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ABSTRACT 

The industrial activities have increased in the worldwide led to release a huge amount 

of dyes and toxic metal contaminants to the aquatic environment, and exerts effort for 

wastewater treatment. Several traditional methods have been applied to remediate 

these contaminated water including; coagulation, precipitation, filtrated membranes, 

adsorption and activated carbon; however, the selectivity, deficiency, post-separation 

as well as the high cost have affected the activity of these methods.  To overcome these 

matters, novel catalysts such as TiO2/ZSM-5 mesoporous, RGO/TiO2/ZSM-5 

mesoporous to treat water from dyes and optical conjugated mesoporous to treat water 

from ions were prepared and deeply effectively investigated. Using the synthesized 

ZSM-5 mesoporous was an efficient method should consider in the solar 

photocatalysis and in conjugate optical mesoporous adsorbent preparations as a 

superiorly alternative host substrate.   

In this dissertation, a novel multilayer of TiO2/ZSM-5 mesoporous was prepared using 

direct templating approach to study solar photocatalysis of methyl orange dye (MO). 

Different factors including the type of catalysts, pH solution, adsorption 

/photocatalysis processes, mineralization, the kinetic models and the contact time were 

investigated. The results showed that 99.55% of MO dye decolorized follows the 

conditions of 20 mg L-1 concentration of MO; 2 g L-1 concentration of TiO2/ZSM-5 

mesoporous, light intensity of 100 mW/cm2, and 180 min contact time. The results 

also revealed that the specific surface area (SBET, Brunauer-Emmett-Teller) of 

TiO2/ZSM-5 mesoporous was 1151 m2 g-1. ZSM-5 multilamellar mesoporous 

interestingly worked as an adsorbent, electron/hole acceptor, and it’s perfectly 

enhanced the dye photodecomposition.  

Further investigation to enhance the solar photocatalysis activity of TiO2/ZSM-5 

mesoporous was conducted by adding different wt % of the reduced graphene oxide 

(RGO). In this study, methylene blue dye (MB) was used as a pollutant model. The 

results showed that 10% wt of RGO in the nanocomposite of TiO2/ZSM-5 mesoporous 

significantly enhanced the photocatalytic activity, adsorbability and charge separation 

with extensively electron transfer into carbon-based nano-sheets. Based on the 

obtained results, 93% removal efficiency of MB was achieved after 120 min solar 

irradiation under the following conditions: 10 mg L-1 concentration of MB; 0.5 g L-1 
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concentration of 10% RGO/TiO2/ZSM-5 mesoporous; light intensity of 100 mW/cm2. 

The kinetic models, adsorbability, post-separation, reusability and stability of 

RGO/TiO2/ZSM-5 mesoporous were also investigated. The result also revealed that 

the intermediate were mainly found to consist of Azura (A) and Thionin compounds 

in the treated samples. 

Ligand of 2-hydroxyacetophenone-4N-pyrrolidine thiosemicarbazones (HAPT) was 

anchored into a highly ordered ZSM-5 mesoporous to synthesize a novel visual 

mesoporous conjugate adsorbent (MCA). Mercury (Hg2+) was selected as a pollutant 

model in an aqueous media. Different parameters such as pH solution, interference of 

foreign metal ions, contact time and Hg2+ concentration were investigated. The results 

showed that MCA exhibited a colour change from colourless to yellow at optimum pH 

conditions; also, a lower sensitive detection limit was calculated to be 3.69 µg L-1 of 

Hg2+. The data well fitted with Langmuir isotherm model, and the maximum 

adsorption capacity of Hg2+ was 166.7 mg/g; moreover, the data clarified that 0.10 M 

of thiourea-0.10 M HCl was used to simultaneously regenerate MCA for several run 

without significant loss in its initial performance.  

Further research concerning mesoporous conjugate adsorbent was conducted by 

synthesizing a ligand of 2,6-Pyridinedicarboxaldehyde-Thiosemicarbazone (PDCTC)  

immobilized into ordered ZSM-5 mesoporous to prepare a new detective visual 

conjugate mesoporous adsorbent (MzCA). Lead (Pb2+) was selected as a pollutant 

model in an aqueous solution. Several factors such as pH solution, kinetics models, 

competing foreign ions and elution/reuses were investigated. MzCA was exhibited a 

distinct colour formed in both liquid/solid phases under optimum conditions. The 

results revealed that the detection limit of Pb2+ was estimated to be 5.0 µg L-1, and 

maximum sorption capacity was15.75 mg/g at optimum pH condition of 6.0. MzCA 

was eluted using 0.1 M of HCl and reused several cycles without considerable 

decadence in its activity.    
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CHAPTER 1 

  Thesis Overview 

 

1.1 Background and Motives 

According to UNICEF at least 1.1 billion people live without access to potable water. 

Water is a basic need for everyday living not only for human consumption, but also 

for energy, industries and agricultural activities (Melo Zurita et al., 2018), which 

created major challenges for wastewater treatment processes.  About 10% of diseases 

worldwide could be prevented by access to potable water (Lonergan, 2018). Such 

environmental and health issues have motivated a lot of researchers to design 

innovative and effective technologies with low energy consumption and high 

efficiency for treating wastewater. Chemicals that can contaminate water sources 

could be organic (such as alkanes, aliphatic, alcohols and aromatic compounds) and 

inorganic pollutants (such as alkaline compounds, nitrate or nitrate, sulphate) and 

heavy metal ions such as lead, mercury, nickel, silver and cadmium and so forth. Since 

the dawn of the industrial age, the coexistence of toxic inorganic and organic refractory 

pollutants in aquatic systems has continued to rise to an alarming rate that pose a 

serious threat to worldwide health (H. Chen, Wang, Li, & Wang, 2015). These 

contaminates are released from several industrial activities such as textile and dye 

manufacturing, municipal wastewater effluent, detergents, surfactants, pesticides, 

pharmaceutical manufactures, mining and metallurgical industries. These are majorly 

non-biodegradable contaminates that are difficult to remove from aquatic systems 

when traditional purification treatments applied. These (treatments) limitations has 

therefore prompted the investigate and  discovery of new commercial hybrid 

photocatalysts and conjugate mesoporous visual adsorption catalysts for the purposes 
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of removing organic and inorganic refractory pollutants from water sources to mitigate 

the impact of water quality (Awual, Rahman, Yaita, Khaleque, & Ferdows, 2014; 

Dong et al., 2014; Ghosh & Bhattacharyya, 2002; Kaplan, Yildirim, Yildirim, & 

Tayhan, 2011).  

1.1.1 Hybrid photocatalysts 

Titanium dioxide (TiO2) photocatalyst is efficiently used for wastewater remediation 

process; however, it has been found that post-separation and hole/electron pair 

recombination of TiO2 photocatalyst are challenging in this process. To resolve the 

post separation problems, different immobilizer silica substrates were employed to 

improve the post-separation such as clays composites which could prepare using the 

blending techniques (Chong, Vimonses, et al., 2009). Compare to other immobilizer, 

the natural zeolites are abundant, inexpensive, having alumino-silicates structure with 

different size of cavity, tectosilicates with microporous channels, pore spaces, high ion 

exchange  and adsorption capacities (Vimonses, Lei, Jin, Chow, & Saint, 2009; S. 

Wang & Peng, 2010). Many research have been done on the ways to enhanced the 

surface of ZSM-5 zeolite by TiO2 to yield efficient photocatalyst for post separation 

treatment of wastewater (Khatamian, Hashemian, & Sabaee, 2010; Panpa, 

Sujaridworakun, & Jinawath, 2008). However, to the best of our knowledge no work 

has been addressed, the synthesis of mesoporous ZSM-5 and the effect of the 

mesoporsity on photocatalytic post separation and stability.  

Another crucial factor that could affect the photocatalytic activity is the hole/electron 

recombination phenomenon. In recent years, considerable efforts have been made to 

design and fabricate heterojunction photocatalysts for improving photocatalytic 

activity by mitigating the hole/electron recombination (Q. Xiang, Yu, & Jaroniec, 

2012). To address this issue, we considered the use of graphene, a single layer of 

graphite which possesses a unique two-dimensional structure, high conductivity, 

superior electron mobility and extremely high specific surface area. Moreover 

graphene can also be produced on a large scale at low cost; thus, it has been regarded 

as an important guest/host component for making various functional substance of 

photocatalysis usage. Although, there have been numerous attempts to combine 

graphene with photocatalysts to promote charge separation, restrain the hole–electron 

recombination as well as provide a large surface area for heterogeneous reactions at 
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the interface (X. Huang, Qi, Boey, & Zhang, 2012; Q. Xiang et al., 2012), however, 

little attention has been paid to the modification of graphene.  

This dissertation showed some of the criteria for choosing zeolite and modified 

graphene as a substrates for enhanced photocatalytic activity. On the basis of these 

criteria, the characterizations of a new set of hybrid photocatalysts have been 

investigated. The combination of zeolite and modified graphene has revealed a novel 

hybrid photocatalyst which significantly increased the photocatalytic efficiency. 

1.1.2 Conjugate mesoporous visual adsorption 

Conjugate mesoporous adsorbent is a ligand anchoring appropriate mesoporous silica 

substrate prepared by direct templating method for removal of heavy metals from 

aqueous solution (Abbas, Znad, & Awual, 2018; Awual, 2016a). In this technique, 

ligand (which can be defined as a molecule that binds to a central metal atom to form 

a coordination complex) play a vital role in capturing and selecting ions from aqueous 

solution. The merit that has made this type of conjugate adsorption unique is the visual 

detection of ions with naked eyes in water samples. More research efforts in recent 

years have focused on the development of conjugate mesoporous adsorbent which are 

environmentally friendly. Most conjugate mesoporous adsorbents have a better 

efficiency, quality and applicability up to the nano-scale; however, the challenges with 

this conjugate mesoporous adsorbent is their instability which has remained 

unresolved due to the weakness and the poisonous nature of the silica substrates which 

is used in this technique. Substrate of conjugate adsorbent are made of either 

tetramethyl orthosilicate (TMOS) or tetraethyl orthosilicat (TEOS),  which are widely 

used as precursor substrate (Awual, Hasan, Eldesoky, et al., 2016; Awual, Khaleque, 

et al., 2015) are known to be toxic and unstable in water samples resulting to deposit 

of silica (Si) in aqueous solution. The search for a new substrate to improve the 

adsorption ability without loss of the overall effectiveness; and to design an 

appropriate ligand that can adsorb ultra-trace heavy metal ions in an aqueous solution 

is in high demand.  

1.2 Research objectives 

The two main objectives of this thesis are to synthesize: (i) a new TiO2 based 

mesoporous photocatalysts for decolourization and mineralization of dyed aqueous 
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solution, and (ii) novel visual conjugate mesoporous adsorbent for detecting and 

removing heavy metal ions from aqueous medium. To achieve these goals, the 

following specific objectives will be thoroughly investigated: 

 Fabrication and characterization of a hybrid multilamellar TiO2/ZSM-5 

mesoporous: Methyl orange as a pollutant model. 

 Preparing, characterizing, testing and evaluating the TiO2/ZSM-5 mesoporous 

enhanced with reduced graphene oxide (RGO) as a potential and alternative 

photocatalyst for removal of methylene blue from aqueous coloured solution.  

 Identify and quantify the intermediate compounds formed during the 

photocatalytic degradation.   

 Synthesis of a novel visual conjugate adsorbent mesoporous which consists of 

ligand type (HAPT) 2-hydroxyacetophenone- 4N–pyrrolidine thiosemicarbazones 

immobilizes onto mesoporous zeolite type ZSM-5 substrate to detect and remove 

mercury (Hg2+) ions from an aqueous solution.  

 Synthesis of a novel visual conjugate adsorbent mesoporous consists of ligand type 

PDCTC (2,6-Pyridinediecarboxaldehyde-Thiosemicarbazone) immobilizes onto 

ZSM-5 mesoporous substrate to detect and remove lead (Pb2+) ions from an 

aqueous solution.  

1.3 Research significant  

 Previous studies have applied TiO2 with different types of natural zeolites substrate 

for wastewater treatment, which relatively has a specific surface area limits. To the 

best of our knowledge, there has been no detailed study that used modified 

mesoporous zeolite type of ZSM-5 (which contains multi- active sites with high 

specific surface area) in photocatalysis, which gives high efficient and post-

separation.     

 This is the first research to utilize reduced graphene oxide in the synthesis of 

multilamellar TiO2/ZSM-5 mesoporous photocatalyst to efficiently enhanced solar 

photocatalytic degradation, making the photodecomposition more rapidly.  

 Previous researches have achieved the preparation different types of conjugate 

mesoporous adsorbents with high specific surface area using a precursor substrate 

of TEOS or TMOS. In this thesis, a relatively higher specific surface area conjugate 
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mesoporous adsorbent was prepared using ZSM-5 mesoporous as an alternative 

substrate.  

 Another innovative component in this research is the novel design of stable 

ligands type of 2-hydroxyacetophenone- 4N–pyrrolidine thiosemicarbazones and (2,6-

Pyridinediecarboxaldehyde-Thiosemicarbazone) functionalized ZSM-5 mesoporous 

adsorbent. 

 When the above objectives are achieved successfully, the impacts may reduce 

the risk of dyes and heavy metal ions contaminations in water bodies.   

1.4 Thesis Structure  

This dissertation consists of eight chapters that are linked systematically together to 

achieve the targeted objectives. Below is a brief description of each chapter and Figure 

1.1 shows the dissertation structure: 

Chapter One:  General overview of the present research work which includes a 

motivation and brief background of the thesis topic as well as the thesis’s main 

objectives, significance and structure. 

Chapter two: Literature review of the current study which includes the photocatalysis, 

adsorption processes, current progress and research studies of functionalized ligands 

and conjugate mesoporous adsorbent. An extensive theoretical view including the 

preparation methods, characterizations, problems and potential applications are also 

presented in this chapter.  

Chapter three: Description of the experimental methods, chemicals and analytical 

equipment used in this thesis.  

Chapter four: experimental procedure to synthesis multilamellar TiO2/ZSM-5 

mesoporous catalyst, characterization and the results of solar-photocatalytic 

degradation of methyl orange.  

Chapter Five: Enhancement of solar-photocatalytic degradation of methylene blue 

using the synthesized reduced graphene oxide with multilamellar TiO2/ZSM-5 

mesoporous catalyst. The isotherm kinetic models are also reported in this chapter.  

Chapter Six: Demonstrations and explanation of the experimental procedure for 

synthesize of a ligand (2-hydroxyacetophenone-4N-pyrrolidine thiosemicarbazones) 
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(HAPT) embedded conjugate mesoporous adsorbent for detection and effective 

removal Hg2+ from aqueous media. The effects of pH solution, contact time, maximum 

adsorption capacity, equilibrium sorption isotherm and foreign competing ions are also 

studied.  

Chapter Seven: Investigations and explanation of the experimental procedure to 

synthesize a ligand of 2,6-Pyridinedicarboxaldehyde-Thiosemicarbazone (PDCTC) 

functionalized conjugate mesoporous adsorbent for monitoring and sorption of ultra-

trace  Pb2+ from aqueous media. The influences of the key factors (pH solution, contact 

time, maximum adsorption capacity, equilibrium sorption isotherm, foreign competing 

ions are also investigated.  

Chapter Eight: This chapter presents the conclusions drawn from this study, as well 

as the recommendations for future works. 
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CHAPTER 2 

      Literature Reviews  

 

2.1 Introduction 

The tremendous development in industrialization and urbanization has escalated series 

of environmental issues globally. One of the most significant issues is the disposal of 

industrial contaminates in form of effluents containing non-biodegradable toxic 

materials into rivers, lakes, oceans and ground water. Many industries that impact on 

the ecosystem such as metallurgy, petroleum refineries, plastic, leather, pesticide, 

herbicides, detergents, textile dye and pharmaceutical manufacturers release highly 

concentrated organic refractory and heavy metal ions pollutants. These pollutants can 

be classified into organic pollutants, including aliphatic, alkanes, alcohols, aromatic 

compounds and inorganic pollutants such as mercury (Hg2+), lead (pb2+), cadmium 

(Cd2+) and nickel (Ni+). In general, these pollutants are considered a real threat to 

public health and the ecosystem such as plant, animals and aquatic organisms (Chong, 

Jin, Chow, & Saint, 2010; Dong et al., 2014; Gogate & Pandit, 2004); therefore, their 

complete removal from the environment is an urgently demanded.  

Physical treatments such as coagulation, reverse osmosis, and membrane filtration are 

widely used to remove organic contaminants from water, however, they are quite 

expensive, time-consuming and incompetent techniques. In addition to physical 

treatment, chemical treatments are also applied such as reduction, oxidation, 

electrochemical oxidation, and ion exchange, but they cause the formation of by-

products such as sulfonate, phenol and plenty of aromatic compounds (Chong et al., 

2010; F. Ma, Guo, Zhao, Chang, & Cui, 2009; Slokar & Le Marechal, 1998). For 

detecting toxic ions, various analyses equipment have been reported including ICP-
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MS, ICP-AES, fluorescence spectroscopy, chemiluminescence and neutron activation 

analysis (Arshad et al., 2017; Awual, 2017b; Awual, Hasan, Eldesoky, et al., 2016; 

Kamath, Netalkar, Kokare, Naik, & Revankar, 2012; B. Li, Wang, Lv, & Zhang, 2006; 

Naushad, ALOthman, Awual, Alam, & Eldesoky, 2015; Sakamoto-Arnold & Johnson, 

1987; Sheikh et al., 2017; Souza & Tarley, 2009; Zi, Huang, Yan, & Liao, 2014). 

Although, these methods are adequate for detection of ions, the complex operational 

procedures which involve a large infrastructure backup and high cost have 

compromised these techniques. The following sections present the major industrial 

effluent contaminants and the treatment methods. 

 

2.2 Industrial effluent dyes 

Annually, 7× 105 tons of synthetic dyes are produced worldwide, and are largely 

consumed by the textile industries. 10-50% of the dyes are released into the ecosystem, 

which are highly water soluble. The product of their degradation, mainly aromatic 

amines can be carcinogenic or mutagenic to life forms (Rajamohan, Rajasimman, 

Rajeshkannan, & Sivaprakash, 2013). Unfortunately, most of the dyes escape 

traditional wastewater treatment processes and are retained in the environment as a 

result of their high stability to light, detergent, chemicals, temperature and other 

parameters, for instance, bleach and perspiration. Dyes can remain in the environment 

for an extended period of time and resist bio-degradation due to high thermal and photo 

stability (Nidheesh, Zhou, & Oturan, 2018). Different azo dyes affect water quality 

such as Rhodamine B, Orange 7, Orange II, Reactive Blue, Reactive green, Congo red 

and Reactive red. Methyl orange dye (MO, C14H14N3NaO3S) is a significant example 

of anionic azo (-N=N-) groups in the substituted aromatic rings, is a synthetic dye that 

is widely used as a colouring agent in textile, food, leather and pharmaceutical 

industries. MO can be used to determine Itopride hydrochloride and also as a colouring 

agent to detect hydrogen gas (Choudhary, Goyal, & Khokra, 2009). The discharging 

of a high concentration of MO dye into rivers causes health hazards such as mutagenic, 

carcinogenic and teratogenic effects which affects humans, microorganisms, and fish 

species (Mathur, Bhatnagar, & Sharma, 2012; Parshetti, Telke, Kalyani, & Govindwar, 

2010). Another example is methylene blue cationic heterocyclic dye (MB, 

C16H18N3SCl) which stands out amongst the most regularly used dye in dying wood, 

cotton, and silk. It causes serious harmful effect when inhaled, and when ingested 

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Sulfur
https://en.wikipedia.org/wiki/Sulfur
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through the mouth it causes smouldering sensation, spewing, mental perplexity and 

methemoglobinemia (Ghosh & Bhattacharyya, 2002). (Saratale, Saratale, Chang, & 

Govindwar, 2011) 

 

2.2.1  Treatment technologies of dyes 

Various physical/ chemical methods, such as adsorption, chemical precipitation 

photolysis, chemical oxidation and reduction, and electrochemical treatment, have 

been used for the removal of dyes from wastewater (see Figure 2.1) (Saratale et al., 

2011); however, these treatment processes cannot oxidise or completely degrade the 

recalcitrant components present in wastewater effluents. Additionally, there are many 

drawbacks including the slow biodegradation and disposable sludge which are greatly 

activated in the treated water (Kusvuran & Erbatur, 2004). Therefore, an effective 

advanced treatment is required to disintegrate and mineralise these non-biodegradable 

compounds. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 2-1 Treatment techniques for the removal of dyes from wastewater effluent 

(Saratale et al., 2011)  

2.2.2 Advanced oxidation processes (AOPs) 

Advanced oxidation processes (AOPs) are the most effective technologies for 

treatment of wastewater effluent contaminants they include electrochemical (P. Ma, 

Treatment methods for textile effluents 

Chemical  Physical  Biological  

Oxidation Ozonation Filtration Adsorption Enzymes 
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Coagulation/
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Ma, Sabatino, Galia, & Scialdone, 2018), solar phot-Fenton (Karci, Wurtzler, Armah, 

Wendell, & Dionysiou, 2018), catalytic oxidation (Cheng et al., 2018), catalytic wet 

oxidation (Xing, Chen, & Zhang, 2018), microwave catalytic wet air oxidation (Sassi 

et al., 2018) and photocatalytic degradation (Gholami, Ghasemi, Anvaripour, & Jorfi, 

2018). AOPs suggest many advantages such as a complete mineralization of the 

organic pollutants, utilizing solar light instead of UV as an alternative to the light 

source. Among the AOPs, photocatalytic degradation using an appropriate 

semiconductor such TiO2 and UV light source has been widely applied for the 

mineralization of most of the organic pollutants present in wastewater with no 

significant drawbacks, except energy cost. To solve this problem, solar light instead of 

UV could successfully decrease the operating cost thus making this technique more 

economically feasible (Giannakis, Androulaki, Comninellis, & Pulgarin, 2018).  

The major power of this technique comes from the production of superoxide (.O2) 

/hydroxyl (OH.) radicals by stimulating TiO2 via light sources which destroy the 

organic pollutant compounds, mineralizing them to CO2 and H2O as illustrated in 

Figure 2.2. Titanium dioxide TiO2 is one of the major photocatalyst used in 

photodegraration process due to its non-toxic, stable, inexpensive and reusable nature. 

However, the main challenges facing  its use is associated with the problem of post-

separation of the spent TiO2 (Chong, Jin, Zhu, Chow, & Saint, 2009) and the 

recombination of electron/hole pair producing heat. Thus, it is necessary to modify 

TiO2 in order to meet the requirements of photocatalysis process.       
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Figure 2-2 Principles of oxidative decomposition of photocatalysts 

 

2.2.3 Enhanced the photocatalytic degradation process 

The main challenges of photocatalytic processes are the post separation and the 

recombination of e-/h+ pairs leading to decreased degradation efficiency (Joseph & 

Thiripuranthagan, 2018; Sacco, Vaiano, & Matarangolo, 2018). To overcome the post 

separation drawback, TiO2 immobilized into appropriate porous molecular substrate 

to accelerates the post separation process (MiarAlipour, Friedmann, Scott, & Amal, 

2018). Different immobilizer substrates such as activated carbon (Shi, Zheng, & Ji, 

2010), magnetite core (Beydoun & Amal, 2002), and clays (Paul, Martens, & Frost, 

2012) have been used to enhance the post-separation and adsorption of contaminants 

from bulk water. Conditionally, the penetration of the incident light UV/or sunlight 

should easily go through a catalyst to extremely excite TiO2; hence, TiO2 modified 

transparent components such as porous materials are significantly recommended in 

this manner (MiarAlipour et al., 2018).  

Another challenge facing the photocatalytic process is the recombination of e+/h- pairs 

phenomenon. To resolve this drawback, various crystal phase of TiO2 such as anatase, 

rutile or brookite have been applied in order to enhance the photocatalytic degradation 

(Mutuma, Shao, Kim, & Kim, 2015; Wei, McMaster, Tan, Chen, & Caruso, 2018). 
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Other solar/UV photocatalytic degradation processes have been applied, for example, 

Ag+/TiO2/UV (Shintre & Thakur, 2016), H2O2/TiO2/UV (Apollo, Onyongo, & 

Ochieng, 2014), Co-doped TiO2 (Shang, Wu, & Xie, 2016) Solar/TiO2/photo-Fenton 

(Eissa, Zidan, & Sakugawa, 2015) and WO3/UV (Mohagheghian, Karimi, Yang, & 

Shirzad-Siboni, 2015).  

 

2.2.3.1 TiO2- modified mesoporous silicate  

Titanium dioxide (TiO2) has been widely investigated as a fascinating photocatalytic 

catalyst for environmental application due to its fabulous properties such as non-toxic, 

high efficiency and chemical stability (X. Chen & Mao, 2007; Fujishima, Rao, & Tryk, 

2000; Liao et al., 2012). Numerous studies in the literature have dealt with 

TiO2/modified mesoporous silicate, but the reason behind using mesoporous silicate 

in this composite has been given less attention. The next section will explain the main 

techniques for synthesizing TiO2 /modified mesoporous silicate: 

 

2.2.3.1.1 Sol-gel/Hydrolysis technique 

Multilayers of TiO2 coating are made into SBA-15 mesoporous, whose silanol groups; 

has been treated with Ti (OiPr)4/ TiCl4  precursor via sol-gel and hydrolysis process. It 

was prepared by Yan and colleagues (Yan, Mahurin, Overbury, & Dai, 2005) under 

the name hydrolytic surface sol-gel (HSS) process as illustrated in Figure 2.3. This 

composite catalyst exhibits good photocatalytic activity. The synthesizing was 

consistent with the study by Zheng; however, Zheng et al. examined MCM-41 

mesoporous silicate instead of SBA-15 (Zheng, Gao, Zhang, & Guo, 2000). This 

technique was discarded by the experiments of Li and coworkers (X. Li, Xiong, Li, & 

Xie, 2006) who considered a novel method for generating TiO2 nanofiber via TiCl4 

precursor or metal oxide that is filled into mesoporous silica at a temperature range 

from 90- 1500C, but in this technique the experiments were conducted under pressure 

following a hydrolysis process to generate TiO2 as a nanofiber on the surface of the 

mesoporous as shown in Figure 2.4. The advantage of this technique is that the 

mesophase template is not removed preventing the damage that could occur for the 

TiO2 nanofibers.  
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Figure 2-3 Synthesis of multilayered Titania through mesoporous silica channels 

 

 

 

 

 

     

 

            

 

 

 

 

 

Figure 2-4 Scheme showing the formation process of TiO2 fibres on mesoporous 

spheres 

2.2.3.2 TiO2- modified raw Zeolites  

There have been several studies in the literature reporting TiO2/raw zeolite composites. 

Zeolites are one of the most significant microporous silica source materials considered 

as a member of the large family of aluminosilicates and are widely applied in catalysis 

and separation process. Typically, zeolites applied as FCC (Face Centred Cubic 
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Structure catalysts) are of types ZSM-5, X and Y (Faujasite type). ZSM-5 zeolite is a 

highly porous aluminosilicates with a high silica/alumina ratio. So far, there has been 

little discussion about the influence of this aluminosilicates on photocatalytic activity. 

The Sol-gel/Hydrolysis technique is widely applied to synthesize these composite 

catalysts. Table 2.1 shows the different types of TiO2/zeolites composites applied for 

wastewater treatments.  

 

Table 2-1  Different types of zeolite modified TiO2 applied in wastewater treatment 

Composite catalyst Pollutant 
Degradation 

rate (%) 
References 

TiO2/zeolite Y Fluoroquinolones 96-98 
(Maraschi et al., 

2014) 

TiO2/ zeolite HY 

2,4-

dichlorophenoxyacetic 

acid (2,4-D) 

82.9 

(Shankar, Anandan, 

Venkatachalam, 

Arabindoo, & 

Murugesan, 2006) 

TiO2/zeolite HY Methylene blue dye 97 
(Tayade, Kulkarni, 

& Jasra, 2007) 

TiO2/ β-zeolite U(VI) 90 (Peng et al., 2017) 

TiO2/ zeolite prepared 

by Kaoline 
Methylene blue dye 99.43 

(Setthaya, 

Chindaprasirt, Yin, 

& Pimraksa, 2017) 

Titania/ HP-zeolite Y Formaldehyde 90 (Jin et al., 2018) 

TiO2 

rutile/Clinopotilolite 

zeolite 

Terephaphalic acid 94 

(Yener, Yılmaz, 

Deliismail, Özkan, 

& Helvacı, 2017) 

TiO2/zeolite fly ash 

bead 
RhB 95 (Yang et al., 2017) 

TiO2/ zeolite Y treated 

ammonium acetate 

ammonium fluoride 

Methyl orange 92 

(Guesh, Márquez-

Álvarez, Chebude, 

& Díaz, 2016) 

        

2.2.3.3 TiO2- modified reduced graphene oxide (RGO)  

Graphene can be described as a two-dimensional (2D) sheet of sp2-hybridized carbon, 

which reveals a honeycomb network. The peculiarity of the long-range π-conjugation 

in graphene enhances the remarkable thermal, electrical, mechanical properties (Allen, 
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Graphene  

Graphene oxide  

Tung, & Kaner, 2009), chemical inertness, and super hydrophobicity at the nanometre 

scale of graphene which are considered in many different theoretical and practical 

studies  (Geim & Kim, 2008). The fundamental difference between graphene (G) and 

graphene oxide (GO) is the additional oxygen atoms, which are bound with the carbon 

scaffold (see Figure 2.5).  

        

     

 

 

 

 

 

 

Figure 2-5 Oxidation of graphene to form graphene oxide 

 

The most common technique applied for synthesizing graphene oxide is Hummers and 

Offeman technique (Hummers Jr & Offeman, 1958), which utilizes a mixture of very 

strong oxidizers consisting of sulphuric acid, sodium nitrate and potassium 

permanganate which treated with graphene to produces GO (Sakthivel, Josephine, 

Sethuraman, & Dhakshinamoorthy, 2018). To obtain 70% conversion during this 

oxidation reaction, increased quantities of potassium permanganate and phosphoric 

acid are combined with the sulphuric acid, instead of utilizing sodium nitrate (L. Chen 

et al., 2018).  Reduced graphene oxide (RGO) has  similar structure as GO, however, 

it contains various functionalities of (–O, –OH, –COOH) on its surface (Barpuzary & 

Qureshi, 2013; Iwase, Ng, Ishiguro, Kudo, & Amal, 2011) as depicted in Figure 2.6. 

From the cost point of view, graphene is expensive, but RGO can be synthesized 

utilizing inexpensive techniques, which makes it easily applied in various fields (e.g. 

photocatalysis, sensing, optoelectronics, energic materials, bio-sensing, catalytic and 

biomedical applications) (Georgakilas et al., 2016; Selvaraj, Sun, Sukumaran, & 

Singh, 2016).   
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Figure 2-6 The chemical structure of reduced graphene oxide (RGO) 

Several researchers have investigated the use of semiconductor nanocomposites (SNs) 

/RGO for wastewater treatment. Example are, TiO2/RGO (Ismail, Chovelon, 

Ferronato, Jaber, & Rifai, 2016; Khavar, Moussavi, & Mahjoub, 2018; Yanan Li et al., 

2018; W. Liu, Cai, Ding, & Li, 2015; Marco, Claudio, & Fabrizio, 2017; Tang, Wang, 

& Wang, 2018), S-TiO2/RGO (Khavar, Moussavi, Mahjoub, Satari, & Abdolmaleki, 

2018), Au-TiO2/RGO (Lv et al., 2018), Bi2S3-, N-doped- and TiO2/RGO microspheres 

(Wu, Zeng, Tong, Li, & Xu, 2018). The unique characteristics that make reduced 

graphene oxide a successful substrate in the photocatalytic process are as follows:  

 Electrons excitation in a semiconductor by a light source during the photocatalysis 

process are transmitted onto RGO surface sheet and thus promote the separation 

of charges.  

 The strong optical absorption ability of GO from visible to near infrared (NIR) 

regions can be harvested as soon as it receives light or irradiated.  

 The RGO also forms a relatively formed a high molecular weight which is 

beneficial for post separation from aqueous solution. The key features for synthesis 

of TiO2/RGO and the reaction mechanism steps of photocatalytic degradation onto 

the surface of reduced graphene oxide are depicted in Figure 2.7.  

The next section briefly explains with illustrations the main technique to 

functionalized TiO2 into the graphene: 
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Figure 2-7 A simplified schematic description the key features for synthesis of 

RGO/semiconductor nanocomposite with the major mechanism reaction steps in 

photocatalytic degradation under solar light irradiation 

 

2.2.3.3.1 Solution mixing method 

Solution mixing technique has been widely employed for the fabrication of graphene/ 

semiconductor composite. It is considered as a simple, cost effective, scalable and 

feasible method. In this method, the graphene oxide colloids are ultrasonically mixed 

with TiO2 particles, followed by ultraviolet (UV) assisted light to reduce the graphene 

oxide (Akhavan & Ghaderi, 2009; Bell et al., 2011). This method can be applied for 

different types of semiconductors; for example, SnO2 semiconductor which can be 

prepared by the hydrolysis of SnCl4 precursor with NaOH fabricated onto graphene 

(Paek, Yoo, & Honma, 2008). SnO2 solution mixed with graphene is dispersed in 

ethylene glycol solution, then adding lithium ions to this solution produces 

SnO2/graphene composite as depicted in Figure 2.8. This method can be applied 
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effectively for the preparation of semiconductor/graphene composite (Q. Xiang et al., 

2012). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8  Schematic illustration for the synthesis and the structure of SnO2/ 

Graphene nanosheets 

 

2.2.3.3.2 Hydrothermal method 

In this method, either semiconductor nanoparticles or their precursors are anchored on 

the graphene oxide sheets to produce special morphology which can be efficiently 

utilized for different applications. For example, thermal treatment of 

graphene/ultrathin anatase TiO2 nano-sheets under N2/H2 gases produced crystals type 

of (001) high-energy facet in a study by Ding and co-workers (Ding et al., 2011). In 

another study by Zhang and co-workers (H. Zhang, Lv, Li, Wang, & Li, 2009) 

involving the use of a different titanium sources such as Degussa P25 TiO2 powder in 

one-step hydrothermal treatment was completely dissolved in ethanol-water solution. 

In another investigation by Fan and colleagues, one-step solvothermal strategy for the 

preparation of graphene–TiO2 nanocomposites by controlling the hydrolysis rate of 

titanium isopropoxide as a precursor resulted in well-dispersed particles on the 

graphene sheets (Fan, Lai, Zhang, & Wang, 2011).  
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2.3 Industrial effluent of heavy metal ions  

Over the past three decade, rapid development in industrialization has greatly 

increased the rate of release of trace metal ions into the ecosystem which has 

negatively affected freshwater bodies to be greatly altered. Metal ions are mostly 

released during mining and processing activities, and according to Ross (Ross, 1994), 

these anthropogenic sources of metal contamination can be divided into five main 

groups: 1. Industry (As3+, Cd2+, Cr2+, Co2+, Cu2+, Hg2+, Ni+, Zn2+), 2. Atmospheric 

deposition (As3+, Cd2+, Cr2+, Cu2+, Pb2+, Hg2+, U), 3. Agriculture (As3+, Cd2+, Cu2+, 

Pb2+, Si+, U, Zn2+), 4. Waste disposal (As3+, Cd2+, Cr2+, Cu2+, Pb2+, Hg2+, Zn2+) and 5. 

Metalliferous mining and smelting (As3+, Cd2+, Pb2+, Hg2+). According to this 

classification, lead and mercury are the major contaminants affecting the environment. 

Mercury Hg2+ is one of the most ubiquitous and dangerous heavy metal ion global 

contaminant which ranks sixth position among the most toxic chemicals in the list of 

hazardous compounds. Moreover, Hg2+ is widely distributed in the water, soil and 

organisms from industrial activities, for instance, production of chlorine, caustic soda 

and electrical applications such as lamps, arc rectifiers and mercury cells cause serious 

human health risks. The toxicological and carcinogenic effects of ultra-trace Hg2+ 

(permissible level: 1 µ L-1 to 10 µg L-1) can destroy the central nervous system, kidney, 

liver, skin, lungs, and bones (Kaplan, Yildirim, Yildirim, & Tayhan, 2011; 

Mohammed, Kapri, & Goel, 2011).   

Lead Pb2+  is also a widespread hazardous pollutant, which is considered as a one of 

the most heavy metal ions in the ecosystem (Karve & Rajgor, 2007). The largest use 

of lead, which has prompted environmental and health issues, is the utilization of Pb2+ 

in fuel as an antiknock agent and paint pigments. The fundamental source of Pb2+ in 

water bodies is connected to ore processing and mining, industrial effluents discharge, 

Pb2+ plumbing, and public road or motorways runoffs (Yıldız, Citak, Tuzen, & Soylak, 

2011). Pb2+ contamination is an essential environmental problem due to its steadiness 

in polluted locations and the complexity of the mechanism for biological intoxication 

(Chooto, Wararatananurak, & Innuphat, 2010). Trace quantities of Pb2+ in ecological 

samples could leads to environmental contamination as well as several deadly diseases, 

for instance,  neurological systems and renal blood dysfunction are diagnosis caused 

by presence of toxic level lead ions which leads to irreversible brain damage, severe 

anaemia and colic shock (Memon, Hasany, Bhanger, & Khuhawar, 2005). To prevent 
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the toxic impacts of lead on the environmental agencies have placed rigorous measures 

to check the maximum allowable limits of metal ions drained into the lakes, rivers and 

landscapes. The maximum permissible limit of Pb2+ in drinking water was reported by 

The World Health Organization (WHO) to be 10 µg L-1 (Organization, 2013). 

