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ABSTRACT 

Liquefied Natural Gas (LNG) projects are typically developed by multiple contractors and 

subcontractors and are reliant on globally available suppliers and service companies. Due to 

the high complexity of LNG projects and the remote locations of LNG plants, it is difficult to 

deliver these projects on time and within budget. Reliable construction plans are vital for the 

effective coordination across an LNG project’s design, procurement and construction stages. 

Constraints from engineering, supply chain and construction site are identified as the main 

factors affecting the reliability of construction plans. The primary goal of this thesis is to 

develop a Total Constraint Management (TCM) method to effectively manage these 

constraints so as to reduce schedule delay and cost overruns. Constraints in this thesis are 

defined as anything which prevents construction work plans from being successfully executed 

in the construction field. 

Current approaches for constraint management are static and fragmented. A static and 

fragmented approach may be applicable in the building industry. However, it does not provide 

satisfactory performance due to the high complexity of LNG projects. Four shortcomings are 

identified when directly applying conventional approaches, including: (1) constraints which 

have a long lead time beyond look-ahead plan cannot be efficiently identified and timely 

removed; (2) interdependencies among constraints are usually neglected because constraints 

are modelled in a constraint breakdown structure instead of a network structure; (3) constraint 

information is difficult to be accessed because such information is stored in various systems 

and managed by multiple stakeholders; and (4) constraint status is not reliable due to the 

manual updating method and outdated management platform. 

This thesis develops a TCM method which includes four modules: (1) an hierarchical 

constraint management process module, built on the method of Advanced Work Packaging 

(AWP); (2) a dynamic constraint modelling and analysis module, using the method of 

Dynamic Network Analysis (DNA); (3) a cross-domain constraint information sharing module, 

developed through Linked Data Technology (LDT); and (4) a real-time constraint tracking 

module, through the integration of four tracking technologies (i.e. barcode, passive and active 

Radio Frequency Identification, and Global Positioning System).  

Five experiments were conducted to evaluate the four parts, respectively. Two laboratory 

experiments were developed based on a LNG lean construction simulation game to test the 

effectiveness of the proposed TCM method and the DNA-enabled constraint modelling and 

analysis method, respectively. A pilot case study was conducted to evaluate the efficiency of 
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the proposed cross-domain constraint information sharing platform. In addition, two field 

experiments were conducted to validate the proposed constraint tracking system.  

Results of the first laboratory experiment had proven the effectiveness of the DNA method in 

detecting conflicts between construction plans and constraint-removal plans (100% accuracy). 

The second laboratory experiment indicated a positive effect when implementing TCM 

method to facilitate LNG construction, including the reduction of project duration (28%), as 

well as significant productivity improvement in module installation (130%), off-site module 

manufacturing (97%), major equipment installation (34%), and pipework installation (32%). 

The findings of the pilot case study showed that the proposed LDT-enabled approach could 

successfully interlink cross-domain constraint data, extract and visualise a subset of constraint 

data as required, and infer extra constraint relationships. The last two field experiments 

validated the efficiency of the proposed constraint tracking system. For instance, the time spent 

in tracking welding progress was reduced from 3 hours to an average of 20 minutes. 

Theoretical and practical implications of this thesis are also provided for LNG operators, 

design engineers, contractors and suppliers. It is argued that the proposed TCM can enhance 

the role of constraint management within current pull planning methods in terms of constraint 

identification, modelling, monitoring and removal. The TCM will also provide four key 

contributions to practice including (1) a step-by-step guidance for project team to efficiently 

manage constraints from project planning to the end of commissioning; (2) a constraint 

visualisation platform for improving transparent communication and coordination among 

design engineers, suppliers, contractors, subcontractors and clients; (3) an efficient approach 

for project participants to access constraint data across multiple domains; and (4) a practical 

implementation guide for using multiple sensing technologies to track constraints in LNG 

construction.  
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Chapter 1: Introduction 

1.1 Introduction 

Australia has benefited and will continue to benefit significantly from Liquefied Natural Gas 

(LNG) investments underway (Ellis 2013). The Global Demand Forecast for LNG is 470 

million tonnes per annum by 2030, which means more than 200 million tonnes in new capacity 

will be needed to fulfil the increased demand (Ellis 2013). However, rising costs in Australia 

means that this country risks pricing itself out of the global LNG market. For instance, current 

LNG construction in Australian typically costs 2-3 times higher when compared with other 

countries (Ellis 2013).  

Owners and contractors face enormous challenges to complete engineering and construction 

projects in the LNG industry which are valued at billions of dollars. At the worldwide level, 

according to the research conducted by EY (2014) (i.e. a total of 365 projects were identified 

and investigated with a proposed capital investment above US$ 1 billion in the four industry 

segments of Upstream, LNG, Pipelines and Refining), cost and schedule overruns were 

common in all industry segments and regions. Specifically, 64% of the projects were facing 

cost overruns while 73% of the projects were reporting schedule delays. In addition, For the 

205 projects where cost data were available, the current project estimated completion costs 

were, on average, 59% above the initial estimate (i.e. the cumulative cost of these projects had 

increased to US$1.7 trillion from an original estimate of US$1.2 trillion, representing an 

incremental cost of US$500 billion) (EY 2014). 

In Australian LNG construction industry, according to the public report published by 

EnergyQuest and APPEA (2014), every LNG project in Western Australia has suffered 

different levels of time and cost overruns. For instance, the latest Wheatstone LNG 

construction project suffers a six-month delay due to the slow schedule of off-site module 

manufacturing in Malaysia. Table 1-1 summarises details of the cost and time overruns that 

had been experienced at the seven Australian LNG projects (Ledesma 2014). Most of them 

have suffered six months to 1 year delays when compared with the initial time estimation. 

Delays to the Gorgon LNG project are nearly two years which have had a significant impact 

on the project economics and even put some of the gas sales contracts at risk. The average 

percentage increase of budget is approximate 24% which is equal to a total of US$ 42.3 billion 

cost overruns. 

