
Faculty of Engineering and Science

Department of Electrical and Computer Engineering

Large Scale Data Analytics with Language Integrated Query

Cho Chung Yik

This thesis is presented for the Degree of

Master of Philosophy (Electrical & Computer Engineering)

of

Curtin University

December 2018

I

Declaration

To the best of my knowledge and belief, this thesis contains no content previously published

by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any other degree

or diploma in any university.

Signature : …………………………
 (CHO CHUNG YIK)

Date : 17 December 2018

II

Abstract

Due to the continuous, fast growth of data which can reach terabytes (1,024

gigabytes) or petabytes (1,048,576 gigabytes), the need of a system to manage the

large scale data in contemporary times is much more vital, especially for a user trying

to retrieve or query data from different data sources. Currently available frameworks

and methodologies are very limited in terms of efficiency and querying compatibility

between data sources as they cannot be integrated into a uniform data source due to

the differences in information storage structures. Though integrating data into a single

database would solve this challenge, restructuring data from different data source to

fit a single format is very time consuming and dependent upon the volume and

quantity of data. In this research, a new framework is designed and built using

Language Integrated Query to query the existing data sources without the need to

integrate or restructure data to ensure compatibility. The proposed framework is

implemented on a cloud computing environment, Microsoft Azure to meet the

processing power requirement for data management and data retrieval from existing

data sources. Protein data obtained through the query framework proves that it is

feasible and cost effective. However, due to certain limitations, the efficiency of the

query process is affected. The speed of retrieving data from Research Collaboratory

for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) and displaying to the

user has a non-negligible delay depending on user request. In conclusion, the

implemented query framework satisfies the objectives of this project.

III

Acknowledgement

I would like to express my gratitude to my supervisors, Mr. Veeramani Shanmugam,

Associate Professor Amandeep S. Sidhu and Professor Iain Murray for their

dedication in supervising, motivating and dedication throughout my research studies

in Master of Philosophy, Electrical & Computer Engineering. Their availability for

consultation and relentless guiding has given me a lot of encouragement which I am

deeply grateful for. Their consideration and patience are deeply appreciated for. I

would like to thank A/Prof. Chua Han Bing for his relentless support in managing and

motivating me during my research period in Curtin University Malaysia.

Furthermore, I would like to take this opportunity to thanks the Faculty of Science &

Engineering for awarding fee waiver in conjunction of receiving MyBrain, MyMaster

scholarship from Ministry of Higher Education, Malaysia. Moreover, I would like to

thank Prototype Research Grant Scheme, PRGS by Ministry of Higher Education,

Malaysia for their support in funding the research project.

My gratitude also goes to my fellow colleagues and friends in Curtin University

Malaysia, namely John Alan Leong Seng Hui, Vijayajothi Paramasivam, Siaw Teck

Ung, Sim Zee Ang, Tan Hong Hui, Ronny Ling Choon Kyn and Jessie Lau Ling Bing

for their assistance on technical and non-technical support during my research term. I

would like to thank Dr. Ling Huo Chong for helping and advising in my research term

as well.

To my friends and families, I will like to thank them for their continuous support and

encouragement especially my parents for their love, support and their faith in me.

 IV

Table of Contents

Declaration .. I

Abstract ... II

Acknowledgement ... III

Table of Contents .. IV

List of Figures .. VII

Chapter 1 Introduction ... 1

 Overview ... 2

 Research Background ... 4

 Problem Statement .. 6

 Objective ... 7

 Outline of Thesis ... 8

Chapter 2 Literature Review ... 9

 Overview ... 10

 Process of Life Science Discovery ... 11

 The Biological Data’s Nature ... 13

 Constant Evolution of a Domain .. 14

 Traditional Database Management .. 14

 The Fusion of Scientific Data .. 15

 Differences of Structured and Semi-Structured Data 16

 Data Integration Challenges .. 17

 Semantic Integration Challenges .. 19

 Biomedical Ontologies ... 20

 Biomedical Ontologies Open Issues .. 21

 Creation of Ontology Methodologies ... 24

 The Creation of Protein Ontology with On-To-Knowledge

Methodology .. 25

 Ontology-based approach for Semantic Integration 29

Chapter 3 Methodology .. 33

 Overview ... 34

 Large Scale Data Analytics with Language Integrated Query 34

 Cloud Computing as a Platform.. 36

 Algebraic Operators for Biomedical Ontologies .. 37

 V

 Select Operator .. 37

 Union Operator .. 39

 Intersection Operator ... 41

 Except Operator ... 44

Chapter 4 Query Framework .. 46

 Functions for querying Research Collaboratory for Structural

Bioinformatics (RCSB) Protein Data Bank (PDB) .. 47

 Make Query Function .. 48

 Do Search Function ... 50

 Do Protsym Search Function ... 51

 Get All Function .. 52

 Functions for looking up information given PDB ID 53

 Get Info Function .. 53

 Get PDB File Function .. 54

 Get All Info Function .. 55

 Get Raw Blast Function ... 55

 Parse Blast Function .. 56

 Get Blast Wrapper Function .. 57

 Describe PDB Function ... 57

 Get Entity Info Function .. 58

 Describe Chemical Function ... 59

 Get Ligands Function .. 60

 Get Gene Ontology Function ... 61

 Get Sequence Cluster Function ... 62

 Get Blast Function ... 63

 Get PFAM Function .. 64

 Get Clusters Function .. 65

 Find Results Generator Function ... 65

 Parse Results Generator Function ... 66

 Find Papers Function ... 67

 Find Authors Function ... 67

 Find Dates Function .. 68

 List Taxonomy Function ... 69

 List Types Function ... 70

 Functions for looking up information given PDB ID 71

 VI

 To Dictionary Function ... 71

 Remove At Sign Function ... 71

 Remove Duplicates Function .. 72

 Walk Nested Dictionary Function ... 73

Chapter 5 Results & Discussion .. 74

5.1 Overview ... 75

5.2 Query Web Portal ... 76

 Summary ... 81

Chapter 6 Conclusion ... 82

6.1 Conclusion .. 83

6.2 Limitation .. 84

6.3 Future Works .. 85

References ... 86

Appendix ... 92

Appendix A – Query Codes ... 93

 VII

List of Figures

Figure 2.1 Process of Life Science Discover ………………………………….. 12

Figure 2.2 Process of On-To-Knowledge ……………………………………... 26

Figure 2.3 Ontology Development with On-To-Knowledge ………………….. 27

Figure 2.4 OPSDS Architecture ……………………………………………..... 30

Figure 2.5 Process of Global Ontology ……………………………………….. 31

Figure 3.1 Usage of Select Operator in Instances of Family Concept ………… 39

Figure 3.2 Usage of Union Operator ………………………………………….. 41

Figure 3.3 Usage of Intersection Operator ……………………………………. 43

Figure 4.1 LINQ Query Framework Processes ………………………………...47

Figure 4.2 Make Query Function [Appendix A] ……………………………… 48

Figure 4.3 Do Search Function [Appendix A] ………………………………... 50

Figure 4.4 Do Protsym Search Function [Appendix A] ………………………. 51

Figure 4.5 Get All Function [Appendix A] …………………………………… 52

Figure 4.6 Get Info Function [Appendix A] …………………………………... 53

Figure 4.7 Get PDB File Function [Appendix A] ……………………………... 54

Figure 4.8 Get All Info Function [Appendix A] ………………………………. 55

Figure 4.9 Get Raw Blast Function [Appendix A] ……………………………. 55

Figure 4.10 Parse Blast Function [Appendix A] ……………………………….. 56

Figure 4.11 Get Blast Wrapper Function [Appendix A] ……………………….. 57

Figure 4.12 Describe PDB Function [Appendix A] ……………………………. 57

Figure 4.13 Sample Output for Describe PDB Function ……………………….. 58

Figure 4.14 Get Entity Info Function [Appendix A] …………………………… 58

Figure 4.15 Sample Output for Get Entity Info Function …………………….... 59

Figure 4.16 Describe Chemical Function [Appendix A] ………………………. 59

Figure 4.17 Sample Output for Chemical Function …………………………….. 60

Figure 4.18 Get Ligands Function [Appendix A] …………………………….... 60

Figure 4.19 Sample Output for Get Ligands Function ………………………….. 61

Figure 4.20 Get Gene Ontology Function [Appendix A] ………………………. 61

 VIII

Figure 4.21 Sample Output for Get Gene Ontology Function ………………….. 62

Figure 4.22 Get Sequence Cluster Function [Appendix A] …………………….. 62

Figure 4.23 Sample Output for Get Sequence Cluster Function ……………….. 63

Figure 4.24 Get Blast Function [Appendix A] …………………………………. 63

Figure 4.25 Sample Output for Get Blast Function …………………………….. 64

Figure 4.26 Get PFAM Function [Appendix A] ……………………………….. 64

Figure 4.27 Sample Output for Get PFAM Function …………………………... 64

Figure 4.28 Get Clusters Function [Appendix A] …………………………….... 65

Figure 4.29 Sample Output for Get Clusters Function …………………………. 65

Figure 4.30 Find Results Generator Function [Appendix A] …………………... 65

Figure 4.31 Sample Output for Find Results Generator Function ……………… 66

Figure 4.32 Parse Results Generator Function [Appendix A] ………………….. 66

Figure 4.33 Find Papers Function [Appendix A] ………………………………. 67

Figure 4.34 Sample Output for Find Papers Function ………………………….. 67

Figure 4.35 Find Authors Function [Appendix A] ……………………………... 67

Figure 4.36 Sample Output for Find Authors Function ……………………….... 68

Figure 4.37 Find Dates Function [Appendix A] ………………………………... 68

Figure 4.38 List Taxonomy Function [Appendix A] ………………………….... 69

Figure 4.39 Sample Output for List Taxonomy Function ………………………. 70

Figure 4.40 List Types Function [Appendix A] ………………………………... 70

Figure 4.41 To Dictionary Function [Appendix A] …………………………….. 71

Figure 4.42 Remove At Sign Function [Appendix A] ………………………….. 71

Figure 4.43 Remove Duplicates Function [Appendix A] ………………………. 72

Figure 4.44 Walk Nested Dictionary Function [Appendix A] …………………. 73

Figure 5.1 LINQ Query Framework …………………………………………...75

Figure 5.2 Homepage of Query Framework Web Portal …………………….... 76

Figure 5.3 Search page of Query Framework Web Portal …………………….. 77

Figure 5.4 Search Result for Keyword ‘crispr’ ………………………………... 78

Figure 5.5 Information related to Protein ID ‘1WJ9’ …………………………. 79

Figure 5.6 Detailed Information of Protein ID ‘1WJ9’ ………………………... 80

 IX

Figure 5.7 Contact Page of Query Framework Web Portal ………………….... 81

 1

Chapter 1 Introduction
__

1.1 Overview

1.2 Research Background

1.3 Problem Statement

1.4 Objectives

1.5 Outline of Thesis

 2

 Overview

In this modern technological age, data is growing larger and faster compared to

previous decades. The existing methods used to process and analyze the overflowing

amount of data are no longer sufficient. The term large scale data first surfaced in the

magazine “Visually Exploring Gigabyte Datasets in Real Time” [1] published in

Association for Computing Machinery (ACM) in 1999. It was mentioned having large

scale data without a proper methodology to analyze data is a huge challenge and a sad

occasion at the same time. In the year 2000, Peter Lyman and Hal Varian [2] from

University of California at Berkeley (both currently resides in Google as chief

economist) attempted to measure the available data volume and data growth rate. Both

senior researchers concluded that 1.5 billion gigabytes of storage was required to

contain the data from film, optical, magnetic and print material annually.

