trajectory and optimal interaction force of the system (3). 
Then, the position tracking controller is proposed and 
employing the Lyapunov direct method the stability analysis 
of the system is performed.   

4.1. Optimal Control using iDRE Method 

The aim of this section is to find the optimal interaction 

force  ef t , and the desired Cartesian position trajectory 

 dx t  within the environment model (4). To do this, we first 

reform model dynamics (4) to be in the form with the state 
equation in (7). Then, obtain optimal values by employing the 
presented iDRE method. 

Choose the system states as    1 dX t x t , and 

   2 dX t x t , and form the system state to be as 

      ,
T

T T

d d
X t x t x t 

 
.  (25) 

Now, considering the model dynamics (4), the 
environment dynamics can be described in the state-space 
form as 

          X t t X t t U t A B ,  (26) 

where 
       

,
t t t t

 
 
  

n

-1 -1

e e e e

0 I
A =

M C M G- -

 0, 
 

-1

e
B = - M

T

t , and    eU t f t . 

Now, as the environment dynamic (26) is in the same 
format with state equation (7), we can find optimal interaction 

force  ef t , and the optimal desired trajectory  dx t  

following the presented iDRE method. To do this, the cost 
function is defined as a trade-off between the desired trajectory 
and the interaction force as,  

        
1

E
2

  Q R
T T

X t X t U t U t . (27) 

Note that in this paper the optimal REI is utilized to minimize 
the cost function (27) which is formed in terms of the desired 
trajectory and the interaction force. By that means a trade-off 
between optimal path properties [i.e. minimum trajectory or 
velocity], and interaction force optimization can be achieved. 
As an example of physical interpretation, this can be utilized 
in an assistive human-robot interaction [6] by minimizing the 
applied force, in applications like robotic rehabilitation. 

It is also noted that in (27), we assumed the value of the 
performance parameter S , as in (6), to be zero. Also, it is 

worth noting that by forming the environment model 
according to the state system (7), the complete dynamic model 
of the robot can be obtained as in (3) without linearization of 
the model. 
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4.2. Position Control Design and Stability Analysis 

4.2.1. Position Control Design  

As the desired task space trajectory  dx t  has been obtained 

through the optimal control in the previous section, the joint 

space trajectory  dq t  can be obtained using robot inverse 

kinematics. This section develops position control to make the 

robot actual joint position  q t  track the desired position 

 dq t . 

To do this, the sliding mode error can be defined as, 

      t e t e t   ,  (28) 

with  e t
 

being the trajectory error, defined by

     de t q t q t  , where   is a positive definite constant. 

According to the definition of error  t , if  lim
t

e t


 exists, 

and  lim 0
t

e t


 , then  lim 0
t

t


 . Thus, our control 

objective can be achieved by making,  

  lim 0
t

e t


 .  (29) 

The input control is proposed as, 

                

        
0

,

,

  

   

H C G

J
t

T

e p i

t q t q t q t q t q t q t

q t f t t d

 

     
 (30) 

where       ,q t t q t          ,q t t q t   and p
 , 

i  are positive definite matrices. 

4.2.2. Stability Analysis 

In this section, the original position tracking control task in the 

previous section is completed by a stability analysis of the 

designed control. For this case, we employed the position 

control input given in (30) for the robot dynamics (3) as 

follows. 

Theorem 1: Consider the robot dynamics (3). By considering 

Property 1, if the control strategy governed by (30) is applied, 

then the following results are guaranteed: 

 1) the error  e t  asymptotically converges to zero, as t 

. 

2) all the signals in the closed-loop system are bounded. 

Proof: Consider the following integration-type Lyapunov 

function candidate, 

        

    
0 0

1

2

1
.

2



  

H
T

T
t t

i

L t t q t t

d d

 

      

        (31) 

The derivative of  L t  with respect to time can be given by 

   
         

 
0

1

2 .T

t

i

q t t q t t
L t t

d

 


   

 
 

  
 
 

H H

   

 (32) 

Considering  

 
    

             ,d

q t t

q t q t q t q t e t







  

H

H H
  (33) 

and 

 
              

      

,

,T

e

q t q t q t q t q t q t

t q t f t

  

 

H C G

J
  (34) 

and substituting control (30) into (32)- (34) with employing 
Property 1, gives, 

      0.T T

pL t t t                       (35) 

Integrate  L t , and considering p
  is positive definite, then, 

     

     

min
0

0
0 ,

t
T T

p

t
T T

p

d

d L

      

      




            (36) 

where  min p   is the minimum eigenvalue of p
 . 

Considering  0L , and  min p  are positive, it follows that 

  2

n
t L  . Then, according to the definition of   t  in (28)

, and considering 
dq , and 

n

d
q L , we have n

q L  , and 

n
q L  . From   2

n
t L  , and further 

n

d
q L , we can 

conclude that   n
t L  . 

On the other hand, considering        0,T T

pL t t t    

then    0 0 ,L t L  0t  , leading to   n
L t L , and 

according to (36),    
0

t
T T

p
d       is bounded since 

 0L  is bounded. Finally, According to Barbalat’s Lemma, 

  2

n
t L  ,   n

t L   lead to 0   as t  , which 

completes the proof. 

The overall optimal REI scenario presented in this paper is 

summarized in the Algorithm 1. 

Algorithm 1: Presented Optimal Robot-Environment Interaction  

Input: Environment model matrices  teM ,  teC , and  teG , robot 

dynamic matrices   H q t ,     ,C q t q t , and   G q t , the control 

constant  , and control matrices Q , R , S , p , and i .    

Initialization: Form environment model dynamic equations (26), 

compute the performance index (27). 