Table 1-1: Australian LNG Projects-Cost Escalation and Time Delays (Ledesma 2014) 
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LNG 

Projects 

Start 

Date 

Planned 

Finish Date 

(First 
Cargo) 

Finish 

Date 

(First 
Cargo) 

Planned 

Budget 

US$ billion 

Budget at 

June 2017 

US$ billion 

Percentage 

Increase of 

Budget 

Gorgon 2009/09 2014 2016/03 37.0 54.0 46% 

Wheatstone 2011/09 2016 2017/10 26.4 29.7 13% 

Prelude 2011/05 Early 2017 2018 12.0 13.6 13% 
Ichthys 2012/01 2017 2018 34.0 44.0 29% 

QCLNG 2010/10 2014 2015 15.0 20.4 36% 

GLNG 2011/01 Early 2015 2015/10 16.0 18.5 16% 
APLNG 2011/07 2015 2016 20.0 22.5 13% 

 

Managing these LNG projects is challenging as they become increasingly complex and 

technologically demanding. Previous research suggested that non-technical issues, such as 

project inadequate planning, ineffective project management, poor contractor management, 

and poor procurement control, were responsible for the majority of the overruns (EY 2014). 

Figure 1-1 illustrates the key non-technical internal and external factors commonly behind 

project delays or overspend. 65% of project failures were due to project development and 

delivery aspects such as inadequate planning and ineffective project management; A further 

21% were caused by poor portfolio management and contracting and procurement strategies, 

with the remaining 14% of the failures due to external factors such as regulatory challenges 

and geopolitical challenges (EY 2014).  

 

Figure 1-1: Factors Responsible for Cost Overruns and Delays (EY 2014) 
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Project management team needs to serve remote construction sites, manage multiple 

engineering teams and global supply chain, solve environmental and permitting issues, and 

coordinate multiple owners with different specifications and contracting strategies. Time is 

another essential factor of LNG projects, which usually take about ten years from the planning 

phase to the delivery of the first cargo. During project execution, various types of work are 

often conducted simultaneously. Reliable construction plans are therefore vital for the 

effective coordination across a project’s design, procurement and construction stages.  

“Pull-driven” method has been proven as an efficient way to improve planning reliability 

(Tommelein 1998; Ballard 2000; Hamzeh et al. 2015; Dave et al 2016). Compared with the 

traditional “Push-driven” approach, the main objective of a “Pull-driven” method is to produce 

finished products as optimally as possible in terms of quality, time, and cost, so as to satisfy 

customer demand (Tommelein 1998). To implement a pull-driven approach, selective control 

is needed and should be driven by information about resources in the queues, and work-in-

progress and downstream resources (successor queues and activities) in the process 

(Tommelein 1998). A number of planning methods have been developed to transform the pull 

concept into the construction industry. The most famous one is the Last Planner System (LPS) 

developed by Glenn Ballard and Greg Howell, which is a production planning system designed 

to produce predictable work flow and rapid learning in programming, design, construction and 

commissioning of projects (Ballard 2000). The second most one, WorkFace Planning (WFP) 

developed by the Constructions Owners Association of Alberta (COAA), is the process of 

organising and delivering all elements necessary before work is started, to enable craft persons 

to perform quality work in a safe, effective and efficient manner (Slootman 2007). The third 

widely utilised one is the Advanced Work Packaging (AWP) developed by a joint venture 

between the Construction Industry Institute (CII) and the COAA, which aims to align 

engineering, procurement and fabrication with the sequencing needs of site installation and 

turnover to operations (Hamdi 2013). Other pull planning methods such as Integrated 

Production Scheduler developed by Chua et al. (2013) and Integrated Decision Support 

System developed by Sriprasert and Dawood (2003) are also perform very well in improving 

planning reliability and project performance, however, they are not widely applied in industrial 

cases. 

Constraint management is one of the key processes within these planning methods (e.g. LPS, 

WFP, and AWP) to improve construction work flow. They all require that a work package/task 

cannot be released to the construction site until all related constraints are removed. The concept 

of constraint was firstly introduced in 1984 as constraint management and the theory of 

constraints (Goldratt and Cox 1984). It is defined as any condition, such as technical 

sequencing, temporal/spatial limitations and safety/quality concerns, which prevent work 
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plans assigned to construction crews from being successfully executed in the field (Blackmon 

et al. 2011). While the most common types of constraints, e.g. time constraint, can be managed 

using the traditional project control techniques, e.g. the Critical Path Method (CPM), it is 

proven that these techniques are not adequate for effectively identifying and tracking detailed 

constraints in construction works (Pultar 1990). For example, Pultar (1990) argued that CPM 

does not cover the full spectrum of constraint types and can only be created following the 

development of a fixed plan. In addition, Zhou et al. (2013) concluded that most of the current 

mathematical methods developed for construction scheduling are focused on modelling time, 

cost, and resource constraints. Other key constraints such as quality, work space, and safety 

are often neglected.  

Constraints in this thesis are defined as anything which prevents work packages being 

successfully executed in the field. According to Wang et al. (2016), constraints in LNG 

construction can be classified into three main categories: (1) engineering constraints, (2) 

supply chain constraints, and (3) site constraints. Constraints such as incomplete drawings, 

lack of assembly specifications, and incomplete 3D models are related to engineering 

constraints, which affect the start time of procurement, fabrication and site installation. Supply 

chain constraints include late procurement and delivery of bulk materials and project-specific 

instruments and equipment. Without timely purchasing and delivering these resources to the 

site, detailed construction activities cannot be planned and executed. Site constraints contain 

the shortage of workforce, lack of temporary structures, limited work space, uncompleted 

preceding works, bad weather, lack of work permits and safety issues. If these site constraints 

are not timely removed, construction work crews cannot perform their daily tasks.  