Starting from 2001 onwards, large scale data was defined as data that contains high

volume, high velocity and high variety. This definition was defined by Douglas

Laney, an industry analyst currently working with Gartner [3]. The definition of high

volume in large scale data refers to the continuous growth of data that consisted of

terabytes or petabytes of information [4]. For instance, the data produced by existing

social networking sites are counted in terabytes per day [5]. High velocity refers to

the speed of data flow from different data sources [4]. For example, if data is

constantly flowing in from a sensor to a database storage, the amount of data flow is

large and fast at the same time [5]. High variety data does not mainly consist of

traditional data, it also contains structured, semi-structured, unstructured or raw data.

These data come from miscellaneous sites such as web pages, e-mails, sensor devices,

social media sites and others, for example Facebook, Twitter, Outlook and Instagram

in our modern society [5].

 3

Two other additional elements are required to be taken into consideration when it

comes to large scale data, variability and complexity. Variability takes the

inconsistency of data flow into consideration as data loads are getting harder to

manage [5]. Due to increasing usage of social media, for instance, Facebook generates

over 40 petabytes of data daily, there are increasingly high peaks in data loads to

databases [6]. As for complexity, data from various sources are very difficult to be

related, matched, cleaned and transformed across systems. It is very important that

the data is associated with its relevant relationships, hierarchies and data linkages

otherwise they will not be sorted accordingly [5].

Large scale data has been growing ever since and it is difficult to contain such vast

information. To make use of large scale data, it is required to have a proper

methodology to retrieve and analyze these data. In this chapter, research background,

problem statements and objectives of this research will be discussed.

 4

 Research Background

Faced with the enormous amount of data, the traditional data analytic methodologies

are no longer sufficient [7]. In this modern technological era, data are processed using

statistical algorithms method by dumping data into the largest high-performance

computing clusters to obtain results [7]. The processed data is then stored in different

data sources and they come in useful in scientific applications and business usage such

as biosciences, market sales and different fields [8].

Term analytics is defined as a method of data transformation for better decision

making whereas large scale data analytics is defined as a process that extracts large

amounts of information from complex datasets consisting of structured, semi

structured, unstructured and raw data [8]. The usage of large scale data analytics can

be applicable to various fields, such as improving marketing strategies by analyzing

real consumer behavior instead of predicting the needs of their customer and making

gut-based decisions [9]. Information extracted from data sources through data

analytics can perform and improve strategic decisions of business leaders by just

adding a feature to study telemetry and the usage of user data on multiple platforms

be it on mobile applications, websites or desktop applications [10]. Retrieved data can

be used for recommendation engines, for example, ‘think Netflix’ and YouTube video

suggestions. Large scale analytics uses intensive data mining algorithms to produce

accurate results and high performance processors are required for the process [8].

Since large scale data analytics applications requires huge amount of computational

power and data storage, infrastructures offered by cloud computing can be used as a

potent platform [8].

Ontology has been used for large scale analytics to utilize shared vocabulary for data

mapping. The word ontology originates from a philosophical term which refers to ‘the

 5

object of existence’ and from the perspective of the computer science community, it

is known as ‘specification of conceptualization’ for information sharing in artificial

intelligence [11]. There is a conceptual framework which is presented using

ontologies to show the significance of structured image through common vocabulary

in a provided biological or medical domain. This information can be used by

automated software agents and users in the domain [11]. The concepts, its

relationships, the definitions of its relationships and the prospect of ontology rules and

axiom definitions are included by the shared vocabulary to define the mechanism that

is used to control the substances which are introduced into the ontology and the

application of the substance based on logical inference [12].

For multiple fields, there are a lot of organizations that tend to maintain their data in

a proprietary database. When the data in databases are available for other people to

reference, the obtained data tends to be in different schemas and structures. Moreover,

it is difficult to translate and integrate biomedical data as it is constantly updated and

covers enormous amounts of data in the field of genomic information that contains

data from genome sequencing and gene expression sequencing. Hence, the greatest

challenge in this research is to ensure that any data search or querying would

comprehensively cover all available databases without the need for data integration

and data translation.

 6

 Problem Statement

Existing query methodologies focuses more on data integration. These methodologies

can be used if the size of the targeted data sources is not large and the unified database

is continually updated. For biomedical data integration, it involves genomics and

proteomics data with relation to data semantics. Data semantics consists of value or

meaning of data and the difference of semantics in multiple sources. Hence, the

differences in concept identification, concept overloading and data transformation

issues are important and requires addressing for existing data integration query

methodologies [13]. There are two elements for concept identification: data

identification when data from different sources are referring to the very same object

and information integration conflicts found in these different sources [13]. The

identification of an abstract concept identified in every single data source needs to be

performed first to address these issues. The information conflict can be effortlessly

solved after the shared concepts have been defined [13]. For instance, two different

values are defined in two different sources to represent one attribute, which

theoretically should be the same. The answer to a query, when added to the

reconciliation process used by genomics, may not be correct. These accrued errors

cause it to be one of the flaws with genomics as the possible differences between the

two sources makes reconciling the data difficult and it needs to be stored in an

integrated view [13]. This approach makes the seemly simple query into a much more

complicated endeavor than it first appears to be.

Furthermore, the usage of existing query methodology is not efficient and cost

effective. The existing methodology presented by various researchers requires huge

computing resources and time to complete several tasks. This includes data

translation, data mapping and query processing. However, with the proposed query

 7

framework, process of data querying and data management are easier compared to its

predecessors. The query framework built using Language Integrated Query needs to

be easily deployable on a cloud computing environment while ensuring the

performance in handling and querying large scale data sources can be done smoothly.

 Objective

The objective of this MPhil is to design a framework using Language Integrated Query

to manage large scale data sources and implement it on a Cloud Computing

environment, Microsoft Azure. This designed large scale data analytics framework

can overcome the problems of other existing frameworks by being able to manage

different type of large scale data sources without having structure conflict issues. The

result of having the framework should be:

1. Easier to manage large scale data sources: Managing large scale data sources

is no longer time consuming as the framework built using Language Integrated

Query can manage large data sources all together instead of perusing data from

multiple existing frameworks querying different types of data sources.

2. Easier access to the framework using web applications: A web application

deployed on the Cloud Computing environment, Microsoft Azure can easily

access the implemented framework to query different large scale data sources.

3. Higher processing power to operate the framework: Implementing the

framework on a Cloud Computing environment, Microsoft Azure allows the

framework to fully utilize the available scalable resources of Microsoft Azure to

process tasks efficiently.

 8

 Outline of Thesis

In Chapter 1, discussion on research background for large scale data analytics,

problem statement and objectives of this research are carried out. Meanwhile, in

chapter 2, existing methodologies and approaches for large scale data analytics are

discussed. In chapter 3, the methodology of this research is shown. There are three

components in this methodology, large scale data analytics with Language Integrated

Query, cloud computing as a platform and algebraic operators for biomedical

ontologies. In chapter 4, the functions and usage of the query framework are

presented. The results and web portal implementation are shown in chapter 5. Lastly,

in chapter 6, the conclusion, limitations and future work are discussed.

 9

Chapter 2 Literature Review
__

2.1 Overview

2.2 Process of Life Science Discovery

2.3 The Biological Data’s Nature

2.4 Constant Evolution of a Domain

2.5 Data Integration Challenges

2.6 Semantic Integration Challenges

2.7 Biomedical Ontologies

2.8 Creation of Ontology Methodologies

2.9 Ontology-based approach for Semantic Integration

 10

 Overview

Multiple solutions have been implemented to overcome the distributed data problem.

In chronological order, the solutions covered are data integration, semantic integration

and ontology-based semantic integration. These approaches are mainly dealing with

integration of data from multiple selected databases required by users to query or to

extract data from. Data integration first tackled the problem of querying multiple data

sources by combining those data sources into a single unified data source. Semantic

integration introduced data mapping to match similar data from the multiple data

sources, but the process is not fully automated. Ontology-based semantic integration

was then introduced to implement ontology indexing on top of the semantic

integration method to enhance the data mapping process.

All these efforts were made to ensure the process of querying across multiple data

sources simultaneously could be achieved. However, as data is growing and updated

continuously, these methods become increasingly insufficient. Furthermore, there are

multiple factors that need to be considered for a smooth data integration operation. In

this chapter, all three existing methods and the issues they face are addressed.

 11

 Process of Life Science Discovery

Reductionist molecular biology is a hypothesis-based approach used by scientists in

the second half of the 20th century to determine and characterize molecules, cells and

major structures of living systems. Biologists identified that, as a single community,

they are required to continue using reductionist strategies to further their cause in

elucidating the whole structure of components and every single one of their functions.

They are required to use the system-level type of approach to comprehend molecules

and cells, the functions of organs, tissues and populations as well [14]. Other than

using information on parts of proteins, genes, and the various other macromolecular

entities, systems analysis demands the information on the relationships between

molecular parts and how these parts function together [14]. This approach is causing

scientists to gradually abandon reductionist approaches while adapting synthetic

approaches to identify characteristics and integrate biological data that can be used

for quantitative and detailed qualitative predictions in biology systems. Information

integration from data sources are heavily depending on a synthetic or integrated view

of biology [14].

A hefty amount of research has been done in evolutionary biology in the past few

decades. It has highly depended on sequence evaluations at protein levels and of

genes. In future work, the approach will grow to be more dependent on tracking DNA

sequences and evolution of genomes [14].

Essentially, research discovery enables researchers to obtain complex information

from biology and experimental observations of diversity and heterogeneity [14].

Implementation of solid information infrastructures are essential to biology and

required in computing activities and databases. An example of how biological

 12

research has gradually grown more dependent on integration of computational

activities and experimental procedures are shown in Figure 2.1.