However, it is important to completely expel and detect ultra-trace level lead (II) from 

wastewater to safe guard the water quality.   

 

2.3.1 Treatment technologies of heavy metal ions  

The physical/ chemical properties of water has been employed in different treatment 

technologies, such as physical acid leaching, electro-reclamation, chemical 

precipitation, chemical oxidation and reduction, ion exchange, filtration, 

electrochemical treatment, reverse osmosis, freeze crystallization, electro dialysis, 

cementation, starch xanthate adsorption, and solvent extraction for removing heavy 

metal ions from diluted solutions. Biochemical techniques also used for treatment 

include microorganisms, bio sorption and flotation, biotransformation, monitoring 

biosensors, bioremediation and phytoremediation as shown in Figure 2.9. Owing to 

their higher operational cost or difficulty in treating solid and liquid wastes, most of 

these techniques are expensive and incompetent, practically when the metal ions are 

dissolved in large volume of solutions (Mohammed et al., 2011). 

As an alternative to these physical/chemical and biological techniques 

researchers have developed an effective ligand-ion complexes route to remove 

heavy metals from aqueous systems. This route is the most common and widely 

used technique for wastewater treatment.  
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Figure 2-9 Treatment techniques for heavy metal ions (Mohammed et al., 2011) 

   

2.4 Ligand and the fundamental field theory  

A ligand is an ion or organic molecule with functional group that is bonded to a central 

metal atom to form a coordination complex. The bonding between metal and ligand 

generally involves formal donation of one or more of the ligand electron pairs. The 

presence of ligand allows a complex formation of [metal ions-ligand]n+ complex in 

aqueous solution, which cause the colour variation in the aqueous solution, forming a 

complex with a certain ligand (S. A. El-Safty, Shenashen, et al., 2013; Prakash & 

Malhotra, 2018). Ligand field theory describes the transition metal complex system 

[ligand-metal ion] n+ which consists of a central metal atom surrounded by a group of 

electron-rich atoms or molecules called ligand. In 1963, Pearson claimed that the metal 

ions can be divided into ‘soft’ metal ions and ‘hard’ metal ions which referred to as 

weak field ligands and strong field ligands under an acid or base solution medium, 
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respectively (Pearson, 1963) as shown in  Table 2.2. According to Pearson, there are 

four types of ligand donor including (O-) hard, (N-) hard, (S-N) soft, and (S-N-O) soft 

at a specific pH solution. Based on this classification, the next section will give more 

details regarding how to choose an appropriate ligand for the transition metal ions as 

presented in table 2.2.  

 

Table 2-2  Classification of hard and soft ions According to the HSAB (Hard and Soft 

acids and Bases) Principle of Pearson 

Medium Hard (ions) Soft (ions) 

Acids 

H⁺, Li⁺, Na⁺, K⁺, Be²⁺, Mg²⁺ 
Ca²⁺, Sr²⁺, Ba²⁺, Al³⁺, Sc³⁺, Ga³⁺, 

ln³⁺, La³⁺, Gd³⁺, Lu³⁺, Cr³⁺, Co³⁺, 

Fe³⁺, As³⁺, Si⁴⁺, Ti⁴⁺, Zr⁴⁺, Hf⁴⁺, 

Th⁴⁺, U⁴⁺, Pu⁴⁺, Ce⁴⁺, WO⁴⁺, Sn⁴⁺, 

UO²⁺, VO²⁺, MoO³⁺ 
  
  
  
  
  

Cu⁺, Ag⁺, Au⁺, TI⁺, Hg⁺, Pd²⁺, 

Cd²⁺, Pt²⁺, Hg²⁺, Se²⁺,  
CH₃ Hg⁺, Co(CN)₅²̵, Pt⁴⁺, 

Te⁴⁺, Br⁺, I⁺ 
  

      

Bases 
H₂O, OHֿ, Fֿ, CH₃COֿ², PO₄³, 

SO₄ֿ², CIֿ, CO₃ֿ², CIO₄ֿ, NO₃ֿ, 

ROH, ROֿ, R₂O, NH₃, RNH₂, 

NH₂NH₂ 

R₂S, RSH, RSֿ, Iֿ, SCN, S₂O₃ֿ², 

R₃P, R₃As, (RO)₃P, CNֿ, 

RNC, CO, C₂H₄, Hֿ, Rֿ 

      

2.4.1 Ligand design concept  

Ligands can be successfully designed to be detective and selective of transition metals 

ions, a process widely applied for heavy metal ions adsorption. For example, to design 

a specific ligand for capturing  hard Fe3+ requires selecting a hard donor atom such as 

a negative oxygen donor, within an acid solution medium (see table 2.2). Essentially, 

the nature of atoms binding here can be classified in a wide range from covalent to 

ionic bond. This atomic binding provides excellent chromatic properties in a specific 

aqueous solution. Such successful strategy of colorimetric formation of [ligand-metal 

ion]n+ extremely depends on solution pH and careful application of the ligand field 

Borderline 

Fe
2+

, Co
2+

, Ni
2+

, Cu
2+

, Zn
2+

, Pb
2+

, Sn
2+

, Sb
3+

, Bi
3+

, Rh
3+

, Ir
3+

 , 

B(CH
3
)

3
 

Borderline 

C
6
H

5
NH

2
, C

5
H

5
N, N

3-
, Br

-
, NO

2

-
, N

2
, SO

3

-2
  



Chapter 2 Literature Reviews 

24 | P a g e  

 

theory to obtain a maximum adsorption capacity as well as a highly obvious visual 

colour change. In accordance with these conditions herein are some critical examples 

from literatures: 

Ligands of (3-(3-(methoxycarbonyl) benzylidene)hydrazinyl) benzoic acid and 

N,N(octane-1,8-diylidene)di(2-hydroxy-3,5-dimethylaniline) were used to detect 

selenium (IV) and palladium (II) (Awual & Hasan, 2015a, 2015b) at a pH=1.5 (see 

Figure 2.9a, b). Selenium (IV) and palladium (II) classified as soft acid ions were 

efficiently adsorbed to 99% in an acidic condition. The strong link of these ions with 

the soft donor ligands that consist of –N-O- was obtained (Figure 2.9a, b), indicating 

that there is an affinity between the soft acid ions and the soft donor ligand. Failure to 

apply the ligand field theory possibly leads to reduced efficiency in linking between 

the transition metal ions with the ligands. To clarify this inadequate application, 

(dicarboxylate 1-(phenylamino)-3-phenylimino-thiourea) ligand was used to detect 

Cd2+ in buffer solution of pH = 12.5 (M. A. Shenashen et al., 2014), and 4-(2-

pyridylazo)-1,3-benzenediol ligand was used to detect Cu(II) at a pH = 12.5 (Hua et 

al., 2014) (Figure 2.9c,d); however, percentage clearance of Cd (II) and Cu (II) was 

lower than 97% under strong basic conditions. In this case and by applying the ligand 

field theory, Cd (II) and Cu (II) are classified as soft acid ions as shown in Table 2.2 

and the ligands were designed to be soft donor types (–N-O-), but the reaction medium 

was strongly basic and according to Pearson theory, the aqueous solution must be 

acidic to achieve a high clearance.  

More examples that investigates the broad line of transition metal are presented in table 

2.2. ligand of (tetrakis (3-carboxysalicylidene)) naphthalene–1, 2,5,5–tetramine that 

was prepared could successfully to remove up to 99.85% of pb (II) ions at pH=7.0 

(Awual & Hasan, 2014b) as shown in Figure 2.10 e; also, ligand of dicarboxylate 1,5-

diphenyl-3-thiocarbazone synthesized could efficiently adsorb  99.5% of Co (II) at 

pH= 8.0. These findings highlight that the borderline ions are not affected by hard/soft 

ligands, but an acidic condition is highly recommended to obtain a complete 

adsorption efficiency. Therefore, it is significantly recommend the application of 

ligand field theory before designing [ligand-metal ion] n+ complex systems. To support 

this claim, numerous examples have been conclusively shown in table 2.3; also, 

appropriate pH values are highly recommended and summarized in Figure 2.11.  
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Figure 2-10 Complex formation during the recognition of (a) Se(IV), (b) pd(II), 

(c)Cd(II), Cu(II) and pd(II) ions in solution at a temperature of 250C and pH = 1.5, 1.5, 

12.5, 12, 7, respectively 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11 The range of pH for different ions solution that can be detected by several 

ligands 

Table 2-3 Various ligands, chemical structure that adsorbed heavy metal ions from 

aqueous solution at different condition 
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PH=7.0, 3-

morpholinopropan

e sulfonic acid 

(MOPS) with 

NaOH) buffer 

(Md Rabiul Awual, 

Mohamed Ismael, et 

al., 2013) 

(Awual, El-Safty, & Jyo, 

2011) 

pH=3.50, 0.2 

M of KCl with 

HCl,as  buffer 
(Awual & Yaita, 2013) 

(Awual & Ismael, 

2014) 

pH=3.50, 0.2 

M of KCl with 

HCl as buffer 

solution  

(Awual, Khaleque, 

Ratna, & Znad, 2015) 

 

pH =2.0, 0.2 M 

of KCl with 

HCl as buffer 

solution  

(Awual & Hasan, 

2015b) 

PH=3.5, (0.2 M 

of KCl with 

HCl as buffer 

solution  
(Awual, 2014) 

dibenzo-24-

crown-8 ether 

pH=7.0, 

adding of HCl 

or NaOH as 

buffer solution  

(Awual, Yaita, 

Taguchi, et al., 

2014) 

α, β, γ, and δ-

tetrakis(1-

methylpyridinium-4-

yl)porphine r-toluene 

sulfonate(TMPyP) 

pH=9.5, 

using0.2M of 3-

morpholinoprop

anesulfonic acid, 

MOPS 

(S. A. El-Safty, 

Shenashen, & Khairy, 

2012) 

 

Table 2-3: (Continued) 

Ligand formula Chemical 
Metal 

ions 
Medium 

Sorption 

efficiency 

(%) 

References 

 

 

 

 

97% 

 

 

 

 

 
99% 

74% 

 

 

 

Pd(II) 

 

 

98%  

  

Au(III) 

 

96% 
 

  

Pd(II) 

 

98% 

 

  

Pd(II) 

 

95% 

 

 

 Au(II) 

 

98% 

 

 
 

Cs 

 

99% 
 

  

Cd(II) 

 

96-99% 

 

3-(((5-

ethoxybenzenet

hiol)imino) 

methyl)-

salicylic acid 

(EBMS) 

Cu (II) 

Monophos

phonic acid 

resin 

Arsenic 

(V) and 

phosphate 

PH=2.01, 

6.97, 0.1 

mol/L 

NaOH. 

Buffer 

N,Nbis( 

salicylidene)1

,2-bis(2-

aminophenylt

hio)ethane 

6-((2-(2-

hydroxy-1-

naphthoyl)hydr

azono)methyl) 

benzoic acid 

(HMBA) 

pH=2.0,  0.2 

M of KCl 

with HCl  as 

buffer 

((3-(3-

(methoxycarbonyl) 

benzylidene)hydra

zinyl)benzoic acid) 

(tetrakis( 3-

carboxysalicylide

ne)) naphthalene-

1,2,5,5-tetramine 

(TSNT) 

N,N’-(octane-

1,8-

diylidene)di(2- 

hydroxyl-3,5-

dimethylaniline) 

(DHDM)  
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dicarboxylate 

1,5-diphenyl-3-

thiocarbazone 

 

pH=11.5, 
perchlorate as 

buffer solution  

(M. Shenashen, El-Safty, 

& Elshehy, 2013) 

pH=6.0, using 0.2 

MCH3COOH/CH

3–COONa with 

0.1 M NaOH as 

buffer solution  

(S. A. El-Safty, Shenashen, 

Ismael, et al., 2012) 

pH =7.0, using 0.2 M 

3-morpholinopropane 

sulfonic acid, MOPS  

(dicarboxylate 1- 

(phenylamino)-3-

phenylimino-

thiourea, DCPPT) 

pH =7.0, (MOPS 

with NaOH as 

buffer solution  

(M. A. Shenashen, El-Safty, & 

Elshehy, 2014) 

Diphenyl carbazide 

chelating 

pH =4.0, using 

CH3COOH–CH3–

COONa as buffer 

solution 

(S. A. El-Safty & 

Shenashen, 2013) 

Diphenyl carbazide 

chelating 

pH =8.0, using a 

mixture of CHES/MOPS 

as buffer solution  

(S. A. El-Safty & 

Shenashen, 2013) 

4-tert-octyl-4-

((phenyl)diazenyl)

phenol(TPDP) 

(Awual, Hasan, & 

Shahat, 2014) 

pH=7.0, 0.2 M MOPS 

with NaOH as buffer 

solution  

N,Ndisalicylide

ne-4,5-

dimethyl-

phenylenedene 

(DDPD). 

pH= 7.0 

morpholinopropane 

sulfonic acid 

(MOPS) and 

sodium acetate 

2,5-dimercapto-

1,3,4thiadiazole 

pH=2.5, 0.2M KCl-

HCl and 0.1M 

CH3COOH-

CH3COONa 

Ligand 

formula 
Chemical 

Metal 

ions 
Medium 

Sorption 

efficiency 

(%) 

References 

 
 

Hg(II) 

 

99.5% 
 

 
 

Zn(II) 

 

96-99% 

 

  

Cu(II) 

 

96-99%  

  

Co(II) 

 

97% 
 

 

 

Fe(III) 

 

94-96% 

 

 
 

Hg(II) 

 

94-96% 

 

 
 

Pb(II) 

 

98%  

 

  

Hg(II) 

 

99% (Awual, 2017b) 

 

 

Pb(II) 

 

99% 
(Shahat et al., 

2018) 

 

Diphenylthiocar

bazone (DZ) 

4,5-diamino-6-

hydroxy-2-

mercaptopyrimidine 

(DSAHMP) 

(S. A. El-Safty, 

Shenashen, Ismael, 

Khairy, & Awual, 

2012) 
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2.5 Ligands conjugate mesoporous 

At the dawn of the 20th century, many attempts were made to immobilize azo-

chromophore ligand, which is part of the molecules responsible for its colour onto 

mesoporous type MCM-41 for optical sensor applications have been done. One of this 

attempt by Fowler and colleagues who synthesized 3-(2,4-dinitrophenylamino)propyl 

chromophore ligand functionalized mesophase type MCM-41 as sensors to detect 

molecules within the channel-like pores of MCM-41 phases fabricated in the form of 

thin membranes (Fowler, Mann, & Lebeau, 1998; Lebeau, Fowler, Hall, & Mann, 

1999). Six years later, Rodman and co-workers developed an optical sensor anchored 

into mesoporous silica monoliths for Cu (II) ions detection by formation of a copper 

tetra amine complex, taking advantage of the diffusion of Cu (II) ions into the pores 

which are lined with amino groups (Rodman, Pan, Clavier, Feng, & Xue, 2005).  

Nowadays, numerous studies have been conducted to find a novel conjugate 

mesoporous which has new hierarchical mesophase and high specific surface area. For 

instance,  several studies have been done by El-safty and co-workers who synthesize 

ligands conjugate into 3D well-defined mesoporous phase cage cavities enhancing the 

sensitivity with naked-eye detection of several toxic heavy metal ions in aqueous 

media (S. A. El-Safty, Ismail, Matsunaga, Nanjo, & Mizukami, 2008; S. A. El-Safty, 

Prabhakaran, Ismail, Matsunaga, & Mizukami, 2008; El‐Safty, Ismail, Matsunaga, 

Hanaoka, & Mizukami, 2008; El‐Safty, Ismail, Matsunaga, & Mizukami, 2007; El‐

Safty, Prabhakaran, Ismail, Matsunaga, & Mizukami, 2007).  

 

2.5.1 Mesoporous synthesis methods 

2.5.1.1   Liquid-crystal templating (LCT)  

Liquid- crystal templating technique is very common and was invented by Mobile 

Company scientists who prepared the type of M41S mesophase by  using 

supramolecular surfactant micelles e.g: alkyltrimethylammonium surfactants which 

were assembled together to form a mesophase. Different mesophase types such as 

hexagonal, lamellar, or cubic meso-structures can be successfully synthesized under a 

certain pH condition, anionic silicate species, and cationic or neutral surfactant 

molecules. The condensation of silicate species is proposed to form a hexagonal 

structure around the preformed surfactant array under certain conditions. These silicate 

species that are located on the external surfaces can also be randomly organized rod-
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like micelles via columbic force or other types of interactions. Thus, these ordered 

composite species are spontaneously collected into a highly ordered mesoporous phase 

as illustrated in Figure 2.12 (ALOthman, 2012). 

 

 

 

 

 

 

 

   

  

 

 

 

Figure 2-12 Liquid crystal templating mechanism using structure directing agent: 

pathway 1) true liquid-crystal template mechanism, pathway 2) cooperative liquid-

crystal template mechanism 

 

The formation of spherical micelles in aqueous solution can be organized in various 

shapes such as cubic, cylindrical, la3d cubic and lamellar phases based on the 

temperature of the aqueous solution as well as the surfactant concentration as shown 

in Figure 2.13. All these phases can be obtained by adding inorganic framework such 

as tetraethylortho silicate (TEOS) or tetramethylortho silicate (TMOS) as a silica 

source. The simplest liquid crystalline phases formed via spherical micelles are the 

micellar cubic and hexagonal phases. The cubic phase is a highly viscous, optically 

isotropic phase in which the micelles arranged as a cubic lattice with roughly formed 

conditions around 30-40% concentrations of amphiphilic surfactant at 350C (Figure 

2.13, symbol I1). Whilst, amphiphilic surfactant at concentrations of 35-70% and at 

500C are possibly fused to form cylindrical aggregates of indefinite length, and 

arranged as a long-ranged hexagonal lattice, symbol H1. The la3d cubic phase can be 

possibly formed around 50% and > 75% amphiphilic surfactant concentrations at 

600C, symbol V1. The lamellar phase formed at concentrations of 60 - 95% 

amphiphilic surfactant under 700C, symbol Lα. This mesophase consists of 
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amphiphilic molecules arranging in bilayer sheets separated by layers of water (Evans 

& Wennerström, 1999; Holmberg, Jönsson, Kronberg, & Lindman, 2003).  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 2-13 Schematic showing the aggregation of amphiphiles into micelles and then 

into lyotropic liquid crystalline phases as a function of amphiphile concentration and 

temperature 

 

For an overview of the literatures, there is a strong relationship between the mass ratios 

of silica/ surfactants/acid concentration to obtain various types of the mesophase 

morphology as shown in table 2.4. From table 2.4, cationic and non-ionic surfactants 

of C12TMAB/decane/P123 provides cubic Fd3m mesophas shape with highest specific 

surface area 1110 m2 g-1 (S. A. El-Safty, Shahat, & Ismael, 2012) and also the 

mesophase of KIT-6 provides a specific surface area 1096 m2g-1  (Fayed et al., 2014).  
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Tetramethyl 

lorthosilicate 

(TMOS) 

 

F108 (Non-

ionic) 

F108/TMOS:HC

l/H2O 1.4:2:1 

F108/TMOS:HCl

/H2O 1.4:2:1 

Tetramethyl 

lorthosilicate 

(TMOS) 

 

(Md Rabiul Awual, 

Mohamed Ismael, et 

al., 2013) 

F108 (Non-

ionic) 

Tetraethyl 

orthosilicate 

TEOS 

 

CTAB 

(non-ionic) 

(M. Shenashen et 

al., 2013) 

Brij56/TMOS:

HCl/H2O  

1:2:1 

Tetraethyl 

orthosilicate 

TEOS 

 

Tetramethyl 

lorthosilicate 

(TMOS) 

 

C12TMAB/

decane 

Table 2-4 Syntheses of mesoporous in the presence of, cationic or non-ionic 

surfactants 

 

 

Precursors  Mass 

ratios 

 
    

  
 585  0.75 12.7 

 

 
  

 

675 

  

0.72 

 

12.7 

 

  

 

545 
 

0.66 7.2 

 

   439  0.65 9.7 
 

 

 

 

419 
 

0.54 8.3 
 

  

 

200  0.3 4.5 

 

  
 556  0.7 4.3  

  
 

1096  0.95 10.4 

 

 
 

 

705 
 

0.9 6.0 

 

   1110  0.17 1.9 
 

 

Cage-pored 
(Md Rabiul Awual, 

Tohru Kobayashi, 

Hideaki Shiwaku, et 

al., 2013) 

2D Hexagonal 

Surfactant Mesophase D (n.m) References 

SBET  

(m2 g-1) 
Vp (cm3 g-1) 

Aluminosilicate F68 (Non-

ionic) 

F68/aluminosilica

te:H2O/ 1,3,5-

trimethylbenzene 

neutral 

 

Pm3n cubic 

cage 

(M. A. Shenashen 

et al., 2014) 

Aluminosilicate F68 (Non-

ionic) 

F108 used as a 

template in both 

the lyotropic and 

microemulsion 

systems. 

 

Im3m cubic 

cage 

(M. A. Shenashen 

et al., 2014) 

Aluminosilicate F68 (Non-

ionic) 

F108 

aluminosilicate

/H2O neutral 

Ia3d cubic 

cage 
(M. A. Shenashen et 

al., 2014) 

NH4OH:ethanol:

DIW:TEOS 

3.16:27.54:1.8:1 

 

 

Core/double-

shell 

Tetraethyl 

orthosilicate 

TEOS 

 

Brij56 (non-

ionic) 

(S. A. El-Safty, 

Shenashen, Ismael, 

Khairy, & Awual, 

2013) 

Hexagonal 

P6mm 

Pluronic 

P123( non-

ionic) 

P123/HCl/H2O/

butanol 
KIT-6 

(Fayed, Shaaban, El-

Nahass, & Hassan, 

2014) 

TMOS/ 

Al(NO3)3.9H2O,

1.125g of H2O-

HCl 
F68 (Non-

ionic) 

F68/TMOS:HCl

/H2O  1:2:1 

 

Cubic 

Ia3d 

(S. A. El-Safty, 

Shenashen, & 

Khairy, 2012) 

C12TMAB:deca

ne:TMOS:H2O/

HCl 1:0.5:2:1 

 

Cubic 

Fd3m 

(S. A. El-Safty, 

Khairy, & Ismael, 

2012) 
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2.6 Pathways of functionalized mesoporous / ligand 

2.6.1 Post- synthetic grafting pathway 

Grafting pathway can be defined as the subsequent modification of inner mesoporous 

structure phases by organic groups. This pathway is mistakenly named 

“immobilization” which is a term widely used in adsorption techniques such as the 

removal of toxic heavy metal ions. Fundamentally, there are three types of these 

organic groups such as (R´O)3SiR, chlorosilanes (ClSiR3) and  silazanes HN(SiR3)3 

can be reacted with the inner free silanol groups of the pore surfaces of mesoporous 

material which is often done in an organic solvent (e.g., toluene) as depicted in Figure 

2.14. The advantage of this pathway is that the external mesostructured silica phase 

usually retains their shape while the porosity of the lining walls of this mesostructured 

phase is reduced depending on the size of the molecular groups and the degree of 

occupation. The disadvantage of this pathway is that the organosilances react 

abundantly at the pore openings within the initial stages of the synthesis process and 

then the pores can be loaded to a complete closure with non-homogeneous distribution 

of the organic groups (Hoffmann, Cornelius, Morell, & Fröba, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-14 The post- synthetic grafting method for organic modification of 

mesoporous phases with organosilanes of the type (R´O)3SiR. R=organic functional 

group 
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2.6.2 Co-condensation/or direct synthesis pathway 

The alternative possible pathway is a direct synthesis named one-pot synthesis process. 

In this pathway, there is a co-condensation of both tetraalkoxysilances (RO)4Si such 

as TEOS or TMOS with organosilanes type (R´O)3SiR in the presence of directing-

structure agents (template) which could lead to immobilization of the organic residues 

into the pore walls by covalent bonds  as illustrated in Figure 2.15. It can also be 

possible to modify silica by employing a commercial mesoporous silica phase instead 

of TEOS/or TMOS precursors such as using MCM or SBA mesophases. The 

advantage of this pathway is the absence of pore blocking problem within an 

organically formed immobilization. Compared to the previous pathways, the 

molecular organic units are more homogeneously distributed, while the disadvantage 

is the increase in concentration of (R´O)3SiR increases in the reaction mixture, causing 

a totally disordered mesophase. This tendency towards homocondensation reaction is 

a consistent problem due to the fact that the organic materials cannot be guaranteed a 

homogeneous distribution in the framework of the mesoporous phase. Hence, the 

incorporation of more organic groups could lead to a reduction in the pore volume, 

pore diameter, and thus reduced specific surface area. In the direct synthesis pathway, 

the chemical extractive method is recommended instead of the calcination process, 

which is used for removing the surfactant template because the calcination process 

may destroy the organic functional groups during the removal process (Hoffmann et 

al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-15 Co-condensation pathway for the organic modification of mesoporous 

pure silica phases. R=organic functional group 



Chapter 2 Literature Reviews 

34 | P a g e  

 

Si(OR´)
3
 

(RO)
3
Si 

R H
+
(aq)/OH

-

(aq) 

+ 

Extraction 

/Calcinatio

n 

2.6.3 Hydrolysis and condensation pathway  

This technique has been known for the preparation of periodic mesoporous 

organosilicas (PMOs), which can be synthesized by hydrolysis and condensations of 

bridged bissilylated organosilica precursors of the type of (R´O)3Si-R-Si(OR´)3 by sol-

gel chemistry method  as shown in Figure 2.16  (Loy & Shea, 1995; Shea & Loy, 

2001). In the hydrolysis pathway, the organic molecule units are incorporated by two 

covalent bonds into the external silica matrix in a three-dimensional network structure 

which is entirely homogeneously distributed in the pore walls of the silica matrix. The 

advantages of the hydrolysis pathway are good thermal stability as well as large inner 

surface areas of up to 1800 m2 g-1. However, the major issue which reduces the 

efficiency of this method is the completely disordered pore systems and also the pore 

radius is exhibited relatively in a wide direction. PMOs are suitable candidates for a 

series of technical applications, for example, in the field of catalysis, adsorption, nano-

electronics and chromatography.     

 

 

 

 

 

 

 

 

 

Figure 2-16 The hydrolysis and condensation pathway constructed by bissilyated 

organic bridging units. R= organic bridge 

 

2.7 Mesoporous zeolite 

Global industrial pollution issues and the development of fundamental studies have 

continually increased the interest in the demands to expand the pore sizes of zeotype 

materials from the micropore region to the mesopore region (Christensen, Johannsen, 

Schmidt, & Christensen, 2003; Jacobsen, Madsen, Houzvicka, Schmidt, & Carlsson, 

2000). Wastewater treatment is one of the issues that encouraged researchers to 

develop a mesoporous zeolite for the separation and selective adsorption of a wide 
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range of organic molecules from water. Zeolite mesoporous crystals have much larger 

external surface area, which could expose more active sites than conventional zeolite 

crystals (Meng, Nawaz, & Xiao, 2009). The strategies for the synthesis of zeolite 

mesotype are carried out by using nanostructured carbon, carbon and polymer aerogel, 

cationic polymer, organosilane templates and sol-gel method (Egeblad, Christensen, 

Kustova, & Christensen, 2007; Meng et al., 2009); (Chal, Gerardin, Bulut, & Van 

Donk, 2011; Y. Tao, Kanoh, Abrams, & Kaneko, 2006). 

 

2.7.1 Pathways of the synthesis of mesoporous zeolites  

2.7.1.1     Nanostructured carbon templating 

Nano-sized carbon particles about 12 nm was utilized by Jacobsen et al. (Jacobsen et 

al., 2000) as mesoscale templates to disperse into the aluminosilicate zeolite gel. These 

carbon nanoparticles are encapsulated by growing up the zeolite crystals, fabricating 

ZSM-5 embedded with nanocarbon particles. Removing the embedded nanocarbon 

matrix by calcination at 5500C results in the formation of ZSM-5 mesoporous. Schmidt 

et al.  (Schmidt et al., 2001) and Boisen et al. (Boisen et al., 2003) have proposed using 

carbon nanotubes as templates to synthesize ZSM-5 mesoporous channels which have 

uniform and straight widths of 12-30 nm pore size. The drawback of this route is that 

nano carbon particles are mostly hydrophobic, and it is not easy to disperse into the 

gels homogenously through synthesis of ZSM-5 mesoporous process.   

 

2.7.1.2  Carbon and polymer aerogel templating      

Mesoporous carbon aerogel (CA) and mesoporous resorcinol—formaldehyde (RF) 

aerogels as templates to synthesize mesoporous zeolite has reported by Tao et al. to 

obtain open mesopore of ZSM-5 (Y. Tao, Hattori, Matumoto, Kanoh, & Kaneko, 2005; 

Y. Tao, Kanoh, Hanzawa, & Kaneko, 2004; Y. Tao, Kanoh, & Kaneko, 2003a, 2003b, 

2005). Both these aerogels have large and thick mesopores, which could be basically 

stable during synthesis of mesoporous zeolites. For example, W.-C. Li et al. has 

demonstrated that silicalite-I zeolites can synthesize with hierarchically porous 

structures and the monolithic zeolites observe a high selectivity above 80% to ɛ-

caprolactam combined with a high rate of reaction in the Beckmann rearrangement of 

cyclohexanone oxime (W.-C. Li et al., 2005). The disadvantage of this route is larger 

pore walls compared to less mesopore volume.  
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2.7.1.3  Cationic polymer templating 

To simplify the procedure of preparing zeolite mesoporous, the mesoscale soft-

template is suitable for use in this route due to the fact that the soft-template is easy to 

self-assemble with aluminosilicate in the synthesis of mesoporous zeolite. The 

following factors are carefully considered when selecting the soft-template route: (1) 

the soft-templates should be stable in alkaline/ acid media even at relatively high 

temperatures of 140-180 0C, otherwise, the templates could be decomposed during the 

synthesis of zeolites mesoporous; (2) the soft-templates should interact with silica 

species easily and strongly. It is well known that Coulomb force at a molecular level 

is very strong and silica species under alkaline conditions for synthesizing zeolites 

have negative charges, thereupon, soft-templates with positive charges are preferred; 

(3) the soft-templates should have a suitable mesoscale sizes and their morphology in 

aqueous solution should be fibre-like; (4) the soft-templates should be of low cost, 

which is very important for the largescale industrial production of zeolites mesoporous 

(Meng et al., 2009). Xiao et al. reported synthesizing hierarchical zeolite mesoporous 

type of Beta-H using soft-template mesoscale cationic polymer of 

polydiallyldimethylammonium chloride, (PDADMAC) has successfully prepared(F. 

S. Xiao et al., 2006).   

 

2.7.1.4  Organosilane templating 

The amphiphilic organosilane such as ([(CH3O)3SiC3H6N(CH3)2CnH2n+1]Cl) can be 

used as a mesopore-directing agent to synthesize mesoporous aluminosilicate (Choi, 

Cho, et al., 2006; Choi, Srivastava, & Ryoo, 2006; Srivastava, Choi, & Ryoo, 2006), 

and the first preparation method using this organosilane templating with tuneable 

mesoporosity  was reported in the middle of 2006 by Choi et al. (Choi, Cho, et al., 

2006). In more details, the mesoporous diameters can be tuned to the range of 2-20 

nm, based on the molecular structure of the mesopore directing silanes and the 

hydrothermal synthesis conditions. Furthermore, this pathway is also reported to 

synthesize series of aluminosilicate zeolites such as LTA (Choi, Cho, et al., 2006) and 

aluminophosphates zeolites (Choi, Srivastava, et al., 2006). 
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2.7.1.5 Hydrothermal pathway 

This pathway is one of the most successful routes for the synthesis of stable ordered 

mesoporous aluminosilicates using a strong acidity media. In this route, the zeolite 

nanoclusters assembled with surfactant micelle is prepared by combining the 

advantages of mesoporous and zeolites crystals, announced almost simultaneously by 

two research groups of Xiao (Di et al., 2003; Han et al., 2002; Han et al., 2001; Lin, 

Sun, Lin, Jiang, & Xiao, 2004; Y. Sun et al., 2003; F.-S. Xiao et al., 2002; Z. Zhang et 

al., 2001) and Pinnavaia (Y. Liu & Pinnavaia, 2003, 2004; Triantafyllidis et al., 2006; 

H. Wang, Liu, & Pinnavaia, 2006).    

 

2.8  Kinetic models  

Previous studies have investigated the two main kinetic models associated with 

adsorption processes they are; the linear first order and Langmuir- Hinshelwood (L-

H) non-linear kinetic model (Awual, 2017b; Plazinski, Rudzinski, & Plazinska, 2009; 

Shahat, Awual, & Naushad, 2015). The adsorption capacity is also associated with 

equilibrium between the amount of adsorbent and adsorbate in the solution; hence the 

resulting equilibrium relationship can be described by these kinetic models. 

Furthermore, adsorption isotherm is relating with the equilibrium concentration of a 

solute on the surface of an adsorbent, qe, to the concentration of the solute in the liquid, 

Ce, and can be described with the following equation: 

 

𝑞𝑒 = (𝐶𝑜 − 𝐶𝑒)𝑉/𝑚                                                                     (2.1)                            

qe= the amount of solute adsorbed per unit weight of solid at equilibrium condition. 

The unit is either g/g or mg/g, Co is the initial concentration, Ce = Equilibrium 

concentration of solute remaining in solution when the adsorbed solute is equals.  

2.8.1 Equilibrium isotherm models  

There are several isotherm models that can simulate the type of equilibrium 

distribution. The following isotherm models with equations and are illustrated in 

Figure 2.17.  

i. Linear:        𝑞𝑒 = 𝐾. 𝐶𝑒                                                                     (2.2) 

ii. Langmuir:   𝑞𝑒 =  𝑞𝑚𝑎𝑥. 𝐾𝐿. 𝐶𝑒/1 + 𝐾𝐿. 𝐶𝑒                                 (2.3)  
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iii. Freundlich:  𝑞𝑒 =  𝐾𝑓 . 𝐶𝑒
1/𝑛

                                                            (2.4) 

iv. Brunauer, Emmet, and Teller (BET):  

           𝑞𝑒 =  𝐾𝑏 . 𝐶𝑒 . 𝑄^𝑜/ (𝐶𝑆 − 𝐶𝑒) (1 + (𝐾𝑏 − 1)(𝐶𝑒/𝐶𝑆))        (2.5)                                         

Where k, qmax, KL, kf , KB are all empirical constants. Also, the following parameters 

are constant and used in eq. 2.5: CS =saturation (solubility limit) concentration of the 

solute. (mg L-1), KB = a parameter related to the binding intensity for all layers. The 

most commonly assume conditions that clarified each isotherm model are illustrated 

in table 2.5: Isotherm models with commonly assume conditions. 

 

 

 

 

 

 

 

  Figure 2-17  types of the equilibrium adsorption isotherm models 

The most commonly assumed conditions that clarify each kinetic model are as follows: 

the linear isotherm can be applied for the first order reaction rate and monolayer 

coverage; whereas the Langmuir isotherm model can be applied for second order 

reaction equilibrium model, with the particles adsorption sites and monolayers equal. 

In case of the Brunauer, Emmet, and Teller (BET) isotherm model, multi-layer model 

and Langmuir isotherm are applied to each layer. No transmigration occurs between 

layers and also there is an equal energy of adsorption for each layer except for the first 

layer. As depicted in Figure 2.10 C, CS is the saturation (solubility limit) concentration 

of the solute (mg L-1), KB = a parameter related to the binding intensity for all layers. 

Note: when Ce << CS and KB >> 1 and Kad = KB/Cs BET isotherm approaches 

Langmuir isotherm. Freundlich isotherm is an empirical model and can be widely used. 

From Figure 2.10 d, 1/n is a measure of the adsorption intensity; the higher the 1/n 

value, the more favourable is the adsorption (generally, n<1 or 1/n > 1).   
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2.9 Summary 

This chapter illustrated the influence of the distribution of industrial contaminants such 

as dyes and heavy metal ions into waterbodies and then discussed the conventional 

water treatment methods. The advantages and disadvantages of these treatment 

methods were discussed. This chapter also clarified the different technologies and 

modified systems used to achieve a solar photocatalytic degradation and synthesis of 

conjugate mesoporous adsorbent catalysts a new sustainable concept in advanced 

water treatment processes, which have been recently gained the attention of 

researchers; thereafter, a review of researches and their results were summarized. This 

chapter was followed by an explanation of the fundamental field theory and ligands 

design method which is highly recommended in the synthesis of mesoporous adsorbent 

strategy, and then explained with extensively critical examples necessary to avoid 

failure with field theory. Following this, mesoporous synthesis methods and the 

adjusted forms of mesophase were summarized; also, the functionalized ligand 

strategies were discussed. This chapter was concluded by describing the kinetic models 

and clarified the assumptions of using these models. 