The difference between a constraint and a risk is that a constraint is something that will happen 

while a risk is something that may happen (Wang et al. 2016). For example, the likelihood of 

rain in construction is usually a factor that needs to be considered. In Dubai, this is a risk 

because it rarely rains but may happen. However, in Melbourne, this is a constraint because it 

will always rain, especially in winter, and meteorological records provide a very good 

indication of the likelihood of rainfall on a month by month basis, allowing project managers 

to make an appropriate action to reduce the impact (Wang et al. 2016). If a constraint is not 

timely removed, it becomes an issue which needs to be resolved for the project to move 

forward. 
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1.2 Problem Statement 

LNG projects are becoming increasingly complex and technologically demanding. More than 

thousands of constraints including engineering constraints, supply-chain constraints, and site 

constraints will be involved in a project. Moreover, constraints in LNG projects are multi-

tiered which means that a given constraint can be exploded into multiple sub-constraints which 

in turn constrain other constraints and activities. Therefore, it is hard to use conventional tree 

structure-based constraint modelling method to present these constraints.  Other methods such 

as mathematical model-based and/or simulation-based approaches can handle such 

complicated constraint relationships, however, very limited constraint types can be considered 

and modelled using these methods because most of them only concern time, cost and resource 

constraints. Detailed problems in terms of constraint identification, modelling, monitoring, 

and removal in LNG construction are summarised into the following four aspects: 

1.2.1 Deficient process for constraint life cycle management  

Traditionally, shielding assignments are the main approach to improving work flow (Jang 

2008). The process of constraint management within current pull planning methods is passive 

and always late implemented (Jang 2008; Hamzeh 2009). Figure 1-2 illustrates a typical 

process of the LPS. The actions of constraint identification and removal are conducted during 

the phase of “Make-Ready Planning (i.e. Look-ahead planning)”. Therefore, constraints which 

have a long lead time beyond look-ahead plan cannot be efficiently identified and timely 

removed (Hamzeh et al. 2008; Wang et al. 2016). Although extending the look-ahead window 

offers a possibility to solve this issue, extending too far in advance can decrease the ability to 

control onsite workflow (Jang 2008).  

In addition, the current process of constraint management only contains basic steps of 

constraint identification and removal (as shown in Figure 1-2). The process is acceptable in 

small building projects, however, in an LNG construction project, the implementation of the 

process becomes difficult due to the large number of constraints involved (Wang et al. 2016). 

There is a need to develop detailed processes for guiding the constraint removal in a complex 

environment (Blackmon et al. 2011), by addressing questions such as which constraint should 

be removed at which time, who is responsible for removing the constraint, and what are the 

preceding constraints?  
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Figure 1-2: Last Planner System (Ballard and Tommelein 2016) 

1.2.2 Insufficient methods for constraint modelling  

Within the conventional planning methods (e.g. CPM), constraints are always considered in a 

mathematical model which is used to generate an optimised project schedule. As projects are 

unique in nature, mathematical models for project scheduling and optimisation should consider 

an array of constraints such as technological and organisational constraints, as well as the 

availability of resource including labour, equipment, material and information (Jaśkowski and 

Sobotka 2006, Zhou et al. 2013). However, most of the previous studies can only focus on 

modelling precedence and/or resource constraints (Zhou et al. 2013). For instance, Al Haj and 

El-Sayegh (2015) proposed a nonlinear-integer programming model for project planning by 

taking into account the constraints of time and cost. Resource constraints such as materials 

were considered by Zoraghi et al. (2017) in their proposed mathematical model. Currently, it 

is impossible to develop a mathematical model that can cover all kinds of other constraints 

such as safety, work space, and permit (Zhou et al. 2013). 

Within the pull planning methods (e.g. LPS), there is not a pre-defined mathematical method 

for constraint modelling. Constraint identification and modelling are performed manually 

during the look-ahead planning stage (Hamzeh et al. 2015). Spreadsheet is one of the most 

popular tools to identify all constraints for each individual construction activity (Nieto-Morote 
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and Ruz-Vila 2011, Fernandez-Solis et al. 2012, O. AlSehaimi et al. 2014). Most of the 

constraint types within the pull planning methods can be considered, however, the 

interrelationships among constraints are often ignored (Ballard 2000; Hamzeh 2009).  

In summary, existing approaches of constraint modelling are either mathematical-driven or 

human-driven. The former one does not have the capability of modelling all the types of 

constraints, while the latter one cannot efficiently investigate the interrelationships among 

constraints. 

1.2.3 Inefficient methods for cross-domain constraint information sharing 

In current LNG construction practice worldwide, meeting- and paper-based approaches are 

still widely used for sharing project constraint information, such as constraints of materials, 

labours, tools, work spaces, safety, and predecessor works (Liston et al. 2003). The main 

advantage of these approaches is ease of implementation, however, a number of drawbacks 

need to be highlighted. For instance, project participants, who are involved in either meetings 

or paper-based reporting processes, spend most of their time trying to understand the project 

information rather than using the information to address “What-If” questions.  

Internet/Web-based approaches provide a convenient and inexpensive approach for constraint 

information sharing, however, unstructured information is the main concern faced by project 

stakeholders when searching a specific piece of data (Huesemann 2006, Tsai et al. 2006, 

Forcada et al. 2010). Search results are limited by search conditions such as keywords, full 

texts and the use of natural language (Forcada et al. 2010).  

Building Information Modelling (BIM) is emerging as a new method for project constraint 

information sharing (Eastman et al. 2011). Ideally, all the constraint information can be linked 

or integrated into a central BIM platform. However, in practice, project stakeholders prefer to 

use their own applications to perform their works (Curry et al. 2013; Dave et al. 2016). 

Therefore, the constraint data will be stored in various isolated data sources, which use 

different, usually not aligned, vocabularies and schemes (Curry et al. 2013). It is difficult to 

build an integrated platform on top of various applications for constraint information sharing 

due to the absence of long-term relationships among project stakeholders in a construction 

project (Karan and Irizarry 2015; Dave et al. 2016).  