Figure 2.1 Process of Life Science Discovery (Elizabeth, 1998)

Relations between the area of gene expression profiles, systems biology, proteomics,

and genomics are highly dependent on the integration of experimental procedures

along with a searchable database, computational algorithm applications and analysis

tools [14]. Data from computational analysis and database searches are essential to

the whole discovery procedure. Since the selected systems are complex to study, the

derived data from simulations and derived computational models obtained from

databases are combined to generate experimental data for better interpretations.

Studies on protein pathways, cellular and biochemical processes, simulation and

modelling of protein-protein interactions, genetic regulatory networks, normal and

diseased physiologies are currently in their infancy state, hence, some changes are

needed [14]. Quantitative details are missing in the process and experimental

observations are needed to fill in the missing pieces. The boundaries between these

experimental datasets and computationally generated data are not defined due to close

interaction, therefore, multidisciplinary groups are required to integrate these

approaches in accelerating progress. With the continuing advances made using

 13

experimental methods, information infrastructure can compute the understanding of

biology with ease [14].

 The Biological Data Nature

As high-throughput technologies are introduced to the biological research field and

advanced genome projects, the amount of obtainable data is highly increased and

contributed to the large data volume growth as stated by Sidhu et al. [15]. However,

data volume is not the focus point in life science. Diversity and variability of data are

much more important compared to data volume.

According to Sidhu et al. [15], the structure of a biological dataset is highly complex,

and it is organized in a free and flexible hierarchy that reflects the understanding of

the complicated living systems involved. These living systems contain information on

genes and proteins, regulatory network and biochemical pathways, protein-protein

interaction, cells and tissues, ecosystems on earth and organisms and populations.

This raises a series of challenges in modelling, informatics and simulations. There are

varieties of biological data due to the complex biological systems ranging from

protein and nucleic acid sequences, different levels of biological images resolutions,

literature publications and laboratory records, to dozens of technological experimental

outputs such as light and electronic microscopy, microarray chips, mass spectrometry

as well as results from Nuclear Magnetic Resonance (NMR) [15].

The differences of different types of individual and species varies immensely, as well

as the nature of biological data. For instance, the function and structure of organs are

different depending on the age and gender, normal or unhealthy state, and the type of

species [15]. Biological research is still undergoing an expansion where different

 14

fields in biology are still in their growing stages. Data contributed by these systems

are still incomplete and inconsistent. This is a challenging issue in the process of

modelling biological objects.

 Constant Evolution of a Domain

Lacroix [16] mentioned as domains are constantly changing, the Biological

Information Systems must be constructed in a way where handling data is possible

while managing the technology and legacy data. Existing data management

methodologies are unable to address the constant changes in these domains. There are

two major problems that need to be addressed in scientific data management which

are changes in data identification and data representation [16].

 Traditional Database Management

There are three varieties widely used in traditional data management systems.

These varieties are relational, object-relational, and object-oriented.

According to Lacroix [16], data in relational database systems are represented

in a form of relations table with data representation through classes relying on

a basic relational representation provided by object-relation systems. The data

representation is user-friendly as data are organized through classes as well

for object-oriented databases. Traditional database systems are made to

support their own data transactions, however, there is a limitation in data

changes that can be supported by the data organization of the database. For

example, the changes are limited to renaming, adding or removing attributes

and relations, and other particulars. Complex schema transactions are not

 15

supported by traditional database systems as the initial designs did not take

them into account. To define a new schema, a new database will need to be

constructed. This will bring changes in the data organization of the database.

From a biological data source standpoint, the said process is too troublesome

and unacceptable when changes have to be frequently made [16].

From another aspect, traditional database systems depend heavily on pre-

defined identities. The set of attributes are primary keys that identify objects

and places them in a relational database. As biological data source attributes

are ever changing, the existing concept is not efficient due to the fact that the

primary keys do not change over time [16]. There is no biological data

management system designed to keep up with the frequent changes in

identification, such as tracking the frequent changes of identity in objects.

 The Fusion of Scientific Data

Data fusion defines an implementation of data that are obtained from different

types of sources. Scientific data are obtained from different instruments

performing mass spectrometry, microarrays and other specific procedures

[16]. These instruments rely on proper calibration parameters setup for

standardized data collection. Data collected from similar tasks performed on

these instruments can be implemented into the same dataset for analysis.

Using a traditional database approach, complete dataset measurements and

parameters are required for complex queries for the data analysis process [16].

If any information is missing or incomplete, the data will be ignored and left

unprocessed, which is unacceptable to life data scientists.

 16

 Differences of Structured and Semi-Structured Data

The integration of datasets that are alike but disparate in the biological domain

is not supported by existing traditional database methodologies. The solution

for this problem is to adhere to the structure offered by semi-structured

methods [16]. A feature where data organization enables the changes of new

attributes and missing attributes are introduced in this semi-structured method.

Semi-structured data is usually shown as either rooted, edge-labelled or

directed graph. XML is one of the examples of semi-structured data. XML has

become the standard for storing, describing and interchanging data between

many heterogeneous biological databases [16]. The facilities for XML content

definition are provided by the combination of multiple XML schemas [16].

Flexibility and platform support that are ideal for capturing and representing

the complicated data types of biological data can be provided by XML.

 17

 Data Integration Challenges

Data Integration was never easy to begin with. Researchers are struggling to improve

data integration processes to ensure that data translation can be done in a fast and

efficient manner. Kadadi et al. [17] had conducted a survey on the challenges of data

integration and interoperability in large scale data and summarized these challenges

into 7 parts: accommodation for scope of data, data inconsistency, query optimization,

inadequate resources, scalability, implementing support system and Extract Load

Transform (ETL) processes in big data. The challenge to accommodate the scope of

large datasets and the addition of new domains in any organization can be overcome

by integrating high performance computing (HPC) environments and high-

performance data storage, for example, hybrid storage devices with the combined

functionality of a standard hard disk drive (HDD) and solid state drive (SSD) to reduce

data latency and to provide fast data access. However, this method leads to the need

to upgrade or purchase new equipment.

In a survey conducted by Kadadi et al. [17], they clarified that data from different

sources leads to data inconsistency, thus high computing resources are needed to

process unstructured data from large data sources. Therefore, query operations are

easier to perform on structured data to analyze and obtain data for various uses, such

as business decisions. However, in large datasets, there is normally a high volume of

unstructured data. By referring to the survey conducted, query optimization may affect

the attributes when data integration takes place at any level or during data mapping to

existing or new schema [17].

Furthermore, Kadadi et al. [17] surveyed where problems arise with inadequate

resources in data integration implementation; these problems include insufficient

financial resources and insufficient skilled personnel in data integration. They also

 18

mentioned high level skilled personnel in big data are hard to find and these skilled

personnel requires a high level of experience at dealing with data integration modules.

Furthermore, the process of obtaining new licenses for tools and technologies from

vendors required for data integration implementation is tedious.

Kadadi et al. [17] identified that scalability issues occurred in scenarios where new

data are extracted and integrated from different sources along with legacy systems

data. Attempting this heterogeneous integration may affect the performance of the

system due to the need to undergo updates and modifications for the system to adapt

to newer technologies. However, if legacy systems meet the requirements and are

compatible with newer technologies, the process is easier as less updates and

modifications are necessary in the ensuing integration process.

Support systems need to be implemented by organizations to handle updates and

report errors in every step of the data integration process. In the survey conducted by

Kadadi et al. [17], they discovered that implementing support systems will require a

training module to train professionals on error report handling, and this will require a

huge sum of investment for organizations. However, through the implementation of

support systems, organizations can determine the weaknesses existing in their system

architecture.

Extract Load Transform (ELT) is an example of data integration. ELT processes every

piece of data that goes through it and outputs these data as a huge dataset entity after

the integration process. The identification of the ELT processes takes place after the

data integration process to determine whether it would affect functionality of database

storage due to storing huge data chunks [17]. To improve load processes, key

constraints are disabled during the load processing part and re-enabled after the

 19

process is done. This is a step required to be done manually as suggested by Kadadi

et al. [17].

 Semantic Integration Challenges

In semantic integration, concepts of interest are defined as a common meta-model,

and the properties of data sources are portrayed as common concepts [18]. The system

manages data sources while users interact with data mapping. Despite the significance

and usefulness of semantic integration, it still has flaws that are difficult to solve.

Doan and Halevy [19] had conducted a survey on challenges of semantic integration

and these challenges are hard to address due to several fundamental reasons: Involved

elements of semantics can only relate to few information sources, the data creators,

related schema, documentation and the data itself. Semantic information is difficult to

extract, especially from the data creators and documentation. Doan and Halevy [19]

stated in the survey that data creators of older databases are likely retired, have moved

or have forgotten about their created data. Moreover, any documentation is likely to

be untidy, incorrect or outdated. This is a huge problem as the process of matching

schema elements is normally done based on the clues between schema and data, for

example, the name of the elements, structures, values, types and integrity constraints.

Doan and Halevy [19] clarified that these clues are not always reliable as elements

might have the same name but can be two different entities, and they are often

incomplete. For example, an element with the name contact-agent implies that it is

related to the agent but does not provide any substantial information to justify the

meaning of the relationship; it could be the agent name or phone number. In the

scenario brought up in the survey conducted by Doan and Halevy [19], to match an

element s from schema S with element t from schema T, all the other elements in

 20

schema T needs to be examined to ensure element t can be represented with s. To

further complicate matters, the overall matching process is dependent on the

application used. Doan and Halevy [19] suggested users oversee the matching process

to avoid any mismatches but user opinion is subjective and this leads to the need of

assembling a committee to determine whether the mapping process is correct.

Due to these challenges, semantic matching needed to be done manually and has been

long known to be error-prone. For example, 0069n a case where GTE

telecommunications attempted to integrate 40 databases with 27,000 elements, the

planners for this project estimated that it will take 12 person-years to find

documentation and element matches without the original developers of the databases

[19].

 Biomedical Ontologies

The existing methodologies do not discuss the complex issues of biological data.

Recent efforts made on ontologies intended to provide a way to solve these complex

problems. According to Gruber [20], the term ontology originates from a

philosophical term referring to ‘the object of existence’ and from the computer science

community’s perspective, it is known as ‘specification of conceptualization’ for

sharing information in artificial intelligence. A conceptual framework is delivered by

ontologies for a significant structured image through common vocabulary provided

by biological or medical domains [21]. These can be used by either automated

software agents or humans in the domain. The concepts, relationships, definition of

relationships and the prospect of ontology rules and axiom definitions are included by

shared vocabulary to define the mechanism used to control the substances which are

 21

introduced into the ontology and applicable on logical inference [21]. Ontologies are

slowly emerging as a common language in biomedicine for higher effective

communication needed across multiple sources involving information and biological

data.