Dyes such as methyl orange and methylene blue; the heavy metal ions including 

mercury (Hg2+) and lead (Pb2+) are major toxic pollutants present in wastewater 

effluents. These contaminants negatively affects human and aquatic bodies. To treat 

these pollutants, solar photocatalytic degradation is a potential treatment for complete 

mineralisation of the organic contaminants present in water. To further enhance this 

method, modified zeolite type of ZSM-5 and reduced graphene oxide are 

recommended as substrates. The synthesis of mesoporous zeolite pathways including 

nanostructured carbon templating, carbon and polymer aerogel templating, cationic 

polymer templating and organosilane templating are discussed. Among these 

pathways, cationic polymer templating is preferable due to their soft-templates which 

are easily self-assembled with aluminosilicate. In this chapter, reduced graphene oxide 

is also recommended as a substrate in the photocatalytic process to enhance light 

absorption and increase the adsorption of pollutants and also promotes charge 

separation and transformation.     

According to Pearson theory, there are so many types of ligands donor such as (O-) 

hard, (N-) hard, (S-N) soft, and (S-N-O) soft that can effectively form complexes of 

[ligand –metal ion]n+, depending on both the pH of the solution and the type of metal 
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ions (hard/or soft ions), which will release in aqueous solution. Appropriate, stable and 

high specific surface area modified ZSM-5 mesoporous substrate which hosts the 

organic ligand instead of the TEOS/or TMOS precursor substrate is highly 

recommended. Finally, the mesophase morphology can be effectively controlled by 

adjusting the parameters such as solution temperatures, type of surfactants, surfactant 

concentrations and pH of solution.                
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CHAPTER 3 

 

 Experimental Methods 

 

 

3.1 Introduction  

This chapter reports the experimental procedure and apparatuses employed in this 

PhD research project. It also contains details of the chemicals, the technique and 

characterization for synthesizing the catalyst as well as the analytical technique for 

the identification and qualification of the pollutants and their intermediates.  

 

3.2 Chemicals 

3.2.1 Chemicals for catalysts preparation 

Zeolite ZSM-5 (Molar ratio SiO2/Al2O3 = 600, 300 m2 g-1 specific surface area, 2–

3µm particle size, 2.4 nm pore size) was provided from ACROS Organics, A 

Thermo Fisher Scientific Brand, New Jersey–USA. Titanium dioxide (TiO2, 

Degussa P25, 70% anatase: 30% rutile, 53 mg-1 specific surface area), 

tetraethoxysilane (TEOS, 99%), Pluronic (P123) surfactant (poly (ethylene oxide)-

block-poly (propylene oxide)-block-poly (ethylene oxide), EO20PO70EO20, Mw = 

5800, Hydrochloric acid (HCl, 32%), 1,3,5-triisopropylbenzene (TIPB, 98%), Zinc 

oxide (ZnO, ≥ 99.0%), graphite powder (99.0%, particles size <20 μm), Sulphuric 

acid (H2SO4, 98% ), sodium nitrate ( NaNO3, ≥ 99.0%) , potassium permanganate 

(KMnO4, 99.0%) , hydrogen peroxide (H2O2, 30% w/w), hydrazine hydrate (N2H4, 

99.99%), ethanol (C2H6O, 38% w/w), Carbon disulfide (CS2, 99.0%), N-

methylaniline (C6H5NHCH3, 98%), sodium chloroacetate (C2H2CINaO2, 98%), 

Pyrrolidine (C4H9N, ≥ 99.0%), 2-hydroxyacetophenone (C6H5COCH2OH, 98%), 

buffer solutions of N-cyclohexyl-3-aminopropane sulfonic acid (CAPS, ,≥ 99.0%), 
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3-morpholinopropane sulfonic acid (MOPS, ≥ 99.0% ), 2-(cyclohexylamino) ethane 

sulfonic acid (CHES, ≥ 99.0%), Thiourea (NH2CSNH2, ≥ 99.0% ) and 

Hydrochloric acid (HCl, ≥ 99.0%), Potassium chloride ( KCl, ≥ 99.0%), Sodium 

hydroxide (NaOH, ≥ 99.0%), Nitric acid (HNO3, 70%),  2,2´-Azobis (2-

Methylpropionamidine) Dihydrochloride, ≥ 99.0%, 2,6-Pyridinedicarboxaldehyde 

(C7H5NO2, ≥ 98%), Thiosemicarbazone (CH5N3S, ≥ 99%)  were products of Sigma-

Aldrich PTY. LTD (AUS). All aqueous solutions were prepared with deionised 

water (DI).  

 

3.2.2 Organic pollutant model and their intermediates  

Methyl orange (Sodium 4-{[4-(dimethylamino)phenyl]diazenyl}benzene-1-sulfonate, 

content 85% dye) and Methylene Blue (3,7-bis(Dimethyl amino)-phenothiazin-5-ium 

chloride), ≥ 97.0%) were used as the organic pollutants model, while, Azure A (dye 

content~ 80%) and Thionin (≥ 99.0%) were used to identify the intermediate 

compounds (AR grade). These chemicals were purchased from Sigma-Aldrich PTY. 

LTD. (AUS). Table 3.1 shows the compounds, abbreviations, molecular formula and 

chemical structures for the organic pollutants and their intermediate compounds used 

in this research work. 

Table 3-1 Names, abbreviations and chemical structures of the organic pollutants and 

their intermediate compounds in this study include: 

Chemicals model Abbreviation Molecular formula Chemical structure 

 

Methyl orange 

 

MO 

 

C14H14N3O3S4 
 

 

Methylene blue 

 

MB 

 

C16H18CIN3S 
 

 

A Zure 

 

AA 

 

C14H14CIN3S 

 

 

Thionin 

 

Th 

 

C12H9N3S 
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3.2.3 Inorganic pollutants  

The standard solution of Hg2+and Pb2+ with concentrations of 1000 µg L-1 were used 

as pollutant models in this dissertation. Several foreign heavy metal ions were also 

used as competition ions prepared as AAS grade 1000 µg L-1 solutions. Examples 

are; Zn2+, Cd2+, Al3+, Fe3+, Mg2+, Ca2+, Ni2+, Ag+2 K1+, Na1+,  Mn2+, Hg2+, Co2+, and 

Cu2+ ions. The interfering (150 mg L-1) anions such as chloride (Cl-), sulfite (SO3
2-

), sulphate (SO4
2-), carbonate (CO3

2-), citrate, nitrate (NO3), bicarbonate (HCO3
-), 

perchlorate (ClO4
-) and phosphate (PO4

3-) were also used in this study. All these 

inorganic chemicals were procured from High-Purity Standards, Inc. (HPS), USA.     

 

3.3 Synthesis of the catalysts 

3.3.1 Synthesis of TiO2/ZSM-5 multilamellar mesoporous  

The direct template method was slightly modified to fabricate TiO2 with commercial 

Alumina-silica zeolite (ZSM-5) which uses surfactant monolithic mesoporous 

materials (G. Zhou, Chen, Yang, & Yang, 2007). A summary of the catalyst 

preparation procedure is given in Figure 3.1. In the synthesis, 1 g of P123 was 

dissolved in an aqueous solution containing 4 ml of HCI in 20 ml of DI water using 

a magnetic stirrer 500 rpm at ambient temperature for 4 h until the mixture became 

a homogeneous transparent solution. Thereafter, 0.85 g of TIPB (TIPB: P123; 0.85:1 

wt. ratio or 24.1:1 molar ratio) was added to the solution in drops, and the mixture 

was continuously stirred for 20 h. Afterwards, ZSM-5 was added immediately to the 

above solution under vigorous stirring at 350C for 12 h and, later  followed by the 

addition of TiO2 at (ZSM-5: TiO2) wt. ratio of 2:1, directly into the same solution 

under stirring at 35 ̊ C for another 12 h; finally a white suspension was formed which 

was placed in a Teflon-lined autoclave at 121.90 ˚C and 122 kPa for 45 min, until a 

white viscous solution was formed which was heated to dryness at 50 ˚C for 24 h to 

form a white particles. The dried white particles were washed with DI for several 

times, filtered and dried. Eventually, the TiO2/ZSM-5 were calcined at 500˚C for 4 

h to remove the organic templates. 
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Figure 3-1 Summary of the direct template method for synthesis of TiO2/ZSM-5 

multilamellar mesoporous 

3.3.2 Synthesis of RGO/TiO2/ZSM-5 Mesoporous 

The Hummers method was adopted to synthesize graphene oxide GO from graphite 

(Johra & Jung, 2015), the reduced graphene oxide RGO was prepared following this 

procedure: 600 mg GO was dispersed in 100 ml DI water and sonicated in an 

ultrasonic bath for 2 h to exfoliate GO nano-sheets to obtain a homogenously 

dispersed solution. 6 ml of hydrazine hydrate was then added and the mixture was 

heated up to 100 ºC for 2.30 hours. After a while, RGO was progressively 

precipitated as black particles. For further purification, this product was filtrated and 

washed with ethanol and DI water for 2-3 times, and finally dried at a temperature 

of 80 ºC. 

To synthesize 10% RGO/TiO2/ZSM-5 mesoporous, 22 mg of RGO was dispersed 

in a mixture of 80 ml of DI water and 50 ml of ethanol by ultrasonic treatment for 1 

h; 200 mg of TiO2/ZSM-5 mesoporous, which is prepared from the procedure 

mentioned above was added, and then stirred for another 2 h to ensure a homogenous 

suspension is formed. This suspension was kept in Teflon fixed autoclave for 3 h at 

120oC to accomplish the deposition of TiO2/ZSM-5 mesoporous onto the RGO as 

shown in Figure 3.2. Finally, the subsequent composite photo-adsorb catalyst was 

filtered out, and rinsed with DI water for 10 times, and thereafter dried at 70°C for 

12 h.  
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Figure 3-2 Systematic consequences of the preparation 10% RGO-TiO2/ZSM-5 using 

22 mg RGO and 200 mg of TiO2/ZSM-5 mesoporous 

 

3.3.3 Synthesis of mesoporous conjugate adsorbent (MCA) 

3.3.3.1  ZSM-5 mesoporous 

ZSM-5 mesoporous was synthesized following this procedure: the direct-templating 

method with slight modification was used to fabricate translucent  ZSM-5  

mesoporous silica and surfactant monolithic mesoporous materials (G. Zhou et al., 

2007) . In this procedure, 1g of triblock copolymers (P123) was mixed with 20 ml of 

deionized water and HCl (4 ml, 32%) under magnetic stirring (500 rpm) at room 

temperature for 20 h. The mixture was stirred continuously until a transparent 

homogenous solution was obtained. Afterwards, 0.85 g TIPB was added to the 

solution in drops at mass ratio of 0.85:1 (TIPB: P123) and the mixture continuously 

stirred for 20 h. Subsequently, 2 g of ZSM5 was added directly to the solution under 

vigorous magnetic stirring at 35°C for 24 h. After this addition, the white suspension 

mixture was put into a Teflon-lined autoclave at 121.9°C, under pressure 122 kPa 

for 45 min. Thereafter, the white viscous solution was dried at 60°C for 24 h. The 

dried white powder formed was filtrated and repeatedly washed for three times with 

deionized water, and air-dried at room temperature. Finally, the filtrate was calcined 

at 500°C for 4 h at a heating rate of 2°C per min in a muffle furnace. This was done 
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to remove the organic moieties template. The resultant material was grinded to nano-

sizes and ready to use for building-block immobilization of organic ligand. 

 

3.3.3.2  Ligand HAPT (2-hydroxyacetophenone- 4N –pyrrolidine 

thiosemicarbazones) 

The conjugated ligand type HAPT was prepared the following this procedure: The 

synthesis was conducted with slight modification of the previous procedure (Scovill, 

1991; Sivakumar & Prathapachandra Kurup, 2002). The major step for the 

preparation of HAPT ligand was synthesis of carboxymethyl-N-methyl-N-phenyl 

dithiocarbamate (CN2D) material. In this procedure, a mixture consisting of 12 ml 

of carbon disulfide (CS2), and 21.6 ml of N-methylaniline were treated with an 

aqueous solution containing 8.4 g of NaOH in a 250 ml conical flask with stirring 

at room temperature for 4h, until the organic layer has disappeared completely. At 

this point, the straw-colored solution of the above mixture obtained was treated with 

sodium chloroacetate (C2H2CINaO2) and allowed to stand overnight. The resulting 

solution was acidified with 25 ml of concentrated HCl, and the buff colored solid 

particles (CN2D) that appeared was separated, collected, and dried at 42 0C for 24 h. 

The next step is the preparation of 4-methyl-4-phynel-3- thiosemicarbazones (MPT) 

by mixing 17.7 g of CN2D in 20 ml of 98% hydrazine hydrate, and 10 ml of ultra-

pure water the mixture was kept in an autoclave at 150 0C for 2 h until it crystallized. 

The crystals were removed from the mixture by filtration, thereafter thoroughly 

washed with ultra-pure water, and dried at 40 0C. For further purification, the 

crystals were treated with ethanol in 25ml of ultra-pure water. This gave 10.8 g of 

stout colorless rods of MPT. Finally, 0.48 g MPT in 5ml of ethanol was mixed with 

392 mg of Pyrrolidine and 664 mg of 2-hydroxyacetophenone, and the mixture was 

heated to 150 0C with reflux for 20 min. Pale yellow rods HAPT were obtained and 

collected, then thoroughly washed with methanol for further purification; and then 

it was dried at 50 0C for 24 h to obtain pure HAPT as azo-chromophore ligand. 

 

3.3.3.3  MCA catalyst 

The mesoporous conjugate adsorbent (MCA) was fabricated via direct 

immobilization method using 50 mg of HAPT dissolved in ethanol solution into 1g 

ZSM-5 mesoporous as shown in Figure 3.3. This immobilized method was carried 
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Washing with warm 

water 

Dried at 50
0
C for 10 h 

MCA 

out under vacuum at 45 0C until HAPT ligand saturation to ZSM-5 mesoporous 

silica was achieved. The ethanol was removed by a rotary evaporator at 45 0C and 

the resulting MCA was washed with warm water to check the stability and elution 

of HAPT from mesoporous silica. Then MCA was dried at 50 0C for 10 h and 

grinded into fine powder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 the synthesized method of visual MCA adsorbent mesoporous 

 

3.3.4  Synthesis of mesoporous ZSM-5 conjugate adsorbent (MzCA): Pb+2 

detection 

3.3.4.1 ZSM-5 mesoporous 

The procedure to synthesis ZSM-5 mesoporous is mentioned in previous section 

(3.3.3.1) 

3.3.4.2 Ligand PDCTC (2,6-Pyridinedicarboxaldehyde-Thiosemicarbazone) 

The conjugated ligand type PDCTC was prepared thus; this preparation involves, a 

slight modification of the procedures in previous studies (Ahmed & Yunus, 2014). 

The PDCTC was prepared by the reaction of 2, 6-Pyridinedicarboxaldehyde, (2g, 

0.01183mol in 20 ml of methanol), Thiosemicarbazone (1.0787g, 0.01183 mole in 

20 ml of methanol) and 2 ml of concentrated HCI. The resultant was heated under 

reflux condition for 10 h in a 250 ml round bottom flask, and left to cool at ambient 
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temperature. The light yellow colored shaped particle formed was collected by 

suction filtration. The filtrate was washed with hot water and thereafter with cold 

methanol (w/w 50%) respectively. The resultant was recrystallized using 

dichloromethane/methanol 1/1, and then dried at 500C under vacuum for 24 h.   

 

3.3.4.3  MzCA catalyst     

The MzCA was synthesized with direct immobilization technique. 100 mg of 

PDCTC ligand in ethanol solution was mixed with 2g ZSM-5 mesoporous silica 

monoliths. This immobilization procedure was carried out under vacuum at 400C 

for 6 h stirring until saturation of PDCTC ligand to ZSM-5 mesoporous was 

achieved. The residual ethanol was evaporated via a rotary evaporator at 400C.  

MzCA was then rinsed with warm water for five times until no supernatant of 

PDCTC was observed to check the elution and stability of PDCTC ligand on 

mesoporous silica. Thereafter, the mesoporous adsorbent was dried at 60 0C for 4h, 

and grinded into fine particles of nano sizes.  

 

3.4 Characterization instruments  

3.4.1 Field emission scanning electron microscope (FESEM)  

Morphological and surface characteristics of the synthesized mesoporous catalysts 

were analysed using FESEM (MIRA-3-TESCAN with a high vacuum mode 

microscope) at an acceleration voltage of 5Kv and a current of 10 µA. The samples 

were mounted on a surface of carbon tap with a very thin platinum coating prior to 

when the analysis was to be conducted. In addition, the EDX/or EDS (Energy-

dispersive X-ray spectroscopy) analysis was used to provided information on the 

elemental composition of the synthesized catalysts. 

 

3.4.2 The specific surface area and pore size measurement   

The specific surface area was measured based on the Brunnauer-Emmett-Teller 

method according to N2 adsorption-desorption isotherms equations. The pore size 

distributions were derived from the adsorption branches of isotherms using the 

Barrett–Joyner–Halenda (BJH) model at 77± 0.5k in liquid nitrogen, with BET, 

Micrometrics, Tristar II Surface area and Porosity apparatus. The sample vessels 
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were loaded with 0.5-1.0 g and degassed at a high temperature of up to 200 0C 

overnight with evacuation pressure of 50 mTorr prior to the measurement of the 

BET surface area.  

   

3.4.3  Powder X-Ray Diffractionometric Measurement 

The crystalline structures of the catalysts, which are used in this thesis, were 

identified by XRD using a Bruker D8 diffractometer in the range of 2θ = 10-800 and 

scanning rate of 28 min-1 operating at 40 mA and 40 Kv with Cu-Kα radiation (λ= 

1.5418 0A). In the case of the synthesized TiO2/ZSM-5 mesoporous, the average 

crystallite diameter of the TiO2 nanocrystals, D, was evaluated using the Debye-

Scherrer equation [D= Kλ / β  COS θ]. Where K is the crystalline shape with Warren’s 

correction value for instrumental broadening of 0.89, ᵝ is the line broadening, while 

λ and θ are the radiation wavelength of 1.5418Å and Bragg angle respectively.  

 

3.4.4  Fourier-transformed infrared spectroscopy (FTIR)    

The intensity peaks of the functional groups were obtained using an FTIR 

spectrometer (100 FT-IR, PerkinElmer). The spectrum was scanned from 500 to 

4000 cm−1 with a resolution of 4 cm−1 using the attenuated total reflectance (ATR) 

technique. 

 

3.5  Experimental procedures  

3.5.1  Solar photocatalytic degradation experiments  

3.5.1.1 Methyl Orange model (MO)  

The photocatalytic activities were conducted in a cylindrical photo-catalytic reactor 

of 5.5 cm in diameter and 9 cm height. The MO solution with concentration of 20 

mg L-1 was taken as the initial concentration for the batch studies. A light intensity 

of 100 mW/cm2 using a solar simulator (solar simulator 2000, 100 mW/cm2, 18-

25Amps, 550W Max Lamp, ABET Technologies) as shown in Figure 3.4, was 

employed for the photodecomposition. Before the solar simulator light was turned 

on, MO dye solution with different concentrations (1, 2, 2.5, 3 g L-1) of TiO2/ZSM-

5 mesoporous was magnetically stirred for 30 minutes in the dark to achieve 

adsorption–desorption equilibrium. Each experiment was carried out for 180 min 
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under solar light irradiation. Samples were collected every 30 minutes from the 

suspension using syringes and Whatman filter (pore size 2.5µm) was used for 

removing the catalyst before further analysis. MO dye concentrations were then 

measured by UV-vis spectrophotometer (JASCO/ V-670) at the maximum 

absorption wavelength (λ) of 462 nm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 Solar simulator (100 mW/cm2) used for the solar photocatalytic 

degradation experiments  

    

3.5.1.2 Methylene Blue model (MB)  

The batch photocatalytic process was carried out in 100 ml capacity of a cylindrical 

beaker with magnetic stirrer. Different concentrations of MB 10, 20, 30, and 40 mg 

L-1 were observed in this study. The solar simulator was utilized in the same way as 

depicted in Figure 3.4. Different catalysts such as; commercial ZSM-5, 

5%RGO/TiO2/ZSM-5, 10% RGO/TiO2/ZSM-5, and 15%RGO/TiO2/ZSM-5 were 

added to MB, and the mixtures stirred in the dark for 30 minutes; 5 ml of aliquot 

was drawn out from each mixtures under stirring at every 15 minutes interval each, 

these were filtrated and centrifuge to quantify the adsorbed concentration of MB. 

Subsequently, all samples were kept under solar irradiation for 60 minutes. The 

change in MB concentrations within photodecomposition process was measured by 

UV-vis spectrophotometer (JASCO/ V-670) at the maximum absorption wavelength 

(λ) of 664 nm. 
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3.5.2 Visual mesoporous conjugate adsorbent experiments   

3.5.2.1 Mercury Hg+2 detection 

In Hg (II) ion detective experiments, the batch adsorption process was conducted in 

100 ml capacity of a cylindrical beaker with magnetic stirrer. 10 mg of optical MCA 

captor was immersed in solutions containing 2.0 mg L-1 of Hg (II) ion. The aqueous 

solutions were then adjusted to pH of 2.0, 4.3, and 6.2 using (0.2 M of KCl with 

HCl), pH of 9.4, and 11.1 with (MOPS with NaOH), and pH of 12.5, and 12.8 using 

(CHES with NaOH). These mixtures were properly stirred in a temperature 

controlled water bath at 250C with magnetic stirrer for 10 minutes to achieve good 

colour separation. Blank solutions were also prepared by the same procedure for 

comparison with optimum colour formation. After colour optimization, the mixtures 

were then applied for qualitative estimation of Hg (II) ions using colour assessment 

and absorbance measurements via UV-spectrophotometer. Furthermore, the 

mixtures were filtrated to remove the solid materials using Whatman filter paper, 

and the resulting filtrate was then taken for colour assessment of absorbance 

measurements applying solid-state UV-Vis-NIR spectrophotometer. The filtrated 

MCA was grinded to fine particles to achieve homogeneity in the spectrum 

absorbance. 

 

3.5.2.2 Lead Pb+2 detection 

In optical Pb (II) ions detective experiments, 10 mg of MzCA was immersed in 

solutions containing 2.0 mg L-1 of Pb (II) ions. Then, the solutions were adjusted to 

pH of 1.5, 2.2, 3.0, and 4.0 using (0.1 M of KCl and HCl), pH of 6.0, and 7.7 using 

(3-morpholinopropane sulfonic acid (MOPS) and NaOH), and 11.7 using (2-

(cyclohexylamino) ethane sulfonic acid (CHES) and NaOH) at a constant volume 

of 20 ml. These solutions were vigorously stirred with a magnetic stirrer at constant 

agitation speed of 100 rpm for 30 minutes in a water bath maintained at a 

temperature of 25 0C to enable a sufficient coloration separation. A blank solution 

(without Pb (II) ions) was also prepared using the same as procedure for comparison 

of color formation. After color optimization, the solid materials were filtrated using 

Whatman filter paper (50 mm; Shibata filter holder) and the filtrate utilized for 

qualitative estimation of lead (II) ions by color assessment and absorbance 

measurements with solid-state UV–Vis-NIR spectrophotometer. The absorbance 
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spectra quality depends on the sizes of the particle, hence it is recommended to grind 

the synthesized mesoporous adsorbent catalyst to nano-size particles.  

 

3.6 Analytical procedures  

3.6.1 Total organic carbon analyser TOC 

The residual organic contaminants were estimated in term of TOC, which the total 

amount of carbon (mg) is found in organic pollutants per litre of the sample solution. 

The TOC measurement was obtained through the Shimadza TOC-VCPH analyser 

apparatus as shown in Figure 3.5. Prior to sample injection into the TOC, 20 ml of 

samples each were filtrated with PTFE 0.45 µm membrane filters to remove the 

remaining catalyst in the aqueous solution. The concentration of total organic carbon 

(TOC) was determined by using SHIMADZU, TOC-VCPH scientific apparatus.  

 

 

 

 

 

 

 

 

 

 

           Figure 3-5 Total Organic Carbon (TOC) Analyser 

3.6.2 High Performance Liquid Chromatograph analysis HPLC 

Methylene blue and their intermediate compounds were identified and quantified by 

the High Performance Liquid Chromatograph (HPLC) analysis illustrated in Figure 

3.6. The detection of the authentic samples and the main intermediate organic 

pollutants was achieved at 270 nm, using a Varian Prostar 210 chromatography with 

UV-Vis detector, and a C18 reverse phase column (25cm x 4.6 mm x 5μm). In this 

analysis, the mobile phase comprised of two solutions; A and B.  Solution A 

contained 300 ml of 0.1 M ammonium acetate, mixed with 35 ml of 3% acetic acid 

of pH 5.3, while solution B contain from 600 ml of acetonitrile. The injection flow 
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rate was 0.8 ml/min and the injection volume was 100 µL. The column temperature 

was kept at 25ºC throughout the analyses. The identification of the intermediate 

compounds by HPLC was achieved by the comparison of the retention time of the 

peaks in the discharged sample and that of the standard sample. The concentrations 

of compounds were calculated using the equations derived from the calibration 

measurements for authentic samples (see Appendix B). 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 High Performance Liquid Chromatograph (HPLC) instrument 

 

3.6.3 ICP- Mass Spectrometer  

The residual inorganic pollutants of Hg2+ and Pb2+ were determined by ICP- Mass 

Spectrometer instrument (ICP-MS or/ICP-AES, Nixon 350D, PerkinElmer) as 

shown in Figure 3.7. The Hg2+ concentrations were measured depending on the 

calibration curve using five standard solutions containing about 0.5, 0.7, 1, 1.5, and 

2.0 mg L-1 of Hg2+. The correlation coefficient of the calibration curve was higher 

than 0.9989. The Pb2+ was also calibrated using six standard solutions containing 0, 

0.5, 0.75, 1, 1.5, and 2.0 mg L-1 of Pb (II) ions (also for each foreign element) and 

the correlation coefficient of the calibration curve was higher than 0.9999.  
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              Figure 3-7 ICP- Mass Spectrometer instrument 

3.6.4 UV-Vis diffuse spectrophotometer analysis 

The optical adsorption characteristics of the MO and; MB pollutant model during 

photodecomposition was measured by UV-vis spectrophotometer, JASCO/ V-670 

as illustrated in Figure 3.8 between the absorption wavelength (λ) range of 300-700 

nm to recognize the concentrations in the aqueous solution before and after the 

treatment process. The solid-state UV-vis-NIR spectrophotometer was also applied 

to detect the colour deviation of the optical MCA catalyst after Hg2+ and Pb2+ 

adsorption processes. 

 

 

 

 

 

 

 

 

          Figure 3-8 UV-Vis spectrophotometer 

3.6.5 Specific surface area and porosity analyzer  

The pore size distribution was measured with the Barrett–Joyner–Halenda (BJH) 

model using (Micrometrics (Tri-Star II, Germany) at 770K as shown in Figure 3.9. 

Before the N2 isothermal analysis, all the catalysts synthesized in this project were 

preheated at 1500C for 5 hours under vacuum until the pressure was equilibrated to 



Chapter 3 Experimental Methods  

55 | P a g e  
 

10-5 Torr. The specific surface area (SBET) was calculated by multi-point adsorption 

data using the Brunauer-Emmett-Teller (BET) theory.  

 

 

 

 

 

 

 

 

        

 

          Figure 3-9 Specific surface area and porosity analyser 

3.6.6 Rotary evaporator  

The rotary evaporator is a device used for the efficient and gentle removal of 

solvents from samples by evaporation. To obtain HART/mesoporous-ZSM-5 

catalyst, the HAPT ligand and ZSM-5 mesoporous were placed in a 1 liter flask 

containing aqueous ethanol solution and mixed in the vacuum of a rotary evaporator 

at a temperature of 450C, BUCHI ROTARY EVAPORA, R-210 as shown in Figure 

3.10. Afterwards, the ethanol was condensed using a dry ice kept in the jacket 

condenser of the rotary evaporator. The same procedure was repeated to obtain the 

PDCTC/mesoporous-ZSM-5 catalyst.  

 

 

 

 

 

 

 

        

 

           Figure 3-10 Vacuum Rotary evaporator 
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3.6.7 Autoclave 

Autoclave Siltex 250D, Australia shown in Figure 3.11 was used during synthesis 

where high temperature and pressure was required. The temperatures and pressures 

were adjusted to 120 0C, 191 Kpa and 135 0C, 230 Kpa respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                Figure 3-11 Autoclave 
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CHAPTER 4 

 Synthesis a novel multilamellar mesoporous 

TiO2/ZSM-5 for photocatalytic degradation of 

methyl orange dye in aqueous media  

 

4.1 Introduction 

The environmental pollution caused by industrial wastewater has become a common 

threat for most of the countries. The presence of both organic and inorganic pollutants 

in water bodies due to industrial activities led to deteriorate the quality of the rivers 

and groundwater. However, the organic pollutants are more concern due to their 

carcinogenic and mutagenic effects on human even after exposure to minute 

concentrations (Brown & Dietrich, 1983; Mathur et al., 2012; Parshetti et al., 2010). 

Among all sources that cause water pollution is the release of recalcitrant organic 

pollutants from textile, food colouring, printing, cosmetic and paper making industries 

(Khataee, Pons, & Zahraa, 2009). Methyl orange (MO) (4-[4-(dimethylamino) 

phenylazo] benzene sulfonic acid, C14H14N3NaO3S) represents one of the most 

important dyes, which is widely used as a colouring agent in textile and leather 

industries. 

During few recent decades, several techniques have been developed for devastating 

the behaviour of recalcitrant methyl orange (Jain & Sikarwar, 2008). Enormous 

amount of research articles has been published on the adsorption of the methyl orange 

using an agricultural waste material due to their low-cost and widespread availability 

(Hameed, Mahmoud, & Ahmad, 2008; Ho, 2006; Mittal, Gupta, Malviya, & Mittal, 

2008; Mittal, Malviya, Kaur, Mittal, & Kurup, 2007) (Khattri & Singh, 2009), 
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however, this material does not meet the requirement to solve the environmental issue. 

Other physical treatments such as coagulation, reverse osmosis, and membrane 

filtration are also expensive and incompetent techniques. Moreover, the chemical 

treatments such as reduction, oxidation, ion exchange, and  complex metric methods 

cause by-products such as sulfonate, phenol and plenty of aromatic compounds which 

are more toxic than the original contaminants (Chong et al., 2010; Slokar & Le 

Marechal, 1998).  

Advanced oxidation processes (AOPs) such as TiO2 nano-photocatalyst is one of the 

promising technologies for removing industrial dyes. TiO2 is stable, inexpensive, non-

toxic and potentially reusable in water, however, the post-separation of TiO2 is 

remained as a challenging issue (Chong, Jin, et al., 2009). Therefore, the key challenge 

of using TiO2 for advanced treatment of industrial dyes mediated wastewater is to 

provide a plausible solution via immobilising the semiconductor photo-catalysts on 

larger immobiliser substrates to ease the process of post-separation and recovery of 

catalyst from treated water (Chong, Tneu, Poh, Jin, & Aryal, 2015). Many immobilizer 

substrates such as activated carbon (Shi et al., 2010), magnetite core (Beydoun & 

Amal, 2002), and clays (Chong, Jin, et al., 2009; Paul et al., 2012) have been used to 

enhance the post-separation and recovery of photo-catalyst from the treated water. The 

black activated carbon is normally opaque material, preventing the incident UV-

radiation light and low porosity (Uchida, Itoh, & Yoneyama, 1993; Yamashita et al., 

2000). Therefore, TiO2 immobilised on transparent as well as mesoporous scaffold 

were desired (Ooka, Yoshida, Suzuki, & Hattori, 2003; Takeda, Torimoto, Sampath, 

Kuwabata, & Yoneyama, 1995; L. Zhang et al., 2009). 

In comparison with any synthetic substrate porous materials, natural zeolites are 

abundant, inexpensive and high stability to host the semiconductor metal oxides (S. 

Liu, Lim, & Amal, 2014). Furthermore, zeolites possess crystalline aluminosilicate, 

high ion exchange capacity, tectosilicates with microporous channels, molecular 

sieving, pore spaces, adsorbed capacity (Vimonses et al., 2009; S. Wang & Peng, 

2010). Few researchers have reported utilisation of a photocatalyst immobilised on 

natural zeolites. For example, TiO2 / zeolite (ZSM-5) (Takeuchi, Kimura, Hidaka, 

Rakhmawaty, & Anpo, 2007) and TiO2/ zeolite (MOR) (Takeuchi et al., 2009) which 

observed as an excellent removal efficiency of volatile acetaldehyde compound from 

wastewater. TiO2/Y-zeolite photo-catalyst was also efficiently prepared to remove 

benzene and toluene molecules from petroleum wastewater (Takeuchi, Hidaka, & 
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Anpo, 2012). Recently, TiO2/ZSM-5 nanocomposite has been prepared for the 

degradation of humic acid from potable water sources (V. Gupta, Gupta, Rastogi, 

Agarwal, & Nayak, 2011). The best way to synthesize a high specific surface area 

material is to use multi-lamellar vesicles (MLVs) template shape using surfactant and 

a hydrophobic additive. In MLVs template, ZSM-5 aggregates in unit of cluster to 

form a high surface area scaffold allowed TiO2 particles to immobilize onto different 

sites. Tanev et al.  were the first who reported the feasibility of forming mesoporous 

vesicular silica by utilizing Bola-type surfactants H2N(CH2)nNH2 (n = 12–22) in 

aqueous medium (Tanev & Pinnavaia, 1996). Later Zhou et al. [32] found that the 

morphology of mesoporous silica can be controlled by the molar ratio of hydrophobic 

additive and surfactant (TIPB: P123)(G. Zhou et al., 2007), however, the highest 

specific surface area they achieved was 518 m2 g−1. Therefore, the objective of the 

present study was to synthesize multi-lamellar mesoporous photocatalyst TiO2/ZSM-

5 with a high specific surface area as well as with good crystallinity for efficient MO 

degradation under solar light irradiation via a simple and cost-effective direct template 

method. The photo-degradation efficiency of proposed catalyst was compared with 

different catalysts (ZnO/ZSM-5, TiO2-mesoporous). The influence of pH, catalyst 

loading, reuses, and the kinetics studies were also investigated. 

 

4.2 Experimental work  

4.2.1  Chemicals 

 

As mentioned in chapter 3 (section 3.2.1) the zeolite ZSM-5 (Molar ratio SiO2/Al2O3 

=600, 300 m2 g-1 specific surface area, 2–3µm particle size, 2.4 nm pore size) was 

provided from ACROS Organics, A Thermo Fisher Scientific Brand, New Jersey–

USA. Titanium dioxide (TiO2, Degussa P25, 70% anatase: 30% rutile, 53 mg-1 specific 

surface area, particle size, 21nm were supplied by Sigma-Aldrich Co, Castle Hill 

NSW,  AUSTRALIA.  

 

4.2.2 Synthesis of TiO2/ZSM-5 mesoporous multilamellar  

As mentioned in chapter 3 section (3.3.1), a high surface area TiO2/ZSM-5 

mesoporous can be synthesized by the direct-templating method using P123 surfactant 

and a hydrophobic additive 1, 3, 5-triisopropylbenzene (TIPB) to form a template 
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structure. The ZSM-5 as a source of alumina/silica was considered the framework 

structure of proposed catalyst after the calcination process as depicted in Figure 4.1.  

In this chapter, multilamellar vesicle-like silica of ZSM-5 supported TiO2 was 

synthesized by the direct templating method described elsewhere (G. Zhou et al., 2007) 

with a little modification by replacing SBA-15 with ZSM-5 as a silica source. This 

procedure forms bonds such as Ti-O-Si units inside and outside the structure of MLVs 

(for more details see section 4.3.1.4) that can improve the catalyst performance.  

 

 

 

 

 

 

 

Figure 4-1 Schematic diagram for the preparation of photocatalysts (TiO2/ZSM-5) 

 

4.2.3 Characterizations of samples 

The crystalline structures of the synthesized catalysts were analysed by X-ray 

diffraction (XRD) using a Bruker D8 diffractometer. The specific surface area was 

measured by the N2 adsorption-desorption isotherms according to the Brunnauer-

Emmett-Teller (BET) method, Micromeritics, Tri-Star II Surface area and Porosity) 

equation. The surface morphologies of the ZSM-5, TiO2 or ZnO/ ZSM-5, TiO2 

mesoporous catalysts were also determined by using Scanning Electron Microscope 

(SEM). Fourier-Transformed Infrared (FTIR) spectroscopy was conducted to 

determine the functional groups of the different photo-catalysts. The total organic 

carbon (TOC) was measured using SHIMADZU, TOC-VcpH Scientific apparatus.  

 

4.2.4 Photocatalytic experiments of MO dye 

The photocatalytic activities were conducted in a cylindrical photocatalytic reactor. A 

fixed volume of 100 ml methyl orange solution of 20 mg L-1 concentration was taken 

as initial concentration for batch studies. The photo-reactor was externally irradiated 

with a light intensity of 100 mW/cm2 using a solar simulator. All the experiments were 

conducted at fixed temperature of 30oC with various initial pH in the range of 2–9. 
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Different dosages of the catalyst were also investigated to evaluate the optimum 

amount of photocatalyst for a specific concentration and volume of methyl orange 

solution (for more details see chapter 3, section 3.5.1.1).  