A detailed review of the above three approaches including advantages and disadvantages are 

discussed in Section 2.3.1. In summary, these three approaches are inefficient in dealing with 

cross-domain constraint information sharing in a mega project (i.e. LNG construction).  
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1.2.4 Inefficient approaches for constraint monitoring 

One of the key functions of LPS is the “Make Ready” process that is responsible for constraint 

monitoring and removal. However, in practice, it is the most difficult part to be implemented 

due to the lack of tools to automatically track and update constraint statuses (Dave et al. 2016).  

Regular meetings and daily/weekly reports are the most common approaches utilised for 

constraint monitoring and status updating in current LNG industry (Wang et al. 2016). Both 

are error-prone processes due to the manual data inputs from humans. A number of emerging 

tracking technologies, such as Radio Frequency Identification and laser scanning, have been 

widely investigated to automate the process of constraint monitoring (Lee et al. 2013; Chae 

and Yoshida 2010; and Wang et al. 2014). However, the adoption rate in practice is still very 

low especially in LNG industry due to the high implementation cost and technical limitations 

of each technology (Hou et al. 2014; Chi et al. 2015; and Wang et al. 2016). There is a need 

to develop a cost-effective solution for constraint monitoring in LNG construction by 

integrating various tracking technologies. Through technology integration, the advantages of 

each technology can be amplified while the drawbacks will be minimised.  

1.3 Research Aim and Objectives 

In order to tackle the four problems summarised in Section 1.2, this thesis aims to develop and 

validate a Total Constraint Management (TCM) method to improve plan reliability and work 

productivity in LNG construction. To achieve this aim, five objectives are established as 

follows: 

Objective 1: To develop a hierarchical constraint management process to identify and remove 

constraints through project life cycles. 

A hierarchical constraint management process will be developed through literature review and 

focus group studies. In addition, how to align this process to the project’s different stages (i.e. 

preliminary planning, detailed engineering, construction, and commissioning) will be also 

discussed.  

Objective 2: To develop a network-based method for constraint modelling and analysis. 

A novel method for constraint modelling and analysis will be developed using Dynamic 

Network Analysis (DNA) technique. Unlike traditional social network analysis, DNA can 

handle large, dynamic, multi-mode, multi-link, and multi-level networks with varied levels of 

uncertainty. A constraint meta-network will be defined including its meta-matrix and 

development process. Indicators or measurements for analysing the constraint meta-network, 
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e.g. indicators for identifying the most critical constraint within a given time window, will be 

also developed 

Objective 3: To develop a semantic approach for cross-domain constraint information sharing. 

A semantic approach for cross-domain constraint information sharing by leveraging Linked 

Data technology will be developed. Linked data principles enable data to be delivered in both 

machine- and human-readable formats. Making constraint data on the Web enables greater 

transparency and accountability, and helps project participants to access required information 

more efficiently. Within the proposed semantic approach, two new ontologies will be 

developed for transforming project scheduling data and constraint data into Linked Data 

Format, respectively. A merged ontology will be also proposed to interlink data from various 

sources. The prototype of this semantic approach will also be developed and tested in a pilot 

case study. 

Objective 4: To investigate current tracking technologies for real-time constraint monitoring 

and removal. 

The performance of four types of contemporary tracking technologies (i.e. Barcode, Radio 

frequency identification, Global positioning system, and Ultra-wide bandwidth) in constraint 

tracking will be investigated and evaluated. A coordinated approach for constraint tracking 

will be also developed to demonstrate its capabilities in tracking automation and productivity 

improvement.  

Objective 5: To develop a TCM method based on the research outcomes from Objective 1-4. 

A novel life cycle constraint management method, namely TCM, will be developed to improve 

plan reliability and work productivity in LNG construction. There are four main modules 

within the TCM: (1) A hierarchical constraint management process module (i.e. Objective 1); 

(2) A DNA-based constraint modelling and analysis module (i.e. Objective 2); (3) A linked 

data-enabled cross-domain constraint information sharing module (i.e. Objective 3); and (4) 

A sensor-based constraint monitoring module (i.e. Objective 4). A laboratory experiment will 

be developed to validate the effectiveness and efficiency of the proposed TCM method. 

1.4 Research Proposition 

The main research proposition for this thesis is that “The proposed TCM method can perform 

better in constraint identification, modelling, monitoring, and removal, and thus, can 

significantly improve construction productivity”. The research proposition was initially 

developed from peer discussions with supervisors and industry experts in constraint 

management. Subsequently, it was further informed by the literature review and the 



10 
 

laboratory-based experiments at the early stages of the research project. In the forthcoming 

Chapters, a combination of qualitative (i.e. focus group studies) and quantitative methods (i.e. 

laboratory experiments and field experiments) will be conducted to confirm or reject this 

proposition and then to form necessary conclusions. 

1.5 Significance and Contribution of the Research 

It is widely recognised that current practices in the Australian LNG industry are far from 

optimal. This problem urgently calls for an effective solution to mitigate the significant cost 

and schedule overruns common in resource projects, particularly in mega-projects. If 

unresolved, the Australian LNG industry will lose its competitive edge compared with cheaper 

overseas projects. For example, Woodside’s recent Pluto Foundation project delivered 15,000 

local jobs and contributed some $7 billion Australian dollars to the local economy. The 

technology and knowledge from this thesis can be transferred to other sectors to address 

similar performance and productivity issues in areas including, but not limited to, health 

infrastructure, railways, and building.  Depending on the detailed needs and nature of each 

industrial sector, the TCM method can be customised to adapt to the dynamic needs of solving 

a particular problem in each industry. There is exponential growth in the construction of oil 

and gas facilities and infrastructure. The TCM method will have a profound effect on the work 

practices of contractors, subcontractors, and suppliers of the entire workforce in Australia, 

who will benefit from the system while working on mega-projects. Detailed contribution of 

the research is explained as follows: 

Firstly, the proposed TCM method for improving the construction work flow in the LNG 

industry (Objective 1&5) is considered as the major contribution of this study. Currently, the 

pull planning methods have attracted significant attention in LNG construction projects. 