 Biomedical Ontologies Open Issues

Researchers tends to select different types of organisms depending on their

research work in different fields of biological systems as they progress on their

research. For instance, to study human heart disease, the rat is chosen as it is

a good model to study. Meanwhile, to study cellular differentiation, the fly is

chosen for the task. Each of the model systems consists of paid database

overseers collecting and storing biological data for the specific organism [21].

A list of keywords is generated by scientific text mining that are used as the

terms for gene ontology. Different terms might be used by different database

projects referring to the same theory or concept and sometimes the same term

might be referring to a completely different concept. However, these terms

might not relate to each other formally in any possible way [21]. To tackle this

problem, organized and precise vocabularies are provided by Gene Ontology

(GO) and can be shared between biological database to define the gene

products. Whether it is from a different or the same database, this enables the

querying process of gene products to be performed more easily through

information sharing of biological characteristics.

The application of GO links up ontology nodes and proteins, especially for

protein annotation over gene ontology. The GO Consortium developed a

 22

software platform named GO Engine through the combination of harsh

sequences of homology comparisons with the analysis of text information to

annotate proteins efficiently [21]. There are new genes forming during

evolution created through mutation, recombination with ancestral genes and

duplication. Whenever one of the species evolves, high levels of homology

will be retained in most of the orthologs.

In biomedical literature, individual gene and protein associated text

information is buried deeply among the other biomedical literature. There are

few papers published recently describing the growth of numerous methods to

extract text information automatically. However, direct implementation of

these methods in GO annotation are insignificant [21] but with GO Engine, it

can gather homology information, analyze text information and unique

procedures of protein-clustering to construct the finest annotations possible.

In recent events, Protein Data Bank (PDB) has also released a few versions of

PDB Exchange Dictionary and its archival files in the format of XML, namely

PDBML. Both XML Representations and PDB Exchange uses similar logical

data organization but disadvantages of being able to maintain a rational

communication with PDB Exchange representation is PDBML lacking

categorized structure properties in XML data. Ontology induction tool, a

directed acyclic graph (DAG) was introduced to build protein ontology

including MEDLINE abstracts and UNIPROT protein names. It represents the

relationship between protein literatures and knowledge on protein synthesis

process. Nevertheless, the process is not formalized, thus, it can’t be

recognized as a protein ontology [21].

 23

At the completion of the Human Genome Project (HGP) in April 2003,

Genomes to Life Initiative (GTL) was announced [21]. Ongoing management

and the coordination of GTL are guided from the experience from HGP states

the objective, “To correlate information about multiprotein machines with data

in major protein databases to better understand sequence, structure and

function of protein machines”. The objective can be achieved up to certain

extent by constructing the Generic Protein Ontology based on the Generic

Protein Ontology vocabulary for proteomics and Specialized Domain

Ontologies for every main protein family [21].

 24

 Creation of Ontology Methodologies

A new ‘skeletal model’ was presented by Uschold and King [22] as a design and

evaluation for ontologies. There are several stages in the skeletal model that are

essential for any ontology engineering related methodology. There are several specific

principles designed by Uschold and Gruninger [23] to be uphold in each phase, which

are: coherence (consistency), extensibility, clarity, minimal ontological commitment,

and minimal encoding bias [20]. A semi-informal ontology named The Enterprise

Ontology has been created by Uschold et al. [24] by following the design principles

mentioned above for ontology capture phase.

Based off the experiences of creating the TOVE (TOronto Virtual Enterprise)

ontology, Gruninger and Fox [25] developed a new methodology for both design and

evaluation for ontologies. However, this methodology was designed base on a very

rigid method, hence, this methodology is not suitable for any less formal ontologies.

Furthermore, this methodology is not sufficient for a first-order logic based ontology

language as a first-order logic language is used for this methodology for the

formulation of axioms, definitions and its justification.

A methodology presented by Staab et al. [26] was created based on the On-To-

Knowledge (OTK), which is a primary key point in constructing large Knowledge

Management systems. In the methodology presented, the differences of both

knowledge process and knowledge meta-process is made clearly. The knowledge

process is responsible for Knowledge Management system which deals with

knowledge acquisition and retrieval while knowledge meta-process deals with

managing the knowledges in the system. In ontology terms, the first part of the

methodology deals with the usage of ontology while the latter deals with the initial

set up, construction and maintenance of the ontologies.

 25

The skeletal model by Uschold and King is not a methodology, but rather a standard

to be followed by ontology engineering related methodologies. Meanwhile, the

methodology presented by Gruninger and Fox is only suitable for formal logic

languages and it was specifically created using KIF language [27] [28]. This

methodology was tailored for formal authentication through the usage of formal

questions. However, the approach of METHONTOLOGY is much more generic and

a comprehensive methodology compared to the others. METHONTOLOGY offers a

generic methodology for all types of ontology while obeying the standard of IEEE

software development process. The On-To-Knowledge methodology can give a better

support for ontology developer as it is built specifically for the development of both

domain and application related ontologies, which is the Knowledge Management

applications for ontologies.

 The Creation of Protein Ontology with On-To-Knowledge Methodology

The On-To-Knowledge methodology has two main approaches for

Knowledge Management during the creation of Protein Ontology:

1. Data Focus: Mainly pragmatic, the data focus approach has been chosen

by organizations that maintain protein data in Knowledge Management; to

review the current protein databases and identifies the knowledge needs.

Meta-data is defined as “Data that describes the structure of data” in data

focus.

2. Knowledge Item Focus: For the knowledge item focus, the established

knowledge of Protein Ontology classifies knowledge needs through the

 26

examination of knowledge items. The meta-data for knowledge item focus

is defined as “Data describing issues related to the content of data”.

Figure 2.2 Process of On-To-Knowledge (Uschold and King, 1995)

Once the implementation of knowledge management system for Protein

Ontology has been done, the knowledge processes cycle through these few

steps, which are also illustrated in Figure 2.2 [26]:

1. The process of creating and importing Protein Data from different data

sources.

2. Gathering knowledge related to the concepts of protein ontology,

including protein data annotation and the references of protein ontology

concepts.

 27

3. The process of retrieving and accessing knowledge from the concepts of

protein ontology using a query.

4. User goals are achieved through the usage of extracted knowledge.

Figure 2.3 Ontology Development with On-To-Knowledge (Mariano et

al., 2002)

There are several phases in the process of protein ontology development using

On-To-Knowledge methodology as shown in the Figure 2.3 [29]:

1. Phase one of the process is the feasibility study. This phase is implemented

from the CommonKADS methodology [30]. CommonKADS is a

framework used to develop a knowledge-based system (KBS) and it

supports the features of KBS development project, for example:

acquisition of knowledge, problem identification, project management,

 28

knowledge modelling and analysis, system integration issues analysis,

capturing user requirements, and knowledge system design. The outcome,

that has been determined after conducting the feasibility study, was that

On-To-Knowledge should be used to construct Protein Ontology for

maximum support on its development, maintenance and evaluation.

2. Phase two, which is the actual first phase in development, outputs the

ontology requirement specification. The possibilities of having existing

protein data sources integrated into the ontology are analyzed in this stage.

In addition, there are a number of queries generated to capture the protein

ontology requirements for existing protein data and knowledge

frameworks.

3. In phase three, which is the refinement phase, proteomics domain-oriented

protein ontology is developed based on the specification received from

phase two. There are several sub phases for this phase where:

a. Baseline taxonomy was gathered for Protein Ontology

b. Seed ontology was created according to the baseline taxonomy which

has the related protein data concepts and descriptions for the protein

data relationships.

c. Target protein ontology was then generated through the usage of seed

ontology and expressed in the form of a formal language, Web

Ontology Language [31].

4. Phase four, the evaluation phase is the final phase of the ontology

development stage. During this phase, the specification document and

queries are used to verify the protein ontology. The usage of protein

ontology in proteomics domain is evaluated in this phase as well. Feedback

 29

gathered from different research teams that are using the protein ontology

during the evaluation phase is processed in the refinement phase. Through

this method, the process will go through several cycles until the protein

ontology has been verified to be acceptable for usage.

5. Phase five, the maintenance phase is engaged after the protein ontology

has been deployed. In this phase, all the changes that occur in the world

will reflect onto the protein ontology.

 Ontology-based approach for Semantic Integration

An approach of semantic information integration done by Ngamnij and Somjit [32]

for electronic patient records (EPR) using an ontology and web service model by using

ontology for mapping purposes, data extraction, data translation and data integration

[32]. The concept of their system is to integrate data from various healthcare institutes

into a single database to ease the data retrieval process. In their framework [32],

Semantic Bridge Ontology Mapping was used to map web services descriptions and

databases of healthcare institutes in WSDL format. The data was then used to

construct Ontology-based Patient Record metadata (OPRM). OPRM data needs to be

translated and stored via a Domain Ontology Extraction and Semantic Patient Record

Integration process [32]. Domain Ontology Extraction converts information of patient

from each healthcare system and convert these records to OWL (Web Ontology

Language) format using Jena API [33], a Java open source Semantic Web framework.

Semantic Patient Record Integration then stores the data into a single database [32]

that maps the description of multiple EPR. An EPR Semantic Search allows users to

retrieve information from the stored OPRM, for example, the type of medical

 30

treatment a patient is receiving. This is the approach made by Ngamnij and Somjit

[32] as an alternative way to tackle the multiple data sources querying issue.

Liu Xin et al. [34] introduced a semantic data integration approach with domain

ontology, OPSDS. OPSDS is used widely in multiple platforms of China Petroleum

Corporation (CNPC) and it is introduced to integrate oil production engineering data.

This methodology introduced by Liu Xin et al. [34] focuses on data integration using

domain-oriented method, enabling users to access data and shared service through the

usage of transforming query, mapping of ontology and data cleaning. The approach

of Liu Xin et al. [34] methodology is to build a system where users and applications

can access data at ease with the assists of a well-equipped semantic view for

underlying data. Figure 2.4 shows the OPSDS architecture.

Figure 2.4 OPSDS Architecture (Liu Xin et al., 2016)

 31

The bottom layer of the architecture as shown in Figure 2.4 are different databases

containing different data sources, for example, SQL Server, Oracle, and other

databases. The middle layer of the architecture consists of local ontologies mined from

the various data sources from the bottom layer. Therefore, the group of local

ontologies combined and formed a unified global ontology. With this architecture, Liu

Xin et al. [34] mentions where users and applications can retrieve data easily by

querying the global ontology.

The focus of the architecture is the global ontology. Liu Xin et al. [34] way of

constructing a global ontology is through adapting a hybrid strategy. Figure 2.5 shows

the process of global ontology.

Figure 2.5 Process of Global Ontology (Liu Xin et al., 2016)

The first phase of the global ontology process is filtering data from different data

sources, such as entities of the data, relationships and attributes. The second phase of

the process is to generate local ontologies through retrieving schemas from databases

and items from the synonym table. The global ontology process is completed through

ontology evolution, mapping and applying semantic constraints [34].