 

𝜂𝑀𝑂 =
𝐶𝑜−𝐶

𝐶𝑜
×  100                                                                                   (4.1)                                                                                                                       

  

4.3 Results and discussion 

4.3.1 Characterization of the photocatalys 

4.3.1.1 XRD 

The XRD patterns of ZSM-5, TiO2/ZSM-5, TiO2 Degussa, ZnO/ZSM-5 and TiO2- 

mesoporous catalysts were investigated and the obtained diffraction peaks are shown 

in Figure 4.2 The diffraction peaks of ZSM-5 were observed at 7.5o, 8o, 13.2o, 13.9o, 

14.7o, 15.5o, 23.1o, 29.8o, 45.0o, 45.2o and typically coincided with the data, reported 

in the literature for sodium aluminium silicate (Na1.5 Si93 O192) (J.-J. Wang, Jing, 

Ouyang, & Chang, 2015). While, the signals of TiO2 Degussa with high crystallinity 

were found at 25.4o , 37.5o,48.0o, 54.1o, 54.8o, and 62.6o indicated the d 101, d 004, d 

200, d106, d 211, and d 204 planes of anatase (Ba-Abbad, Kadhum, Mohamad, Takriff, 

& Sopian, 2012; Jung et al., 2012; Thamaphat, Limsuwan, & Ngotawornchai, 2008). 

Moreover, the peaks at 68.5o, 71.2o, 75.5o indicated the d110 plane of rutile. However, 

no significant peaks shift were noticed after modifying ZSM-5 with TiO2 Degussa. 

Though, the peak intensity corresponds to crystallite meso-ZSM-5/TiO2 was found 

less prominent than that of ZSM-5 itself due to slight line broadening of the diffraction 

peaks. It is noteworthy that the crystallinity of TiO2 particles was slightly changed 

from 21 to 21.27 nm after loading onto ZSM-5 framework. Although, in case of 

ZnO/ZSM-5, few peaks correspond to ZSM-5 disappeared during ZnO loading such 

as 45.0o and 45.2o and few appeared less intensified such as 7.5o, 8o, 13.2o, 13.9o, 14.7o, 

15.5o, 23.1o, 29.8o due to the formation of mesoporous phase (Na 1.2 Al 1.1 Si 93.7 O 192). 

This phenomenon explained that the loading of ZnO onto ZSM-5 framework was less 

stable. In TiO2- mesoporous catalyst the instability of TiO2 was observed due to the 

destruction of anatase phase at 2θ=25.40 and 480 as shown in Figure 4.2. This might 

have obtained due to the precursor thermal reaction of TEOS on the surface of TiO2, 

and hence the condensation of TEOS on TiO2 particles affected the crystallinity of 
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TiO2 particles, which can be proved by the size of the crystal particle as discuss below. 

The average crystal size of TiO2 particle in TiO2/ZSM-5 can be calculated from the 

Debye-Scherer formula (Hamadanian, Reisi-Vanani, & Majedi, 2009). It was found 

that the average anatase crystalline size was 21.27 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 X-ray diffraction patterns of ZSM-5, TiO2/ZSM-5, TiO2 Degussa, 

ZnO/ZSM-5 and TiO2-mesoporous 

 

4.3.1.2 BET surface areas and pore distribution 

The specific surface area and pore structure of the commercial ZSM-5, TiO2/ZSM-5 

mesoporous, TiO2-mesopoures and ZnO/ ZSM-5 were characterized by Brunauer-

Emmett-Teller method (BET). Figures 4.3a-d illustrate nitrogen adsorption-desorption 

isotherms to describe the surface area while the BJH pore size distribution of 

corresponding samples is shown in Figure 4.3e. For comparison, the results of BET 

surface areas and pore structures are summarized in table1.  

According to IUPAC classification, The adsorption/desorption isotherms of the 

commercial ZSM-5 is a type of I isotherm and exhibits an almost horizontal plateau 

starting at low relative pressure < 0.15 (Thommes et al., 2015; Valero-Romero et al., 

2016), indicating that the porous morphology consist predominantly of very narrow 

micropores having relatively small external surfaces as shown in Figure 4.3a. The 
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steep uptake at very low P/Po is due to enhanced adsorbent-adsorptive interactions in 

narrow micropores, resulting in micropore filling at very low P/Po (Thommes et al., 

2015) . The specific surface area and the pore diameter of commercial ZSM-5 were 

estimated to be 311 m2 g-1 and 8.6 nm, respectively. The nitrogen adsorption-

desorption isotherms of TiO2/ZSM-5 and ZnO/ZSM-5 exhibit type H4 hysteresis loops 

at P/P0 ranges 0.1-0.3, and 0.4-0.99, suggesting the presence of abundant mesoporous 

structure in the samples as illustrated in Figures 4.3b and c, which give BET surface 

area of 1151 and 305 m2 g-1, respectively, and uniform pore diameter around 5.0-11.0 

nm as shown in Figure 4.3e. The hysteresis loop of  TiO2-mesopoures catalyst was 

also exhibited type H4 hysteresis loop at P/P0 range 0.5-0.99 as depicted in Figure 4.3 

d, with disordered pore diameter distribution  around 2-24 nm (see Figure 4.3e). This 

disordered pore diameter could be affected by calcination temperature and the 

hydrolysis process of TEOS, which largely caused the damage and collapse of the 

mesoporous structure. 
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Figure 4-3 N2 adsorption-desorption isotherms of (a) ZSM-5, (b) TiO2/ZSM-5 (c) 

TiO2-mesopoures and (d) ZnO/ZSM-5 and also corresponding BJH pore size 

distribution curves of samples (e) 
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Table 4-1  Specific surface area (SBET), pore volume (V) and average pore diameter 

(d) for ZSM-5, TiO2 Degussa, TiO2/ZSM-5, ZnO/ZSM-5, and TiO2-mesoporous 

a The specific surface area was calculated by BET method 

b The pore volume was obtained from the BJH Desorption cumulative volume of pores between 1.0000 

nm and 50.0000 nm diameter. 

c The average pore diameter was estimated using the desorption branch of the isotherm and BJH 

model. 

As shown in Table 4.1, the BET surface area of TiO2/ZSM-5 mesoporous are much 

larger than the commercial ZSM-5, suggesting that the direct template process has 

effected on the porosity of commercial ZSM-5. However, replacement of TiO2 by 

ZnO, caused a decrease in surface area and pore volume from 1151m2 g-1 and 0.2 m3 

g-1 to 380 m2 g-1 and 0.17 m3 g-1, respectively. The high surface area of TiO2/ZSM-5 

can be explained by the isotherms graph, which is revealed that the type of H4 

hysteresis did not exhibit any limiting adsorption at high P/P0, which is true with non-

rigid aggregates of plate-like particles giving rise to slit-shaped pores while the 

desorption branch contained a steep region associated with a (forced) closure of the 

hysteresis loop, due to the tensile strength has effected as shown in Figure 4.3b. 

Furthermore, It is noteworthy that the low pressure hysteresis which occurred at range 

0.1- 0.3 for TiO2/ZSM-5 catalyst may be associated with the change in volume of the 

adsorbent, i.e. the swelling of non-rigid pores or with the irreversible uptake of 

molecules in the pores of about the same width as that of the adsorptive molecule. In 

addition, chemisorption was also led to cause “open” hysteresis loops at the low P/P0 

range (0.01-0.1) (Sing, 1985). This phenomenon was observed in the isotherms of 

TiO2/ZSM-5 while it was absent in the isotherms of ZnO/ZSM-5 mesoporous (see 

Figures 4.3c).  

Sample 
SBET 

(m2 g⁻¹) a 

V 

(cm3g⁻¹) b 

D 

(nm) c 

ZSM-5 311 0.014 8.6 

TiO2 Degussa 45-55 -- <25 

TiO2/ZSM-5 1151 0.2 5.2 

ZnO/ZSM-5 380 0.17 6.1 

TiO2-mesoporous 360 0.42 5.6 
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It can be concluded that the ZSM-5 modified with TiO2 by using the direct template 

method was achieved successfully with high specific surface area (1151m2 g-1), large 

pore volume (0.2 m3 g-1) and pore size (5.2 nm). For better understanding and 

comparison few catalysts from previous literature have been listed down in Table 4.2 

with property of surface area and preparation method. 

Table 4-2  Comparison of surface area among different catalysts  

Catalyst 
Preparation 

method 

BET surface 

area (m2 gˉ¹) 
References 

TiO2 nanoparticales 

supported on natural zeolite 

(TI-ZE). 

A simple hydrolysis 80.04 (Q. Sun et al., 2015) 

TiO2 nanoparticles supported 

on zeolite type 13X. 
Two steps sol-gel 324.1 

(Chong, Tneu, et al., 

2015) 

TiO2 nanoparticales 

supported on zeolite type 

ZSM-5. 

Sol-gel 343 

(Chang, Wang, 

Ouyang, Zhang, & 

Jing, 2015) 

TiO2 (25%) nanoparticles 

supported on zeolite type 

MCM-41molecular sieve. 

Hydrothermal 669 
(Reddy, Davydov, & 

Smirniotis, 2003) 

TiO2 nanoparticles Supported 

on HZSM-11 Zeolite (10%). 

Hydrothermal 

crystallization 
365 

(Montañez, Gómez, 

Santiago, & Pierella, 

2015) 

HB 

zeolite-supported TiO2 

(amount of TiO2 (g) per gram 

of HB 

0.01) 

Sol-gel 545 

(Mahalakshmi, Priya, 

Arabindoo, 

Palanichamy, & 

Murugesan, 2009) 

1.5% Pt- TiO2/natural zeolite Sol-gel 118.7 
(M. Huang et al., 

2008) 

Cr/ TiO2/zeolite (10%Cr) Sol-gel 205 
(C. Wang, Shi, & Li, 

2012) 

Beta zeolite supported TiO2 Sol-gel 31 

(Lafjah, Djafri, 

Bengueddach, Keller, 

& Keller, 2011) 

N-Ti/13X/MCM-41 Templating 664 

(H. Tao, Nguyen, 

Hei, Liang, & Chang, 

2015) 

TiO2 -Zeolite type ZSM-5 Templating 1151 This study 

 



Chapter 4 Synthesis a novel multilamellar mesoporous TiO2/ZSM-5  

68 | P a g e  
 

4.3.1.3 FESEM images 

High magnification images of 2µm of the ZSM-5, TiO2/ZSM-5, ZnO/ZSM-5 and 

TiO2-mesoporous catalyst were investigated using SEM as shown in Figure 4.4. The 

surface of ZSM-5 was found to be relatively smooth (Figure 4.4a), however small 

particles can be clearly seen dispersing on the surface of ZSM-5 when TiO2 particles 

were loaded onto ZSM-5 surface (Figure 4.4b). Nevertheless, clusters of large particles 

were observed due to the aggregation of ZSM-5 particles and dispersion and 

attachment of TiO2 onto aggregated particles of ZSM-5 as shown in Figure 4.4b. It 

was predicted that ZSM-5 might have formed channels and cavities inside and between 

the ZSM-5 particles during the aggregation process since ZSM-5 forms multilamellar 

scaffold, as mentioned in section 3.1, which would have provide surplus space for TiO2 

crystallites to bind inside and out of the cavities and channels formed by ZSM-5 

particles and consequently formed heavy particles with high porosity. It was 

anticipated that this behaviour of TiO2/ZSM-5 catalyst can be exhibited ease of post-

operational separation of catalyst from treated wastewater. It was interesting to note 

that the vesicular (spherical) ZSM-5 was tended to form grape-like clusters of 

aggregating vesicles rather than separate vesicular particles (Figures 4.4b-d). The 

reason behind that is the high condensation of silanol groups (Si–OH) on the surface 

of the individual silica particles, as discussed by earlier researchers (L. Huang et al., 

2000; Baojian Zhang, Davis, Mendelson, & Mann, 2000). More interestingly, The 

SEM results were in agreement with the proposed study as discussed in section 4.3.1.1 

and with the finding of XRD as there was no major change in the structure of ZSM-5. 

Consequently, the direct template method was proved to be suitable for the synthesis 

of a unique, stable structure and high surface area of TiO2/ZSM-5 catalyst (Figure 

4.4b). 

Whereas, the ZnO particles loading on the surface of ZSM-5 were tended to aggregate 

predominantly together rather than on the surface of ZSM-5 particles, as a result, the 

silanol groups of ZSM-5 particles cannot formed bonds with ZnO (Figure 4.4c) and 

thus have unstable and weak binding structure of ZnO/ZSM-5. In case of TiO2 - 

mesoporous catalyst, TEOS was used as a source of silica instead of ZSM-5 (Figure 

4.4d). It can be observed that the TEOS condensed randomly around TiO2 particles to 

form dense grape-like network cluster, where vesicles like structure of silica were 

disordered and that might formed potentially unstable TiO2 particles.  
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Figure 4-4 SEM images of a) ZSM-5, b) TiO2/ZSM-5, c) ZnO/ZSM-5,d) TiO2-

mesoporous 

4.3.1.4 Fourier-transformed infrared spectroscopy (FTIR) Analysis 

The functional groups present in TiO2/ZSM-5, ZnO/ZSM-5, TiO2 - mesoporous and 

ZSM-5 was studied using the FTIR spectroscopy. From Figure 4.5, it is observed that 

the TiO2/ZSM-5 exhibited similar FTIR spectra characteristics as of commercial ZSM-

5 for extended band at 1100 cm-1 without shifting. This indicated that the ZSM-5 

structure was not affected when TiO2 used as immobilizer onto ZSM-5 surface due to 

the high stable framework of ZSM-5 particles. However, ZnO/ZSM-5 showed the 

narrow band at 1064 cm-1 and band at 838 cm-1 were disappeared, which proved 

unsuitable of immobilization of ZnO particles due to causing disturbance in framework 

and no interstitial binding with ZSM-5 structure. Whereas, TiO2 mesoporous catalyst 

sample possessed broadband at 3429 cm-1 that was related to the –OH stretching and 

bending vibrations of silanol groups (Si-OH) and due to the interaction between water 

molecules and –Si-OH groups. Whilst, the small band at 1228 cm-1 is associated with 

(a) (b) 

(c) (d) 
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the bending vibrations of H-O-H bonds in water molecules and –Si-OH groups. 

Besides, the sharp band of TiO2/ZSM-5 was observed at 838 cm-1 due to the Al-O-Al 

or Si-O-Si symmetric stretching vibrations in the tetrahedral SiO4 and AlO4 structures, 

formed in ZSM-5 framework. Previously Gamba et al. (Gamba, Colella, & Coluccia, 

2001) have reported that the immobilization of TiO2 onto the ZSM-5 structure can be 

resulted in the asymmetric or antisymmetric for TiO2 and Ti-O-Si units in the infrared 

band range of 960-1097 cm-1. It was also noticed that the band intensity was 

proportional to the amount of Ti presenting in the ZSM-5 framework.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 FTIR spectra of ZSM-5, ZnO/ZSM-5, TiO2/ZSM-5, TiO2-mesoporous. 

4.4 Photocatalyst activities 

4.4.1 Effects of the catalyst type  

 

To find the best catalyst for the degradation of methyl orange in aqueous solution under 

solar irradiation, three types of catalysts were synthesized TiO2/ZSM-5, TiO2-

mesoporous, and ZnO/ZSM-5. TiO2 Degussa and conventional ZSM-5 were also used 

for comparison. The initial concentration of MO in aqueous solution was 20 mg L-1. 

The photo-catalysts loading were controlled at 2 g L-1 and the pH was kept at the initial 

value of 7.5 because in these conditions TiO2/ZSM-5 effectiveness was reached to the 
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optimum removal efficiency of the dye. The results shown (see Figure 4.6) that the 

best catalyst was TiO2/ZMS-5 because of the maximum decolouration of MO achieved 

(99.55%) during 180 min of solar irradiation. Figure 4.6 shown that the decolouration 

rate of MO increased rapidly within the first 60 min, however, it continued up to 150 

min till it reached in the state of equilibrium.  The photo-degradation of MO by using 

TiO2 Degussa and TiO2- mesoporous were also studied, it can be observed that the 

degradation efficiency of MO after 180min were 80.7% and 83.4% respectively as a 

shown in Figure 4.6; however, the high degradation percentage of TiO2 Degussa and 

TiO2-mesoporous were proved inefficient due to post-operation recovery of these 

catalysts from the aqueous solution as shown in Figure 4.6 (inset). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6  Removal efficiency of MO dye decolourization using TiO2/ZSM-5, TiO2-

mesopoures, TiO2 Degussa, ZnO/ZSM-5 and ZSM-5 

 

On the basis of the results and the discussion of the structural properties described in 

previous sections, the reasons behind to be TiO2/ZSM-5 as an efficient catalyst is the 

high specific surface area up to 1151m2 g-1 which provided additional active sites on 

the surface of TiO2/ZSM-5 and perfect distribution of TiO2 particles onto the 

morphology of ZSM-5 mesoporous, which in turn enhanced the photodegradation 

efficiency of the catalyst. Moreover, the wide pore size of TiO2/ZSM-5 was increased 

the solar light penetration directly without any reflection light intensity outside the 

bulk solution. The photocatalysis ability of ZnO/ZSM-5 was also studied, where it was 

noticed that the degradation efficiency of MO after 180 min was only 50.71% (Figure 
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4.6). In case of ZnO/ZSM-5, the decolouration of MO increased slowly up to 90 min 

which was remarkably slower than the rate achieved by TiO2/ZSM, TiO2-Mesopoures 

and TiO2 Degussa, however the degradation remained continue, but the rate of 

degradation gradually decreased till it reached in the state of equilibrium at 120 min. 

The low specific surface area 380 m2 g-1 and disordered distribution of ZnO onto ZSM-

5 surface make this catalyst less efficient. Nevertheless, ZSM-5 was exhibited 

completely inefficient catalyst; there was no perceptible colour change in MO dye. 

Thus, the results above demonstrated that the TiO2/ZSM-5 was the excellent catalyst 

in comparison to others prepared via direct template method.   

 

4.4.2 Effects of the pH  

The pH value is a crucial influence on the photocatalytic degradation process, its 

affects the generation of the oxidizing species (•OH, O2•‾, H2O2 and HO2•) that result 

in photodegrading (Zepp, Faust, & Hoigne, 1992), thus it is necessary to study the 

effect of the pH on the methyl orange photo-degradation process. Experiments were 

carried out at pH values of  2, 4 , 6 , 7, 7.5, 8 and 9 with 20 mg L-1 of MO, 2 g L-1 

dosage of TiO2/ZSM-5 in 100 ml reaction volume, for 180 min reaction time and the 

pH was adjusted by using 1M KOH and HCI solution. 

 

 

 

 

 

 

 

 

 

 

Figure 4-7 Effect of pH of solution on removal efficiency of MO 

In the presence of TiO2/ZSM-5 catalyst, the degradation was increased with the 

increase of pH from 2.0 to 7.5, and reached to its maximum MO removal efficiency at 

pH 7.5 but started to decrease with the increase of pH from 7.5 and beyond (Figure 

4.7). The highest removal of MO at almost neutral pH (7.5) has been a great 
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achievement since after treatment there was no need to adjust the pH of water before 

joining the water bodies. It is to be believed that the surface of TiO2/ZSM-5 is 

positively charged under acidic conditions pH<7.5 by the adsorbed H+ ions on the 

semiconductor surface, whereas, it is negatively charged under alkaline conditions pH 

>7.5 by the adsorbed OH- ions on the semiconductor surface. The photodegradation 

efficiency affects by an anionic or cationic form of the MO dye. Two reaction 

mechanism contribute to MO dye degradation such as a direct oxidation by positive 

holes, and direct reduction by electrons. It was observed that the degradation efficiency 

of MO in acidic to neutral (pH of 2, 4, 6, 7, 7.5) was significantly increased than the 

basic solution of pH 9.0 which is made the catalyst surface negative charge. Therefore, 

in acidic to neutral media, a strong adsorption of MO on the composite particles is 

preferred as a result of the electrostatic attraction of the positively charged particles 

toward the MO to be a higher at neutral region. However, in basic solutions of pH= 

9.0, MO dye dissociated forming sodium ions that can react with the adsorbed OH- 

ions, which reduced the amount of OH- radicals (L. Zhang et al., 2009). 

4.4.3 Kinetics studies 

In order to evaluate the kinetics of photo-degradation of MO via TiO2/ZSM-5 catalyst 

were simulated using pseudo-first order and pseudo-second order model and the best 

fitted model were selected based on the highest correlation coefficient R2 value. The 

pseudo first order model of photo-degradation reaction can be described by Langmuir-

Hinshelwood kinetic model, which can be simplified to an apparent first order equation 

as shown in Eq. (4.2). Chong et al. found that the Langmuir-Hinshelwood model could 

be simplified when the KC-value is less than 1 to pseudo-first order kinetic model as 

given in Eq. (4.3) (Chong, Jin, et al., 2009).  

dC

dt
=

k. KC

1 + KC
= r                                                                                         (4.2) 

ln (
C˳

C
) = k. K. t = −kapp(MO)                                                                    (4.3)                                    

Where r is the reaction rate, k is the reaction rate constant, K is the dynamic Langmuir 

adsorption constant, C is the dye concentration and kapp (MO) is the obvious pseudo-first 

order reaction rate constant.  

From plot ln (C0/C) versus t, the decolourization rate, kapp (MO) (min-1) of MO by 

TiO2/ZSM-5 catalysts at different dosages was shown in Figure 4.8. 
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The experimental data were also analysed with pseudo-second order model, using the 

linear equation (4.4): 

t

qt
=

1

k2(𝑀𝑂) .  qe
2

+
1

qe . t
                                                                          (4.4) 

     

where k2 (MO) is the reaction rate constant for pseudo-second order model, qe is the 

amount of MO at equilibrium and qt is the amount of MO photo-degraded at time t. 

From plot t/qt versus t, the decolourization rate, k2 (MO) (g.mg-1.min-1) by TiO2/ZSM-5 

catalysts at different dosages was shown in Figure 4.9.  

The values of correlation coefficients R2 indicated a better fit of pseudo-second order 

model with dosage 2 mg L-1 of TiO2/ZSM-5 catalysts.  

Catalyst loading is a significant factor in photo-catalytic wastewater treatment 

processes (Chong, Cho, Poh, & Jin, 2015). The optimum photo-catalyst loading not 

only preventing unnecessary excess use of applied catalysts but also gives a maximum 

photo-activity. It was noticed that photo-activity increased with increase of TiO2/ZSM-

5 loading and achieved the maximum photo-activity at 2 g L-1 due to the availability 

of more reactive radicals for surface reaction and also the highest number of active 

sites. However, catalyst loading more than 2 g L-1 caused cloudiness in the reaction 

solution which blocked the penetration of solar illumination.  

Mahadwad et al. have explained that the increase in catalyst concentration caused 

deactivation of molecules (Mahadwad, Parikh, Jasra, & Patil, 2011). Thus, the 

optimum TiO2/ZSM-5 mesoporous loading for the photocatalytic degradation of 20 

mg L-1 model MO dye in aqueous solution was 2 g L-1. 
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               Figure 4-8 The pseudo-first order reaction rate 

 

 

 

            Figure 4-9 The pseudo-Second order reaction rate 
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4.4.4 TOC removal 

The mineralization of the total organic carbon of 20 mg L-1 MO solution using 

TiO2/ZSM-5, TiO2-mesoporous, ZnO/ZSM-5 and TiO2 Degussa were investigated. 

The results were presented in Figure 4.10, indicated that TiO2/ZSM-5 managed to 

remove completely (99%) TOC of MO in 180 min of solar irradiation, however, some 

of the intermediate by-products (1%) reminded in the solution even after its treatment 

of 180 min. As reflected in Figure 4.10, it can be fairly concluded that MO dye was 

decoloured via photocatalytic degradation process using TiO2/ZSM-5 and at the same 

time the by-products were efficiently mineralized. Figure 4.10 also depicted that the 

relative concentration of TOC reduced quickly within 90 min and it remained 

decreased, but with lower rates than before till 180 min without showing any obvious 

equilibrium. However, in case of TiO2-mesoporous, it was noticed that the TOC 

removal was 42% under solar irradiation after 180 min as shown in Figure 4.10. The 

ZnO/ZSM-5 and TiO2 Degussa catalysts were just able to remove 28% and 17% TOC 

for the same time span of 180 min, respectively. Among all catalysts studied in this 

study, TiO2 Degussa reached to its equilibrium state within 60 min, which was 

considered as quite before in respect of others. Hence it could be concluded that some 

of intermediate by-products and few percentage of MO itself cannot be degraded by 

TiO2 Degussa. ZnO/ZSM-5 and TiO2-mesoporous have not acquired their equilibrium 

event at 180 min, however the rate was extremely low and from application point of 

view, it would not be suggested to use these catalysts for MO mediated wastewater 

treatment. Combining the results depicted in Figures 4.6 and 4.10, it could be 

concluded that TiO2-mesoporous, ZnO/ZSM-5 and TiO2 Degussa were better with 

decolouration of MO than their efficiency to degrade TOC. Finally, it was speculated 

that the TiO2/ZSM-5 has strong reduction-oxidation ability as a result of the hole-pair 

electron recombination, which given high activation cites on the surface of the catalyst 

and consequently proved to be the most appropriate catalyst for TOC removal of MO 

dye in aqueous media. 
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Figure 4-10 TOC removal of 20 mg L-1 methyl orange dye by using different types of 

catalyst 

 

4.4.5 Recycling and regeneration of the TiO2/ZSM-5 mesoporous  

Studying regeneration and reuses of the photocatalyst were important aspects in terms 

of potential practical applications, cost effectiveness and eco-friendly nature of 

proposed catalyst; therefore, the used TiO2/ZSM-5 mesoporous in solar photocatalytic 

experiments of the MO dye was regenerated and used several times. The experimental 

data were illustrated in Figure 4.11.     

After the end of first complete photocatalyst cycle of MO, the catalyst was filtrated, 

washed with deionized water, dried at 100ºC, and followed by the calcination process 

at 400ºC for 3h to remove adsorbed MO dye and its intermediate molecules, if any 

present onto the surface of TiO2/ZSM-5 catalyst. The same above mentioned procedure 

was conducted after every cycle of usage. The degradation efficiency of MO dye after 

several cycles is shown in Figure 4.11.  At the end of the six cycles, a slight reduction 

in the degradation efficiency of MO from 99.55% to 95.0 was noticed. It was likely 

due to the accumulation of the intermediate by-products on the surface of the catalyst 

or might be because of slight leaching of TiO2 particles.  
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Figure 4-11 the regeneration efficiency of TiO2/ZSM-5 mesoporous after a number of 

cycles for methyl orange dye contamination  

 

In order to study the durability of the TiO2/ZSM-5 catalyst, the surface area of the 

recycled catalyst after six complete cycles of usage was tested by N2 adsorption - 

desorption analyzer (Figure 4.12) and the surface was characterized by XRD spectra 

(Figure 4.13). The results clarified that the specific surface area, XRD and FTIR 

(Figure 4.14) results of regenerated catalyst after complete six cycles possessed no 

significance changes which indicated the durability and feasibility of TiO2/ZSM-5 

mesoporous.  
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Figure 4-12 The BET surface area of TiO2/ZSM-5 mesoporous after six completed 

cycles of usage 

 

 

 

 

 

 

 

 

 

 

Figure 4-13 the XRD comparison between the TiO2/ZSM-5 before used and after 6th 

cycle’s usage   
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     Figure 4-14  FTIR spectra of the regenerated TiO2/ZSM-5 after 6th run 

 

It can be noticed that the TiO2/ZSM-5 exhibited high structural stability even after 

multi-cycles usage. Based on these findings, it can be concluded that the TiO2/ZSM-5 

catalyst has unique adsorption photocatalytic ability, which is highly recommended in 

the advanced wastewater treatment. The findings have demonstrated that TiO2/ZSM-5 

mesoporous that prepared by the direct template method is durable and reusable after 

several treatment cycles without a significant losing its photocatalytic efficiency. 

4.5 Summary 

TiO2 immobilized onto a new multilamellar vesicles (MLVs) ZSM-5 mesoporous 

substrate were fabricated by the direct templating approach. Based on the results 

presented in this chapter, the highly ZSM-5 mesoporous content was effectively 

enhanced to degrade MO dye due to multi-layers mesoporous provide several effective 

sites as well as a high molecular weight for post separation. The decolourization and 

mineralization removal effectiveness can reach 99.55% and 99%, respectively, for 

initial MO concentration of 20 mg L-1 under 180 min sunlight irradiation. The high 

specific surface area of the TiO2/ZSM-5 (1151 m2 g-1) ensures a high photocatalysis 

efficiency of MO dye. The TiO2/ZSM-5 mesoporous was compared with different 
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catalysts such as TiO2 Degussa, ZSM-5, ZnO/ZSM-5, and TiO2-mesoporous.The XRD 

analysis confirmed the anatase phase mostly in the synthesized TiO2/ZSM-5 

mesoporous. Moreover, SEM images showed that TiO2 crystallites were present on the 

multilamellar vesicles ZSM-5. The kinetic study follows the pseudo-second-order 

model. TiO2/ZSM-5 was regenerated six times, with its degradation efficiency 

remained as high as 95.16%. The reusability of TiO2/ZSM-5 mesoporous solar-

photocatalyst using MO dye was evaluated. The data revealed that 95% removal 

efficiency of MO dye was achieved after six cycle’s treatment with no significant loss 

in the efficiency of the used catalyst. Thereupon, the results demonstrate that the 

TiO2/ZSM-5 multilamellar vesicles mesoporous exhibits promising potential 

application as a new photocatalyst for water purification.  
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CHAPTER 5 

 Synthesis novel RGO/TiO2/ZSM-5 

Mesoporous for Adsorption and Photocatalytic 

Degradation of Methylene Blue from aqueous 

media 

 

 

5.1 Introduction  

In chapter 4, we investigated the process of synthesizing TiO2/ZSM-5 mesoporous for 

solar photocatalytic degradation of MO dye from aqueous solution as well as its 

analysis and characterization. Although photocatalytic degradations of dyes using 

various photocatalysts and light sources have been widely studied, little attention has 

been paid to synthesized solar photocatalyst containing mesoporous nanocomposite 

fabricated with reduced graphene oxide (RGO). Therefore, this chapter will focus on 

the activity of the reduced graphene oxide in solar photocatalytic degradation of 

methylene blue dye. Removal of recalcitrant organic chemicals from wastewater is a 

crucial ecological problem. Modern synthetic dyes are one of the most prominent 

examples of non-biodegradable organic compounds which are common industrial 

contaminates of the water bodies. Methylene blue dye (MB) is a standout amongst the 

regular dyes utilized for wood, cotton, and silk. It is harmful when inhaled, while 

ingestion causes a smouldering sensation, spewing, mental perplexity and 

methemoglobinemia (Ghosh & Bhattacharyya, 2002). Therefore, the removal of this 

dye from water samples by an appropriate process is urgently demanded.  
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Photocatalysis is one of the advanced oxidation processes utilized for wastewater 

treatment and has been generally reported for efficiently degrading almost all types of 

water organic pollutants (Chong et al., 2010). TiO2 semiconductor photocatalyst is 

generally being utilized in this process due to its high effectiveness, stability and non-

poisonous quality (X. Chen & Mao, 2007; Fujishima et al., 2000; Liao et al., 2012). 

However, the use of TiO2 in treatment of industrial dyes has remained very challenging 

because of the problem of post-separation and recovery of the used photocatalyst, as 

well as recombination electron/hole pair (Chong, Vimonses, et al., 2009). To mitigate 

the challenge of post-separation, the use of an appropriate substrate material such as 

clay (Chong, Vimonses, et al., 2009), activated carbon (Shi et al., 2010), and magnetite 

core  embedded into the TiO2 will be an interesting field to research  (Beydoun & 

Amal, 2002). Zeolites emerged as a good candidate substrate in photocatalysis due to 

its abundance, it is also inexpensive; in addition it contains alumino-silicates with 

different size cavity structure, tectosilicates with microporous channels, pore spaces, 

high ion exchange capacity, adsorption and catalysis capacity (Vimonses et al., 2009; 

S. Wang & Peng, 2010). Several researchers have utilized the ZSM-5 type of zeolite 

in photocatalytic process to prepare efficient solar photocatalyst for wastewater 

treatment (Khatamian et al., 2010; Panpa et al., 2008). TiO2/ZSM-5 nanocomposite 

has been reported by many researchers as an excellent catalyst in water treatment 

applications; however, there is a still needs for further improvement in terms of its 

stability, adsorbability and enhancement of the electron/hole pair recombination. To 

the best of the author’s knowledge, no research was found that studied the effect of 

mesoporsity on solar photocatalytic stability.    

To further enhance the adsorbability and electron/hole pair separation in the 

TiO2/ZSM-5 nanocomposite, reduced graphene oxide (RGO) was found to be a decent 

potential applicant with a remarkable material characteristic. This is due to the 

presence of substantial amounts of oxidized functional groups such as; hydroxyl, 

carboxylic, and aldehyde groups on its surface which promotes adsorbability (J. C. 

Sun, Cheng, Fan, & Ai, 2013; Williams, Seger, & Kamat, 2008). On the other hand, it 

also enhances fast electron transfer between TiO2 and RGO nano-sheets, thereby 

reflecting a high efficient electrons and holes separation. Very little was found in 

literatures utilizing RGO/TiO2/zeolite as multifunctional nanocomposites to remove 

dye pollutants. One of these studies reported that reduced-graphene 

oxide/TiO2/Zeolite-4A bifunctional nanocomposite catalyst has been utilized for 
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abatement of methylene blue dye in aqueous media (Nagarjuna, Challagulla, Alla, 

Ganesan, & Roy, 2015). However, the experimental data is rather controversial, and 

there is no general agreement about whether the adsorption or photocatalysis process 

has mainly affected the decolourization of the methylene blue dye. Furthermore, the 

data results of the above study showed no reliable evidence to compare between the 

adsorption and photocatalysis removal efficiency, it was reported from the study that  

adsorption equilibrium was obtained after only 20 min with removal efficiency of 

80%, and a very low surface area of 19 m2 g-1 of this nanocomposite catalyst. There is 

also no evidence of investigations that use different weight percentage (wt %) of RGO 

in the nano-composite catalyst to compare the RGO performance in the nano-

composite. Therefore, a new synthetic technique is required to improve efficiency and 

durability. Such promoting technique would deliver a multifunctional material 

possessing high adsorption capacity and high photocatalytic action (Nagarjuna et al., 

2015; A. Sharma & Lee, 2016).  

The main objectives of this study is to synthesize, characterize and investigate the 

adsorption/solar photocatalytic processes of RGO/TiO2/ZSM-5 mesoporous 

nanocomposite. To evaluate the RGO performance, different wt% of RGO; 5%, 10% 

and 15% (w/w) were used in the TiO2/ZSM-5 mesoporous composite, and a 

comparison study between photocatalysis and adsorption processes was evaluated. 

The TOC% and intermediate compounds of MB were also investigated. The kinetic 

degradation models, post-separation, mesoporosity and reusability were studied. The 

contribution of this study is obvious as the result of the outcomes can be utilized as 

guidelines to large-scale potential wastewater treatment application.  

5.2 Experimental work 

5.2.1  Chemicals 

As mentioned in chapter 3, section (3.2.1), the zeolite type of ZSM-5 (Molar ratio 

SiO2/Al2O3 =600, 300 m2 g-1 specific surface area, 2–3µm particle size; and pore size 

0.5 nm) was provided from ACROS Organics; A Thermo Fisher Scientific Brand; New 

Jersey–USA. Titanium dioxide (TiO2, Degussa P25, 70% anatase: 30% rutile, specific 

surface area, 53 m2g-1. 

5.2.2 Incorporation of TiO2/ZSM-5 mesoporous onto RGO 

The preparation technique of TiO2/ZSM-5 mesoporous was mentioned in chapter 4 

section 4.2.2 and also in chapter 3 section (3.3.2). To prepare RGO,  Hummers method 
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was adopted; firstly, to prepare graphene oxide (GO) from graphite powder as reported 

previously (Johra & Jung, 2015). Details of this synthesis process are mentioned in 

section 3.3.2 of chapter 3 with illustration in Figure 3.3.  

5.2.3 Characterizations of photocatalysts 

The crystalline phases of the synthesized catalysts were characterized and studied by 

X-ray diffraction (XRD) technique using a Bruker D8. Field emission scanning 

electron microscope (FESEM) measurements were done with MIRA3TESCAN high 

vacuum mode microscope. The EDX (Energy-dispersive X-ray spectroscopy) analysis 

provided information of the elemental composition of the catalysts. Fourier-

transformed infrared (FTIR) spectroscopy was conducted to observe the functional 

groups of the synthesized catalysts. Specific surface area (SBET) was measured via the 

Brunnauer-Emmett-Teller (BET), Micromeritics, Tri-Star II Surface area and Porosity.   

5.2.4 Adsorption and photocatalytic experiments 

As mentioned in chapter 3, section (3.3.2), batch adsorption process was carried out in 

a beaker with a magnetic stirrer using different catalysts such as; TiO2, ZSM-5, 

5%TiO2/ZSM-5, 10% RGO/TiO2/ZSM-5, 15% RGO/ZSM-5 and physical mixture of 

RGO, TiO2 and commercial ZSM-5 in darkness and solar light conditions respectively.  