Project stakeholders are aware of the importance of constraint management when applying the 

pull planning method. However, few of them have a clear understanding of how to perform 

constraint management efficiently. According to Blackmon et al. (2011), it is necessary to 

develop a TCM framework for thorough identification, classification, tracking, analysis, and 

removal of all constraints in real world projects.  

Secondly, extending the application of the DNA method to model constraints and their 

interrelationships (Objective 2) is also of significance. Current approaches of constraint 

modelling are either mathematic-driven or human-driven. The former one does not have the 

capability of modelling all the types of constraints (Zhou et al. 2013), while the latter one 

cannot efficiently present the interrelationships between constraints (Hamzeh 2009; Hamezh 

et al. 2015). The DNA method provides a promising way to understand the complex 
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interactions in a constraint network (Carley et al. 2007). Equipped with time-dimensional 

analysis and complex modelling capabilities, DNA can efficiently detect conflicts between 

construction plans and constraint-removal plans, and dynamically identify critical constraints 

before and during project execution. 

Thirdly, the linked data-enabled approach developed in this study for improving cross-domain 

constraint information sharing (Objective 3) is useful to accelerate the realisation of the Linked 

Open Data concept in LNG projects. Current methods, such as schema-based or service-based 

approaches, for integrating information from different sources are still time-consuming and 

very costly (Kang and Hong 2015). The reason is that project data is locked up in certain 

applications, and managed by multiple stakeholders from different domains. The idea of 

Linked Open Data has been recognised as the mainstream to solve this problem. With the help 

of Linked Open Data sets, it is possible to provide the project team with a comprehensive and 

up-to-date overview on project status. Instead of updating project information manually, it is 

directly linked to data providers’ database, so any updates are reflected immediately (Bauer 

and Kaltenböck 2011). 

Finally, by introducing a number of sensing technologies, industry people could have a better 

understanding of their advantages and disadvantages, which is useful for them to make an 

optimal decision when conducting real-time constraint tracking. In addition, a coordinated 

approach for supply-chain constraint tracking (Objective 4) has been developed and tested. 

The detailed development process can provide a step-by-step guidance for decision-makers in 

future LNG construction projects. 

1.6 Structure of the Thesis 

This thesis is formulated into nine chapters in the following sequence, as shown in Figure 1-

3. Each of them is described as follows: 

Chapter 1 is an introductory chapter which provides the background of this research. 

Followed by a statement of problems, the aim and objectives of this research are presented 

accordingly. This chapter also highlights the research significance and contribution. 

Chapter 2 presents a review of the literature in the field of constraint management including 

constraint modelling, constraint information sharing, and constraint tracking. It contains four 

sections which correspond to the four objectives developed in Chapter 1. 

Chapter 3 examines the research methodology adopted in this thesis. It first outlines the 

research philosophy that underpins the approach taken with the research. Then, the rationale 

for the research design, and the reasons for the adoption of the Focus Group Study and 



12 
 

Experimental Research Method are discussed. Finally, an overview of the data collection 

methods used for the thesis, as well as the methods used to analyse the data are explained.  

Chapter 4 proposes a hierarchical constraint management process, which consists of three 

levels of loops: Loop 1 aims to identify and monitor long lead-time constraints and align 

engineering and procurement plans to the construction plan; Loop 2 aims to manage 

constraints from a construction-centred perspective, and continually involve owner, engineers, 

purchasers and contractors to find new constraints and detect potential constraint-removal 

issues; and Loop 3 is to maintain, monitor and remove constraints from an installation-centred 

perspective. 

Chapter 5 develops a Dynamic Network Analysis-enabled method for modelling constraints 

in LNG construction. A laboratory-based experiment is conducted to demonstrate and evaluate 

the proposed method. 

Chapter 6 develops a semantic approach for cross-domain constraint information sharing by 

using linked data technology. A pilot case study is performed to illustrate the feasibility and 

effectiveness of the proposed approach. 

Chapter 7 proposes a framework of a coordinated approach towards supply-chain constraint 

tracking in LNG construction that integrates different tracking technologies. Two experiments 

are conducted in the field to evaluate the feasibility of the proposed approach.  

Chapter 8 proposes a TCM method based on the research outcomes from Chapter 4-7. The 

proposed TCM method includes: (1) A hierarchical constraint management process module 

(i.e. Chapter 4); (2) A DNA-based constraint modelling and analysis module (i.e. Chapter 5); 

(3) A linked data-enabled cross-domain constraint information sharing module (i.e. Chapter 

6); and (4) A sensor-based constraint monitoring module (i.e. Chapter 7). A laboratory 

experiment is developed to validate its effectiveness and efficiency. 

Chapter 9 explains the internal and external validation for this research, its contributions and 

practical implications. Recommendations for future research are also provided in this chapter. 



13 
 

Chapter 1

Research Aim

To develop and validate a Total Constraint Management (TCM) method to improve plan reliability and work 

flow in Liquefied Natural Gas (LNG) construction

Research 

Objective 1:
To develop a 

hierarchical 

constraint 

management 

process 

Research 

Objective 2: 
To develop a 

network-based 

constraint 

modelling method 

for constraint 

modelling and 

analysis

Research 

Objective 3: 
To develop a 

semantic approach 

for cross-domain 

constraint 

information sharing

Research 

Objective 4: 
To investigate 

current tracking 

technologies for 

real-time constraint 

monitoring and 

removal

Research 

Objective 5: 
To develop a TCM 

method based on the 

research outcomes 

from Objective 1-4

Chapter 7Chapter 6Chapter 5Chapter 4

Chapter 9

Chapter 3

Chapter 2

Literature Review:
 Constraint Definition, Classification, and Management

 Current Approaches for Constraint Modelling and Analysis

 Current Approaches and Challenges in Constraint Information Sharing

 Current Constraint Tracking Technologies

A Hierarchical 

Constraint 

Management 

Process to Identify 

and Remove 

Constraints with A 

Long Lead Time

Dynamic Network 

Analysis for 

Constraint 

Modelling and 

Management in 

LNG Construction

Improving Cross-

domain Constraint 

Information Sharing 

in LNG 

Construction 

through Linked 

Data Technology

A Coordinated 

Approach for 

Supply-Chain 

Constraint Tracking 

in LNG 

Construction

Conclusions, Implications, and Future Recommendations 

Research Methodology:
 Research Philosophy

 Research Design

 Data Collection and Analysis

Chapter 8

TCM Method for Improving Construction Work Flow and Productivity

 

Figure 1-3: Structure of the Dissertation 

 

  



14 
 

Chapter 2: Literature Review 

The purpose of Chapter 2 is to review and summarise current works related to the field of 

constraint management including constraint modelling, constraint information sharing, and 

constraint monitoring. 