Optimal control: Find matrix  t from (19), and the vector  t from 

(20). Then, find optimal controls in (23) and optimal states in (24). 

Tracking Control: Consider control (23) as the interaction force   ,ef t  

and states (24) as the desired task space trajectory  dx t . Find the joint 

space trajectory  dq t  using robot inverse dynamics. Compute the 

control (30), and find the joint trajectory  q t  from robot dynamics (3).  

5. NUMERICAL SIMULATION 

In this section, theoretical considerations are verified by 

numerical simulation. The study will highlight the 
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effectiveness of the proposed method to handle optimal REI 

tracking control with the dynamic environments. A simple 2D 

manipulator in the vertical plane is used for simulation. To 

model the robot dynamics we let      1 2, ,q t q t q t     and 

used the Lagrange’s equation method, then the dynamics of 

the robot can be expressed as [38], 

  
   

 

  
     

 

  
 

 

1 2 3 2 2 3 2

2 3 2 2

3 2 2 3 1 2 2

3 1 2

4 1 5 1 2

5 1 2

p + p + 2p cos p + p cos
,

p + 2p cos p

p sin p sin
,

p sin 0

p cos p cos
,

p cos

q t q t
q t

q t

q q t q q q t
q t

q q t

g q g q q
q t

g q q

 
  
 

   
  
 

   
  

 

H

C

G

 

 where,  

   
2 2

1 1 1 2 2 1p = m L / 2 + m L / 2 + I ,   
2

2 2 2 2p = m L / 2 + I ,

 
2

3 2 1 1p = m L L / 2 ,   
2

4 1 2 2 1p = m L / 2 + m L ,  and 

 
2

5 2 2p = m L / 2 .  

Physical parameters are chosen as the mass of links 

1 2m m 5 kg,   length of links 1 2L L 1.5m  , Inertia of 

links 2

1 2I = I = 0.125 kgm . The gravitational acceleration is 

29.81m s .g   It is supposed that the robot departs from 

 30,60 degree
T

d
q , and the initial and final desired 

conditions in the Cartesian space are defined by 

 0 0.5,1.2 m
T

X  , and  0.5,0.866 m
T

f
X   ; all the 

velocity boundary conditions are assumed to be zero.  

We also choose time-varying environment dynamic 

parameters as,  

 

 

 

 

 

 

 

sin 5
,

5 0.3sin

0.5sin 15
,

5.5 1.5sin

0.5sin 3.5
.

3.5 0.5sin

t

t

t

t

t

t

  
  

 

  
  

  

  
  

  

e

e

e

M

C

G

  (37) 

The performance parameters in (27) are chosen as = Q I , and 

=10R I , where I  is the identity matrix. The control gains are 

defined as 100  , 10
p

  , and 0.2i  . Simulation 

results are shown in Figs 1-4.  

  
Figure 1 (a). Trajectory of joint positions: the desired 

signal (dotted line) versus the actual signal (solid line). 

Figure 1 (b). Trajectory of joint positions: the desired 

signal (dotted line) versus the actual signal (solid line). 

 

  
Figure 2. Tracking error of joint positions: joint 1 

(solid line) versus joint 2 (dotted line). 

 

Figure 3. Required robot-environment interaction force. 
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Figure 4. Trajectory of the end-effector in the Cartesian space. 

 

The performance of the tracking controller is illustrated in 

Figs 1, 2. Figure 1 shows the desired (optimal) and actual 

values of joint positions. Tracking errors are shown in the Fig. 

2. As shown in these figures, the position controller can track 

the obtained optimal positions asymptotically. Figure 3 shows 

the obtained optimal robot-environment force. Finally, the 

end-effector trajectory in the Cartesian space is depicted in 

Fig. 4. The results shown in the figures illustrate the ability of 

the presented iDRE method to plan the optimal path between 

two given endpoints. Also, the results illustrate that using the 

proposed REI method, an optimal interaction between the 

robot and environment can be achieved according to the 

environment characterizations, while stable tracking 

performance of the system can be accomplished.   

6. DISCUSSION 

In this study, path planning is accomplished in the task-space 

and then the position tracking is handled. In addition, fixed 

and no-zero end-point states are considered for the planning 

problems. Also, to cope with an optimal REI problem, only 

environment properties are considered. By that means the 

optimal trajectory is achieved according to the task-specific 

information without needing the robot dynamics information. 

However, it is worth noting that the environment model 

parameters are assumed to be known. How to integrate the 

iDRE method with unknown environment models e.g. 

unknown  tA , and  tB  matrices within a unified 

framework requires further study. Also, in the presented 

method, the robot dynamics are supposed to be known. In this 

regard, the method may not be applicable to complex robots 

with challenging dynamics. Future research work will study 

techniques to cope with these issues. Finally, selecting a cost 

function is a nontrivial matter as different cost functions can 

change interaction performance [3]. A priori partial 

information from the environment can be helpful to tackle this 

issue in some cases, but solving this problem in a general case 

remains an open problem. 

7. CONCLUSION 

In this paper, optimal REI has been investigated using the 

iDRE method. An optimal closed-loop control has been 

developed for a linear system with two fixed endpoints over a 

specific time interval. The approach employs inverse Riccati 

transformation between state and co-state. Resulting 

equations have been subsequently used to find optimal 

trajectory and interaction force for robots interacting with the 

environment. The obtained optimal trajectory has been 

defined as the desired trajectory that integrated into the 

developing position controller. Trajectory following and 

stability of the closed-loop system have been analyzed using 

the Lyapunov direct method. Finally, numerical simulations 

have been performed to illustrate the effectiveness of the 

theoretical results. 
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