 32

In summary, the existing methodologies are focusing on integrating multiple data

sources into a single data source and applying ontology-based semantic integration as

a solution to the problem of data query for multiple data sources. Existing

methodologies can be used for integrating small amount of data, however, not for

petabytes of data. Taking Research Collaboratory for Structural Bioinformatics

(RCSB) Protein Data Bank (PDB) as an example, RCSB RPD databases are updated

from time to time and it is hard and expensive for these methodologies to live update

their database while mapping data at the same time. Multiple data integration

challenges are not properly addressed even with semantic integration and ontology-

based semantic integration approaches.

In this research, the focus is on querying data sources with different data structures

without the need of data integration and data translation. Therefore, the

implementation of a smart query system using Language Integrated Query is required

to reach the research goal.

 33

Chapter 3 Methodology
__

3.1 Overview

3.2 Large Scale Data Analytics using Language Integrated Query

3.3 Cloud Computing as a Platform

3.4 Algebraic Operators for Biomedical Ontologies

 34

 Overview

The nature of protein data is complicated and constantly updated by researchers

around the globe. To query from multiple data sources, a query framework written

using Python with the concept of Language Integrated Query (LINQ) is proposed as

the solution to overcome the challenges presented in previous chapters. A cloud

computing platform is used for this research to host the query framework to enable

the framework to use the vast resources available to perform a query with minimal

latency while avoiding computing resource deficiency. In this chapter, Language

Integrated Query, cloud computing and algebraic operators are explained in detail.

 Large Scale Data Analytics with Language Integrated Query

Traditional type of queries are expressed in simple string instead of having type

checking during compilation or IntelliSense support. To query databases, different

query languages need to be studied and understood to use each data source with

differing data structures, such as SQL databases, variable Web services, XML

documents and others [35].

Language integrated query bridges both worlds of data and object. It was first

introduced in Visual Studio 2008 and .NET Framework version 3.5 [35]. Language

integrated query can be written in Python, C# or Visual Basic in Visual Studio and it

is compatible with SQL Server databases, ADO.NET datasets and XML documents

[35]. This method can be applied in new projects and existing projects. Query writing

is easier and better through the usage of keywords of the language and by using

familiar operations with typed collections of objects.

 35

Parallel Language Integrated Query is an engine included in .NET framework version

4 and it is used to execute queries in a parallel manner. This execution of queries can

be sped up efficiently through the usage of computing resources provided by the host

computer and this feature relies heavily on the host computer itself, in this case, the

cloud computing platform. Another major component for Language Integrated Query

is the ability to query across relationships. This approach enables users to query

through accessing properties of a relationship and to navigate from one object to

another [36]. The access operations are transformed into a complex join or

corresponding sub queries in an alternative SQL [36].

For this research, Python is chosen to be the most suitable and robust programming

language to be used to develop a LINQ query framework. Python is a popular high-

level programming language widely used for Rapid Application Development which

has the functions of object-oriented and dynamic semantics [37]. A vast standard

library and interpreter of Python are obtainable in binary or source code and available

to all platforms for free. It is widely used for Rapid Application Development,

scripting or connecting existing modules together due to python’s effectiveness in data

structures, dynamic binding and typing. Through the usage of python, program

maintenance cost is lower as the language itself is simpler and easier to learn

compared to other languages. Its modules and package capabilities widely support the

idea of modular programming and reusing of code [37]. Programmers using Python

are not required to compile their programs, an essential process in all other major

programming language currently available, making the process of editing to

debugging cycle more efficient [37].

 36

 Cloud Computing as a Platform

To allow the query framework to operate smoothly, it is deployed on a cloud

computing platform, Microsoft Azure, to use its vast computing resources. Moreover,

Microsoft Azure allows the query framework to benefit from much lower operating

cost compared to having on-site hardware.

Cloud computing can be defined as the use of hosted services through the internet.

The ‘Cloud’ moniker came from the flowchart or cloud-shaped diagram by which the

internet was generally represented [38]. Cloud computing has been utilized by users

over the world to gain advantages over current technologies. The operational model

changes the initial impression of needing to store applications in physical hardware to

the impression that it is unnecessary to store these applications in physical hardware.

Due to its flexibility, the computational resources can be changed easily depending

on the demand of users [38]. The available cloud services are ready to be used without

the need of great knowledge or skills to deploy these services [39]. Services are ready

to be deployed and can be done over the internet helping to cut the cost required to

hire professional personnel for the task and this helps with the financial situation of

any company.

 37

 Algebraic Operators for Biomedical Ontologies

Sidhu et al. proposed a Protein Ontology algebra that includes four algebraic operators

for this research methodology to enables the structure of numerous levels of data

stored for retrieving data [21]. The four main algebraic operators used to develop the

query framework, which are select, union, intersection, and except operator. Join

Operator will not be used for this query framework as Select Operator covers the

necessary functions.

 Select Operator

The projection over sequence is performed by the Select Operator. The Select

Operator assigns and returns enumerable object to capture arguments passed

to the operator. An argument null exception is returned if any argument is null

[40].

The Select operator allows the user to highlight and select the portions of an

ontology related to the user’s query. The Select Operator selects the instances

meeting the condition given through the ontology structure and the selected

concept given. These instances, which met the given condition, would belong

to a specific sub tree or are the subset of the instances that belong to one or

more sub trees. The Select Operator selects only those edges in the ontology

that connect nodes in each set. The Select Operator, OS is defined as:

Definition 1:

𝑂𝑆 = 𝜎(𝑁𝑆, 𝐸𝑆, 𝑅𝑆) 𝑤ℎ𝑒𝑟𝑒

𝑁𝑆 = 𝑁𝑜𝑑𝑒𝑠(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒)

𝐸𝑆 = 𝐸𝑑𝑔𝑒𝑠(∀𝑁 ∈ 𝑁𝑆)

 38

N, E, R here are represented as set of nodes, edges and the relationships of the

ontology graph while NS, ES, RS are presenting the nodes, edges and

relationships of the set selection. The join condition operator won’t be

discussed here as the Select Operator can be used in the following forms:

• Simple-Condition: Where the select condition is specified using the simple

content types, like Generic Concepts, in the ontology and the select

operator is value-based;

• Complex-Condition: Where the select condition is specified using

complex content types, like Derived Concepts, in the ontology and the

select operator is structure-based; and,

• Pattern-Condition: Where the select condition is specified using a mix of

simple and/or complex content types in the hierarchy with additional

constraints such as ordering defined by use of Sequence Relationships in

the ontology and others, where the select operator is pattern-based.

Example 1

When the user queries information in respect to Protein Families in Protein

Ontology, the details of every example from the Family Concept is displayed

by using the Select Operator which is shown in Figure 3.1.

 39

 Figure 3.1 Usage of Select Operator in Instances of Family Concept

(Sidhu et al., 2009)

 Union Operator

The union set between two sequences is produced by the Union Operator. The

Union Operator assigns and returns enumerable object to capture arguments

which are passed on to the operator. An argument null exception is returned if

any argument is null [40].

When Union returns the enumerated object, first and second sequences are

enumerated, in that order, and will yield onto each element that which was not

previously yielded. Elements are compared by using the non-null comparer

argument if possible. Otherwise, the equality comparer is utilized.

The union of two parts of the ontology, O1 = (N1, E1, R1), and O2 = (N2, E2,

R2) with respect to the semantic relationships (SR) of the ontology is

expressed as:

 40

Definition 2:

𝑂𝐼(1,2) = 𝑂1 ∪𝑆𝑅 𝑂2 = (𝑁𝑈, 𝐸𝑈, 𝑅𝑈), 𝑤ℎ𝑒𝑟𝑒,

𝑁𝑈 = 𝑁1 ∪ 𝑁2 ∪ 𝑁𝐼(1,2)

𝐸𝑈 = 𝐸1 ∪ 𝐸2 ∪ 𝐸𝐼(1,2), 𝑎𝑛𝑑

𝑅𝑈 = 𝑅1 ∪ 𝑅2 ∪ 𝑅𝐼(1,2), 𝑤ℎ𝑒𝑟𝑒,

𝑂𝐼(1,2) = 𝑂1 ∩𝑆𝑅 𝑂2

= (𝑁𝐼(1,2), 𝐸𝐼(1,2), 𝑅𝐼(1,2)) 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑖𝑒𝑠.

Two parts of the ontology are combined by the union operation and only one

copy of the intersection concepts is retained. N, E, R here are represented as

set of nodes, edges and the relationships of the ontology graph while NU, EU,

RU are presenting the nodes, edges and relationships of the set selection.

Example 2

When a person requires all the available information in Protein Ontology in

respect to the Protein Structure and Protein Families, every single information

which are highlighted in Figure 3.2 is then output. That is how the Union

Operator is used (Family Structure).

 41

 Figure 3.2 Usage of Union Operator (Sidhu et al., 2009)

 Intersection Operator

The intersection set between two sequences is produced by the Intersect

Operator. The Intersect Operator assigns and returns enumerable object to

capture arguments which are passed on to the operator. An argument null

exception is returned if any argument is null [40].

When Intersect returns the enumerated object, the first sequence is

enumerated, all the distinct elements of the sequence are collected. The second

sequence is enumerated, marking all elements that occur in both sequences.

The marked elements are yielded in the manner of how they were collected.

Elements are compared by using the non-null comparer argument if possible

or using the equality comparer.

Intersection is a particularly significant and fascinating binary operation.

There are two parts, O1 = (N1, E1, R1), and O2 = (N2, E2, R2) in the ontology

whereas an answer to the query submitted is provided by the composition of

 42

both ontologies. N, E, R here are represented as set of nodes, edges and the set

of Semantic Relationship. The ontology semantic relationships in respect to

the intersection of two parts of the intersection operation is:

Definition 3:

𝑂𝐼(1,2) = 𝑂1 ∩𝑆𝑅 𝑂2 = (𝑁𝐼, 𝐸𝐼, 𝑅𝐼), 𝑤ℎ𝑒𝑟𝑒

𝑁𝐼 = 𝑁𝑜𝑑𝑒𝑠(𝑆𝑅(𝑂1, 𝑂2)),

𝐸𝐼 = 𝐸𝑑𝑔𝑒𝑠(𝐸1, 𝑁𝐼 ∩ 𝑁1) + 𝐸𝑑𝑔𝑒𝑠(𝐸2, 𝑁𝐼 ∩ 𝑁2)

+ 𝐸𝑑𝑔𝑒𝑠(𝑆𝑅(𝑂1, 𝑂2)), 𝑎𝑛𝑑

𝑅𝐼 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠(𝑂1, 𝑁𝐼 ∩ 𝑁1) + 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠(𝑂2, 𝑁𝐼 ∩ 𝑁2)

+ 𝑆𝑅(𝑂1, 𝑂2) − 𝐸𝑑𝑔𝑒𝑠(𝑆𝑅(𝑂1, 𝑂2))

SR is totally different compared to R since that it does not include sequences

in it. The nodes which are in the intersection ontology are the nodes which

exists in semantic relationship, which is represented by SR. The intersection

ontology edges among the nodes are either already existing in the ontology

sources or has been recognized as SR. The connections of the intersection

ontology are the ones that have still not been modeled as the edges. The

connections which are existing in the ontology sources only use the concepts

that are happening in the intersection ontology.