2.1 Constraint Definition, Classification, and Management  

In this section, the definitions of constraints are introduced, followed by discussing a number 

of existing constraint classifications and reviewing the current practice of constraint 

management. 

2.1.1 Constraint definition 

The definitions of constraints vary in different domains. A constraint can be: 

 A condition of an optimisation problem that the solution must satisfy in Mathematics 

(Zhou et al. 2013); 

  A demarcation of geometrical characteristics between two or more entities or solid 

modelling bodies in Computer Science (Wikipedia 2018); 

 The degree of statistical dependence between or among variables in Information 

Theory (Wikipedia 2018); 

 A relation between coordinates and momenta in Classical Mechanics (Wikipedia 

2018); 

 A factor which make populations resistant to evolutionary change in Biology 

(Wikipedia 2018); or 

 Anything that prevents the system from achieving its goal in Business Management 

(Goldratt and Cox, 1984).  

The concept of constraint in this thesis is derived from the lean construction domain. Currently, 

there are three types of definitions used to describe a constraint, that correspond to the three 

pull planning method (i.e. LPS, WFP, and AWP), respectively. For instance, In LPS, a 

constraint is “anything that stands in the way of a task being executable or sound” (LCI 2007). 

In WFP, constraints are a list of things that a foreman will need to execute a field work order 

(Slootman 2007). In AWP, constraints are defined as any prerequisite items that prevent and/or 

delay the successful execution of the work (CII 2013). In this thesis, based on the three 

previous definitions, constraints are defined as anything that prevents work packages being 

successfully executed in the construction field. 

https://en.wikipedia.org/wiki/Optimization_(mathematics)
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2.1.2 Constraint classification 

Constraint classification is a prerequisite work for carrying out constraint identification, 

modelling, tracking, and removal. In different domains, the classification systems are various. 

For instance, in Mathematics, constraints can be classified as either absolutely strong 

redundant, relatively strongly redundant, absolutely weakly redundant, relatively weakly 

redundant, or necessary (Boneh et al. 1992); in Mechanics, constraints are classified into two 

types: Pre-constraint and Post-constraint (Höhn 2014). The former one restricts the pre-image 

of the Hamiltonian time evolution map and correspond to conditions on the canonical data 

which must be satisfied before an evolution move can be carried out. The latter one, on the 

other hand, restricts the image of the Hamiltonian time evolution map and must be satisfied 

after an evolution move is performed (Höhn 2014). In the following paragraphs, constraint 

classifications that had been developed within the project and/or production management 

domains are the main focus of this thesis, and had been critically reviewed. 

Mcmullen (1998) categorised the constraints into two groups in terms of their impact: less-

impact constraints and higher-impact constraints. The latter ones are also called core problems 

or root causes. In each project, there are a number of less-impact constraints but only a few 

higher-impact constraints. Project managers should more focus on identifying and acting on 

the higher impact constraints.  According to Goldratt (1990), there are two basic types of 

constraints: physical constraints and non-physical constraints. A physical constraint is 

something like the physical capacity of a machine, in other words, it is something that is rigid 

and in its current state has a limit on its ability or throughput (e.g. materials, machines, people, 

demand level). A non-physical constraint can be further classified into three types: (1) Policy 

constraints that include company procedures, union contracts, and government regulations; (2) 

Paradigm constraints such as deeply engrained beliefs or habits; and (3) Market constraints 

that occurred when production capacity exceeds sales. 

Constraints are also be categorised into internal constraints and external constraints (Goldratt 

and Cox 1984). The former ones are inside a system and more under control while the latter 

ones are outside the system and hard to control. Internal constraints can be eliminated through 

actions such as assigning more resources (Goldratt and Cox 1984). However, continuing such 

an action will in turn bring to a point where capacity exceeds demand and constraint exists in 

another form (Goldratt and Cox 1984). External constraints are hard to be eliminated. Actions 

taken can merely minimise the effect of undesirable consequence rather than breaking the 

constraints (Goldratt and Cox 1984). 

Lau and Kong (2006) proposed a constraint classification system for managing and controlling 

constraints in construction working environment. Constraints are classified into five categories 
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based on a comprehensive literature review and 30 questionnaires: (1) Economic constraints 

which mainly happened with budget limitation; (2) Legal constraints which mainly related to 

laws, regulations and standards; (3) Environment constraints which include air protection, tree 

preservation, traffic limitation, and noise control; (4) Technical constraints which arise from 

restrictive site areas and congested surroundings; and (5) Social constraints which can appear 

in three different forms: human resistance, emotional constraints and ownership of the problem. 

In LPS, constraints are classified into eight types: information, previous work, human 

resources, space, material, equipment, external conditions, and funds (Ballard 2000, Koskela 

2000). Choo et al. (1999) defined six types of constraints, namely, constraints on contract, 

engineering, material, labour, equipment, and prerequisite work. Chua and Shen (2005)  

classified construction constraints into three types: (1) Precedence constraints that determine 

the start/finish time and the sequences of activities and tasks; (2) Resource constraints which 

include procurement, materials, manpower, and equipment; and (3) Information constraints 

that represent the availability of information required for executing construction tasks, such as 

shop drawings, specifications, and design approvals. Similarly, Sriprasert and Dawood (2003) 

categorised constraints into four major groups: (1) Physical constraints including 

technological dependency, space, safety, and environment; (2) Contract constraints including 

time, cost, quality, and special agreement; (3) Resource constraints including availability, 

continuity, capacity, and perfection; and (4) Information constraints including availability and 

perfection (e.g. accuracy, clarity, and relevancy).  