After the adsorption process, the photocatalytic activity of the catalyst was 

experimented under solar light irradiation, using sun solar simulator) as a source of the 

solar light. The tests were performed at room temperature at a pH of 8.5 of the MB 

solution. During the photocatalytic process, 5 ml of the samples were withdrawn at 

regular intervals and the colour change during photodecomposition of MB dye was 

measured by UV-vis spectrophotometer. The total organic carbon (TOC) was 

estimated via SHIMADZU, TOC-VcpH Scientific apparatus. The chromatographic 

demonstrations with HPLC-UV/vis system were conducted on a Varian Prostar 210 

chromatograph (for more details see chapter 3, section (3.6.2)). The removal efficiency 

(η %) of MB dye was calculated using equation (5.1); where co and c are the initial 

and final MB concentrations in the solution. 

 

𝜂𝑀𝐵 =
𝐶𝑜− 𝐶

𝐶𝑜
×  100                                                                 (5.1)                                                                                                                      
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5.3  Results and discussion 

5.3.1 Characterizations of the catalysts  

5.3.1.1 XRD analysis 

The XRD patterns of the RGO, ZSM-5, TiO2, TiO2/ZSM-5, 5% RGO/TiO2/ZSM-5, 

10% RGO/TiO2/ZSM-5 and 15% RGO/TiO2/ZSM-5 were investigated, and the 

diffraction peaks obtained are shown in Figure 5.1. The signal peaks of TiO2 Degussa 

with high crystallinity were found at 25.4o, 37.5o, 48.0o, 54.1o, 54.8o, and 62.6o. They 

indicated that the d 101, d 004, d 200, d 106, d 211, and d 204 planes are mainly anatase 

phase. Moreover, the three small intensity peaks were also found at 68.5o, 71.2o, 75.5o. 

They indicated that the d 110 plane is a rutile phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 XRD patterns of RGO, TiO2, ZSM-5, TiO2/ZSM-5 mesoporous, 5% 

RGO/TiO2/ZSM-5, 10% RGO/TiO2/ZSM-5 and 15% RGO/TiO2/ZSM-5 
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From Figure 5.1, the diffraction peaks of ZSM-5 were also observed at 7.5o, 8o, 13.2o, 

13.9o, 14.7o, 15.5o, 23.1o, 29.8o, 45.0o and 45.2o which typically correlated with the 

data reports in the literature concerning zeolite type ZSM-5 for sodium aluminium 

silicate (Na1.5Si 93O192) (J.-J. Wang et al., 2015). It was noted that there were no 

significant peaks shift after the conventional ZSM-5 is modified to mesoporous 

morphology with TiO2 Degussa, indicating that the crystalline form of ZSM-5 did not 

changed during the preparation method of TiO2/ZSM-5 mesoporous as illustrated in 

Figure 5.1.  

As shown in the XRD profile of the RGO, a wide peak at 2θ = 23.4o that corresponds 

to the interplanar spacing of ~ 3.75 Å between the (002) planes appeared (Stankovich 

et al., 2007); this could be due to the high reduction of RGO associated with the ring-

opening of epoxide and cleavage of some oxygen-containing functional groups; while, 

the small peak at 2θ = 42.2o could be as a result of the turbostratic crystal structure of 

the disordered carbon materials. It appears from Figure 5.1 that XRD profile of 5%, 

10% and 15%RGO/TiO2/ZSM-5 catalysts showed no significant reduction in the TiO2 

crystallinity of the nanocomposite mesoporous catalysts and the intensity peaks of 

these catalysts were clearly noticed at 2θ = 22.5o and are mainly anatase phase without 

shifting from the original place, while the rutile peaks at 2θ = 68.5o, 71.2o, 75.5o 

showed a much lower intensity, indicating that the rutile phase has a lower stability 

than the anatase phase through the synthesizing process. Also, the RGO has no 

significant effect on the crystallinity of the TiO2/ZSM-5 mesoporous as illustrated in 

Figure 5.1. The above finding revealed that the synthesis technique was successfully 

applied while maintaining a high degree of crystallinity of the synthesized catalysts.     

 

5.3.1.2 BET specific surface areas and pore distribution  

The specific surface area and the pore structure profile of catalysts were characterized 

by Brunauer-Emmett-Teller method (BET) for 5%RGO/TiO2/ZSM-5, 

10%RGO/TiO2/ZSM-5, 15%RGO/TiO2/ZSM-5 and TiO2/ZSM-5 mesoporous. 

Figures 5.2a-d illustrate nitrogen adsorption-desorption isotherms describing the 

specific surface area while the BJH pore size distribution of corresponding catalysts is 

shown in Figure 5.2e. The results obtained from the BET surface area and pore 

structure of the samples are summarized in table 5.1. From Figure 5.2a and as indicated 

by the IUPAC classification of isotherms adsorption and hysteresis loops, the 
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isotherms of TiO2/ZSM-5 mesoporous exhibit type H4 hysteresis loops at very low 

relative pressures P/P0 < 0.15, indicating micropore filling, and in relative pressure 

(P/P0) range of 0.15-1, suggesting mesopore condensation and multilayer adsorption 

with abundant mesoporous structure in the samples, which giving a BET specific 

surface area of 1151 m2 g-1. The mesoporous structure in this sample was a plate-like 

or slit shaped pore with diameter of about 5.2 nm, and average pore volume is 0.2 cm3 

g-1 as shown in Figure 5.2e.     

Figures b-d exhibited isotherms type IV which are ascribed to the monolayer/ 

multilayer adsorption behaviour, indicating that the capillary condensation behaviours 

is quite filled pores with N2 gas in the structure of the catalysts. To investigate these 

hysteresis loops behaviour and from Figures 5.2 b and c, there are exhibited type H4 at 

P/P0 ranges of 0.15- 0.99 which gives BET specific surface area of 57 m2 g-1 and 80 

m2 g-1, respectively, and the pore diameters about 7.8 and 8.4 nm as shown in Figures 

5.2e. These hysteresis loops suggested that micro/mesoporous pores are available in 

the nanocomposite catalysts, and pore clogging can be possibly due to a percolation 

phenomenon. Figure 5.2d showed that the hysteresis loop is consistent with findings 

in Figures 5.2 b and c.  However, an increase in wt% of RGO up to 15% led to 

reduction of the specific surface area to 27.6 m2 g-1. This is due to the agglomeration 

of TiO2/ZSM-5 mesoporous particles which is partially clogged and a reduction in 

pore size as a result of the abundant presence of oxygen groups in the RGO nano-

sheets surface. This finding highlights that the synthesized technique successfully 

provided mesopore structure, and the high wt% of RGO can reduce the specific surface 

area in the nanocomposite mesoporous catalyst.    
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Figure 5-2 N2 adsorption-desorption isotherms of (a) TiO2/ZSM-5 mesoporous (b) 

5%RGO/TiO2/ZSM-5 (c) 10%RGO/TiO2/ZSM-5 (d) 15%RGO/TiO2/ZSM-5 and 

also corresponding BJH pore size distribution curves of the samples (e) 

 

Table 5-1 Specific surface area (SBET), pore volume (V) and average pore diameter (d) 

for catalysts 

Catalysts 
SBET 

(m2 g-1) a 

V 

(cm3 g-1) b 

D 

(nm) c 

5%RGO/TiO₂/ZSM-5 57 0.51 7.8 

10% RGO/TiO₂/ZSM-5 80 0.55 8.4 

15% RGO/TiO₂/ZSM-5 27.6 0.54 8.6 

TiO₂/ZSM-5 mesoporous 1151 0.2 5.2 

 

a The specific surface area was evaluated by BET method 

b The pore volume was obtained from the BJH Desorption cumulative volume of pores 

between 1.0000 nm and 50.0000 nm diameter. 
C The average pore diameter was calculated using the desorption branch of the isotherm and 

BJH model. 
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5.3.1.3 Fourier-transformed infrared spectroscopy (FTIR) analysis 

FTIR spectrum absorbance of RGO, TiO2/ZSM-5, 5%RGO/TiO2/ZSM-5, 

10%RGO/TiO2/ZSM-5, and 15%RGO/TiO2/ZSM-5 catalysts were studied. From 

Figure 5.3, wide peak intensity spectrum of RGO at 3400 cm-1 was observed, 

demonstrating that the O-H stretching vibration is often available in this region; while, 

a weak peak intensity spectrum appeared at 3400 cm-1 for TiO2/ZSM-5 mesoporous, 

indicating that the O-H stretching of few water molecules was present in the 

nanocomposite catalyst. As revealed in Figure 5.3, a small peaks intensity near 1650 

cm-1 were observed in RGO, 5% RGO/TiO2/ZSM-5, 10% RGO/TiO2/ZSM-5 and 15% 

RGO/TiO2/ZSM-5 catalysts, suggesting that the  C=O stretching of carboxylic groups 

existed at the edges of the graphene oxide sheets. Similar behaviour peaks intensity 

were observed at bands 1410, 1380, and 1250 cm-1 of the above catalysts due to the C-

O carboxyl, C-OH and epoxy C-O groups available in the nanocomposite. The 

intensity peak of the RGO, which represented C-O stretching hydroxyl groups, was 

remarkably shifted from 1000 cm-1 toward higher region 1100 cm-1, proving that the 

RGO was successfully incorporated into the TiO2/ZSM-5 mesoporous catalyst.  

As illustrated in Figure 5.3, a wide intensity peak appeared at 700 cm-1 in TiO2/ZSM-

5 mesoporous, indicating that the TiO2 corresponded to Ti-O-Ti bonding. This peak 

was shifted toward 550 cm-1 in the 5%RGO/TiO2-ZSM-5, 10%RGO/TiO2-ZSM-5 and 

15%RGO/TiO2-ZSM-5 catalysts, demonstrating that the Ti-O-Ti and Ti-O-C bonds 

were presented in the 5%RGO/TiO2-ZSM-5, 10%RGO/TiO2-ZSM-5 and 

15%RGO/TiO2-ZSM-5 samples, and the chemical interference has occurred between 

the functional hydroxyl groups of RGO with TiO2 (Williams et al., 2008; H. Zhang et 

al., 2009). The above results revealed that the RGO is strongly anchored into 

TiO2/ZSM-5 mesoporous via the chemically interfered bonds between Ti and hydroxyl 

containing groups of the synthesized RGO. It also shows that the RGO successfully 

prepared contains abundant oxygen functional groups.   
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Figure 5-3 FTIR spectra of TiO2/ZSM-5, 5% RGO/TiO2/ZSM-5, 10% 

RGO/TiO2/ZSM-5 and 15% RGO/TiO2/ZSM-5 

5.3.1.4 FESEM images and EDX analysis 

High magnification images of the RGO, TiO2/ZSM-5 mesoporous and 10% 

RGO/TiO2/ZSM-5 catalysts were investigated using FESEM and EDX analysis. From 

Figure 5.4a, it was apparent that smooth texture surface of multilayers RGO were 

obtained, which are likely active sites corresponding to –OH and –O functional group 

appropriating  anchor on TiO2 nanoparticles. In Figures 5.4c and e, it is apparent that 

the TiO2 nanoparticles was well dispersed and deposited into the RGO layers, 

indicating the presence of –OH and –O groups in the RGO nano-sheets surface, 

1380 cm-1 

15%RGO/TiO2/ZSM-5

10%RGO/TiO2/ZSM-5

650900115014001650190021502400265029003150340036503900

R G O

TiO2/ZSM-5

OH-stretch at 3400 cm
-1 

5%RGO/TiO2/ZSM-5

Wavenumber (cm
-1

) 

T
ra

n
sm

it
ta

n
ce

 (
T

%
) 

1000 cm-1 1410 cm-1 

C-O 

C-OH 

C=O 

 
Stretching at 

1650 cm-1 

C-O 



Chapter 5 Synthesis novel RGO/TiO2/ZSM-5 Mesoporous  

94 | P a g e  
 

thereby forming a strong attachment between Ti and -OH groups as confirmed by 

FTIR spectra, (as discussed in section 5.3.1.3).  

As illustrated in Figure 5.4g, a random distribution of the TiO2/ZSM-5 mesoporous 

particles onto RGO nano-sheets was observed, which highly stimulated the build-up 

of silanol groups (Si–OH) onto RGO surface nano-sheet as a template and an initial 

growth of TiO2/ZSM-5 mesoporous. This binding between Si and OH groups created 

a large molecule with a high porosity within the channels and the cavities that gives 

the catalyst have a good absorbability (Ogura et al., 2018; Qiu, Xing, & Zhang, 2018). 

Furthermore, it was also anticipated that easy post-separation of the mesoporous 

catalyst from aqueous media can possibly occur.  

The EDX spectrum of the catalysts are also studied as shown in Figures 5.4 b, d, f, h. 

From Figure 5.4d, Ti, C and O2 intensity peaks spectrum were obtained, indicating the 

TiO2 particles are strongly incorporated onto the surface of the RGO nano-sheets. As 

shown in Figure 5.4f, the EDX peaks spectrum of TiO2/ZSM-5 mesoporous crystal 

revealed that the compositions are abundant in Si, O, Al and Ti, suggesting that Ti 

particles were successfully anchored onto the surface of ZSM-5 mesoporous. The spot 

spectrum in Figure 5.4h approved the presence of Si, O, Al and Ti along with the high 

carbon intensity peak obtained, confirming the successful incorporation of TiO2/ZSM-

5 onto RGO surface nano-sheet. The interesting benefit in this finding is that it aids 

electron/hole pair transfer by significantly preventing the recombination hole/electron 

pair thereby enhancing photocatlysis process (Pastrana-Martínez, Morales-Torres, 

Figueiredo, Faria, & Silva, 2018; W. Zhang et al., 2018; M. Zhu et al., 2018). 
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Figure 5-4 FESEM and EDX analysis of (a, b) RGO, (c, d) 10% RGO/TiO2/ZSM-5, 

(e, f) TiO2/ZSM-5, (g, h) 10% RGO/TiO2/ZSM-5 

5.3.2 Removal efficiency of MB dye  

To investigate the adsorption/photocatalyst removal efficiency, batch experiments was 

conducted for 30 min at room temperature in the dark with an equilibrium adsorption 

limit of 10 mg L-1 of MB dye solutions containing 0.5 g L-1 each for 5% 

RGO/TiO2/ZSM-5, 10%RGO/TiO2/ZSM-5, 15%RGO/TiO2/ZSM-5, TiO2 and 

TiO2/ZSM-5 catalysts. This was followed by the photocatalytic study under solar light 

irradiation for 90 min, samples were taken at every 30 min interval. A control which 

consist of ordinary mixture of RGO, TiO2 and commercial ZSM-5 (wt% 8.4:8.4:8.4) 

was also investigated. The results of these experiments were illustrated in Figure 5.5a. 

The adsorption capacity of MB was calculated by the following equation:     

 

 qt =
(Co− Ct) . Vo

w 
                                                                          (5.2)                                                                                                                            

Where qt (mg/g catalyst) is adsorption capacity, the C0 and Ct (mg L-1) are the initial 

and concentrations at time t of MB respectively; V0 is the volume of the MB solution 

(L); and w is the weight of catalyst (g) (Kangwansupamonkon, Jitbunpot, & 

Kiatkamjornwong, 2010; Shawabkeh & Tutunji, 2003).   

As illustrated in Figures 5.5a (adsorption region), the adsorption equilibrium of the 

used catalysts was obtained after 30 min, and from Figure 5.5b, the adsorption removal 

efficiencies were exceptionally increased with the presence of RGO in the composite 

catalysts, the removal efficiency 25%, 40% and 55% corresponds to the use of 5% 

(e) 

4 

(g) 
(h) Spectrum 4 
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RGO/TiO2/ZSM-5, 10%RGO/TiO2/ZSM-5 and 15%RGO/TiO2/ZSM-5, respectively. 

The data also show that the adsorption removal efficiency using TiO2 and TiO2/ZSM-

5 mesoporous were 7% and 10% indicating that no significant adsorption was obtained 

using ZSM-5 mesoporous and TiO2 in the composite catalyst (see Figure 5.5b).       

The results of the decolourization of MB by photocatalysis process (see Figure 5.5b) 

using 5%RGO/TiO2/ZSM-5, 10%RGO/TiO2/ZSM-5, 15%RGO/TiO2/ZSM-5, TiO2 

and TiO2/ZSM-5 mesoporous catalysts reveals that the increase in wt % of RGO in the 

composite catalysts from 5% to 10% can increase the decolourization efficiency from 

70% to 93%, respectively, and this was due to an increased ionic interaction and the 

reduced electron/hole pairs recombination at the surface of RGO photocatalysis 

process (Nguyen-Phan et al., 2011); however, increase of up to 15% wt of RGO 

decrease the decolourization reduced the removal efficiency to 83% as depicted in 

Figure 5.5b. This because of the opacity of the solution which prevents solar light from 

penetrating into the aqueous solution due to the high wt% of RGO and thus prevent 

excitation the electron/hole pair of the TiO2. 

The feasibility of the synthesized 10% RGO/TiO2/ZSM-5 mesoporous nanocomposite 

was further studied, in addition a physical mixture of TiO2, RGO and the conventional 

ZSM-5 were also studied. As shown in Figures 5.5 a & b, the decolourization 

efficiency of MB dye using the physical mixture of the catalysts was 40 % and the 

adsorption efficiency was 10%. The common drawback of using the physical mixture 

of the catalyst components is the arduous separation TiO2 from the water samples and 

also the difficultly in mixing the RGO with water sample. Therefore, the 

10%RGO/TiO2/ZSM-5 is a potential appropriate catalyst in wastewater dye treatment 

due to easy post-separating and mixing with water particularly in the combined 

composite catalyst form.    
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Figure 5-5 (a) The plot of Ct/Co versus time in in the presence of photocatalyst under 

the solar light, the concentration of the catalysts were 0.5 g L-1 and a solar exposure 

time of 120 min (b) removal efficiency of different catalysts for adsorption and photo-

degradation regions 
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5.3.3 Kinetic studies  

To evaluate the kinetic models, pseudo-first and second order adsorption models were 

studied based on the highest correlation coefficient R2 value. The pseudo first order 

adsorption model as described by Langmuir-Hinshelwood kinetic model. Chong et al. 

found that the Langmuir-Hinshelwood model could be simplified when the KC-value 

is less than 1 to pseudo-first order kinetic model as given in Eq. (5.3) (Chong et al., 

2010).  

ln (
𝐶𝑜

𝐶
) = 𝑘. 𝐾. 𝑡 = 𝑘𝑎𝑝𝑝 .  𝑡                                                     (5.3) 

Where k is the reaction rate constant, K is the dynamic Langmuir adsorption constant, 

C is the dye concentration and kapp is the obvious pseudo-first order reaction rate 

constant.  
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Figure 5-6 (a) Pseudo first-order kinetic plots (b) Pseudo second-order kinetic plots 

for the 10 mg L-1 MB dye concentration using different catalyst 

The plot ln (C0/C) versus t for adsorption and photo-degradation of MB by different 

catalysts described a linear behaviour as shown in Figure 5.6a. 

The experimental data were also analysed with pseudo-second order model, using the 

linear equation (5.4) 

𝑡

𝑞𝑡
=

1

𝑘2 𝑀𝐵  . 𝑞𝑒
2 +

1

𝑞𝑒  . 𝑡
                                                             (5.4) 

where k2 is the reaction rate constant for pseudo-second order model, qe is the amount 

of MB at equilibrium and qᵼ is the amount of MB adsorbed and photodegraded at time 

t. The plot t/qt versus t for adsorption and photo-degradation of MB by different 

catalysts described a linear behaviour as shown in Figure 5.6b. The values of the 

correlation coefficients R2 indicated a better fit of pseudo-second order model for all 

used catalyst regardless of the concentration of MB dye as illustrated in table 5.2.  In 

the present work, the qₑ and k2 values ( see Table 5.2) are estimated for different 

concentrations of MB i.e. 10, 20, 30, 40 mg L-1 using the linear equation of (t/qt) = f 

(t) as depicted in Figure 5.6b for MB 10 mg L-1 concentration only (slope for 20, 30, 

40 mg L-1 are not shown). It appears from table 5.2 that the removal efficiency of MB 
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dye using 10%RGO/TiO2/ZSM-5 mesoporous remained at a high value to be 70% 

even after using high concentration of MB dye of 40 mg L-1.  

 

Table 5-2   Parameters of pseudo first order and second order kinetic models with the 

removal efficiency 

 

5.3.4 Decolourisation of the MB dye  

To investigate the decolourization activity, 0.5 g L-1 of 10% RGO/TiO2/ZSM-5 

mesoporous was added to water samples containing various MB dye concentrations 

(10, 20, 30, 40 mg L-1) under constant stirring condition. The photodecomposition was 

characterized by UV–vis spectroscopic spectra at λ =664 nm versus time, which 

Catalysts 

MB dye 

concentration 

mg L⁻¹ 

Removal 

efficiency 

(%) 

Pseudo first order 

reaction rate 

Pseudo second 

order reaction rate 

qe 

mg/gm 

catalyst 

TiO₂ 

  

Kapp 

(min⁻¹)× 

10⁻³ 

R² 

K₂ 

(g/mg. 

min) 

R²  

10 35% 3.818 0.9315 0.1141 0.9994 20.31 

20 30% 2.883 0.922 0.1354 0.9992 24.46 

30 27% 2.334 0.990 0.1671 0.9996 30.25 

40 25% 1.9523 0.9732 0.1822 0.9987 33.81 

TiO₂/ZSM-5 

 

 

 

 

       

10 60% 8.416 0.9628 0.0227 0.9993 19.56 

20 50% 5.866 0.9444 0.0038 0.9978 17.85 

30 45% 5.389 0.9408 0.00248 0.9961 28.98 

40 40% 3.704 0.7796 0.00357 0.9941 46.6 

5% 

RGO/TiO₂/ZSM-5 

10 70% 10.54 0.927 0.013 0.9999 20.12 

20 64% 8.66 0.9217 0.00466 0.9974 12.56 

30 52% 6.715 0.852 0.0036 0.9848 25.2 

40 48% 4.816 0.7601 0.00321 0.9983 39.37 

10% 

RGO/TiO₂/ZSM-5 

10 93% 24.89 0.9202 0.027 0.9999 20.16 

20 82% 14.16 0.8989 0.00944 0.9957 6.1 

30 78% 12.55 0.8993 0.00426 0.995 10.71 

40 70% 8.77 0.6386 0.00396 0.9985 22 

15% 

RGO/TiO₂/ZSM-5 

10 80% 13.43 0.8549 0.0316 0.9998 19.88 

20 72% 12.7 0.817 0.00784 0.9967 10 

30 70% 9.379 0.7949 0.00457 0.9795 15.8 

40 56% 5.751 0.7178 0.005 0.9966 33.85 
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revealed one major band of maximum adsorption in the visible region at 664 nm with 

a small shoulder band at 615 nm which is due to dye dimmer (Machado et al., 2003; 

Yogi et al., 2008), and another small band in the ultraviolet region at 326 nm (see 

Appendix A-1, Figure A.1). The absorbance at 664 nm was due to the conjunction 

between the atoms of nitrogen and sulphur present in aromatic rings, whilst the small 

shoulder at 615 nm was reported to be as a result of the absorbance by the dye dimmer. 

However, the aromatic benzene rings have their absorption band in the ultraviolet 

region at 326 nm (Rauf, Meetani, Khaleel, & Ahmed, 2010). It was observed that wide 

absorption peaks at 664 nm in the different concentrations of MB were quickly 

diminished after treating the MB solutions with 10% RGO/TiO2/ZSM-5. The small 

visible band at 615 nm was also gradually diminished at the same time. The 

concentration of MB was plotted against time as shown in Figure 5.7. This 

demonstration reveals that MB dye decolourization is very effective when treated with 

10% RGO/TiO2/ZSM-5 under solar light irradiation for 120 min; the removal 

efficiency achieved are 93% of 10 mg L-1, 82% of 20 mg L-1, 78% of 30 mg L-1 and 

70% of 40 mg L-1 of MB.  

 

 

 

 

 

 

 

 

                             

 

                        

          Figure 5-7 decolonization of various concentrations of MB dye versus time 

5.3.5 The mineralization of MB dye  

The total organic carbon (TOC) removal efficiency was studied using different of the 

catalysts including 5% RGO/TiO2/ZSM-5, 10%RGO/TiO2/ZSM-5, 15% 

RGO/TiO2/ZSM-5, TiO2/ZSM-5 and TiO2 at initial MB dye concentration of 10 mg 
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L-1 for 120 min as shown in Figure 5.8. The results reveal that the removal efficiency 

of the TOC after 120 min under solar light irradiation increased from 65% using only 

TiO2/ZSM-5 mesoporous to 85% using 10% RGO/TiO2/ZSM-5 mesoporous. This 

finding shows that RGO nano-sheets play an important role in the composite catalyst, 

and this is reflected in the high adsorbability and activation sites on the surface of 

RGO, reduced electron/hole pair recombination and the possibility of π-π interactions 

between RGO and intermediate organic compounds (Andreozzi et al., 2018; Pawar, 

Khare, & Lee, 2014; X. Wang et al., 2012). However, increase wt % of RGO up to 

15% in the composite catalyst again reduced the TOC removal efficiency to 75% due 

to opacity of the solution, thus preventing proper penetration of solar light into the 

aqueous solution. This concluded that the synthesized 10% RGO/TiO2/ZSM-5 

exhibited a synergistic effect of both adsorption and photocatalysis processes, thus 

rapidly reducing TOC content in the aqueous media. 

    

 

             

 

 

 

       

 

 

 

 

 

Figure 5-8 the removal efficiency of TOC using different types of the catalysts 0.5 g 

L-1 concentration at initial MB dye concentration is 10 mg L-1 

5.3.6 Intermediates and mineralization of MB dye  

The intermediate compounds of the 10 mg L-1 MB dye after 120 min of photocatalytic 

degradation were analysed by the HPLC using 0.5 g L-1 of 10% RGO/TiO2/ZSM-5 

mesoporous. The estimated concentration of MB and two intermediate compounds of 

degradation were observed and plotted in Figure 5.9 (see also the calibration curves in 

Appendix B, Figure B.3). To identify the intermediate compounds, the demethylation 
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pathway for possible degradation of MB molecule as reported by Rauf et al, (Rauf et 

al., 2010) shown in Figure 5.10.  In this pathway, the anticipated cleavage happens in 

one or more methyl groups presented as amine groups. The main peaks of the 

intermediate such as azure (A) and thionin were identified by the HPLC; see diagram 

as shown in Appendix B, Figure B.1. The demethylation process may also be 

continued to further destroy the structure of thionin by self-cleavage of the amine 

groups (see Figure 5.10).  

With further oxidation, these complex compounds are broken until all aromatic rings 

are shatter and escaped as CO2, H2O, SO4, and NH4 gases. The mineralization 

experimental data revealed that 10%RGO/TiO2/ZSM-5 not only successfully 

decolorized MB dye, but also resulted into a significant mineralization of the 

intermediate, converted to nonhazardous compounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9  HPLC profile of MB dye before and after photocatalytic degradation 
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Figure 5-10 Proposed pathways for photocatalytic degradation of MB dye solution 

5.3.7 Stability and regeneration  

In this section, the stability and regeneration of 10% RGO/TiO2/ZSM-5 mesoporous 

photocatalyst was studied for five cycles at optimum conditions using 10 mg L-1 of 

MB dye. After use the suspension which consist of the catalyst and decolourized MB 

was centrifuged, filtered and washed with deionized water several times, thereafter the 

filtrate and dried at 100 °C for 1 h, followed a calcination at 300oC for 3 h to remove 

the organic compounds from the catalyst surface. The above steps were repeatedly 

done for each cycle, and the removal efficiency for the reused catalyst after each cycle 

was shown in Figure 5.11. The data reveals only a slight reduction in the degradation 

efficiency (85%) is obtained after the end of the fifth cycle, suggesting that TiO2 

particles may be slightly leached from the synthesized catalyst. Previous details shows 

that, the plate-like or slit shaped mesopores (discussed in section 5.3.1.2) are seriously 

sealed with TiO2 particles as a result of the availability of the silanol groups (Si-OH) 

in the silica zeolite structure with considerable surface active sites (López-Muñoz, van 

Grieken, Aguado, & Marugán, 2005; W. Wang & Song, 2006) as depicted in Figure 

5.11.  

To investigate the effect of mesoporosity structure in the composite catalyst, 10% 

RGO/TiO2/ZSM-5 non-mesoporous composite was prepared with slight modification 

Demethylation 

Azure A (AA) 

MB dye  
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CO2, H2O, SO4
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+ 
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as a mentioned in section 5.2.2 for testing the solar photocatalytic degradation of 10 

mg L-1 of MB dye concentration at the fifth cycles. The specific surface area and pore 

size distribution of the 10%RGO/TiO2/ZSM-5 non-mesoporous was evaluated and 

illustrated in Appendix A-1, Figure A.2.  

The result revealed that the removal degradation efficiency was highly reduced to 60 

% using non- mesoporous of 10%RGO/TiO2/ZSM-5, suggesting that the mesoporosity 

was enhanced thereby reducing the durability and regeneration of the used catalyst. 

Based on this finding, it could be anticipated that the 10% RGO/TiO2/ZSM-5 

mesoporous is a durable morphology, used up to 5 cycles without significant reducing 

in the capability, this makes it highly recommended for application in large scale MB 

dye treatment. 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 5-11 the regeneration efficiency of 10%RGO/TiO2/ZSM-5 mesoporous after a 

number of cycles 

 

 

 

 

 

 

 

 

Figure 5-12  the proposed mesoporosity effects on the TiO2 particles 
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5.4 Summary 

This study was undertaken to synthesize a nano composite of TiO2/ZSM-5 mesoporous 

and to evaluate the adsorption/solar photocatalytic activity on addition of different wt 

% of reduced graphene oxide (RGO) in the synthesized nanocomposite mesoporous 

catalyst. The pseudo first and second order kinetic degradation models, post-

separation, mesoporosity, TOC% and reusability of the synthesized catalysts were then 

assessed. Different concentrations of methylene blue dye (MB) such as 10, 20, 30, 40 

mg L-1 were used for the investigation. Based on the results, it was observed that the 

10% wt RGO in the composite of TiO2/ZSM-5 mesoporous significantly boosted the 

photocatalytic activity, enhanced the adsorption ability and the charge separation with 

extensive electron transfer to the carbon-based nano-sheets. Analysis of the FESEM 

images and EDX showed that TiO2 crystallites and ZSM-5 mesoporous were present 

on the RGO nano-sheets. The data also reveal that the mesoporosity enhanced the 

stability of the used catalyst and only a slight significant lose in the removal efficiency 

(85%) of the catalyst activity during the regeneration process after the fifth cycles was 

noticed. It was also shown that the intermediate compounds which consist of Azura 

(A) and Thionin were significantly mineralized to non-hazardous compounds. This 

novel hybrid synthesized mesoporous RGO supported catalyst would therefore pave 

new development of multifunctional catalyst for water treatment of environmental 

applications.   
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CHAPTER 6 

 

 A ligand anchored conjugate adsorbent for 

effective mercury (II) detection and removal from 

aqueous media 

 

6.1 Introduction  

The previous chapters of this dissertation have discussed solar photocatalytic 

degradation of organic refractory pollutants using advanced oxidation process (AOP). 

However, Rapid developments in industries in many countries have also been brought 

out a serious environmental problem such as inorganic heavy metal ions effluent in 

water bodies (H. Chen, Li, Shao, Ren, & Wang, 2012; Ngomsik et al., 2009; Riaz, 

Nadeem, Hanif, & Ansari, 2009; Zein, Suhaili, Earnestly, & Munaf, 2010). The AOP 

is not sufficient to remove the risk of heavy metal ions from water bodies. Therefore, 

synthesis a visual adsorption catalyst is an alternative process that has studied in this 

chapter, suggesting the mercury ions is as a toxic target. Mercury (Hg (II)) ions is 

considered one of the most ubiquitous and dangerous heavy metal in water bodies. The 

Hg (II) ranks sixth among the most toxic chemicals in the list of hazardous compounds. 

The industrial activities such as the production of chlorine and caustic soda and 

electrical applications such as lamps, arc rectifiers and mercury cells as sources of Hg 

(II) caused serious human health risks when it is discharged into water bodies. The 

toxicological and carcinogenic effects of even ultra-trace Hg (II) ions (permissible 

level: 1µg L-1 to 10 µg L-1) can destroy the central nervous system and possible death 
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(Clarkson & Magos, 2006). The Hg (II) impairs pulmonary function, as well as to 

induce dyspnoea and chest pain (Methylmercury, 1990). Nevertheless, the monitoring 

efforts by government agencies have been mainly focused on fish and marine 

mammals, where Hg (II) ion remain high contaminated risk product mainly in aquatic 

livings (Hylander & Goodsite, 2006; Von Burg, 1995). The Hg (II) ions also causes 

human chromosome breakage, as well as genetic defects with cell division, thus 

resulting in an abnormal chromosome distribution. Therefore, fabricating a selective 

and rapid removing Hg (II) ions pollutant to purify a raw water source is significant 

for health and critically needed to overcome impact the global water crisis. This 

technology should be affordable to the majority of the world’s population (S. El-Safty, 

Shahat, Awual, & Mekawy, 2011; S. A. El-Safty, Awual, Shenashen, & Shahat, 2013; 

S. A. El-Safty, Shahat, & Awual, 2011; S. A. El-Safty, Shenashen, et al., 2013).  

Various analysis equipment have been reported for Hg (II) ions detection, including 

ICP-MS, ICP-AES, fluorescence spectroscopy, chemiluminescence and neutron 

activation analysis (Arshad et al., 2017; Awual, 2017b; Awual, Hasan, Eldesoky, et 

al., 2016; Kamath et al., 2012; B. Li et al., 2006; Naushad et al., 2015; Sakamoto-

Arnold & Johnson, 1987; Sheikh et al., 2017; Souza & Tarley, 2009; Zi et al., 2014). 

Although, these methods are accurate for Hg (II) ions detection, they have the 

disadvantages of complex operational procedures, involving a large infrastructure 

backup and high cost. Therefore, a simple, selective, sensitive, and rapid detection of 

Hg (II) ions is extremely demanding for routine analysis. Optical sensors for Hg (II) 

ion detection have been developed using chromophores, fluorophores, functionalized 

polymers, graphene, proteins, and nano-bio-modified nanoparticles (Kim, Kim, Park, 

& Chang, 2006; Lee, Han, & Mirkin, 2007; Yuling Li, Zhou, Liu, & Li, 2012; 

Nazeeruddin, Di Censo, Humphry‐Baker, & Grätzel, 2006; Tian et al., 2011). The 

direct detection of ultra-trace Hg (II) ions still seems to be difficult due to the low 

selectivity and sensitivity of these methods and even it cannot be detected visually. 

Therefore, a functional ligand anchored mesoporous materials are excellent tools for 

visual inspection of Hg (II) ions in aqueous solutions, allowing eco-friendly method 

(Awual, 2016a, 2016c, 2017a; Awual, Alharthi, Hasan, et al., 2017; Awual, Hasan, 

Naushad, Shiwaku, & Yaita, 2015; Awual, Hasan, & Znad, 2015; Awual, Khaleque, 

et al., 2015; Awual, Yaita, & Okamoto, 2014; Singhal, Singh, & Upadhyay, 2014).  
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Recently, different ligands were successfully embedded in nanomaterial matrices and 

have been reported for various metal ion detection with high selectivity and sensitivity 

under mild conditions (Awual, 2016b; Awual, Alharthi, Okamoto, et al., 2017; Awual, 

Hasan, Ihara, & Yaita, 2014; Awual, Hasan, & Khaleque, 2015; Awual, Hasan, Shahat, 

et al., 2015; Awual, Miyazaki, Taguchi, Shiwaku, & Yaita, 2016; Awual, Suzuki, et 

al., 2014; Awual, Yaita, Taguchi, et al., 2014). Moreover, these are high mechanical 

stabled, cost effective, high adsorption capacity, reusability, high specific surface area, 

ease to use, and would be exhibited potential application in large-scale operation based 

on a real sample treatment. 

A variety of treatment technologies have been developed during the past decade to 

remove the Hg(II) ions from large volumes of aqueous solution such as oxidation, 

chemical precipitation, ion-exchange, electrochemical operation, floatation, 

membrane electrolysis, liquid-liquid extraction and adsorption (Arshadi, Mousavinia, 

Khalafi-Nezhad, Firouzabadi, & Abbaspourrad, 2017; Awad, AbouZeid, El-Maaty, 

El-Wakil, & El-Shall, 2017; Duman & Ayranci, 2010; Ritchie & Bhattacharyya, 2002; 

Tuzen, Sari, Mendil, & Soylak, 2009; H. Zhu et al., 2017). However, many of them 

have been found drawbacks such as weak chemical affinity, low adsorption capacity, 

time consuming, requiring rigorous conditions such as carbonate free environments, 

and producing large secondary wastes. Thereupon, adsorption technology has emerged 

as one of the most effective alternative methods for removing heavy metal ions from 

aqueous solution. Different materials have been utilized as adsorbents such as clay 

minerals, coal, chitosan, iron oxide nanomaterials, and zeolite (Awual, Eldesoky, et 

al., 2015; Awual & Hasan, 2014a; Awual, Rahman, Yaita, Khaleque, & Ferdows, 

2014; Havelcova, Mizera, Sýkorová, & Pekař, 2009; Shahat, Awual, Khaleque, et al., 

2015), but they still have limited practical application due to these materials could not 

have particularly distinguished by bare eye and lower absorption capacity. Therefore, 

a ligand scaffold mesoporous materials exhibit excellent properties such as the enable 

visual adsorbent by colour changes that depend on Hg (II) ions concentrations in water 

bodies.  