 43

 Example 3

When a query needs all the available information which are common between

the Protein Structure and the Protein Entry descriptions in Protein Ontology,

the only common thing in between both is the ChainsRef. As shown in Figure

3.3 that is how the Intersection Operator is used (Entry Structure).

 Figure 3.4 Usage of Intersection Operator (Sidhu et al., 2009)

 44

 Except Operator

The differences of both two sequences is produced by the Except Operator.

The Except Operator assigns and returns enumerable objects to capture

arguments which are passed on to the operator. An argument null exception is

returned if any argument is null [40].

When Except returns the enumerated object, the first sequence is enumerated,

and all the distinct elements of that sequence are collected. The second

sequence is enumerated and the elements which resides in the first sequence

is deleted. Then in order, the remaining elements are finally yielded in the way

they were collected. Elements are compared by using the non-null comparer

argument if it is possible. Otherwise, the equality comparer is utilized.

The differences between O1 and O2, which are the two parts of the ontology

are presented as O1 – O2 which includes portions from the first part which are

not the common in the second part. The difference can also be represented

as 𝑂1 − (𝑂1 ∩𝑆𝑅 𝑂2). Nodes, edges and relationships that are not present in

the intersection, but exists in the first ontology.

 Example 4

When a query needed all the available information on Protein Entry without

the Protein Structure and Protein Entry descriptions which resides in Protein

Ontology, every single information of Protein Entry that is not been

highlighted in the previous Figure 3 is displayed. As ChainsRef is the only

common in between both Protein Structure and Protein Entry, everything else

excluding ChainsRef is output for the Protein Entry by using the Difference

 45

Operator (Entry - (Entry Structure)). The objective of having to compute

the differences is to optimize the Protein Ontology maintenance.

The instance of Protein Ontology storage is huge and there are a lot of user

constantly adding instances to it. The differences will expose the instances that

have not been keyed in properly or if there are any changes to the data sources

which are being integrated by Protein Ontology. The changes which are

uncovered by the differences are forwarded to the administrator.

Therefore, the Semantic Relationships do not need to be modified or changed.

If changes arise from the changes to the data source which was integrated by

Protein Ontology, then the semantic relation and the concepts need to be

clarified for any further changes needed to remove the difference.

 46

Chapter 4 Query Framework
__

4.1 Functions for querying Research Collaboratory for Structural

Bioinformatics (RCSB) Protein Data Bank (PDB)

4.2 Functions for querying information with PDB ID

4.3 Helper functions

 47

 Functions for querying Research Collaboratory for Structural

Bioinformatics (RCSB) Protein Data Bank (PDB)

Protein Data Bank (PDB) has a vast amount of resources related to protein 3D models,

complex assemblies, and nucleic acids that can be utilized by both students and

researchers for learning the characteristics of biomedicine. Therefore, a framework is

needed to effectively retrieve information from their database.

Figure 4.1 LINQ Query Framework Processes

Figure 4.1 shows the general idea of how each cluster of functions work to enable

users to query from RCSB PDB. Details of functions and how it works are further

explained in this chapter.

Querying PDB Databases

String input from user
passed to the querying

functions to prompt PDB
database for results

Compiling Initial Results

Returned results from
PDB database and

compiling into a XML
document.

Analyzing Data Obtained

Results in XML
document are processed
using LINQ functions and
compiled back into XML

document.

Cleaning and Output

Results returned after
analyzing process will go
through cleaning process
to remove symbols and

output to the user.

 48

 Make Query Function

Figure 4.2 shows the structure and python codes for make query function.

Figure 4.2 Make Query Function [Appendix A]

The make_query() function initiates a search based on a list of search terms

and requirements and outputs as a compiled dictionary object which users can

search later on. There are several query types that can be used for the search,

which are as follows:

 49

HoldingsQuery: A normal search of any related PDB IDs

metadata.

ExpTypeQuery : A search based on experimental method, for

example, ‘X-RAY’.

AdvancedKeywordQuery: Any matches that appears in either the title or

abstract.

StructureIdQuery : A normal search by provided structure ID.

ModifiedStructuresQuery : Search based on the structures relevancy.

AdvancedAuthorQuery : A search on entries based on the name of author.

MotifQuery : A normal search for motif.

NoLigandQuery : Search every PDB IDs that has no free ligands.

As an example, a search based on ‘actin network’ will return a result of

‘1D7M’, ‘3W3D’, ‘4A7H’, ‘4A7L’, ‘4A7N’.

 50

 Do Search Function

Figure 4.3 shows the code and structure in python used for search function.

Figure 4.3 Do Search Function [Appendix A]

The function do_search() converts dictionary, dict() object into XML format

which then sends a request to obtain a matching list of IDs according to search

results from PDB. In this case, the results obtained from make_query()

function are converted to XML format and the XML format will prompt PDB

for a list of matching PDB IDs.

 51

 Do Protsym Search Function

Figure 4.4 shows the code and structure of do protsym search function.

Figure 4.4 Do Protsym Search Function [Appendix A]

The function do_protsym_search() searches identical entries from user-

specified symmetry groups in Protein Data Bank, PDB. The total minimum

and maximum deviation allowed is measured in Angstroms, are adjusted to

determine which results will be categorized as an identical symmetry. For

instance, when ‘C9’ has been used as the point group, the results returned are

shown as ‘1KZU’, ‘1NKZ’, ‘2FKW’, ‘3B8M’, ‘3B8N’ respectively.

 52

 Get All Function

Figure 4.5 shows the code used to construct get all function.

Figure 4.5 Get All Function [Appendix A]

The function get_all() lists out all the currently available PDB IDs in the RCSB

Protein Data Bank.

 53

 Functions for looking up information given PDB ID

 Get Info Function

Figure 4.6 shows the code and structure of get info function.

Figure 4.6 Get Info Function [Appendix A]

The function get_info() retrieves all information related to the inserted PDB

ID. By combining the specific URL and PDB ID, information regarding

specific protein data can be retrieved.

 54

 Get PDB File Function

Figure 4.7 shows the structure and codes in Visual Studio of get PDB file

function.

Figure 4.7 Get PDB File Function [Appendix A]

For this function, get_pdb_file() allow users to retrieve the full PDB file

through inputting a desired PDB_ID. There are a few file types can be

retrieved from PDB, namely pdb, cif, xml and structfact. The default selection

is set to pdb, however, users can change the file type to their desired one. The

compressed (gz) file is retrieved from PDB as well in this process.

 55

 Get All Info Function

Figure 4.8 shows the python codes and structure of get all info function.

Figure 4.8 Get All Info Function [Appendix A]

The get_all_info() function serves as a wrapper function for get_info() to tidy

up results that had been retrieved.

 Get Raw Blast Function

Figure 4.9 shows get raw blast codes and structure coded in Visual Studio.

Figure 4.9 Get Raw Blast Function [Appendix A]

The purpose of get_raw_blast() function is to search the full BLAST page for

inserted PDB ID. The BLAST page can be shown in either XML, TXT, or

HTML format depending on the preference of the user. The default setting is

set to HTML.

 56

 Parse Blast Function

Figure 4.10 shows the code and structure written with Python for parse blast

function.

Figure 4.10 Parse Blast Function [Appendix A]

The parse_blast() function is used to clean up retrieved HTML BLAST

selection. BeautifulSoup and re module are needed for this function to work.

The function processes all complicated results from the BLAST search

function and compile matches into a list. A raw text file is shown to display

alignments of all matches. HTML type of inputs are much more suited for this

function compared to the others.

 57

 Get Blast Wrapper Function

Figure 4.11 shows the code for get blast wrapper function.

Figure 4.11 Get Blast Wrapper Function [Appendix A]

The function get_blast2() is an alternative way of searching BLAST with the

inserted PDB ID. This function serves as a wrapper function for

get_raw_blast() and parse_blast().

 Describe PDB Function

Figure 4.12 shows the structure and codes of describe PDB function.

 Figure 4.12 Describe PDB Function [Appendix A]

Function describe_pdb() retrieves requested description and metadata for the

input PDB ID. For example, details that are shown in Figure 4.13 for a search

includes authors, deposition date, experimental method, keywords, nr atoms,

release date, resolution and further related details.

 58

Figure 4.13 Sample Output for Describe PDB Function

 Get Entity Info Function

Figure 4.14 shows constructed codes for get entity info function.

 Figure 4.14 Get Entity Info Function [Appendix A]

The function get_entity_info() returns all information related to the PDB ID.

Information returned to user are entity, type, chain, method, biological

assemblies, release date, resolution and the structure ID as shown in Figure

4.15.

 59

 Figure 4.15 Sample Output for Get Entity Info Function

 Describe Chemical Function

Figure 4.16 shows the code for describe chemical function.

Figure 4.16 Describe Chemical Function [Appendix A]

Function describe_chemical() retrieves chemical description of a requested

chemical ID. Once the chemical ID, for example, ‘NAG’ has been selected to

retrieve its chemical description, the results returned are shown in Figure 4.17.

 60

Figure 4.17 Sample Output for Chemical Function

 Get Ligands Function

Figure 4.18 shows structure and code constructed with Python for get ligands

function.

 Figure 4.18 Get Ligands Function [Appendix A]

Function get_ligands() retrieves ligand information of PDB ID. Ligand

information contain details such as chemical ID, molecular weight, structure

ID and type of chemical. The information that is retrieved is as shown in

Figure 4.19.

 61

 Figure 4.19 Sample Output for Get Ligands Function

 Get Gene Ontology Function

Figure 4.20 shows the codes of get gene ontology function.

 Figure 4.20 Get Gene Ontology Function [Appendix A]

Function get_gene_onto() returns gene ontology information linked to the

PDB ID. The gene ontology information retrieved is shown in Figure 4.21.

 62

 Figure 4.21 Sample Output for Get Gene Ontology Function

 Get Sequence Cluster Function

Figure 4.22 shows the code construction of get sequence cluster function using

Python.