It should be noticed that these classifications are developed informally, and none of them has 

been widely used as a standard in current industry practice. These classifications may not 

include all constraint types. For instance, the weather and permit constraints are not considered 

in the classifications developed by Choo et al. (1999), Chua and Shen (2005) and Sriprasert 

and Dawood (2003). In addition, the hierarchy of the existing classifications is not well defined. 

For instance, the constraint classification developed by Ballard (2000) or Koskela (2000) is 

characterised as an aggregation of a number of different types of constraint (i.g. information, 

previous work, human resources, space, material, equipment, external conditions, and funds). 

a hierarchical structure of these constraints is not presented within the classification. For other 

classifications mentioned above, although constraints are classified into three or four 

categories, the definition of each category is not clear. For instance, the category of 

information constraints developed by Sriprasert and Dawood (2003) is very abstract and its 

definition (i.e. information constraints includes availability and perfection) is too vague to 

guide practical implementation. Therefore, there is a need to develop a new constraint 

classification for LNG construction projects.  
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2.1.3 Constraint management 

According to the Theory of Constraints (TOC) developed by Goldratt and Cox (1984), the 

attention of constraint management should be focused on the few constraints which prevent 

the project and/or organisation from achieving its goal. The initial defined constraint 

management process within the TOC contains five focusing steps: 

(1) Identify the current constraint; 

(2) Exploit the constraint. Quick improvement will be made to the throughput of the 

constraint using existing resources (i.e. make the most of what you have); 

(3) Subordinate and synchronise to the constraint. All other activities in the process will 

be reviewed to ensure that they are aligned with and truly support the needs of the 

constraint; 

(4) Elevate the performance of the constraint. If the constraint still exists (i.e. it has not 

been removed), further actions will be taken to eliminate it from being the constraint. 

Normally, capital investment may be required at this step; 

(5) Repeat the process. The Five Focusing Steps are a continuous improvement cycle. 

Therefore, once a constraint is resolved the next constraint should immediately be 

addressed. 

Later, Ronen and Spector (1992) enhanced the process by adding two preliminary steps: (1) 

Define the system’s goal; and (2) Determine global performance measurement. Coman and 

Ronen (2007) extended the TOC and defined an Arena Constraint that influences the 

organisation’s business arena (Spector 2011). In order to align the organisation’s core 

competencies with the business arena’s key success factors, five steps were proposed: 

(1) Identify the organisation’s constraints; 

(2) Identify the business arena’s strategic constraints; 

(3) Analysis the gap between the organisation’s and the arena’s constraint; 

(4) Outline an action plan aligning the organisation to its business arena; 

(5) Execute the action plan and monitor its effectiveness. 

 

For sophisticated systems that involve many interdependencies (e.g. manufacturing lines), a 

series of tools have been formalised within the TOC to help the constraint management process 

mentioned above. Examples of these tools include: 

 Current Reality Tree that documents the current state and helps to identify constraints; 
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 Evaporating Cloud Tree that evaluates potential improvement and helps to resolve 

constraints; 

 Future Reality Tree that documents the future state and reflects the results of 

eliminating the identified constraints; 

 Strategy and Tactics Tree that provides an action plan for improvement. 

The aim of constraint management within the LPS, WFP or AWP, is to assure all the 

constraints on tasks in the look-ahead are removed prior to those tasks’ scheduled start (LCI 

2007). Currently, the constraint management process is performed during the six-week look-

ahead planning phase (LCI 2007). A complete constraint management process should include 

four sequential sub-processes: constraint identification, constraint modelling and analysis, 

constraint monitoring and status updating, and constraint removal. However, in current 

constraint management practice, the sub-processes of constraint modelling, analysis, and 

monitoring are either neglected or simplified due to the shortage of supporting tools or 

methods (Hamzeh 2009; Alsehaimi et al. 2009; Alsehaimi et al. 2014; Lindhard and Wandahl 

2014). Detailed constraint management process within LPS, WFP, and AWP are critically 

reviewed as follows. 

 (1) Constraint management in LPS 

LPS has been widely used on projects and within both design and construction firms across a 

multitude of different sectors in the building, mining and oil and gas industries. In essence, 

LPS enables the collaborative management of the network of relationships and 

communications needed to guarantee effective programme coordination, production planning 

and project delivery (Hook and Stehn 2008; Hamzeh et al. 2015). An action research study 

conducted by AlSehaimi et al. (2014) indicated that the benefits of LPS include: improved 

construction planning, enhanced site management and better communication and coordination 

between the parties involved; and the barriers to release the full potential of LPS contained: 

lengthy approval procedure by client, cultural issues, commitment and attitude to time and 

short-term vision.  

In LPS, the main task of the look-ahead process is to efficiently schedule the potential task 

assignments for the next 3–12 weeks. The number of weeks over which a look-ahead process 

extends is decided based on project characteristics, the reliability of the planning system and 

the lead times for acquiring information, materials, labour and equipment (Ballard, 2000). 

Once assignments are identified, they are subjected to constraints analysis to determine what 

must be done in order to make them ready to be executed. Only activities, in which all 

constraints have been removed and that they are in the proper sequence for execution, are 

allowed to enter into the workable backlog. Weekly work plans are then formed from the 
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workable backlog, thus reducing the uncertainties and improving the productivity. If the 

planner is not confident that all the constraints can be timely removed, or of identifying a 

constraint (e.g. engineering drawings) that definitely cannot be removed in time, the 

assignment would not be allowed to move forward.  