Several studies have been reported using the direct template method to synthesized 

sensitive adsorbents and utilized tetraethylorthosilicate (TEOS) or 

tetramethyorthosilicate (TMOS) as precursors for a silica source that is used as a 

template of mesoporous materials (Awual & Ismael, 2014; Md Rabiul Awual, 
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Mohamed Ismael, et al., 2013; Md Rabiul Awual, Tsuyoshi Yaita, Sherif A El-Safty, 

Hideaki Shiwaku, Yoshihiro Okamoto, et al., 2013; Awual, Yaita, & Shiwaku, 2013; 

M. Shenashen et al., 2013). These precursors with direct template method have been 

provided surface area which is almost 900 m2 g-1 (Md Rabiul Awual, Tohru 

Kobayashi, Hideaki Shiwaku, et al., 2013; Md Rabiul Awual, Tsuyoshi Yaita, Sherif 

A El-Safty, Hideaki Shiwaku, Shinichi Suzuki, et al., 2013; Awual, Yaita, Shiwaku, 

& Suzuki, 2015; Shahat et al., 2018). While, other researchers have been synthesized 

thiol-functionalized MCM-41/or SBA-15 phases as a template and silica source which 

are high affinity for Hg (II) ions as well as capable adsorption of divers metal ions by 

amino-functionalized materials (A. Liu, Hidajat, Kawi, & Zhao, 2000; Mercier & 

Pinnavaia, 1998). Moreover, ordered mesoporous silica MCM-41/48 materials grafted 

with amine or thiol groups were successfully constructed for Hg (II) and Cu (II) ions 

(Walcarius, Etienne, & Lebeau, 2003). The specific surface area of these 

functionalized groups was 818 m2 g-1. However, these functional groups have no 

capability to recognize Hg (II) ions by visual detection, which is an important aspect 

of routine analysis. Therefore, synthesis a suitable ligand that is immobilized 

successfully onto mesoporous materials with high specific surface area, visual 

inspection capability and ease separation after treatment of aqueous solution is the key 

challenges of this study.  

The objective of this study was to develop an adsorbent based on a ligand scaffold with 

high surface area mesoporous material for the selective detection and removal of Hg 

(II) ions from aqueous solution. The novel ligand of 2-hydroxyacetophenone-4N–

pyrrolidine thiosemicarbazones (HAPT) was synthesized and successfully 

immobilized onto the highly ordered mesoporous silica such as zeolite type ZSM-5 

(relatively high stability of framework, highly porous aluminosilicate with high 

silica/alumina ratio and hydrophobic material) by the direct template method. It is 

noted that HAPT was associated onto the ZSM-5 by non–specific interaction via 

hydrogen bonding, Vander Waals forces and reversible covalent bonds (Md Rabiul 

Awual, Tohru Kobayashi, Hideaki Shiwaku, et al., 2013; Awual, Yaita, Shiwaku, et 

al., 2015; Shahat et al., 2018). The Hg (II) ions detection was performed on 

colorimetric sensing methods without significant interference from foreign competing 

ions. Moreover, the Hg(II) ions recognition and removal parameters such as solution 
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pH, colour optimization, limit of detection, contact time, adsorption capacity, initial 

concentration, regeneration and reuse were optimized and evaluated. 

6.2 Experimental work 

6.2.1 Chemicals 

All chemicals were analytical graded and used without further purification. Zeolite 

type of ZSM-5 (Molar ratio SiO2/Al2O3 =600, 300 m2 g-1 specific surface area, 2–3µm 

particle size, 0.5 nm pore size) was provided from ACROS Organics, A Thermo Fisher 

Scientific Brand, New Jersey–USA. The triblock copolymers of ethylene oxide-block-

poly (propylene oxide) block-poly (ethylene oxide) designed as EO20PO70EO20 (P123) 

& 1, 3,5triisopropylbenzene (TIPB) were obtained from Sigma-Aldrich. The standard 

Hg (II) ions solution (1000 µg L-1) was supplied by High-Purity Standards Company, 

Australia. Ultra-pure water was used throughout in this work to prepare all the aqueous 

solutions. 

6.2.2 Synthesis of 2-hydroxyacetophenone- 4N –pyrrolidine 

thiosemicarbazones (HAPT) ligand 

As mentioned in chapter 3 section 3.3.3.2, the synthesis procedure was conducted with 

slight modification of previous studies (Scovill, 1991; Sivakumar & Prathapachandra 

Kurup, 2002). The pale yellow rods desired organic ligand crystals were obtained and 

washed with methanol for further purification (see Appendix A-1, Figure 1.3).  

 

 

 

 

 

 

Figure 6-1 the chemical reaction steps of synthesized 2-hydroxyacetophenone-4N –

pyrrolidine thiosemicarbazones (HAPT) Ligand 
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6.2.3 Synthesis of mesoporous silica and mesoporous-conjugate adsorbent 

(MCA) 

As mentioned in chapter 3, section 3.3.3.1 and 3.3.3.3, the direct-templating method 

with a modification of an instantly preformed liquid crystal phase was used to fabricate 

translucent mesoporous silica (ZSM-5) and surfactant monolithic of mesoporous 

materials (G. Zhou et al., 2007) . Briefly, 1g of triblock copolymers (P123) was mixed 

with deionized water and HCl. Following this, 0.85 g TIPB was added to solution 

dropwise at mass ratio of 0.85:1 (TIPB: P123). Subsequently, 2 g of ZSM5 was added 

directly to the solution under vigorous magnetic stirring. The MCA adsorbent was 

fabricated via direct immobilization method using 50 mg of the prepared HAPT 

dissolved in ethanol solution along with 1g of ZSM-5 mesoporous. The ligand 

immobilization amount (0.775 mmol g-1) was calculated by the following equation: 

𝑞 = (𝐶˳ − 𝐶)𝑉 ⁄ 𝑚                                                                       (6.1)                                                                                                       

Where Q is the adsorbed amount (mmol g-1), V is the solution volume (L), m is the 

mass of MCA (g), C˳ and C were the initial concentration and supernatant 

concentration of the ligand, respectively. 

6.2.4 Characterization of MCA 

The crystalline phases of samples were analysed by XRD using a Bruker D8 

diffractometer. The specific surface area was measured based on the N2 adsorption-

desorption isotherms according to the Brunnauer Emmett-Teller (BET, Micromeritics, 

Tristar II Surface area and Porosity) equation and the pore size distributions were 

derived from the adsorption of isotherms by using the Barrett–Joyner–Halenda (BJH) 

model. To detect the Hg (II) ions colour form, UV–Vis/spectrophotometer was used. 

Field emission scanning electron microscope (FESEM) measurements were carried 

out with MIRA3TESCAN high vacuum mode microscope. Fourier-transformed 

infrared (FTIR) spectroscopy was conducted to determine the functional groups of the 

ligand. The Hg (II) ions concentrations were measured by ICP-AES instrument (Perkin 

Elmer 8300). 
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6.2.5 Determination of Hg (II) ions 

As mentioned in chapter 3, section (3.5.2.1), 10 mg of MCA was immersed in a 2.0 

mg L-1 Hg (II) ions concentration. The mixture was adjusted at appropriate pH of 2.0, 

4.3, 6.2, 9.4, 11.1, 12.5, and 12.8 at constant volume. These mixtures were shaken in 

a temperature controlled water bath at constant agitation speed of 200 rpm to achieve 

good peak colour intensity. After colour optimization, the mixtures were then applied 

to quantitative estimation of Hg (II) ions by colour assessment and absorbance 

measurements via UV-spectrophotometer. The filtrated MCA was grinded to fine 

powder due to achieve homogeneity in the absorbance spectra. The limit of Hg (II) 

ions detection was determined using the linear part of the calibration plot according to 

Eq. (6.2) (Awual & Hasan, 2014b, 2015a, 2015b; Awual, Yaita, Suzuki, & Shiwaku, 

2015): 

𝐿𝘋 =
𝐾𝑆𝑏

𝑚
                                                                                         (6.2)                                                                                                              

where K is the confidence factor and equal to 3, Sb is the standard deviation for the 

blank and m the slope of the calibration graph in the linear range, respectively. 

6.2.6 Hg (II) ions removal, regeneration and reuses 

In the case of optical removal experiments, 20 mg of MCA was immersed in a solution 

of different Hg (II) ions concentrations. The pH was adjusted at a specific value by 

adding 0.2 M KCl and HCl 100 ml of the solution at room temperature for 120 min 

agitation at speed 250 rpm. Then, the MCA was separated by vacuum filtration suction 

system. Following this, Hg (II) ions concentrations before and after adsorption were 

analysed by ICP-AES. The amount of adsorbed Hg (II) ions was calculated according 

to the following equations: 

Mass balance 𝑞ₑ = (𝐶˳ − 𝐶𝑓) 𝑉/𝑀  (𝑚𝑔/𝑔)                              (6.3)                                                            

and Hg (II) ions removal efficiency    𝑅 =  
(𝐶˳−𝐶ᵼ)

𝐶˳
× 100%                      (6.4) 

where V is the volume of the aqueous solution (L), and M is the weight of MCA 

catalyst (g), C˳ and Cf are the initial and final concentrations of Hg (II) ions in solution, 

respectively. To evaluate the kinetics performances, 20 mg of MCA was added to 100 
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ml solution containing 2.0 mg L-1 concentrations of Hg (II). Thereafter, the mixture 

was stirred, and the samples were filtrated at each 20 min intervals and analysed the 

filtrate solution via ICP-AES. The maximum removal capacity was also studied by 

using 20 mg L-1 of MCA in different concentrations of Hg (II) ions and stirred at 700 

rpm for 2h and the filtrate solutions were analysed by ICP-AES. 

To determine the regeneration, an eluting agent of the MCA, firstly, the Hg(II) ions 

was adsorbed by mesoporous-conjugate adsorbent (MCA),and then washed with ultra-

pure water ,or stripping agents such as H2SO4, HCl or thiourea–HCl (Awual, 

Khaleque, Ferdows, Chowdhury, & Yaita, 2013; S. A. El-Safty, Shenashen, Ismael, et 

al., 2012) several times and kept in 50 ml conical flask. The filtrate solution was also 

analysed by ICP-AES. In this study, the suitable elution agent was 3 ml of 0.10 M 

thiourea- 0.10 M HCl and the mixture was stirred for 15 min. After the elution process, 

the MCA was simultaneously regenerated into the initial state and was ready to use for 

the next experiment after rinsing with ultra-pure water. The MCA was regenerated for 

several cycles to improve the long term use as a cost-effective adsorbent. All 

demonstrations in this study were duplicated to confirm the cohesion and recurrence 

of the results. 

6.2.7 Influence of co-existing ions 

The Hg (II) ions removal from mixture solution containing foreign ions onto the MCA 

was checked and the competitive adsorptions of diverse heavy metals are depicted. 

The solution was prepared with 10 mg L-1 in each of Pb2+, Zn2+, Cd2+, Al3+, Fe3+, Mg2+, 

Ca2+, Ag+, K+, Na+ ions and Hg (II) ions in 2.0 mg L-1 and adjusted the final solution 

volume was 50 ml. Thereafter, 20 mg of MCA was added and stirred for 2 h to assure 

complete removed of Hg (II) ions and the filtrate solution was checked by ICP-AES 

6.3 Results and discussion 

6.3.1 Characterizations 

6.3.1.1 BET specific surface areas and pore distribution  

The specific surface area (SBET) and pore size distribution of commercial ZSM-5, 

ZSM-5 mesoporous and ZSM-5 mesoporous/HAPT (MCA) were determined based on 

N2 adsorption-desorption isotherms using the Barrett-Joyner-Halenda (BJH) method. 

Figure 6.2 (a–d), illustrated the N2 adsorption-desorption isotherms and BJH pore size 
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distribution of the samples. For comparison, the specific surface area, pore volume and 

average pore diameter results for the above catalysts are summarized in Table 6.1.  

Table 6. 1  Specific surface area (SBET), pore volume (V) and average pore diameter 

(d) for commercial ZSM-5, ZSM-5mesopoures and ZSM-5mesopoures/HAPT 

Catalysts  SBET (cm² g¹־) ª  V (cm³ g¹־) ᵇ D (nm) ᶜ  

Commercial ZSM-5 311 0.014 8.6 

ZSM-5 mesoporous 1151 0.2 15.2 

ZSM-5 mesoporous/HAPT 593 0.64 4.3 

a The specific surface area was calculated by BET method.  

b The pore volume was obtained from the BJH Desorption cumulative volume of pores 

between 1.0000nm and 50.0000nm diameter. 

 c Theaverageporediameterwasestimatedusingthedesorptionbranchoftheisotherm and BJH model. 

 

The adsorption isotherms of the commercial ZSM-5 is a type of I isotherm and exhibits 

an almost horizontal plateau starting at low relative pressure < 0.15 (Valero-Romero 

et al., 2016), indicating that the porous morphology consist predominantly of very 

narrow micropores as shown in Figure 6.2a. Specific surface area and the pore 

diameter of commercial ZSM-5 were obtained to be 311 m2 g-1 and 0.86 nm (see Figure 

6.2d). After the commercial ZSM-5 treatment, the isotherm ZSM-5 framework shape 

changes from type I to a clear type H4 hysteresis loops according to IUPAC 

classification. It was exhibited a hysteresis loop at P/P0 range (0.5–0.99). This 

hysteresis loop of ZSM-5 mesoporous was evidenced that the mesoporous structure 

highly presents in the sample as illustrated in Figure 6.2b (Valero-Romero et al., 2016). 

A high specific surface area and uniform pore diameter of ZSM-5 mesoporous were 

obtained to be 1151 m2 g-1 and 15.2 nm (see Figure 6.2d). The higher specific surface 

area of ZSM-5 mesoporous revealed type H4 hysteresis was not exhibit any limiting 

adsorption at high P/P0, which is observed with non-rigid aggregates of plate-like 

particles giving rise to slit-shaped pores while the desorption branch for type H4 

hysteresis contains also a steep region associated with a (forced) closure of the 

hysteresis loop, due to the so-called tensile strength effect. Therefore, a wide specific 

surface area range of H4-loop behaviour was observed as depicted in Figure 6.2b.  
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After immobilizing the HAPT ligand into the ZSM-5 mesoporous, the adsorption 

isotherms type of H4 hysteresis loop did not changed, suggesting the immobilized 

method preserves the mesopore structure with no obvious mesopore collapse. 

However, decreasing in the pore diameter (4.3 nm), surface area (593 cm2 g1) of ZSM-

5 mesoporous/ HAPT were occurred, indicating that the inclusion of a significant 

amount of organic moieties ligand into inner pores of the mesoporous carrier with no 

significant change in the pore distribution curve as depicted in Figure 6.2d. It is 

noteworthy that the direct templating technique and the immobilized method were 

successfully prepared the ZSM-5 mesoporous/ HAPT ligand catalyst.  
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Figure 6-2 The N2 adsorption-desorption isotherms curves (a, b, c) and corresponding the 

BJH pore size distribution curves of samples (d) 
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6.3.1.2 Fourier-transformed infrared spectroscopy (FTIR) analysis 

The functional groups of organic ligand were investigated using the FTIR 

spectroscopy. It can be observed from Figure 6.3 that the intense sharp peaks were 

occurring at 3083, 3024, and 3265 cm−1 indicated the possible interference from amino 

and amido compounds. In certain cases, the carboxylic acids may also interfere. 

Pyridine derivatives and related heterocyclic compounds also occurred at these peaks; 

while, nitrite groups were characterized by strong bands near 1650 and 800 cm−1. 

These spectrums were normally appreciably stronger, thus making the PSU relatively 

easy to recognize. The band occurring at 2920 cm−1 was possible interference from 

non-cyclic aliphatic hydrocarbons, including both low and high molecular weight 

compounds. Furthermore, long chain amines, phosphines and sulphides may also 

interfere. This may include the corresponding heterocyclic compounds. It is possible 

that the specific hydroxyphenones was occurred in 1640 cm−1.The primary aromatic 

hydrocarbons that have at least three substituents on a single ring were occurred at 

847cm−1. The substituents are usually arranged on 1, 3, 5 carbon or at least in a way 

that causes ring hydrogen atoms to become separated by the substituents to the stearic 

effect. All these intense peaks have proven the successful synthesis of the ligand and 

this result resembles as reported previously (Sivakumar & Prathapachandra Kurup, 

2002) . 

 

 

 

 

 

 

 

 

Figure 6-3 Specific functional group observation by FTIR spectrum of HAPT ligand 
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6.3.1.3 FESEM analysis 

The morphology of the prepared samples, ZSM-5, ZSM-5 mesoporous and ZSM-5 

mesoporous/HAPT are shown in Figure 6.4(a–d). The large particle sizes of ZSM-5 

mesoporous were obtained due to the aggregation of these particles to be spherical 

shapes as shown in Figure 6.4(b and c). These clusters formed heavy molecule, high 

porosity, highly connected porous structure and also it could have channels and 

cavities between the ZSM-5 cubes. For that reason, it is anticipated that this behaviour 

of ZSM-5 mesoporous can be exhibited the capability of ease post separation of this 

catalyst from water samples. The FESEM image as shown in Figure 4d was clarified 

that the organic ligand (HTAP) was appeared and linked with ZSM5 mesoporous 

structure. The micrograph revealed that the link between ZSM-5 mesoporous particles 

and ligand were almost perfectly organized between particles (Figure 6.4d). These 

images were proven successfully immobilization of the ligand into mesoporous silica 

of ZSM-5. Another advantage of ZSM-5 mesoporous monoliths is larger pore size, 

which allowed functionalizing with an organic ligand for metal ions capturing, 

adsorption, and extraction systems. 
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Figure 6-4 FESEM images of ZSM-5 (a), ZSM-5 mesoporous (b, c) and micrograph 

of HAPT immobilized composite adsorbent (d) 

6.3.2 Hg (II) ions recognition parameters 

The pH specific value plays a vital role for selectivity and sensitivity of trace Hg (II) 

ions. The absorbance spectra of Hg (II)-ligand complexes on catalyst pore surfaces 

were investigated over a wide range of pH solutions from a range of 2.0-12.8 using 

different buffer solutions for obtaining different pH region (see Figure 6.5). 

The absorbance spectra of the [Hg (II)- HAPT]n+ complexes solution at λ=387 nm was 

accurately evaluated over a wide pH range as shown in Figure 6.5. The highest 

absorbance of Hg (II)-HAPT complexes were found at pH 12.5, at λ= 387 nm indicated 

that the strongest bond between Hg (II) ions and adsorbent was achieved during 

selective recognition system at this pH value. Therefore, the pH of the samples was 

adjusted to 12.5 for further experiments in subsequent detection parameters. The 

response time of Hg (II) ions recognition with the ligand in equilibrium colour 

optimization was 15 min.  

The colour optimization of the [Hg (II)-HAPT]n+ complexes solution for different Hg 

(II) ions concentrations are shown in Figure 6.6a. The absorbance spectra change was 

resulted in the Hg (II) addition followed by complex formation between ligand and Hg 

(II) ions. The absorbance spectra of [Hg-HAPT]n+ complexes solution was increased 

when Hg(II) ions concentrations increase too, and the recognition sensitive of Hg(II) 

ions was observed in ultra-trace concentrations. UV–Vis spectroscopy was used for 

(c) 

 ZSM-5 mesoporous 

(d) 

HATP ligand    

MCA 
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evaluating and optimizing the colour of [Hg (II)-HAPT]n+ complexes at solid state as 

shown in Figure 6.6a. The sensitive colorimetric Hg (II) ions recognition was mainly 

depended on pH and the formed of the [Hg (II)-HAPT]n+ complexes. It is noted that 

the remarkable absorbance in the solid adsorbent colour change from the white to 

yellowish, which can be observed by bared eye. The visible Hg (II) ions concentrations 

with a colorimetric MCA catalyst pictures are depicted in Figure 6.6a with both solid 

and liquid state (inset).  

The detection limit of Hg (II) ions and the linear response range were measured from 

the linear part of the calibration plot, which is obtained from the signal intensity of [Hg 

(II)-HAPT]n+ complexes at 387 nm against Hg (II) ions concentrations according to 

Eq. (6.2). The calibration plot of the MCA catalyst is shown in Figure 6.6b at different 

concentrations of Hg (II) ions. This plot clarifies the linear relationship within the 

range of 0.0249–0.4985 µM and the correlation coefficient value was R2=0.9978, 

indicating that the concentrations of Hg (II) ions can be detected with the highest 

sensitivity in an aqueous medium within this concentration range. However, up to 

0.4985µM concentration of Hg (II), the relationship was nonlinear due to the effect of 

Hg (II) ions saturation. From the calibration curve as shown in Figure 6.6b, the lowest 

detection limit of Hg (II) ions by the composite adsorption was 3.69 µg L-1 which is 

calculated according to Eq. (6.2), even in the absence of the matrix ZSM-5 mesoporous 

substrate (calibration curve with dotted line as shown in Figure 6.6b). Thus, such 

evidence confirms that the HAPT novel ligand based ZSM-5 mesoporous adsorbent 

can be utilized effectively to detect traces of Hg (II) ions concentrations. 

The effects of foreign competition ions on detecting 2.0 mg L-1 Hg (II) ions were 

investigated in water samples. These competition ions did not interfere as the data 

provided. Therefore, a series of solutions containing 40 mg L-1 in each of cations Pb2+, 

Zn2+, Cd2+, Al3+, Fe3+, Mg2+, Ca2+, Ag2+,K+, Na+ and divers anions were added such as 

chloride, sulphate, carbonate, citrate, nitrate, bicarbonate and phosphate. The 

absorbance intensity of each of these ions is shown in Figure 6.7. The signal responses 

of the adsorbent were conducted at pH 12.5 to assure the detection at optimum 

conditions. From Figure 6.7, the data confirmed that these competition ions was not 

exhibit any significant colour change and measurable absorbance intensity of Hg (II) 

ions at pH 12.5. The results revealed that the selectivity of the conjugate materials 
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toward Hg (II) ions detection was high even in the presence of the completion foreign 

ions. 

 

 

 

 

 

 

 

 

Figure 6-5 The pH effect for Hg(II) ions treatment during the measurement of 

absorbance spectra of [Hg(II)-HAPT]n+ complexes solution at λ=387 nm and with 

condition 2.0 mg L-1 of Hg (II) ions, 20 mg of MCA catalyst at 25°C in 10 ml volume 

for 15 min 
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Figure 6-6 The change of colour optimization of Hg (II) ions concentrations at pH 

12.5 and (b) was represented the calibration profile of Hg (II) ions concentrations with 

spectral absorbance at λ=387 nm. The inlet in graph (b) shows the low limited 

responses for Hg (II) ions with a liner fit in the Hg (II) ions concentration range. The 

A and A0 are represented the absorbance signal responses of the solution after and 

before addition of Hg (II) ions 

 

 

 

 

 

 

Figure 6-7 Effect of competing ions (cations and anions) when the Hg (II) ions 

concentration was 2.0 mg L-1, the cations concentration was 40 mg L-1. The listed 

foreign ions area: (1) Pb2+, (2) Zn2+, (3) Cd2+, (4) Al3+, (5) Fe3+, (6) Mg2+, (7) Ca2+, (8) 

Ag2+, (9) K+, (10) Na+ (11) (blank and (12) Hg(II) ions 2.0 mg L-1. The interfering 

(150 mg L-1) anions listed in order (4−10): (4) chloride, (5) sulphate, (6) carbonate, (7) 

citrate, (8) nitrate, (9) bicarbonate and (10) phosphate 
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6.3.3 Hg (II) ions adsorption 

The pH solution is a significant factor affecting the Hg (II) ions adsorption from 

aqueous solutions. The metal ions adsorption directly relied on the theories of metal 

chemistry in solution and also the ionization state of the functional groups of the 

adsorbent. Figure 6.8a depicts that the basic solution is playing an important role in 

efficiency adsorption of Hg (II). In other words, the solution pH influences the 

hydrolysis, surface functionality, precipitation and complexation of Hg (II) ions (Md 

Rabiul Awual, Md Abdul Khaleque, et al., 2013; S. A. El-Safty, Shenashen, Ismael, et 

al., 2012). The increasing pH solution leads to increase Hg (II) ions adsorption as 

judged from Figure 6.8a and the higher adsorption was obtained at pH 12.5. However, 

the acidity is not quite favourable region due to the most functional groups of HAPT 

on the surface of MCA are protonated, as a result of this the competition could be 

occurred between protons and Hg (II) ions species thus explain the weak adsorption in 

the acidity region. This phenomenon can be demonstrated by the hydrolysis of Hg (II) 

ions in aqueous solution. The hydrolysis constants of Hg (II) are calculated as log K1= 

−2.7; log K2= −6.19. Therefore, the Hg (II) are exhibited as Hg2+, Hg (OH)+, Hg(OH)2 

at different pH regions (Dean, 1990; Sarkar, Essington, & Misra, 2000) . According to 

the hydrolysis constant equation, the pH of the solution was calculated theoretically. 

It was found that the Ka=6.45×10−7, Kw=1×10−14, [OH]− =0.0393×10−5, and then pH= 

7.6. Practically, the pH solution of Hg (II) ions that is commenced the precipitation to 

be occurred at pH =7.6 also. Over pH 7.6, the main species are Hg2+, Hg (OH)+ and 

the Hg (OH)2 begins to form at pH > 7.6, and it can be reached at maximum value 

about 12.5.  

To evaluate Hg (II) ions adsorption kinetics on the synthesized MCA, the Hg (II) ions 

adsorption capacity was investigated at different contact time while the initial Hg (II) 

ions concentration was fixed at 2.0 mg L-1. It’s noteworthy that the adsorption kinetics 

depends on morphological properties of the adsorbent, initial Hg (II) ions 

concentration, interaction between Hg(II) ions species and protonated adsorbent active 

sites (Awual & Hasan, 2015a, 2015b; Awual, Yaita, Suzuki, et al., 2015).The results 

are depicted in Figure 6.8b, indicating that the two stages of adsorption are occurring. 

First stage was during the first 40 min when the adsorption capacity increased rapidly 

to be 73% and the second stage after next 40 min that slowly increased to reach the 

equilibrium state in 80 min to be 92%. The fast adsorption is occurring due to the 
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abundance active sites on the synthesized adsorbent and the slow adsorption observed 

due to less availability of active sites to make a gradual adsorption curve until its reach 

equilibrium state as shown in Figure 6.8b. The data also clarified that the Hg (II) ions 

adsorption increased with the time and the maximum adsorption time was attained 

within 120 min for clarifying the maximum adsorption capacity to be 95% efficiency 

(Awual, El-Safty, et al., 2011; M Rabiul Awual et al., 2013; Awual & Jyo, 2009, 2011; 

Awual, Jyo, El-Safty, Tamada, & Seko, 2011; Awual, Jyo, Ihara, et al., 2011; Awual, 

Jyo, Tamada, & Katakai, 2007; Awual, Shenashen, Jyo, Shiwaku, & Yaita, 2014; 

Awual, Shenashen, Yaita, Shiwaku, & Jyo, 2012; Awual, Urata, Jyo, Tamada, & 

Katakai, 2008; Naushad, Khan, ALOthman, & Awual, 2016). The high selectivity of 

MCA adsorbent to Hg (II) ions can be explained to the high affinity between Hg (II) 

ions and functional groups of HAPT ligand molecule to be judged from complicated 

mechanism as illustrated in Figure 6.9. 
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Figure 6-8  the pH effect on the Hg (II) ions adsorption on the ligand (HAPT) anchored 

mesoporous adsorbent where initial Hg (II) ions concentration was 2.0 mg L-1 (a) and 

the effect of reaction time for Hg (II) ions where the initial Hg (II) ions concentration 

was 2.0 mg L-1 (b) 

 

 

 

 

 

 

 

 

Figure 6-9 the possible stable complex formation of Hg (II) ions and HAPT ligand at 

optimum conditions 
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6.3.4  Equilibrium adsorption isotherms 

The substantial equilibrium adsorption isotherm is to describe the performance of 

interaction between the adsorbate and adsorbent. Hg (II) ions concentrations were in 

the range 2.65–75 mg L-1. The relationship between the equilibrium concentrations of 

Hg (II) ions and the amount of Hg (II) ions adsorbed on the MCA is depicted in Figure 

6.10. Then the maximum amount of Hg (II) ions adsorbed on MCA can be defined by 

adsorption isotherms. The adsorption of Hg (II) ions is increased with increasing the 

initial Hg (II) ions concentration and then can be obtained like a plateau as shown in 

Figure 6.10. To explain this behaviour, the Langmuir adsorption model is described 

the adsorption take place in the specific homogenous sites of MCA material. The 

assumption of the Langmuir isotherms model is that once an adsorbed species occupies 

the availability of adsorbent sites, therefore no further adsorption will occur on the 

material surface sites (Vieira, Oliveira, Guibal, Rodríguez-Castellón, & Beppu, 2011). 

The Langmuir isotherm model also relied on the assumption that maximum adsorption 

takes place when the saturation of solute molecules on MCA monolayer is present on 

the MCA surface and the energy of the adsorption (Md Rabiul Awual, Tohru 

Kobayashi, Yuji Miyazaki, et al., 2013; X.-s. Wang & Qin, 2005). However, the 

Langmuir isotherms model cannot provide clear understanding of the mechanistic 

adsorption phenomena, but it is convenient to determine the maximum adsorption 

capacity from the experimental data. The linear form of Langmuir expression is: 

𝐶ₑ

𝑞ₑ
= (

1

𝐾𝐿𝑞𝑚
) + (

1

𝑞𝑚
) 𝐶ₑ                                                                (6.5)                                                                             

Where qe and Ce are the adsorption capacity (mg/g) and liquid-phase Hg (II) ions 

concentration at equilibrium state (mg L-1), respectively. While, qm represents the 

maximum adsorption capacity of the MCA material (mg/g) and KL is the Langmuir 

constant (L mg-1) associated with the affinity of binding sites and it is a measure of the 

adsorption energy. The KL and qm were calculated from the intercept and slope of the 

linear plot of Ce/qe versus Ce as shown in Figure 6.10 (inset). The fitting result clarified 

that the maximum adsorption qm of MCA was 166.7 mg/g with the correlation 

coefficient R2= 0.9979. Also, the Langmuir adsorption constant KL value was 

calculated to be 0.178 L mg-1. The experimental data were indicated that Hg (II) ions 



Chapter 6 A ligand anchored conjugate adsorbent for Hg (II) 

129 | P a g e  
 

adsorption on the MCA is strongly convenient corresponded to the Langmuir 

isothermal behaviour. 

 

 

 

 

 

 

 

 

 

Figure 6-10 Adsorption isotherm of Hg (II) ions of the MCA with the linear form as 

fitted by the Langmuir isotherms model (initial concentrations: 2.65–75 mg L-1; 

shaking time: 2 h; adsorbent amount (MCA): 20 mg; volume of solution: 100 ml 

 

6.3.5 Comparison of adsorption capacity 

The ligand anchored mesoporous-conjugate material MCA could be used as a potential 

candidate to remove Hg (II) ions pollutant from water bodies. Also, this conjugate type 

provides ease post separation after water treatment and also the higher specific surface 

area of ZSM-5 mesoporous (1151m2 g-1) was allowed a plenty of ligand to immobilize 

effectively onto surface of ZSM-5 mesoporous. Several literatures have been reported 

the utilization of other conjugate materials for individual metal ion pollutant removal 

from water (Awual, 2014; Awual, Hasan, Khaleque, & Sheikh, 2016; Awual, Hasan, 

& Shahat, 2014; Awual, Ismael, Khaleque, & Yaita, 2014; Awual & Yaita, 2013; 

Awual, Yaita, et al., 2016; Shahat, Awual, & Naushad, 2015). However, in this project, 

this is the first time using the synthesized ZSM-5 mesoporous as a matrix substrate 

material. The results are encouraging for removing Hg (II) ions from industrial 

wastewater. Compared with other forms of conjugate materials, conjugate material 

exhibits a high adsorption capacity toward Hg (II) ions as shown in Table 6.2. 
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The maximum adsorption capacity of MCA in this study was relatively high when it 

is compared with several other adsorbents due to the properties of functional groups, 

high specific surface area and particle size of the adsorbent. The present modified 

conjugate material can be used as one the of the effective mesoporous-conjugate 

adsorbent for efficient Hg (II) ions capturing from aqueous solution. 

Table 6-2   Comparison of maximum adsorption capacity of Hg (II) ions with different 

forms of adsorbent materials 

Used adsorbent Capacity (mg/g) References 

Thiol-functional magnetic 

nanoparticles 
9.5 (Hakami, Zhang, & Banks, 2012) 

Chitosan spheres 31.3 (Vieira & Beppu, 2006) 

CoFe₂O₄- reduced graphene Oxide 158 (Y. Zhang et al., 2014) 

Nature wool fibre 154.32 (Monier, Nawar, & Abdel-Latif, 2010) 

Buckwheat hulls 116.34 (Z. Wang et al., 2013) 

SiO₂- multiwall CNT 163.9 (Saleh, 2015) 

Thiol-functionalized graphene oxide 107.52 (Kumar, Jiang, & Tseng, 2016) 

γ-AIOOH 124.2 (Y.-X. Zhang et al., 2012) 

MIL-101-Thymine 59.28 (Luo et al., 2016) 

Diatom silica Micro-particles 169.5 (Yu, Addai-Mensah, & Losic, 2012) 

ZSM-5 mesoporous/HAPT (MCA) 166.7 This chapter 

 

6.3.6 Effect of foreign ions 

The co-existing foreign cations in water are generally potentially interfering with 

selective metal removal from aqueous water samples. The results showed that the 

presence of these foreign ions did not affect the Hg (II) ions removal as shown in 

Figure 6.11. The data also proposed that the suggested MCA could be applied to the 

sensitivity analysis and capturing of ultra-trace level of Hg (II) ions in aqueous 

solutions.
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Figure 6-11 Selectivity of the MCA catalyst towards Hg (II) ions in the presence of 

different ions 

 

6.3.7 Elution and recycle of MCA catalyst 

The recovery of Hg (II) from the MCA was studied using different eluting solutions or 

stripping agents such as H2SO4, HCl and thiourea–HCl (Md Rabiul Awual, Md Abdul 

Khaleque, et al., 2013; S. A. El-Safty, Shenashen, Ismael, et al., 2012). The reusability 

of MCA was evaluated after the elution/regeneration process for six cycles. The results 

are summarized in Figure 6.12. The experimental data revealed that the mixture 

solution of 0.1M thiourea- 0.1M HCl was sufficient to extract and release the adsorbed 

Hg (II) ions from the MCA catalyst. However, the adsorption efficiency of the Hg (II) 

ions was slightly decreased to 10% after six cycle operations. It can be confirmed that 

the MCA catalyst has a good stability and reusability for long time users. 

 FTIR test was also carried out for the MCA after and before it uses for 6th cycle. It 

can be observed that the intensive band was occurred at 1100 cm−1 before the catalyst 

usage (data shown at Appendix A-1, Figure A.4). However, a very small reduction in 

the intensity of band was occurring at 1100 cm−1. It indicated that there was no affected 

on the immobilized HAPT through the experimental work. This proven that the ZSM-

5 mesoporous framework supported HAPT ligand was not compromised or 

decomposed in the chemical structure during the adsorption and desorption process. 
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Figure 6-12 Regeneration of the adsorbent where elution was performed with 0.10M 

thiourea-0.10M HCl 

 

6.4 Summary 

In this chapter, the laboratory experiments were extensively carried out for selective 

detection and removal of Hg (II) ions from aqueous medium, using an organic-

inorganic based meso-conjugate adsorbent (MCA). The organic ligand of 2-

hydroxyacetophenone-4N-pyrrolidine thiosemicarbazones (HAPT) and inorganic 

ZSM-5 mesoporous was successfully synthesized as a conjugated material by the 

direct immobilization method. The MCA was exhibited high specific surface area, easy 

post separation and cost effective material with excellent detection, high adsorption 

capacity and rapid adsorption rate for Hg (II) ions from aqueous solution due to the 

hydroxyl, nitrogen and sulphur donor atoms on the ligand, which was created intensive 

interaction with Hg (II) ions via the electrostatic effect to form the stable complexation 

mechanism. The lower detection limit was found to be 3.69 µg L-1 of Hg (II). The 

MCA was adsorbed Hg (II) ions at an optimum pH condition to be 12.5 and it was 

exhibited fast kinetic performance. The data was also clarified that the MCA material 

was capable to capture the Hg (II) ions in aqueous solution in spite of the presence of 
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the various foreign ions. The sorption efficiency of Hg (II) ions was 95% during 120 

min. The adsorption of Hg (II) ions was followed the Langmuir adsorption model and 

the maximum adsorption capacity was 166.7 mg/g. The elution and recycles of MCA 

was successfully evaluated for six adsorption-elution-recycles by using 0.10M 

thiourea-0.10M HCl. Therefore, the MCA is an efficient and eco-friendly material for 

Hg (II) ions detection and removal from wastewater. It is also expected that the 

functionalized MCA has potential application in real waste environmental samples. 
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CHAPTER 7 

 

 

 A novel optical mesoporous conjugate 

adsorbent for monitoring and sorption of ultra-

trace Lead (II) from aqueous media 

 

 

7.1 Introduction 

Toxic heavy metal ions in ultra-trace quantities are difficult to detect and remove from 

aqueous solution. The removal of ultra-trace level of toxic metal ions contaminants 

from wastewater is one of the crucial issues that should be addressed in water treatment 

(Lu & Astruc, 2018; Martín, Faccini, García, & Amantia, 2018; Nyairo et al., 2018; 

Riaz et al., 2009; Zein et al., 2010). Different industrial activities are known to generate 

large amount of effluent, causing the increased concentration of diverse metal ions in 

water bodies. In this chapter, lead a heavy metal ion (Pb2+) was selected as a pollutant 

model because it is a globally hazardous pollutant, which is considered as a one of the 

common heavy metal ions in the ecosystem (Karunanayake et al., 2018; Karve & 

Rajgor, 2007; Shahat et al., 2018; P. R. Sharma et al., 2018). The most widely 

recognized of lead, which have generated environmental and health concern is it 

applications in petrol as antiknock agent and paint pigments; also, the Pb2+ presents in 

water bodies is generated from ore processing and mining, industrial effluents 

discharge, Pb2+ plumbing, and public road or motorways runoff (Awual & Hasan, 

2014b; Citak & Tuzen, 2010; J. Zhou, Liu, Zhou, Ren, & Zhong, 2018). Pb2+ 
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contaminants constitute a serious environmental problem due to the steadiness in the 

polluted locations and the complexity of its mechanism for biological intoxication 

(Chooto et al., 2010; G. Li, Wang, Sun, Xu, & Han, 2017; Baozhu Zhang & Wei, 

2018). Trace quantities of lead (Pb2+) in ecological samples can lead to environmental 

contamination as well as several deadly diseases, which include damage to  

neurological systems and dysfunction of renal blood, breakdown of nervous system, 

reproductive system and brain; high level of lead (Pb2+) may cause irreversible brain 

damage, severe anaemia and colic shock (Memon et al., 2005; B. Xiang, Ling, Lou, & 

Gu, 2017). To diminish the toxic impacts of this metals on the environment drastic 

measure should be taken by environmental and health agencies to enforce the 

compliance with the maximum allowable limits of metal ions released into the lakes, 

rivers and landscapes. The maximum permissible limit of Pb2+ in potable water 

reported by The World Health Organization (WHO) in 2010 is 10 µg L-1 

(Organization, 2004). Therefore, the efficient detection and removal of ultra-trace 

level of lead (II) from wastewater is imperative for hygienically safe-guarding water 

quality.     