 Figure 4.22 Get Sequence Cluster Function [Appendix A]

Function get_seq_cluster() retrieves the sequence cluster of the assigned PDB

ID with a character chain offset. For example, instead of a normal 4 character

PDB ID, it adds a decimal behind which results in XXXX.X. An example of

the sequence cluster retrieved for a PDB ID chain, 2F5N.A, is shown in Figure

4.23.

 63

 Figure 4.23 Sample Output for Get Sequence Cluster Function

 Get Blast Function

Figure 4.24 shows the code and structure of the get blast function.

 Figure 4.24 Get Blast Function [Appendix A]

The get_blast() function retrieves BLAST results for the user inputted PDB

ID. The search result will return as a form of a nested dictionary which

contains all the BLAST results and their metadata. For example, when an entry

of 2F5N.A is entered as the PDB ID, the returned result is as shown in Figure

4.25.

 64

 Figure 4.25 Sample Output for Get Blast Function

 Get PFAM Function

Figure 4.26 shows the way get PFAM function is constructed using Python.

 Figure 4.26 Get PFAM Function [Appendix A]

The get_pfam() function returns PFAM annotations for a PDB ID. The PFAM

annotations result is as shown in Figure 4.27 below.

 Figure 4.27 Sample Output for Get PFAM Function

 65

 Get Clusters Function

Figure 4.28 shows the code for get cluster function.

 Figure 4.28 Get Clusters Function [Appendix A]

The get_clusters() function returns cluster related web services for a PDB ID.

For example, the representative cluster for 4hhb.A is 2W72.A as shown in

Figure 4.29.

 Figure 4.29 Sample Output for Get Clusters Function

 Find Results Generator Function

Figure 4.30 shows the structure and codes for find results generator function.

 Figure 4.30 Find Results Generator Function [Appendix A]

 66

Function find_results_gen() outputs a generator for results returned by any

search of the protein data bank conducted internally. A sample result is shown

below in Figure 4.31.

Figure 4.31 Sample Output for Find Results Generator Function

 Parse Results Generator Function

Figure 4.32 shows the code and structure for the parse results generator

function.

 Figure 4.32 Parse Results Generator Function [Appendix A]

Function parse_results_gen() queries PDB with a specific search term and

field without violating the existing limitations of the API. If the search result

exceeds the limit, a warning message is displayed to the user to notify that the

results are returned in a timely manner but may be incomplete.

 67

 Find Papers Function

Figure 4.33 shows the code for find papers function.

 Figure 4.33 Find Papers Function [Appendix A]

The function find_papers() searches the RCSB PDB for top papers according

to the keyword relevancy and returns the results as a list. If the search result

exceeds the limitations of the API, an error is displayed as mentioned. As an

example, the search result for the term ‘crispr’ is displayed in Figure 4.34.

Figure 4.34 Sample Output for Find Papers Function

 Find Authors Function

Figure 4.35 shows the constructed structure and code of the find authors

function.

Figure 4.35 Find Authors Function [Appendix A]

 68

The purpose of the find_authors() function is the same as the find_papers

function, just that it searches top authors instead. It searches based on the

number of PDB entries that an author has his or her name linked with and it is

not judged by the order of the author nor the ranking of the entry. Therefore,

if an author has published a significant number of papers related to the search

term, their work will have priority over any other author who wrote fewere

papers that are most likely related to the search term used. An example is

shown in Figure 4.36 when the title ‘crispr’ is used as the search term.

Figure 4.36 Sample Output for Find Authors Function

 Find Dates Function

Figure 4.37 shows find dates function structure and code.

Figure 4.37 Find Dates Function [Appendix A]

The function find_dates() has the same usage as the 2 functions above, except

that it is used to retrieve results from RCSB PDB based on the PDB

submission dates. It can be utilized to retrieve data on the popularity of the

given search term.

 69

 List Taxonomy Function

Figure 4.38 shows the code and structure built using Python for the list

taxonomy function.

Figure 4.38 List Taxonomy Function [Appendix A]

The list_taxa() function examines and returns any taxonomy related

information provided within the description from search results that are

returned by the get_all_info() function. Descriptions from the PDB website

includes the species name in each of their entries and occasionally has

information of body parts or organs. For example, if the user searched for

‘crispr’, the result returned are as shown in Figure 4.39.

 70

 Figure 4.39 Sample Output for List Taxonomy Function

 List Types Function

Figure 4.40 shows the code structure of list types function.

 Figure 4.40 List Types Function [Appendix A]

The list_types() function analyzes the list of PDB IDs provided and searches

the associated structure type of PDB IDs as shown in Figure 4.40. As an

example, when a search was conducted for the keyword ‘cripsr’, the search

result returned will show that it is categorized as a protein.

 71

 Functions for querying information with PDB ID

 To Dictionary Function

Figure 4.41 shows the code of to dictionary function.

 Figure 4.41 To Dictionary Function [Appendix A]

The to_dict() function converts and returns a compressed form of

OrderedDict(), a nested object, as a normal dictionary.

 Remove At Sign Function

Figure 4.42 shows the code for the remove at sign function.

Figure 4.42 Remove At Sign Function [Appendix A]

The remove_at_sign() function as the name suggests, removes any ‘@’

character from the start of key names in a dictionary.

 72

 Remove Duplicates Function

Figure 4.43 shows the remove duplicates function code structure.

 Figure 4.43 Remove Duplicates Function [Appendix A]

The remove_dupes() function removes any duplicated entries from the search

list while not interfering with the order. The standard equivalence testing

method for Python is used to find out whether there are any elements in a list

that are identical to each other. For example, if there are entries of the number

1, 2, 3, 2, 4 and 5, the final appearance is shown as 1, 2, 3, 4 and 5 instead.

 73

 Walk Nested Dictionary Function

Figure 4.44 shows the structure and code written with Python for walk nested

dictionary function.

 Figure 4.44 Walk Nested Dictionary Function [Appendix A]

A nested dictionary may contain huge lists of other dictionaries with unknown

lengths within. Therefore, a depth-first search method is used to find out

whether a key is in any of the dictionaries. The maxdepth variable can be

toggled to determine the maximum depth needed to search a nested dictionary

for the desired result.

 74

Chapter 5 Results
__

5.1 Overview

5.2 Query Web Portal

5.3 Summary

 75

5.1 Overview

For this research, the functionality of the query framework that has been explained in

chapter 4 is implemented on Microsoft Azure.

Figure 5.1 LINQ Query Framework Structure

Figure 5.1 shows the structure of the implemented LINQ query framework. When

users queried through the web portal, PDB Query API retrieves data from protein

databases and processed through LINQ API before returning them to users. The query

framework is accessible in the form of a web portal through any web browsing

application, for example, Internet Explorer, Microsoft Edge, Firefox, and Google

Chrome. The web portal is built to be user friendly and easy to navigate to retrieve

data from RCSB PDB. The results of the query web portal are shown in this chapter.

 76

5.2 Query Web Portal

Figure 5.2 Homepage of Query Web Portal

Figure 5.2 display the homepage of the query web portal built. The web portal is built

to enable users and researchers in Malaysia to be able to access the system with ease

for protein ontology query purposes.

 77

Figure 5.3 Search page of Query Web Portal

Figure 5.3 shows the search page of the query web portal. This search function enables

users to search the RCSB PDB with their desired keyword. For example, a search for

data relevant to ‘crispr’ is entered in the search field as shown above.

 78

Figure 5.4 Search Result for Keyword ‘crispr’

Figure 5.4 displays the search result for the keyword ‘crispr’. As displayed in this

figure, the search function works as intended. The search webpage displays all the

relevant PDB ID and information for the requested search.

 79

Figure 5.5 Information related to Protein ID ‘1WJ9’

Figure 5.5 shows the information related to Protein ID ‘1WJ9’. The full information

of the PDB ID obtained from the search query can be further elaborated when it is

selected. As shown in Figure 5.5, the information that can be accessed are protein

description, molecule, journal, atom sequence, unit cell for cyst, unit cell for origx,

unit cell for scale, helices, sequence residue and sheets.

 80

Figure 5.6 Detailed Information of Protein ID ‘1WJ9’

Figure 5.6 shows the detailed information of protein ID ‘1WJ9’. Each of the PDB ID

attributes can be further expanded through selection to display the full information for

each attribute.

 81

Figure 5.7 Contact Page of Query Web Portal

Figure 5.7 shows the contact page of the query web portal. The contact information

displayed on the webpage enables users or researchers to give feedback on the query

web portal.

 Summary

In this research, a query framework using Language Integrated Query and constructed

web portal for users to query RCSB PDB is presented. Results shows the capabilities

of the query framework to query and retrieve protein information required by user. To

provide sufficient computing resources for the query framework, it is deployed on a

scalable cloud computing platform, Microsoft Azure. This enables the framework to

query without facing any issues involving insufficient resources that may cause the

framework to work in a less ideal way. There are certain limitations that are limiting

the performance of this framework and these limitations will be discussed in chapter

6.

 82

Chapter 6 Conclusion
__

6.1 Conclusion

6.2 Limitation

6.3 Future Works

 83

6.1 Conclusion

The study of this research shows the difficulties faced by the current generation for

database querying. Recent methodologies such as semantic integration focuses on data

integration, data mapping and data translation. These approaches can be applied to

small to medium data sources. However, when it comes to querying databases that are

huge and are being constantly updated by users around the world, these approaches

are not suitable and not cost effective.

To overcome these challenges from a different perspective, a different querying

method using Language Integrated Query is presented in this research. Instead of

integrating existing datasets from different data sources into a single source, we used

Language Integrated Query to build a query framework that is capable of querying

directly from sources without the need for data translation or integration. To ensure

that there are no performance issues, the query framework is implemented on a cloud

computing environment, Microsoft Azure, to utilize the vast computing resources

available there. A user-friendly web portal was built and implemented on Microsoft

Azure for users to search and query the RCSB PDB without any issue.

Through the construction and implementation of the query framework, the framework

can perform thorough searches through RCSB PDB for results as planned. In the

testing phase, the only notable limitation is the search might take a longer period to

be completed depending on the keyword or query that has been searched or requested

by users. The factor of this limitation may be an issue caused by both client and server

side. Further discussion on the limitation will be carried out in the next section of this

chapter.

 84

6.2 Limitations

The only notable limitation occurred in the testing phase of the LINQ framework is

latency issues. The latency issues that occurred in query processes may be caused by

several factors that limit the capabilities of the query framework to function smoothly.

Latency and delay issues caused by the following:

1. The location of where query framework is hosted. In this research, the query

framework is hosted on a South East Asia region Microsoft Azure platform

while RCSB PDB is located and hosted at United States.

2. The traffic directed towards the databases. RCSB PDB is globally used by a

lot of users daily and that may cause a delayed query response in general.