Numerous analytical methodologies and strategies have been proposed for detecting 

lead (Pb2+) in trace levels, for examples, the inductively coupled plasma emission 

spectrometry (ICP), flame atomic absorption spectrometry (FAAS) and the electro 

thermal atomic absorption spectrometry (ETAAS) (Cabon, 2002; de Campos, dos 

Santos, & Grinberg, 2002; de Mattos, Nunes, Martins, Dressler, & de Moraes Flores, 

2005; dos Santos, dos Santos, Costa, Andrade, & Ferreira, 2004; Soylak, Narin, de 

Almeida Bezerra, & Ferreira, 2005; Soylak & Yilmaz, 2011; Zachariadis, Anthemidis, 

Bettas, & Stratis, 2002). ETAAS is widely used because of its sensitive technique with 

a low detection limit to sub-pictogram range for generally all heavy metal ions 

(Kokšal, Synek, & Janoš, 2002; Wagner, Batchelor, & Jones, 1998). Similarly, the 

inductively coupled plasma-mass spectrometry (ICP-MS) also detects ultra-trace limit 

of Pb2+ (Ndung’u, Hibdon, & Flegal, 2004; Rodríguez, Barciela, Herrero, García, & 

Peña, 2005), however, it becomes very difficult to detect when the concentration is 

extremely low and also due to matrix influences (J. Chen, Xiao, Wu, Fang, & Liu, 

2005). Flame atomic absorption spectrometry (FAAS) is the mostly utilized technique. 

Separation techniques and pre-concentration are also used, for example, the liquid-

liquid extraction, electrochemical operation, floatation, solid phase extraction, ion 
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exchange, and co-precipitation (Doner & Ege, 2005; Jamali et al., 2006; Jamali, 

Assadi, Shemirani, & Salavati-Niasari, 2007; Mesquita, Fernandes, & Rangel, 2004; 

Ndung’u, Franks, Bruland, & Flegal, 2003). However, the disadvantages of these 

techniques are: the difficulty and complexity of operation, large infrastructural backup 

and support by expertise technician, pre-concentration step, less sensitivity, producing 

large secondary wastes and high cost of operation (Araujo, Costa, & Lima, 1999; 

Karadjova, Zachariadis, Boskou, & Stratis, 1998). 

Different adsorption materials such as clay minerals of the Kaolinite and 

Montmorillonite type, which exothermally adsorbed Pb2+ from aqueous media (S. S. 

Gupta & Bhattacharyya, 2009), natural zeolitic tuff (Stojakovic, Jovanovic, & Rajic, 

2017), synthesized activated carbon (Adebisi, Chowdhury, & Alaba, 2017) and the 

mesoporous silica incorporated graphene oxide (Mo et al., 2017) have been recently 

investigated. The restricted functional application of these adsorbents is because they 

have no optical-capability to recognize toxic ions and they have lower adsorption 

capacity. Therefore, a new technique such as organic ligand grafted mesoporous 

substrate has emerged as an exceptional alternative for detecting and removing lead 

(Pb2+) in water samples. Such an optical adsorbent produces color change, has high 

sensitivity and selectivity, eco-friendly, easy-to-use showing a conceivably substantial 

scale operation from the point of view of real sample remediation.   

Precursor silica sources such as the tetraethyl orthosilicate (TEOS, Si(OH)4 ) and the 

tetramethyl orthosilicate (TMOS, Si(OCH3)4) have been commonly utilized by 

researchers as mesoporous substrate of the visual organic-inorganic adsorbent using 

the direct template method providing specific surface area range is roughly between 

300-900 m2 g-1 (Awual & Ismael, 2014; Md Rabiul Awual, Mohamed Ismael, et al., 

2013; Awual, Khaleque, et al., 2015; Md Rabiul Awual, Tsuyoshi Yaita, Sherif A El-

Safty, Hideaki Shiwaku, Yoshihiro Okamoto, et al., 2013; Md Rabiul Awual, Tsuyoshi 

Yaita, & Hideaki Shiwaku, 2013; M. Shenashen et al., 2013). The disadvantages of 

utilizing these substrates in water treatment are: The hydrolysis of Si(OCH3)4 produces 

insoluble SiO2 and CH3OH (methanol) a poisonous liquid. At low concentrations 

inhalation of methanol causes lung lesions, and at slightly higher concentrations eye 

contact with the vapour causes blindness. Worse, at low concentrations (200 mg L-1), 

the damage is often insidious, with onset of symptoms hours after exposure (Love, 

Arnesen, Phillips, & Windom, 2014); the effect of TEOS is much less damaging of it 
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lower hydrolysis and solubility of the ethoxy groups. Therefore, the search for an 

alternative substrate which has a high specific surface area, multi-active sites and ease 

post separation, highly affinity to anchor organic ligand, are the key challenges of this 

work.  

The objectives of this chapter is to develop an visual conjugated mesoporous adsorbent 

fabricated by anchoring a ligand into a high specific surface area mesoporous zeolite 

type ZSM-5  for detecting and selectively removing Pb2+ from portable water using 

batch experiments. The novel organic ligand of 2,6-Pyridinedicarboxaldehyde-

Thiosemicarbazone (PDCTC) was successfully prepared and fabricated onto the 

inorganic mesoporous silica Zeolite type ZSM-5 (relatively high stability of 

framework, highly porous aluminosilicate with high silica/alumina ratio, hydrophobic 

and non-toxic material) by the direct template approach. The synthesized ZSM-5 

mesoporous anchors a copious hydroxyl group and PDCTS ligand conjugated by 

hydrogen bonding, Van der Waals forces and reversible covalent bonds (Md Rabiul 

Awual, Tohru Kobayashi, Hideaki Shiwaku, et al., 2013; Md Rabiul Awual, Tsuyoshi 

Yaita, Sherif A El-Safty, Hideaki Shiwaku, Shinichi Suzuki, et al., 2013; Awual, Yaita, 

Shiwaku, et al., 2015; Shahat et al., 2018).  

7.2 Experimental work 

7.2.1 Chemicals 

All chemicals are analytical grade and were used as purchased without further 

purification. Zeolite ZSM-5 (Molar ratio SiO2/Al2O3 = 600, 300 m2 g-1 specific surface 

area, 2–3µm particle size, 0.5 nm pore size) was provided from ACROS Organics, A 

Thermo Fisher Scientific Brand, New Jersey–USA. Triblock copolymers of ethylene 

oxide-block-poly (propylene oxide) block-poly (ethylene oxide) designed as 

EO20PO70EO20 (P123) & 1, 3,5triisopropylbenzene (TIPB) were obtained from Sigma-

Aldrich Company Ltd., USA. The standard Pb2+ solution (1000 µg L-1) was supplied 

by High-Purity Standards Company. Ultra-pure water was used throughout in this 

study to prepare all the aqueous solution. 
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7.2.2 Synthesis of 2,6-Pyridinedicarboxaldehyde-Thiosemicarbazone (PDCTC) 

ligand    

The chemical reaction process of synthesizing PDCTC ligand is depicted in Figure 

7.1. As mentioned in chapter 3 section 3.3.4.2, a slight modification of previous study 

was conducted (Ahmed & Yunus, 2014).  

 

 

 

 

 

Figure 7-1 Chemical reaction of synthesized 2,6-Pyridinedicarboxaldehyde-

Thiosemicarbazone (PDCTC) ligand 

 

7.2.3 Synthesis of mesoporous silica and mesoporous-conjugate adsorbent 

(MzCA)   

As mentioned in chapter 3 section 3.3.3.1 and chapter 6 section 6.2.3, the mesoporous 

silica zeolite type of  ZSM-5 is synthesized by the direct templating approach with a 

slightly modified (Abbas et al., 2018; G. Zhou et al., 2007). In typical conditions, 1 g 

of P123 surfactant type of triblock copolymer was added to solution of ultra-pure water 

20 ml and HCl. After that, 3 g of ZSM-5 was mixed together to this solution with 

vigorous magnetic agitating. Eventually, the filtrated particles was calcined at 5000C 

for 4 h. Then the resulted material was properly refined and prepared for fabrication 

unto the mesoporous silica zeolite (ZSM-5).  

As mentioned in chapter 3 section 3.3.4.3, MzCA (mesoporous /ligand) adsorbent was 

prepared by direct incorporation method. 100 mg of ligand type of PDCTC in absolute 

ethanol solution was mixed with 2 g mesoporous silica monoliths. Thereafter, the 

conjugated mesoporous adsorbent was dried and grinded into fine particles for visual 

Pb2+ removal and sensing experiments. Herein, the amount of PDCTC ligand 

immobilized was 0.14 mmol/g and is evaluated using the following equation:  
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𝑄 =
( 𝐶𝑖− 𝐶𝑓)𝑉

𝑚
                                                                                 (7.1)                                                                                                                      

Where Q is the adsorbed amount (mmol/g), Ci and Cf were the initial concentration 

and supernatant concentration of the PDCTC, respectively. V is the solution volume 

(L), m is the mass of the conjugated mesoporous adsorbent (g).  

7.2.4 Characterization of MzCA 

The N2 adsorption/desorption isotherms were investigated utilizing the specific surface 

area and porosity analyzer (Micromeritics (Tri-Star II, Germany). The pore size 

distribution was calculated by the Barrett–Joyner–Halenda (BJH) model. Fourier-

transformed infrared spectroscopy (FTIR) was used to investigate the functional 

groups of the ligand and MzCA. Field emission scanning electron microscope 

(FESEM) analyzer type of MIRA3TESCAN high vacuum mode microscope was 

utilized.  

7.2.5 Optical Pb2+ sensing and capturing 

As mentioned in chapter 3, section (3.5.2.2), 10 mg of MzCA was immersed in 2.0 mg 

L-1 of Pb2+ solution. Then, the solution was well-adjusted to appropriate pH of 1.5, 2.2, 

3.0, 4.0 (using 0.1 M of KCl with HCl), pH of 6.0 &; 7.7 (using 3-morpholinopropane 

sulfonic acid (MOPS) with NaOH), pH of 11.7 (using 2-cyclohexylamino) ethane 

sulfonic acid (CHES) with NaOH) at constant volume. A blank solution (without Pb2+) 

was also prepared following the same procedure for the comparison of color formation. 

After the color optimization, a quantitative estimation of lead (Pb2+) using solid-state 

UV–Vis-NIR spectrophotometer were conducted to assess the color absorbance 

measurements. After that the mesoporous adsorbent MzCA was grinded to fine 

homogenous particles to determine the absorbance spectra. The recognition (LD) limit 

of Pb2+ was measured according to the following equation (Shrivastava & Gupta, 

2011):  

 LD = K Sb/m                                                                             (7.2)                                                                                                                                                                                                                         

where K is the confidence factor and equal to 3, Sb is the standard deviation for the 

blank and m is the slope of the calibration graph in the linear range.  
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7.2.6 Lead (Pb2+) sorption, regeneration and reuses 

To demonstrate the visual adsorption, 10 mg of MzCA was immersed in various 

concentration of Pb2+ solutions and the pH was adjusted to a specific value using 

KCl/HCl or MOPS as buffer solutions in 20 ml volume. The mixture was stirred with 

agitation speed of 200 rpm at room temperature for 45. Thereafter the MzCA was 

separated by vacuum filtration system and the filtrated solutions which containing the 

different concentrations of lead (Pb2+) were analyzed by ICP-AES. The adsorbed 

quantities and the removal efficiency were evaluated according to the following 

equations: 

Mass balance  qe =  (Ci − C) V/m   (mg/g)                              (7.3)                                                                               

And 

 %RE =
(Ci−C)

Ci
 ˟ 100                                (7.4)  

Where qe is adsorption equilibrium capacity (mg g-1), Ci and C are the initial and final 

concentrations of Pb2+ in the solution (mg L-1), respectively, V is the volume of the 

aqueous solution (L), m is the weight of the adsorbent (g).  

To assess the kinetic performances, 10 mg of MzCA was added to 20 ml solution of 

lead (II) ions containing 2.0 mg L-1 concentration and the mixture was magnetically 

stirred. Each 10 min intervals, the samples were filtrated and analyzed via ICP-AES. 

The maximum adsorption capacity was also evaluated using 10 mg each of MzCA in 

different concentrations of Pb2+ solution and stirred at 800 rpm for 2 h, thereafter, the 

filtrate solutions were analyzed by ICP-AES. To detect the color formation of lead 

(Pb2+), UV–Vis/spectrophotometer (JASCO/V-670) was used at different spectra 

absorption of the ionic solution. The concentrations of Pb2+ solutions were estimated 

by ICP-AES analyzer (Perkin Elmer, Germany, 8300). It was calibrated using five 

standard solutions containing 0, 1, 10, 15, 20, and 50.0 mg L-1 of Pb2+ (also for each 

foreign element) and the correlation coefficient of the calibration curve was 0.988.  

In order to determine the eluting agent for lead, mesoporous conjugated adsorbent used 

in Pb2+ solutions was removed and washed with cool or hot ultra-pure water (10 - 

400C) or striping agents such as NaOH, H2SO4, thiourea, thiourea-HCl, and HCl 

several times.  The filtrated were transferred to 10 ml test tubes, magnetically stirred 
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for 30 min and then analyzed by ICP-AES. It was observed that the best elution agent 

was 0.1 M HCl. After this elution operation, the conjugate adsorbent was 

simultaneously renewed and reuses for a number of cycles to evaluate the reusability. 

All the experiments were duplicated in this work to assure a comprehensive coherence 

and exactness of the results. Moreover, the data presented in the tables and in the 

Figures are average values.          

7.2.7 Influence of foreign co-existing ions 

A solution containing a mixture of lead (Pb2+) and foreign competing ions were 

investigated to check the competitive adsorption capability of co-existing diverse 

heavy metal ions in aqueous media. The mixed solution contained 20 mg L-1 each of 

following ions: Cu2+, Fe3+, Hg2+, Ag2+, Co2+, Na1+, AL2+, Ca1+, K1+, Mn2+, Zn2+, Cd2+ 

ions and 2.0 mg L-1 of Pb2+. The final solution was adjusted to 20 ml volume. Then, 

10 mg of the conjugated adsorbent was added to this solution and magnetically stirred 

at 400 rpm for 2 h to assure a complete removal Pb2+, and then the filtrated was checked 

by ICP-AES analyzer.  

7.3 Results and discussion  

7.3.1 BET specific surface areas and pore distribution  

The specific surface area (SBET) and pore size distribution of commercial ZSM-5, 

ZSM-5 mesoporous and ZSM-5 mesoporous/PDCTC were measured based on N2 

adsorption-desorption isotherms using the Barrett-Joyner-Halenda (BJH) method. 

Figure 7.2(a–d) depicted the N2 adsorption-desorption isotherms and BJH pore size 

distribution of the samples. For comparison, the specific surface area, pore volume and 

average pore diameter results for the above catalysts are summarized in Table 7.1.  

According to IUPAC classification, the adsorption/desorption isotherms of the 

commercial ZSM-5 is a type I isotherm and exhibits horizontal plateau starting at low 

relative pressure < 0.15 (Thommes et al., 2015; Valero-Romero et al., 2016), indicating 

that the porous morphology consist predominantly of very narrow micropores with 

relatively small external surfaces as shown in Figure 7.2a. The steep uptake at very 

low P/Po is due to enhanced adsorbent-adsorptive interactions in narrow micropores, 

resulting in micropore filling at very low P/Po (Thommes et al., 2015) . The specific 
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surface area and the pore diameter of commercial ZSM-5 were estimated to be 311 m2 

g-1 and 0.86 nm, respectively (see Figure 7.2d). 

After the treatment of the commercial ZSM-5, the isotherm curve of the treated ZSM-

5 framework shape was changed from type I to a clear type H4 hysteresis loops 

according to the IUPAC classification, which exhibited a hysteresis loop at P/P0 range 

(0.5–0.99) as shown in Figure 7.2b, indicating that the mesoporous structure was 

highly present in the sample as illustrated in Figure 6.2b (Thommes et al., 2015; 

Valero-Romero et al., 2016). High specific surface area and uniform pore diameter of 

ZSM-5 mesoporous that were obtained are 1151 m2 g-1 and 15.2 nm, respectively (see 

Figure 6.2d). This high specific surface area revealed that the type H4 hysteresis was 

exhibited no limiting adsorption at high P/P0, which was observed with the non-rigid 

aggregates of plate-like particles giving rise to slit-shaped pores, the desorption branch 

for type H4 hysteresis on the other hand contains a steep region associated with a 

(forced) closure of the hysteresis loop, due to the so-called tensile strength effect 

(Valero-Romero et al., 2016). Therefore, a wide specific surface area range of H4-loop 

behaviour was observed as depicted in Figure 7.2b. From the data in Figure 7.2b, it is 

apparent that the low pressure hysteresis loop (LPH) regularly relates with the 

expansion and contraction of adsorbent (ZSM-5 mesoporous), which produce slight 

inelastic distortion of the ZSM-5 mesoporous morphology, which usually appeared in 

the zeolites samples (Valero-Romero et al., 2016). 

The adsorption/desorption isotherms of ZSM-5 mesoporous embedded PDCTC ligand 

also exhibited a type of H4 hysteresis loop as depicted in Figure 7.2c, suggesting that 

the mesopore structure was preserved in the framework after the treatment procedure 

without collapsing; This further decreased the pore diameter and the surface area of 

ZSM-5 mesoporous/ PDCTC to 4.0 nm and 580 m2 g-1,  respectively due to the 

inclusion of a significant amount of organic ligand moiety into the inner pores of the 

mesoporous carrier. Also there were no significant change in the pore distribution 

curve as depicted in Figure 7.2d. These outcomes point that the ligand PDCTC is 

efficaciously anchored into ZSM-5-mesoporous.   
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Figure 7-2 N2 adsorption-desorption isotherms curves (a) ZSM-5, (b) mesoporous 

ZSM-5 (c) mesoporous ZSM-5 conjugate adsorbent (MzCA) and corresponding the 

BJH pore size distribution curves of samples (d) 
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Table 7-1 Specific surface area (SBET), pore volume (V) and average pore diameter 

(D) for ZSM-5, ZSM-5mesopoures and ZSM-5 mesoporous/ PDCTC 

Catalyst 

SBET 

(m² g ˉ¹)ª 

V 

(cm³ g ˉ¹)ᵇ 

D 

(nm)ᶜ 

ZSM-5 311 0.014 8.6 

ZSM-5 mesoporous 1151 0.2 15.2 

ZSM-5 mesoporous/ 

PDCTC (MzCA) 
580 0.62 4.0 

a The specific surface area was calculated by BET method. 

 b The pore volume was obtained from the BJH Desorption cumulative volume of pores 

between 1.0000 nm and 50.0000 nm diameter.  

c The average pore diameter was evaluated using the desorption branch of the isotherm and 

BJH model. 

7.3.2 Fourier-transformed infrared spectroscopy (FTIR) analysis 

The organic functional groups of PDCTC ligand were investigated using the FTIR 

spectroscopy. The sample was analysed three times at different environmental 

conditions to assure that the ligand has a good stability. It can be observed from Figure 

7.3 that the intense high peaks existed at 2980 cm-1 and 3150 cm-1 indicating the 

possible interference from a hybridized carbon Sp3 -C-H and Sp2 =C-H stretch bonds 

respectively; while, a low peak was observed at 3265 cm-1 confirming the presence of 

amide group (O=C-N) in the ligand chemical structure. Another high strong peak 

observed at 1520 cm-1 indicated the interference of unsaturated Alkenes (C=C) in the 

aromatic rings, which are considered the major structural compound of the ligand. 

Another strong intense peak observed near 1600 cm-1 indicated an existing amine 

group (C-N) bending vibration. Moreover, the thiocarbonyl (C=S) may also interfere 

at 1100 cm-1; this possible includes the corresponding heterocyclic compounds. The 

Meta substitution patterns for aromatic hydrocarbons on a single ring observed at 800, 

690 cm-1 caused ring hydrogen atoms. All these intense peaks confirmed the original 

structural ligand was successfully synthesized. The synthesis and result of this 

procedure have been similarly reported in previous study (David & Priyadharsini, 

2015). 
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Figure 7-3 Specific functional groups of PDCTC ligand analysed by FTIR 

spectroscopy   

7.3.3 FESEM analysis  

High magnification images sizes 5 µm and EDX analyses of commercial zeolite, ZSM-

5 mesoporous and the synthesized MzCA before and after use in the adsorption 

experiments were investigated as illustrated in Figure 7.4(a-d). The commercial cubic 

zeolite morphology were shown in Figure 7.4a, exhibiting a high silica ratio as 

depicted in the attached EDX analysis. After the treatment of the commercial ZSM-5, 

large particle size of ZSM-5 mesoporous was obtained as spherical cluster-like shapes 

as shown in Figure 7.4b. This cluster contains high porosity with channels and cavities, 

which provides abundant silanol groups (Si-OH). The ratio of the silica content 

remained at higher in the ZSM-5 mesoporous, indicating no significant change in the 

morphology through ZSM-5 treatment process as shown in the attached EDX analysis 

of Figures 7.4a and b. After the functionalized process, the FESEM analysis of the 

MzCA catalyst morphology showed that the organic ligand has a good binding onto 

the ZSM-5 mesoporous structure as illustrated in Figure 7.4c, and the EDX results 

confirmed that the ligand components contains nitrogen and sulphur as well as the 
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intact mesoporous morphology. This result indicated that the functionalized process 

was successfully achieved with no loss of the ligand molecule.     

Also after using MzCA in the adsorption experiments, the FESEM and EDX 

characterisations were also investigated. The data revealed that the white brightness of 

Pb2+ onto surface of MzCA particles were formed as a [Pb2+-PDCTC ligand]n+ 

complexes on the mesopore adsorbent as shown in Figure 7.4d. With further 

investigation, the EDX spectrum in Figure 7.4d confirmed evidence that the foreign 

heavy metal ions (Zn2+, Cd2+, Al3+, Fe3+, Ca2+, Ag+1, K+1, Na+1, Hg2+, Mn2+, Co2+, 

Cu2+) were not adsorbed by the MzCA catalyst; however, a little of Cu+2 was adsorbed 

as illustrated in the attached of EDX Figure 7.4d. The most striking observation that 

emerged from this data is the high selective adsorption capability of MzCA towards 

Pb2+.  
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Figure 7-4 FESEM images of ZSM-5 (a), ZSM-5 mesoporous (b) and micrograph of 

PDCTC incorporated into composite adsorbent (c), MzCA after used in the adsorption 

process (d) 

 

7.3.4 Lead (Pb2+) detection  

The performance of selectivity and sensitivity of ultra-trace Pb2+ for the substantial 

color change were assessed at different pH values. Accordingly, the absorbance 

spectra of [Pb2+-PDCTC]n+ complexes by the mesoporous adsorbent were investigated 

using 2.0 mg L-1 Pb2+ solution at the pH range of 1.5-11.7; the solutions’ pH was 

adjusted using specific buffer reagents as indicated in Section 7.2.5. The absorbance 

spectra of the [Pb2+- PDCTC]n+ complexes solution was observed over a wide pH 

range precisely as seen in Figure 7.5 at  λ= 440 nm; the maximum net absorbance was 

 

(c) 

 

(d) 
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evaluated at pH 6.0. The data also proposed that the quantity of the meso-adsorbent is 

a contributing factor for achieving a good color separation between the meso-

adsorbent “Blank” and [Pb2+-PDCTC]n+ complexes “ Sample” even at a trace-level of 

Pb2+ concentrations. It is also clarified that the complex reaction occurs at “pH= 6.0”. 

As shown in Figure 7.5, the absorbance intensity was dramatically decreased below 

pH= 6.0. When pH value was 6.0, the best possible spectrum intensity was achieved; 

while, low spectrum intensity was obtained at pH values over 6.0 (see Figure 7.5), 

indicating that the hydrolysis of Pb2+ formed water insoluble lead hydroxide/ or oxide 

(Awual & Hasan, 2014a, 2014b; Awual, Hasan, & Shahat, 2014). Moreover, low 

spectrum intensity was also observed in the acid region, confirming that H3O
+ ions 

were interfering in the aqueous solution. The signal intensity and the color change 

suggest that the [Pb2+-PDCTC]n+ complexes are strongly anchored within the stable 

complex formation under appropriate pH condition. It is important to note that the pH 

6.0 was selected as the superior experimental condition in the recognition procedures 

due to the sensitivity and selectivity at this pH. The detective response time of the 

[Pb2+-PDCTC]n+ in equilibrium color optimization was 30 min. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-5 Effect of pH on the Pb2+ during the absorbance spectra measurement of 

[pb2+- PDCTC]n+ complexes solution at λ= 440 nm, concentration of 2.0 mg L-1 of 

Pb2+, 10 mg of MzCA at 25°C in 20 ml volume for 30 minutes 
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The signal color change intensity of the conjugated adsorbent was measured during 

the charge transmission (intense π-π transition) of the reflection band of the [Pb2+-

PDCTC]n+ complexes formation, which has increased by an increase in the Pb2+ 

concentration as illustrated in Figure 7.6. The absorbance color was remarkably 

changed from yellowish, yellowish white, to orange, which can be obviously 

recognized by the naked eye. It is noteworthy that the equilibrium color formation 

between the conjugated adsorbent and Pb2+ corresponds to the increase in signal 

intensity, which imply the detective sensitivity in ultra-trace concentration of Pb2+ 

from mg L-1 to µg L-1 can be achieved without using sophisticated instruments. It is 

additionally observed that the color intensity of Pb2+ with conjugated adsorbent at λ= 

440 nm was stable during the complex formation. Therefore, the detection of Pb2+ 

based on the analytical color signal intensity is a technological benefit due to its ease 

of use, cost-effectiveness, precision and sensitivity. 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 7-6 The optimization of the change of different Pb2+ concentrations at pH 6.0 
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From Figure 7.7, the calibration curves of [Pb2+-PDCTC]n+ complexes matrix free and  

[Pb2+-PDCTC]n+ with conjugated adsorbent ‘ matrix’ were plotted and determined 

under the most efficient conditions; while, the linear correlation was determined 

possibly at lower concentration ranges of Pb2+ as depicted in Figure 7.7 (inset).  

 

 

 

 

 

 

 

 

 

 

Figure 7-7 The calibration curve of Pb2+ concentrations with spectral absorbance at 

λ= 440 nm. The inlet in graph (B) shows the low limited responses for Pb2+ with a 

linear fit in the Pb2+ concentration range. The R and R0 represented the absorbance 

signal responses of the solution after and before addition of Pb2+ 

 

The data indicated that the various concentrations of Pb2+ can be recognized with high 

sensitivity; additionally, the nonlinear correlation at high concentration of Pb2+ 

confirmed  that the low concentration systems was applied to detect higher 

concentrations pf Pb2+. As illustrated in Figure 7.7 the linear calibration plot shows an 

excellent recognition range with correlation coefficient value (R2= 0.9802) from the 

value of the linear correlation concentrations in the range from 0.10 to 0.005 mg L-1 

can be detected; however, a nonlinear curve was observed when the Pb2+ concentration 

was above 0.10 mg L-1 resulting in the saturation effect. The detection limit (LD) of 

Pb2+ using the conjugated adsorbent was 5.0 µg L-1 according to Eq. (7.2), which 

confirm that the conjugated adsorbent can detect ultra-trace Pb2+ level concentrations 

even in the presence of the many sample matrices (calibration curve with dash line). 
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The ion selectivity is an indispensable parameter in sensing technique because various 

cations and anions are extensively reachable in environmental water samples. 

Therefore, the influence of competing foreign ions on Pb2+ detection using conjugated 

adsorbent was investigated under optimum condition. Various concentrations of these 

competing ions (Zn2+, Cd2+, Al3+, Fe3+, Ca2+, Ag+, K+, Na+, Hg2+, Mn2+, Co2+, & Cu2+ 

ions) were investigated with a constant concentration of 2.0 mg L-1 Pb2+ solution. The 

color formation and signal intensity of each ion are illustrated in Figure 7.8. The 

spectral intensity of the blank sample and additional foreign ions was calculated at λ= 

440 nm. The data revealed that the signal intensity of the blank sample was unchanged 

expect with the addition of Pb2+. It was also observed that the addition of chloride, 

carbonate, sulfite, phosphate, sulfate, bicarbonate, nitrate and perchlorate reduced the 

signal intensity. Therefore, the conjugated adsorbent was confirmed to specifically 

selective toward Pb2+ forming a stable complex with PDCTC ligand at pH 6.0. The 

tolerance limit of cations and anions were summarized in Table 7.2.  

 

 

 

 

 

 

 

 

 

 

Figure 7-8 Effect of competing ions (cations/ anions) when the Pb2+ concentration was 

2.0 mg L-1, the cations concentration was 20 mg L-1. The listed foreign ions area: (1) 

Cu2+, (2) Fe3+, (3) Hg2+, (4) Ag2+, (5) Co2+, (6) Na+, (7) AL3+ (8) Ca2+, (9)K+, (10)Mn2+, 

(11)Zn2+, (12 ) Cd2+ (blank and (13) Pb2+ 2.0 mg L-1. The different concentrations of 

interfering anions listed in order (6−13): (6) Cl-, (7) HCO3, (8) NO3, (9) CO3
2- , (10) 

PO4
3- , (11) SO4

2-, (12) SO3
2-, (13) SCN- 
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Table 7-2 Tolerance limit for competing cations and anions adding 2.0 mg L-1 of Pb2+ 

detection with conjugated adsorbent   

     

7.3.5  Lead (Pb2+) sorption parameters  

7.3.5.1 Effect of pH  

The solution’s acidity plays a significant role in adsorbing Pb2+ onto MzCA surface, 

this is because ionization on the adsorbent during the sorption process and is necessary 

better solubility of Pb2+ and reverse ions concentration to obtain a ligand’s 

complexation functional groups (Amuda, Giwa, & Bello, 2007; Hernández-Morales et 

al., 2012; Shahat et al., 2018). The pH effects on the sorption efficiency of Pb2+ 

solutions was studied on a wide range between pH of 1.5 to 11.7.  

The results are illustrated in Figure 7.9. In strong acidic pH 1.5, the sorption efficiency 

was a minimal 5.7% because of the consistency of H3O
+ ions onto the adsorbent 

surface; however, the sorption efficiency behavior was dramatically increased from 8 

% to 98.9% by increasing the pH from 2.2 to 6.0 indicating the disappearance of H3O
+ 

ions from the surface of the adsorbent (Awual, 2016a; Awual & Hasan, 2014a, 2014b). 

To compare with the basic region, the sorption efficiency was significantly decreased 

Tolerance limit for cations in 

solution 

(mg Lˉ¹) 

Zn2+ Cd2+ Al3+ Fe3+ Mg2+ Ca2+ Ag1+ K1+ Na1+ Hg2+ Mn2+ Co2+ Cu2+ 

60 77 120 87 45 30 100 46 90 55 100 34 67 

Tolerance limit for anions in 

solution 

(mg Lˉ¹) 

Cl⁻ 600 

HCO3¯ 
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above pH 6.0 due to the presence of water-insoluble of lead hydroxide/oxide which is 

present in the alkaline region. Judging from Figure 7.9, the higher Pb2+ sorption 

efficiency of 98.9% and 78.7%, was obtained between pH 6.0 to 7.7 respectively. This 

pH region is appropriate because no precipitation took place in the Pb2+ sorption 

system. Therefore, pH 6.0 was selected as the optimum pH for high sorption efficiency 

using the conjugated mesoporous adsorbent and also for analyzing other factors for 

subsequent sorption ions experiment in this chapter. 

 

 

 

 

 

 

 

 

Figure 7-9 The effect of pH on the sorption efficiency of Pb2+ when the initial Pb2+ 

concentration was 2.0 mg L-1  

7.3.5.2 Effect of contact time 

Convenient contact time is a fundamental parameter to determine the maximum 

sorption efficiency and the kinetic model of the conjugated adsorbent. Hence, the 

equilibrium contact time was evaluated to detect the maximum Pb2+ sorption 

efficiency under optimum conditions. The data revealed that the beginning 60% of 

Pb2+ sorption was observed after 10 min as shown in Figure 7.10. The outcomes 

additionally revealed that the preliminary sorption was rapid and subsequently 

slowdown until it attained an equilibrium sorption. The fast sorption is perhaps 

because of the high specific surface area which provided several active sites to make 

a strong binding complexation onto the adsorbent surface. Similar sorption behavior 

were also reported in different literatures (Arshadi et al., 2017; Benhima, Chiban, 

Sinan, Seta, & Persin, 2008; Futalan et al., 2011; Motsa, Mamba, Thwala, & Msagati, 

2011; J. Zhou et al., 2018; Y. Zhou, Yu, & Jiang, 2017). The conjugated adsorbent 
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comparatively demonstrated fast kinetics for Pb2+ sorption with the equilibrium time 

at 60 minutes. The distributed homogeneity of PDCTC ligand onto the conjugated 

adsorbent surface makes Pb2+ effortlessly linked with the sorption sites which are 

trapped to fabricate a stable complex. To obtain a maximum sorption capacity, an 

equilibrium contact time of 2 h was chosen with a concentration of 2.0 mg L-1 Pb2+ in 

20 ml solution. 

 

 

 

 

 

 

 

 

 

Figure 7-10 Effect of reaction time on the sorption efficiency of Pb2+ when the initial 

concentration of Pb2+ was 2.0 mg L-1 

7.3.5.3 Equilibrium sorption isotherm 

The sorption isotherm basically clarifies the relevance between Pb2+ concentrations 

and the quantity of Pb2+ adsorbed on the solid phase at equilibrium. To investigate this, 

20 ml of sample solutions containing different concentrations of Pb2+ (8.0- 50.0 mg L-

1) adjusted to pH 6.0 and equal amount of the conjugated adsorbent 10 mg. The 

experiments was conducted using a batch approach for 2 h. After equilibrium was 

achieved, the filtrated solutions were tested via ICP-AES to consider the amount of 

Pb2+ left in the aqueous solution. From Figure 7.11, the data shown that the uptake 

efficiency rate of Pb2+ was increased as the concentration Pb2+ increased until it 

reached a plateau corresponding to the maximum sorption capacity. To understand this 

behaviour of the sorption system, several sorption isotherms are investigated to 

evaluate Pb2+ interference with the conjugated adsorbent. The Langmuir sorption 

isotherm is one of the most valid model for the monolayer, they propose no 
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corrugations on the conjugate adsorbent surface suggesting the homogenous surface 

in terms of all sorption sites are energetically equivalent. The Langmuir equation stated 

below was applied to this sorption system: 

Cₑ qₑ⁄ = 1 (KL qm)⁄ + (
1

qm
) Cₑ                                                (7.5)                                                                                          

where  Cₑ (mg L-1) is the equilibrium concentration of Pb2+, qₑ (mg/g) is the amount 

of Pb2+ adsorbed per unit mass of conjugate adsorbent at equilibrium, K𝐿 (L mgˉ¹) is 

the Langmuir constant related to the affinity of binding sites and also the measurement 

of the stability bond formed between Pb2+ and conjugated adsorbent under optimum 

conditions, and 𝑞𝑚 (mg g-1) is the maximum quantity of the adsorbed Pb2+ per unit 

mass of adsorbent (capacity parameter). The sorption capacity qm (mg/g) 

and KL (L mgˉ¹) was calculated by the slope and intercept of the linear plot by Cₑ ∕ qₑ  

versus Cₑ as depicted in Figure 7.11 (inset). The data show that the sorption process 

(plateau plot) coincided in the Langmuir isotherm model, and the maximum sorption 

capacity of the conjugate adsorbent was estimated to be 15.75 𝑚𝑔/𝑔 with high 

correlation coefficient (R2= 0.9355). The sorption Langmuir coefficient 𝐾𝐿, which is 

associated with the apparent sorption energy, was evaluated to be K𝐿 = 0.65 L mg-1.  