3. Insufficient hardware resources required by query framework due to the usage

of lower specification Virtual Machine on Microsoft Azure.

The identified issues can be improved through these following methods:

1. Changing the hosting location of the virtual machine to the nearest hosting site

for RCSB PDB, in this case in the United States of America.

2. Upgrading of the existing RCSB PDB server infrastructure, mainly hardware,

connection and software wise.

3. Increasing the resources of the Microsoft Azure virtual machine, resulting in

an increase in expenses to maintain Curtin University Malaysia’s existing

cloud computing infrastructure.

However, the main issue that has been presented is with the technology we currently

have, it is still difficult to solve the issue of hosting large scale data and ensuring all

operations run smoothly. Due to the large number of researchers and users using

RCSB PDB, it is hard for the RCSB PDB server to cater to the needs of all these

 85

requests without having a latency issue. Therefore, the delay in querying RCSB PDB

is due to the latency issue and the hardware limitation issue.

Hardware on the web portal deployment plays a huge part in this as well. If the

hardware performance is insufficient, the framework will have a slight delay in

retrieving query results and perform in a less ideal way.

6.3 Future Works

For future development, the infrastructure hosting the Microsoft Azure cloud

computing platform can be improved and improvised to withstand the stress imposed

by the query framework on the hardware available under heavy usage. However, this

method will increase the cost of the project.

Other than that, the program can be further optimized to decrease the latency and

stress load imposed on the hosting server. The existing search functions in the

program can be fashioned into an advanced search that can be featured in the web

portal as well as to only search and return a very specific component of a protein data

from RCSB PDB.

 86

References

[1] S. Bryson, D. Kenwright, M. Cox, D. Ellsworth and R. Haimes, "Visually

exploring gigabyte data sets in real time," in Communications of the ACM,

vol.42, issue 8, pp. 82-90, 1999.

[2] P. Lyman and H. R. Varian. (2000). "How Much Information," University of

California at Berkeley, 2017. [Online]. Available:

http://www2.sims.berkeley.edu/research/projects/how-much-info/.

[3] S. Sicular, ‘Gartner’s Big Data Definition Consists of Three Parts, Not to Be

Confused with Three “V”s’, Forbes, 2013. Available:

http://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-

definition-consists-of-three-parts-not-to-be-confused-with-three -vs/.

[4] Y. Demchenko, P. Grosso, C. de Laat and P. Membrey, "Addressing big data

issues in Scientific Data Infrastructure," 2013 International Conference on

Collaboration Technologies and Systems (CTS), San Diego, CA, 2013, pp. 48-

55.

[5] A. Katal, M. Wazid, and R. H. Goudar, "Big data: Issues, challenges, tools and

Good practices," in Contemporary Computing (IC3), 2013 Sixth International

Conference on, 2013, pp. 404-409.

[6] R. Agrawal, "Big data and its applicatios," 2014 Conference on IT in Business,

Industry and Government (CSIBIG), Indore, 2014, pp. 1-1.

[7] C. Anderson, "The End of Theory: The Data Deluge Makes the Scientific

Method Obsolete, " in Wired Magazine, no. 1607, 2008.

 87

[8] J. Gueyoung, N. Gnanasambandam, and T. Mukherjee, "Synchronous Parallel

Processing of Big-Data Analytics Services to Optimize Performance in

Federated Clouds," in Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on, 2012, pp. 811-818.

[9] A. Rajpurohit, "Big data for business managers — Bridging the gap between

potential and value," 2013 IEEE International Conference on Big Data,

Silicon Valley, CA, 2013, pp. 29-31.

[10] A. Vera-Baquero, R. Colomo-Palacios and O. Molloy, "Business Process

Analytics Using a Big Data Approach," in IT Professional, vol. 15, no. 6, pp.

29-35, Nov.-Dec. 2013.

[11] M. Bada and L. Hunter, “Enrichment of OBO Ontologies,” in Journal of

Biomedical Informatics, vol. 40, issue 3, pp. 300-315, 2007.

[12] E. Camon, M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen, et al.,

"The Gene Ontology Annotation (GOA) Database: sharing knowledge in

Uniprot with Gene Ontology," in Nucleic Acids Research, vol. 32, pp.

D262-D266, January 1, 2004.

[13] P. Buneman, S. B. Davidson, K. Hart, G. C. Overton, and L. Wong, "A Data

Transformation System for Biological Data Sources," in Proceedings of the

21th International Conference on Very Large Data Bases, pp. 158-169, 1995.

[14] Pennisi, E., “Genome Data Shake Tree of Life,” in Science, vol. 280,

issue 5364, pp. 672-674, 1998.

[15] A. S. Sidhu and M. Bellgard, “Protein Data Integration Problem,” in

Biomedical Data and Applications, Sidhu, A.S. and Dillon, T.S., eds:

Springer Verlag Berlin Heidelberg, 2009, pp. 55-69.

 88

[16] Lacroix, Z. “Issues to Address While Designing a Biological Information

System,” in Bioinformatics: Managing scientific data, Lacroix, Z. and

Critchlow, T., The Morgan Kaufmann Series in Multimedia Information

and Systems, 2003, pp. 75-108.

[17] A. Kadadi, R. Agrawal, C. Nyamful and R. Atiq, "Challenges of data

integration and interoperability in big data," 2014 IEEE International

Conference on Big Data (Big Data), Washington, DC, 2014, pp. 38-40.

[18] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, III, et

al., "Extending UML to Support Ontology Engineering for the Semantic

Web," in ≪UML≫ 2001 — The Unified Modeling Language. Modeling

Languages, Concepts, and Tools. vol. 2185, M. Gogolla and C. Kobryn,

Eds., ed: Springer Berlin Heidelberg, 2001, pp. 342-360.

[19] A. Doan and A. Y. Halevy, "Semantic integration research in the database

community: A brief survey," in AI magazine, vol. 26, pp. 83, 2005.

[20] T. R. Gruber, “A Translation Approach to Portable Ontology

Specifications,” in Knowledge Acquisition, vol. 5, issue 2, pp. 199-220,

1993.

[21] A. S. Sidhu, M. Bellgard and T. S. Dillon, “Classification of Information

About Proteins,” in Bioinformatics: Tools and Applications, Edwards, D.,

Stajich, J., Hansen, D., eds: Springer-Verlag New York, 2009, pp. 243-

258.

[22] M. Uschold and M. King, “Towards a methodology for Building

Ontologies,” Workshop on Basic Ontological Issues in Knowledge

Sharing held in conjunction with IJCAI 1995, Morgan Kaufmann.

 89

[23] M. Uschold and M. Gruninger, “Ontologies: Principles methods and

applications,” in The Knowledge Engineering Review, vol. 11, issue 2,

1996, pp. 93-155.

[24] M. Uschold, M. King, S. Morale, and Y. Zorgios, “The Enterprise

Ontology,” in The Knowledge Engineering Review, vol. 13, issue 1, 1998,

pp. 31-89.

[25] M. Gruninger and M. S. Fox, “Methodology for design and Evaluation of

Ontologies,” Workshop on Basic Ontological Issues in Knowledge

Sharing held in conjunction with IJCAI 1995, Montreal, Canada, Morgan

Kaufmann.

[26] S. Staab, R. Studer, H. P. Schnurr and Y. Sure, "Knowledge processes

and ontologies," in IEEE Intelligent Systems, vol. 16, no. 1, pp. 26-34,

Jan-Feb 2001.

[27] M. Genesereth, “Knowledge Interchange Format,” in Second

International Conference on Principles of Knowledge Representation

and Reasoning, Cambridge, M, Morgan Kaufmann, 1991.

[28] M. Genesereth and R. Fikes, “Knowledge Interchange Format Version 3

Reference Manual,” Stanford University Logic Group, Stanford, 1992.

[29] Ontoweb, “A survey on methodologies for developing, maintaining,

evaluating and reengineering ontologies,” FERNÁNDEZ-LÓPEZ, M.,

eds: Deliverable 1.4 of OntoWeb Project, Karlsruhe, Germany, AIFB

Germany & VUB STAR Lab, 2002. Available:

http://www.ontoweb.org/About/Deliverables/index.html

[30] G. Schreiber, H. Akkermans, A. Anjewierden, R. Dehoog, N. Shadbolt,

W. Vandevelde and B. Wielinga, “Knowledge Engineering and

 90

Management: The CommonKADS Methodology,” in Cambridge, MIT

Press, 2000.

[31] W3C-OWL, “OWL Web Ontology Language Overview,” in W3C

Recommendation 10 February 2004, McGuinness, D. L., and Harmelen,

F., eds: World Wide Web Consortium, 2004.

[32] N. Arch-int and S. Arch-int, "Semantic Information Integration for

Electronic Patient Records Using Ontology and Web Services Model,"

2011 International Conference on Information Science and Applications,

Jeju Island, 2011, pp. 1-7.

[33] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K.

Wilkinson, “Jena: Implementing the semantic web recommendations,” In

the Proceedings of the 13th World Wide Web Conference, New York

City, USA, pp. 74-83. 17- 22 May 2004.

[34] X. Liu, C. Hu, J. Huang and F. Liu, "OPSDS: A Semantic Data

Integration and Service System Based on Domain Ontology," 2016 IEEE

First International Conference on Data Science in Cyberspace (DSC),

Changsha, 2016, pp. 302-306.

[35] W. Yunxiao and Z. Xuecheng, "The Research of Multi-source

Heterogeneous Data Integration Based on LINQ," in Computer Science

and Electronics Engineering (ICCSEE), 2012 International Conference

on, 2012, pp. 147-150.

[36] "Querying Across Relationships (LINQ to SQL)," Microsoft, 2017.

[Online]. Available: https://msdn.microsoft.com/en-

us/library/vstudio/bb386932(v=vs.100).aspx.

 91

[37] "What is Python? Executive Summary," Python.org, 2017. [Online].

Available: https://www.python.org/doc/essays/blurb/.

[38] E. J. Qaisar, "Introduction to cloud computing for developers: Key

concepts, the players and their offerings," 2012 IEEE TCF Information

Technology Professional Conference, Ewing, NJ, 2012, pp. 1-6.

[39] M. Hamdaqa and L. Tahvildari, "Cloud Computing Uncovered: A

Research Landscape," in Advances in Computers, 2012, pp.41-85.

[40] A. Hejlsberg and M. Torgersen. "The .NET Standard Query Operators,"

Microsoft, 2017. [Online]. Available: http://msdn.microsoft.com/en-

us/library/bb394939.aspx.

[41] W. Gilpin. “A Python API for the RCSB Protein Data Bank (PDB),” Github,

2016. [Online]. Available: https://github.com/williamgilpin/pypdb

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

 92

Appendix

 93

Appendix A – Query Codes

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

 124

 125