 

 

 

 

 

 

 

 

 

Figure 7-11 Adsorption isotherm of Pb2+ as fitted by the Langmuir isotherms model 

with the linear form (inset). The initial concentrations of Pb2+: 8.0-50.0 mg L-1; stirring 

time: 2h; conjugated adsorbent amount is 10 mg; the solution volume is 20 ml 

qm= 15.75 mg/g 

KL= 0.65 L mg-1 

R2= 0.9355 

Slope = 0.063466 g mg-1  

Intercept= 0.097333 g L-1 

0

5

10

15

20

0 10 20 30 40

q
e

(m
g
/g

)

Ce (mg/L)

0

0.2

0.4

0.6

0.8

1

0 5 10 15

C
e/

q
e 

(g
 L

-1
)

Ce (mg L-1)



Chapter 7 A novel optical mesoporous conjugate adsorbent for Pb (II) 

157 | P a g e  
 

0

20

40

60

80

100

Zn²⁺ Cd²⁺ Al³⁺ Fe³⁺ Ca²⁺ Pb(II) Ag¹⁺ K¹⁺ Na¹⁺ Hg²⁺ Mn²⁺ Co²⁺ Cu²⁺

S
o

rp
ti

o
n
 e

ff
ic

ie
n
cy

 (
%

)

Matel ions 

7.3.5.4 Effect of foreign competing ions  

In aquatic ecosystem, the presence of many co-existing metal ions such as Hg2+, Zn2+, 

Al3+, Cd2+, Co2+, Ag+,  Fe3+, Ca2+, Na+, K+, Mn2+, & Cu2+ are also competing  with lead 

(Pb2+) in the adsorbed operation; therefore, the sorption selectivity of Pb2+ by the 

conjugated adsorbent was studied. In this experiment, a mixed solution containing the 

various competing ions at a concentration of 20 mg L-1 each and 2.0 mg L-1 of Pb2+ 

was investigated. The foreign competing ions multi-mixture system is described in and 

data shown in Figure 7.12. The result confirmed that Pb2+ was selectively adsorbed by 

98.9% with slightly lower sorption for competing ions of Al3+, Ag2+ and Co2+ were 

observed, confirming that the conjugate adsorbent possess high selectivity for Pb2+. 

The proposed complex mechanism is depicted in Figure 7.13.   

 

 

 

 

 

 

 

 

 

 

Figure 7-12 The sorption efficiency of Pb2+ in the presence of different metal ions in 

aqueous media 
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Figure 7-13 The proposed stable complex formation of Pb2+ and PDCTC ligand at 

optimum conditions 

7.4 Elution and regeneration  

Extracted of the metal ions from the conjugate adsorbent is a pivotal parameter that 

makes the sorption process of this technology suitable and cost-effective (Awual, 

2016a, 2017a; Awual & Ismael, 2014; Md Rabiul Awual, Mohamed Ismael, et al., 

2013; Md Rabiul Awual, Tsuyoshi Yaita, Sherif A El-Safty, Hideaki Shiwaku, 

Yoshihiro Okamoto, et al., 2013; Md Rabiul Awual, Tsuyoshi Yaita, & Hideaki 

Shiwaku, 2013; M. Shenashen et al., 2013). The reuse of the adsorbent is a substantial 

stage for its design and used in appropriate large scale process. The elution process 

involves the extraction of the Pb2+ from the conjugated adsorbent, which concurrently 

regenerates into the preliminary form for further use for adsorbing Pb2+. From the 

experimental data, 0.10 M HCl was found to be most appropriate reagent to extract 

Pb2+ from conjugate adsorbent without a considerable deterioration to its original 

performance. The proposed elution mechanism is illustrated in Figure 7.14.  
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Figure 7-14 The stable complex formation of Pb2+ and PDCTC ligand at pH 6.0 and 

elution/regeneration is 0.1 M HCl eluent 

 

The sorption/elution procedures for eight cycles with sorption efficiency in each cycle 

were evaluated and compared to the first sorption cycle as depicted in Figure 6.10(b). 

The data showed that the sorption efficiency of the adsorbent gradually decreased to 

93.5% after the eighth cycles (Fig. 7.15), indicating the several reuses will not affect 

the sorption efficiency for the Pb2+- conjugated mesoporous adsorbent. 

 

 

 

 

 

 

 

 

Figure 7-15 The performance of the regenerated conjugated mesoporous adsorbent 

after conducting several cycles using o.1 M HCl eluent 

7.5 Summary                        

The purpose of the current chapter was designed a visual conjugate adsorbent 

catalyst using functionalized organic ligand anchored ZSM-5 mesoporous to detect 

ultra-trace amount of Pb2+ in aqueous media. To achieve this goal, the organic ligand 

Pb2+ at pH= 6.0  

Elution with 0.1 

M HCl 

Pb (II) 



Chapter 7 A novel optical mesoporous conjugate adsorbent for Pb (II) 

160 | P a g e  
 

of 2,6-Pyridinedicarboxaldehyde-Thiosemicarbazone (PDCTC) was prepared and 

then fabricated onto ZSM-5 mesoporous, which is prepared by direct templating 

technique. This conjugated adsorbent (MzCA) showed a remarkable colour intensity 

that based on charge transfer transduction to achieve visual detection of Pb2+ by the 

bare eye without using sophisticated instruments. The influence of several factors 

such as colour optimization, limit of detection, solution pH, adsorption capacity, 

contact time, initial concentration of Pb2+ on the detection and selectivity were 

evaluated. The regeneration and elution process for the conjugated adsorbent in 

acidic medium was additionally investigated to assess the conjugated adsorbent as 

a cost effective. The detection limit of Pb2+ was 5.0 µg L-1 with no considerable 

interference of foreign competing ions. The MzCA followed the equivalent 

monolayer sorption represented by the Langmuir model and the maximum sorption 

capacity was 15.75 mg/g. The sorption efficiency of Pb2+ was 98.9% for 60 

minutes. The presence of competing foreign ions were no effective on the Pb2+ 

adsorbent sorption capacity. The MzCA can be re-utilized and regenerated for as 

much as eight cycles using suitable eluent of 0.1 M HCl without significant 

deterioration in its essential performances.  
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CHAPTER 8 

 

   Conclusion and Recommendations 

 

8.1 General Conclusions and Discussions 

The objective of this thesis was to synthesize and characterize different types of novel 

hybrid photocatalysts such as TiO2/ZSM-5 and RGO/TiO2/ZSM-5 mesoporous for 

organic refractory dyes degradation, and also the ligands functionalized novel visual 

ZSM-5 mesoporous adsorbents for removing inorganic heavy metal ions (mercury 

(Hg+2) and lead (Pb+2)) from aqueous medium. 

According to the results presented in this study, different photocatalytic efficiency and 

adsorption capacities were demonstrated and below are the main conclusions made 

from this work:  

 The highly ZSM-5 multilayer mesoporous TiO2 photocatalyst content was 

effectively enhanced, providing not only several effective sites on its surface but 

also a high molecular weight necessary for post separation. The decolourization 

and mineralization removal efficiency of MO dye can reach 99.55% and 99%, 

respectively, for initial MO concentration of 20 mg L-1 under low sunlight intensity 

of 100 mW/cm2 for 180 minutes. High specific surface area of 1151 m2 g-1 for 

TiO2/ZSM-5 mesoporous was remarkably obtained using the modified direct 

templating technique thus ensuring a high photocatalytic efficiency of MO dye.   
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 Further work, various weight ratios of reduced graphene oxide (RGO) 

combined with TiO2/ZSM-5 mesoporous were synthesized to study MB dye 

photocatalysis degradation. It was found that 93 % of MB dye was efficiently degraded 

using 10% RGO/TiO2/ZSM-5 mesoporous at initial concentration 10 mg L-1 for 120 

min; while, the adsorption efficiency was 40% for 30 min in the dark. The solar 

photocatalysis using high initial concentration of 40 mg L-1 MB dye was also studied 

obtaining a good photocatalysis efficiency of 70%.  The evidence from this study 

suggests that RGO was enhanced the adsorption/photocatalysis process; furthermore, 

an ionic interaction and the reduced electron/hole pairs recombination at the surface 

of RGO also played a vital role in this work. One of the more significant findings that 

emerge from the experimental works in this research is that increasing the weight ratio 

of RGO up 15%, reduced the photocatalyst degradation efficiency to 80%. The 

Brunauer-Emmett-Teller (BET) adsorption/desorption isotherms method 

demonstrated that the pores size distribution was mainly a mesoporous which 

enhanced the stability of the used catalyst without losing its capability during the 

regeneration process. This novel synthesized RGO supported TiO2/ZSM-5 

mesoporous catalyst would pave for new development of multifunctional catalyst for 

textile dyes water environmental applications.  

 

 To study the visual adsorption technique, new ligand of 2-hydroxyacetophenone-

4N-pyrrolidine thiosemicarbazones (HAPT) was successfully immobilized into 

ZSM-5 mesoporous using the direct immobilization method. This novel visual 

catalyst exhibits feature including high specific surface area, easy post separation 

and cost effective material with excellent detection, high adsorption capacity and 

rapid adsorption rate of Hg (II) ions from aqueous solution. 

 The hydroxyl, nitrogen and sulphur donor atoms of 2-hydroxyacetophenone-4N-

pyrrolidine thiosemicarbazones (HAPT) ligand created intensive interaction with 

Hg (II) ions by electrostatic effect to form stable complexation mechanism. The 

lower detection limit of Hg2+ ions was found to be 3.69 µg L-1 at optimum pH of 

12.5 and exhibiting fast kinetic performance. 

 

 The sorption efficiency of Hg (II) ions was 95% for 120 minutes. The adsorption 

of Hg (II) ions followed the Langmuir adsorption model and the maximum 
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adsorption capacity was 166.7 mg/g. The elution and recycles of this novel visual 

catalyst was successfully evaluated for six adsorption-elution-recycles by using 

0.10M thiourea-0.10M HCl. This novel visual catalyst is an efficient and eco-

friendly catalyst for detection and removal of Hg2+ from wastewater without using 

sophisticated instruments.  

 Further investigation to study the visual conjugate adsorption technique was 

conducted. In this investigation, a newly fabricated ligand of 2,6-

Pyridinedicarboxaldehyde-Thiosemicarbazone (PDCTC) was immobilized onto 

ZSM-5 mesoporous to remove ultra-trace of lead (Pb2+) from aqueous solution. 

This conjugate adsorbent (MzCA) shows a remarkable significant colour change 

intensity which rely on the charge transfer transduction to achieve visible detection 

of Pb2+ ions by naked-eye observation.   

 

 The recognition limit of Pb2+ was 5.0 µg L-1 with no significant interference of 

foreign competing ions. This visual conjugate adsorbent obeyed the monolayer 

sorption represented by the Langmuir model and the maximum sorption capacity 

was 15.75 mg/g. The sorption efficiency of Pb2+ was 98.9% for 60 min. This visual 

conjugate adsorbent can also be regenerated and re-utilized for many cycles (using 

appropriate eluent of 0.1 M HCl) with no significant damage to in its essential 

performances. Accordingly, this visual conjugate adsorbent is an efficient and 

ecofriendly synthesized catalyst with high research values and attainable 

application for the simultaneous sorption and detection of Pb2+ in acidic aqueous 

media, suggesting potential on-site implementations without using sophisticated 

instruments. 

 

 The better stability, regenerations after many cycles and the post separation of all 

the above catalysts have been satisfactory achieved.   

8.2 Recommendations for future research 

This research focused on synthesizing different types of novel mesoporous catalysts 

for solar photocatalytic degradation of organic pollutants such as dyes and; also visible 

adsorption for removal of heavy metal ions such as Hg2+ and Pb2+ from aqueous 

solutions was painstakingly investigated. The data revealed the effectiveness of these 

novel mesoporous catalysts in completely removing the toxic contaminates from water 
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samples. However, some other issues still require to be further investigated to 

complement and enhance this PhD research before its industrial applications. Based 

on the findings of the current study the following future research is recommended: 

 To enhance the photocatalytic degradation, further work can focus on increase the 

harvest of sunlight which can be achieved by either modifying the photocatalyst 

TiO2 or looking for new semiconductor-metal (S-M) heterojunction photocatalyst 

immobilized new mesoporous materials.  

  Crucial key factors of the photocatalysis process such as photo-reactor geometry 

and solar light distribution need to be investigated. Thus, design new photo-reactor 

configurations and studying of different solar irradiation intensities is 

recommended.  

 Future research in wastewater treatment can focus on the photocatalytic 

degradation of real pharmaceutical industry pollutants which consist of several 

persistent drug materials. 

 To support the visible adsorption process, further research can focus on design two 

new ligands anchored together into a mesoporous material for removing multiple 

heavy metal ions in aqueous solution such as As3+, Co3+, Cr3+, Cu2+, Ag2+ and Pd2+, 

which are classified as either hard or soft ions according to the HSAB Principle of 

Pearson. 

 In this study, the synthesized mesoporous zeolite type of ZSM-5 was extensively 

studied to obtain high specific surface area and ordered mesoporous substrate 

which incorporated considerable amount of a ligand. Further investigation of new 

zeolite substrate such as Faujasite x and y types, ZSM-12 and ZSM-22 also with 

good qualities should be considered. 

 Design of a new synergistic catalyst that has the ability to remove organic and 

inorganic substances together in water samples is highly recommended. This can 

be achieved by modifying conjugate mesoporous adsorbent with Titania Ti (MCA-

Ti), which is anticipated to be a new effective technology in large-scale water 

treatment. 

 The potential application of solar photocatalytic degradation and the visual 

adsorption technologies in a large-scale operation need to be carefully evaluated 

due to the configuration design which in this case is too complex depending on 

different key parameters such as adsorption/photocatalytic kinetic models which 
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should be considered. Thus, the possibility of creating new advanced software 

which could significantly reduce the design cost of a large-scale technology. 

 Finally, it is also suggested to experimentally test the different applications of the 

proposed MCA-Ti such as drug delivery, energy storage and sensing organic 

materials.   
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APPENDICES 

 

APPENDIX A 

Section A-1: Raw data for the solar photocatalytic 

degradation 

Table A.1 the raw data of the first order reaction rate of MO dye 

 

Time (min) 

concentration 

(Cₜ) using 1g 

L⁻¹of 

TiO₂/ZSM-5 

concentration 

(Cₜ) using 2g 

L⁻¹ of 

TiO₂/ZSM-5 

concentration 

(Cₜ) using 

2.5g L⁻¹ of 

TiO₂/ZSM-5 

concentration 

(Cₜ) using 3g 

L⁻¹ of 

TiO₂/ZSM-5 

0 0 0 0 0 

30 11.8 6.36 10.1 14.48 

60 8.0 3.4 6.8 10.1 

90 4.2 1.38 2.59 6.54 

120 2.5 0.58 0.98 3.2 

150 0.62 0.30 0.43 1.2 

180 0.2 0.09 0.15 0.89 

Time (min) 

ln (Cₒ/Ct) 

using 1g/l of 

TiO₂/ZSM-5 

ln (Cₒ/Ct) 

using 2g/l of 

TiO₂/ZSM-5 

ln (Cₒ/Ct) 

using 2.5g/l of 

TiO₂/ZSM-5 

ln (Cₒ/Ct) 

using 3g/l of 

TiO₂/ZSM-5 

0 0 0 0 0 

30 0.527378 1.14507516 0.68013224 0.3229638 

60 0.9162907 1.7719568 1.07265218 0.6816337 

90 1.546463 2.673648 2.044074 1.1177951 

120 2.066722 3.540459 3.0078048 1.8291498 

150 3.473768 4.199705077 3.83274 2.8134107 

180 4.50081017 5.40367788 4.8928522 3.102204518 

𝐾𝑎𝑝𝑝(𝑀𝑂) 0.024459097 0.028677138 0.027284434 0.018375028 

R² 0.9867 0.9949 0.9514 0.9675 
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Table A.2 the raw data of the second order reaction rate of MO dye 

 

Time (min) 

concentration 

(Cₜ) using 1g 

L⁻¹ of 

TiO₂/ZSM-5 

concentration 

(Cₜ) using 2g 

L⁻¹ of 

TiO₂/ZSM-5 

concentration 

(Cₜ) using 2.5g 

L⁻¹ of 

TiO₂/ZSM-5 

concentration 

(Cₜ) using 3g 

L⁻¹ of 

TiO₂/ZSM-5 

0 0 0 0 0 

30 11.8 6.3 10.1 14.48 

60 8.0 3.4 6.8 10.1 

90 4.2 1.38 2.59 6.54 

120 2.5 0.58 0.98 3.2 

150 0.62 0.3 0.43 1.2 

180 0.2 0.09 0.15 0.89 

Time (min) 

qₜ (mg/g) using 

1 g L⁻¹ of 

catalyst 

qₜ(mg/g) using 

2 g L⁻¹ of 

catalyst 

qₜ (mg/g) using 

2.5g L⁻¹ of 

catalyst 

qₜ (mg/g) using 

3 g L⁻¹ of 

catalyst 

30 8.196 6.818 3.036 1.8386 

60 12 8.3 5.263 3.2947 

90 15.74 9.31 6.964 4.486 

120 17.56 9.71 7.6 5.596 

150 19.38 9.85 7.82 6.266 

180 19.778 9.955 7.94 6.367 

Time (min) 

t/qₜ using 1 g 

L⁻¹ of catalyst 

TiO₂/ZSM-5 

t/qₜ using 2 g 

L⁻¹ of catalyst 

TiO₂/ZSM-5 

t/qₜ using 2.5 g 

L⁻¹ of catalyst 

TiO₂/ZSM-5 

t/qₜ using 3 g 

L⁻¹ of catalyst 

TiO₂/ZSM-5 

30 3.66 4.4 7.6 16.316 

60 5 7.228 11.4 18.211 

90 5.718 9.66 12.923 20.06 

120 6.87 12.358 15.789 21.44 

150 7.739 15.228 19.18 23.938 

180 9.1 18.081 22.67 28.27 

slope 0.034827619 0.090574286 0.09672 0.074600952 

qₑ 28.7128 11.0406 10.3391 13.40466 

Intercept 2.690933333 1.648866667 4.7714 13.5394 

K2(MO) 0.0004507 0.004975 0.00196 0.000411 

R² 0.994 0.9994 0.9585 0.9893 
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 Table A.3 the raw data of the first order reaction rate of the 10 mg L-1 concentration 

of the MB degradation 

 

 

 

 

 

Time (min) TiO₂ 

Cₜ/Cₒ  

TiO₂/ZSM-

5 

Cₜ/Cₒ 5% 

RGO/TiO₂/ZSM-

5 

Cₜ/Cₒ 10% 

RGO/TiO₂/ZSM-

5 

Cₜ/Cₒ 15% 

RGO/TiO₂/ZSM-

5 

0 1 1 1 1 1 

30 0.93 0.9 0.75 0.6 0.45 

60 0.89 0.6 0.4 0.15 0.25 

90 0.7 0.45 0.35 0.07 0.2 

120 0.65 0.4 0.3 0.07 0.2 

Time (min) 

ln 

(Cₜ/Co) 

TiO₂ 

ln (Cₜ/Cₒ ) 

TiO₂/ZSM-

5 

ln (Cₜ/Cₒ ) 5% 

RGO/TiO₂/ZSM-

5 

ln (Cₜ/Cₒ) 10% 

RGO/TiO₂/ZSM-

5 

ln (Cₜ/Cₒ) 15% 

RGO/TiO₂/ZSM-

5 

0 0 0 0 0 0 

30 0.0725 0.105 0.287 0.51 0.7985 

60 0.1165 0.5108 0.916 1.89 1.386 

90 0.356 0.798 1.049 2.659 1.61 

120 0.431 0.916 1.2 2.659 1.61 

Kapp(min)×10̄³ 3.818 8.416 10.54 24.89 13.43 

R² 0.9315 0.9628 0.927 0.9202 0.8549 
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Table A.4 the raw data of the second order reaction rate of the 10 mg L-1 concentration 

of the MB degradation 

 

 

 

 

 

 

 

 

Time 

(min) 

TiO₂ 

qₜ 

TiO₂/ZSM-

5 

 qₜ 

5% 

RGO/TiO₂/ZSM-5  

qₜ 

10% 

RGO/TiO₂/ZSM-5 

qₜ 

15% 

RGO/TiO₂/ZSM-5 

 qₜ 

30 18 18.2 18.5 18.8 19.1 

60 18.2 18.8 19.2 19.7 19.5 

90 18.2 19.1 19.3 19.8 19.6 

120 18.26 19.2 19.4 19.8 19.6 

Time 

(min) 

TiO₂ 

 t/qₜ 

t/qₜ  

TiO₂/ZSM-

5 

t/qₜ 5% 

RGO/TiO₂/ZSM-5 

t/qₜ 10% 

RGO/TiO₂/ZSM-5 

t/qₜ 15% 

RGO/TiO₂/ZSM-5 

30 1.66 1.64 1.73 1.6 1.57 

60 3.3 3.2 3.1 3.04 3.14 

90 4.9 4.7 4.66 4.54 4.59 

120 6.57 6.25 6.18 6.06 6.12 

Slope 0.05443 0.0511 0.0497 0.0496 0.05033 

qₑ 20.31 19.56 20.12 20.16 19.88 

Intercept 0.025 0.115 0.19 0.09 0.08 

K₂ .1141 0.0227 0.013 0.027 0.0316 

R² 0.9994 0.9993 0.9999 0.9989 0.999 
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Table A.5 the raw data of the first order reaction rate of the 20 mg L-1 concentration 

of the MB degradation 

Time 

(min) 
TiO₂ 

Cₜ/Cₒ 

TiO₂/ZSM

-5 

Cₜ/Cₒ 5% 

RGO/TiO₂/ZSM-

5 

Cₜ/Cₒ 10% 

RGO/TiO₂/ZSM-

5 

Cₜ/Cₒ15% 

RGO/TiO₂/ZSM-

5 

0 1 1 1 1 1 

30 0.98 0.8 0.7 0.43 0.4 

60 0.96 0.6 0.45 0.2 0.34 

90 0.9 0.55 0.4 0.19 0.28 

120 0.9 0.5 0.36 0.18 0.28 

Time 

(min) 

ln 

(Cₜ/Cₒ) 

TiO₂ 

ln (Cₜ/Cₒ ) 

TiO₂/ZSM

-5 

ln (Cₜ/Cₒ) 5% 

RGO/TiO₂/ZSM-

5 

ln (Cₜ/Cₒ) 10% 

RGO/TiO₂/ZSM-

5 

ln (Cₜ/Cₒ) 15% 

RGO/TiO₂/ZSM-

5 

0 0 0 0 0 0 

30 0.02 0.2231 0.3566 0.844 0.916 

60 0.041 0.51 0.798 1.61 1.08 

90 0.105 0.597 0.916 1.661 1.273 

120 0.105 0.693 1.02 1.714 1.73 

Kapp(min

)×10³̄ 
2.883 5.86 8.66 14.15 12.72 

R² 0.922 0.9444 0.9217 0.817 0.8989 

 

Table A.6 the raw data of the second order reaction rate of the 20 mg L-1 concentration 

of the MB degradation. 

Time 

(min) 

TiO₂  

qₜ 

TiO₂/ZSM-

5  

qₜ 

5% 

RGO/TiO₂/ZSM-

5 

 qₜ 

10% 

RGO/TiO₂/ZSM-

5  

qₜ 

15% 

RGO/TiO₂/ZSM-

5  

qₜ 

30 39.2 32 28 17.2 16 

60 38.4 24 18 8 13.6 

90 36 22 16 7.6 11.2 

120 36 20 14.4 7.2 11.2 

time 
t/qₜ 

 TiO₂ 

t/qₜ  

TiO₂/ZSM-

5 

t/qₜ 5% 

RGO/TiO₂/ZSM-

5 

t/qₜ 10% 

RGO/TiO₂/ZSM-

5 

t/qₜ15% 

RGO/TiO₂/ZSM-

5 

30 0.76 0.93 1.14 1.74 1.87 

60 1.56 2.5 3.34 7.5 4.41 

90 2.5 4.1 5.62 11.84 8 

120 3.34 6 8.34 16.67 10.7 

Slope 0.02893 0.05603 0.0796 0.16376 0.10026 

qₑ 24.46 17.85 12.56 6.1 10 

Intercept -0.13 -0.82 -1.36 -2.845 -1.275 

K₂ 0.1354 0.0038 0.00466 0.00944 0.00784 

R2 0.9992 0.9978 0.9974 0.9967 0.9957 
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Table A.7 the raw data of the first order reaction rate of the 30 mg L-1 concentration 

of the MB degradation 

Time (min) 
Cₜ/Cₒ 

TiO₂ 

Cₜ/Cₒ 

TiO₂/ZSM-

5 

Cₜ/Cₒ 5% 

RGO/TiO₂/ZSM-

5 

Cₜ/Cₒ 10% 

RGO/TiO₂/ZSM-

5 

Cₜ/Cₒ 15% 

RGO/TiO₂/ZSM-

5 

0 1 1 1 1 1 

30 0.98 0.84 0.76 0.46 0.45 

60 0.96 0.67 0.53 0.35 0.37 

90 0.94 0.55 0.44 0.22 0.3 

120 0.92 0.55 0.48 0.22 0.3 

Time (min) 

ln 

(Cₜ/Cₒ) 

of 

TiO₂ 

ln (Cₜ/Cₒ) 

of 

TiO₂/ZSM-

5 

ln (Cₜ/Cₒ) 5% 

RGO/TiO₂/ZSM-

5 

ln (Cₜ/Cₒ) of 10% 

RGO/TiO₂/ZSM-

5 

ln (Cₜ/Cₒ) 15% 

RGO/TiO₂/ZSM-

5 

0 0 0 0 0 0 

30 0.02 0.1743 0.2744 0.7765 0.798 

60 0.0408 0.4 0.634 1.05 0.9942 

90 0.0618 0.597 0.821 1.514 1.2039 

120 0.0833 0.597 0.734 1.514 1.2039 

Kapp(min)×10̄³ 2.334 5.38 6.71 12.5 9.37 

R² 0.99 0.9408 0.852 0.7949 0.8993 

 

Table A.8 The raw data of the second order reaction rate of the 30 mg L-1 concentration 

of the MB degradation. 

Time 

(min) 

TiO₂  

qₜ 

TiO₂/ZSM-5 

 qₜ 

5% 

RGO/TiO₂/ZSM

-5  

qₜ 

10% 

RGO/TiO₂/ZSM

-5  

qₜ 

15%  

RGO/TiO₂/ZSM

-5 

 qₜ 

30 58.8 50.4 45.6 27.6 27 

60 57.6 40.2 31.8 21 22.2 

90 56.4 33 26.4 13.2 18 

120 55.2 33 28.8 13.2 18 

Time 

(min) 

t/qₜ  

TiO₂ 

t/qₜ  

TiO₂/ZSM-5 

t/qₜ  5% 

RGO/TiO₂/ZSM

-5 

t/qₜ 10% 

RGO/TiO₂/ZSM

-5 

t/qₜ 15% 

RGO/TiO₂/ZSM

-5 

30 0.51 0.59 0.7 1.08 1.11 

60 1.04 1.49 1.8867 2.85 2.7 

90 1.59 2.72 3.41 6.82 5 

120 2.17 3.63 4.16 9.1 6.67 

Slope 0.01843 0.0345 0.03967 0.09343 0.06326 

qₑ 30.25 28.98 25.2 10.71 15.8 

Intercept -0.055 -0.48 -0.43665 -2.045 -0.875 

K₂ 0.1671 0.00248 0.0036 0.00426 0.00457 

R² 0.9996 0.9961 0.9848 0.9795 0.995 

 



 

193 | P a g e  
 

Table A.9 The raw data of the first order reaction rate of the 40 mg L-1 concentration 

of the MB degradation 

Time (min) 
Cₜ/Cₒ 

TiO₂ 

Cₜ/Cₒ 

TiO₂/ZSM-

5 

Cₜ/Cₒ 5% 

RGO/TiO₂/ZSM-

5 

Cₜ/Cₒ 10% 

RGO/TiO₂/ZSM-

5 

Cₜ/Cₒ 15% 

RGO/TiO₂/ZSM-

5 

0 1 1 1 1 1 

30 0.99 0.7 0.63 0.4 0.5 

60 0.97 0.68 0.58 0.36 0.48 

90 0.95 0.64 0.55 0.32 0.46 

120 0.94 0.6 0.52 0.3 0.44 

Time (min) 

ln 

(Cₜ/Cₒ)   

TiO₂ 

ln (Cₜ/Cₒ ) 

TiO₂/ZSM-

5 

ln (Cₜ/Cₒ) 5% 

RGO/TiO₂/ZSM-

5 

ln (Cₜ/Cₒ)  10% 

RGO/TiO₂/ZSM-

5 

ln (Cₜ/Cₒ) 15% 

RGO/TiO₂/ZSM-

5 

0 0 0 0 0 0 

30 0.01 0.3566 0.46 0.916 0.693 

60 0.03 0.3856 0.544 1.02 0.733 

90 0.051 0.446 0.597 1.139 0.7765 

120 0.061 0.511 0.6539 1.204 0.821 

Kapp(min)×10̄³ 1.9523 3.704 4.816 8.77 5.751 

R² 0.9732 0.7796 0.7601 0.7178 0.6386 

 

Table A.10  The raw data of the second order reaction rate of the 40 mg L-1 

concentration of the MB degradation.  

Time 

 (min) 

TiO₂  

qₜ 

TiO₂/ZSM-5  

qₜ 

5% 

RGO/TiO₂/ZS

M-5 qₜ 

10% 

RGO/TiO₂/ZS

M-5 qₜ 

15% 

RGO/TiO₂/ZS

M-5 qₜ 

30 79.2 56 50.4 32 40 

60 77.6 54.4 46.4 28.8 38.4 

90 76 51.2 44 25.6 36.8 

120 75.2 48 41.6 24 35.2 

Time 

(min) 

TiO₂ 

t/qₜ 

TiO₂/ZSM-5 

t/qₜ 

5% 

RGO/TiO₂/ZS

M-5 t/qₜ 

10% 

RGO/TiO₂/ZS

M-5 t/qₜ 

15% 

RGO/TiO₂/ZS

M-5 t/qₜ 

30 0.378 0.571 0.595 0.937 0.75 

60 0.773 1.1 1.293 2.083 1.562 

90 1.184 1.75 2.045 3.515 2.445 

120 1.59 2.5 2.884 5 3.41 

Slope 0.01349 0.02145 0.02539 0.045403 0.02954 

qₑ 33.81 46.6 39.37 22 33.852 

Intercept -0.0305 -0.129 -0.2005 -0.5215 -0.174 

K₂ 0.1822 0.00357 0.00321 0.00396 0.005 

R² 0.9987 0.9941 0.9983 0.9966 0.9985 
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Figure A. 1 the spectra absorbance of MB dye at different  concentration (a) 10 mg L-

1, 20 mg L-1, 30 mg L-1 and 40 mg L-1 during 120 min contact time, 500 mg L-1 of 

10%RGO/TiO2/ZSM-5 mesoporous at room temperature 
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Figure A. 2 BET specific surface area of the Non-mesoporous 10%RGO/TiO2/ZSM-

5 

a The specific surface area was evaluated by BET method. 

b The pore volume was obtained from the BJH Desorption cumulative volume of pores 

between 1.0000 nm and 50.0000 nm diameter. 

C The average pore diameter was calculated using the desorption branch of the isotherm and 

BJH model 

 

 

 

 

 

 

 

 

 

 

  

 

Figure A. 3 Preparation procedure of the HATP ligand 
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Figure A. 4 FTIR analysis spectrum of the synthesized MCA before and after used 

 

Section A-2 Raw data for visual adsorption detection of Hg (II) 

 

Table A. 11 the change of colour optimization of Hg(II) ions concentrations at pH 

12.5 and (b) was represented the calibration profile of Hg(II) ions concentrations with 

spectral absorbance at λ=387 nm 

 

 

 

Hg (II) ion concentrations 

 (µm) 

A-A˳ a.u. (at λ= 325), with 

Matrix 

A-A˳ a.u. (at λ= 325), 

Free Matrix 

0.0249 0 0 

0.0997 0.133637 0.132667 

0.249 0.203969 0.198826 

0.4985 0.26727 0.246615 

1.5672 0.318053 0.3111 

4.985 0.34456 0.33556 

9.9705 0.367421 0.352241 
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Table A. 12 the low limited responses for Hg (II) ions with a liner fit in the Hg (II) 

ions concentration range 

 

 

Table A. 13 Adsorption isotherm of Hg (II) ions of the MCA. (Initial concentrations: 

2.65–75 mg L-1; shaking time: 2 h; adsorbent amount (MCA): 20 mg; volume of 

solution: 100 ml 

  

Cₒ mg Lˉ¹ Cₑ mg Lˉ¹ qₑ(mg/g) 

2.65 0.5 10.75 

3.66 0.53 15.65 

4.41 0.61 19 

9.93 1.77 40.8 

28.67 8.55 100.6 

54.43 26.71 138.6 

75 45.38 148 

 

 

Table A. 14 the linear form as fitted by the Langmuir isotherms model 

Cₑ mg L¯¹ Cₑ /qₑ ( g Lֿ¹) 

0.5 0.0465 

0.53 0.0338 

0.61 0.032 

1.77 0.0433 

8.55 0.085 

26.71 0.1927 

45.38 0.3066 

 

 

 

 

 

Hg (II) ion concentrations 

(µm) 
A-A0 a.u. (at λ= 325), with Matrix 

0.0249 0.0266 

0.0997 0.06651 

0.249 0.15562 

0.4985 0.277 
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Section A-3 Raw data for visual adsorption detection of lead (Pb2+) 

Table A. 15 the change of colour optimization of Pb2+ concentrations at pH 6.0 and (b) was 

represented the calibration profile of Pb2+ concentrations with spectral absorbance at λ= 440 

nm 

Table A. 16 the low limited responses for Pb2+ with a liner fit in the Pb2+ concentration 

range 

 

Table A. 17 Adsorption isotherm of Pb2+ of the MzCA. (Initial concentrations: 8.0-50.0 mg L-1; 

shaking time: 2 h; adsorbent amount (MzCA): 10 mg; volume of solution: 20 ml 

 

Table A. 18 the linear form as fitted by the Langmuir isotherms model for lead ions 

detection.   

Cₑ mg L¯¹ Cₑ /qₑ(g Lֿ ¹) 

4 0.3 

4 0.5 

7.5 0.56 

14.6 0.981 

Pb (II) ion concentrations 

 (µm) 

R-Rₒ a.u. (at λ= 440), with 

Matrix 

R-Rₒ a.u. (at λ= 440), Free 

Matrix 

0.005 0.1436 0.14 

0.02 0.18562 0.18 

0.05 0.254 0.23 

0.1 0.31933 0.297 

0.5 0.52135 0.5111 

1.0 0.55 0.541 

2.0 0.6266 0.6156 

Pb2+ concentrations 

(µm) 
R-Rₒ a.u. (at λ= 440), with Matrix 

0.005 0.1436 

0.01 0.18568 

0.02 0.254 

0.05 0.319333 

0.1 0.521355 

Cₒ mg Lˉ¹ Cₑ mg Lˉ¹ qₑ (mg/g) 

8 4 8 

15 4 12 

22 7.5 13 

30 14.6 14.8 

35 22 16 

40 35 16 

50 42 16 



 

200 | P a g e  
 

13.47 retention time

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

(I
n

t.
)

Time (min)

(a) 

 

APPENDIX B 

Detection of Organic Compounds  

And calibration curves 

 

B-1 HPLC Detections 

As described in the chapter 3, the detection of the main pollutants and their 

intermediates were identified and quantified by employing the High Performance 

Liquid Chromatograph (HPLC) analysis. Figure B-1 depicts the typical HPLC 

chromatograms results of the retention time for all the organic compounds used in this 

project. Interestingly, each compound has a different retention time peak as a result of 

different absorption rates even their concentrations are equal. 
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Figure B. 1  typical HPLC chromatograms results of the retention time for the organic 

compounds used in this research: (a) Methylene blue (b) their intermediates (Azure 

and Thionin) 

B-2 Calibration curves 

The experimental calibration measurements were duplicated to assure obtaining the 

accuracy values. The following linear calibration equations with a correlation 

coefficients were obtained for the pollutant model with their intermediate compounds. 
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Figure B. 2  The calibration curves with equations and correlation coefficients of (a) 

MO dye and (b) MB dye using UV-Vis diffuse spectrophotometer analysis between 

the absorption wavelength (λ) range of 300-700nm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B. 3 The calibration curves with equations of intermediates compounds of 

Azure and Thionin  
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