Different types of assignments have different constraints which vary from internal constraints 

(e.g. design information, materials, prerequisite work, space, equipment and labour) to 

external constraints (permits, inspections, approvals and weather). Nieto-Morote and Ruz-Vila 

(2011) applied LPS in a chemical plant construction, and two useful conclusions related to 

constraint analysis were made: (1) identifying constraints of the planned work had a positive 

impact on the percentage and quality of completed activities; and (2) the process of constraint 

identification should be conducted by all of the project leaders, supervisors and contractors. 

Hence, good constraints analysis requires all relevant parties to actively manage their 

production and delivery, and provides the coordinator with early warning of problems, ideally 

with sufficient lead time to plan around them.  

However, the current process of constraint management within LPS is sluggish and negative, 

such as the late implementation of constraint analysis and short lead time for constraint 

removal (Hamzeh 2009). Another problem is that constraints which have a lead time beyond 

the weekly work plan window cannot be identified and removed in time due to poor foresight 

capacity of the look-ahead plan (Hamzeh 2009). In addition, paper-based constraint analysis 

and meeting-based constraint status updating and coordination are still the dominant 

approaches for constraint removal (Wang et al. 2016). 

(2) Constraint management in WFP 

WFP is the process of organising and delivering all the elements necessary, before the work is 

started, to enable craft persons to perform quality work in a safe, effective, and efficient 

manner (Fayek and Peng 2013). This is accomplished by breaking down construction work by 

trade into discrete work packages that completely cover the scope of work for a given project 

(Fayek and Peng 2013). More specifically, WFP relies on the creation of small and well-

defined work packages for the construction workforce with a typical rotation of work (5 or 10 

days) for one crew in one discipline. In recent years, WFP has been widely used in industrial 

projects (e.g., oil and gas plant) and is now a common requirement in the construction contracts 

in Alberta, Canada (Fayek and Peng 2013). The main objective of WFP is to reduce schedule 

and cost overrun, and improve labour efficiency in mega projects (Fayek and Peng 2013). 

High-level benefits identified from previous case studies include: improved project party 

alignment & collaboration, increased site productivity, reduced construction rework, improved 
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project control, improved safety awareness, increased reporting accuracy, and improved client 

satisfaction (O’Brien et al. 2011).  

Within WFP, three different levels of work packages are defined and used to describe different 

levels of project plans: Construction Work Area (CWA), Construction Work Package (CWP) 

and Field Installation Work Package (FIWP) (PMP 2009). Each package cannot be released 

until all the related constraints are removed. Examples of constraints for work packages are: 

drawings, workforce, materials, equipment, work space, permission and a scope definition of 

the work package to be executed. However, the constraint removal process of WFP has three 

shortcomings: (1) short time for planners to optimise scarce resources; (2) negative attitude 

for constraint removal due to the lack of constraint tracking, and (3) limited understanding of 

identification and classification of the full range of constraints. 

(3) Constraint management in AWP 

AWP, which aims to align engineering, procurement and fabrication with the sequencing 

needs of site installation, turnover and operations, is developed by a joint venture between the 

CII and the COAA (Hamdi 2013). The purpose of AWP is to fill the gap between the Front 

End phase and the Construction phase in terms of work packaging. AWP is a more complete 

work packaging system than WFP. It covers both the construction and the initial early stages 

of the project and allows more control over the breakdown of the project through its lifecycle 

(Hamdi 2013). The three key deliverables of AWP are CWP, Engineering Work Package 

(EWP) (Hamdi 2013) and Installation Work Package (IWP). A CWP defines a logical and 

manageable division of work within the construction scope (Hamdi 2013). An IWP is a 

deliverable to a construction work crew that enables a crew to perform quality work in a safe, 

predictable, measurable, and efficient manner (Hamdi 2013). CWP is the basis for the 

development of detailed IWPs, and CWP can contain one or more EWPs. Although the scope 

of constraints in AWP is extended to engineering and procurement when compared with WFP 

and LPS, constraint removal in AWP has similar shortcomings due to a similar constraint 

removal process.  

2.2 Constraint Modelling and Analysis 

In this section, previous works related to constraint modelling are reviewed firstly. Then, two 

types of network-related modelling methods are introduced: (1) Social Network Analysis 

(SNA); and (2) Dynamic Network Analysis (DNA). Finally, a summary of the two methods is 

concluded in terms of their feasibility in constraint modelling and analysis in LNG 

construction projects. 
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2.2.1 Current approaches for constraint modelling and analysis 

Unsolved constraints are the main causes of unstable construction work flow (Chua et al. 2003). 

These constraints are normally hidden and difficult to be controlled as project progresses. 

Effectively modelling these constraints is important for project managers to identify key 

constraints and remove them in a timely manner. In the last ten decades, a wide range of 

approaches had been developed for modelling and analysing constraints. These approaches 

can be classified into the following three main categories:  

(1) Mathematical model-based constraint modelling and analysis 

This approach is widely used in current construction industry together with conventional 

planning methods such as CPM (Suhail and Neale 1994; Zareei 2018) and Line of Balance 

(Arditi and Albulak 1986; Al Sarraj 1990; Arditi et al. 2002).  Constraints such as time and 

cost are efficiently modelled, analysed, and optimised to improve project performance. For 

instance, Li and Love (1997) applied genetic algorithms to facilitate time-cost optimisation. 

El-Kholy (2013) presented a linear programming model for schedule optimisation considering 

the variability of funding and uncertainty of project duration. Al Haj and El-Sayegh (2015) 

proposed a nonlinear-integer programming model to solve the time-cost optimisation problem 

taking into account the impact of total float loss. Koo et al. (2015) developed an integrated 

multi-objective optimisation model based on the concept of the Pareto front to solve the time-

cost trade-off problem. As projects are unique in nature, an array of constraints (not only the 

time and cost constraints) should be considered such as technological and organisational 

constraints, as well as the availability of resource including labour, equipment, material and 

information (Jaśkowski and Sobotka 2006, Zhou et al. 2013). However, most of the previous 

studies are only focused on modelling precedence and/or resource constraints (Zhou et al. 

2013). Constraint types considered in this approach were limited to time and cost (Feng et al. 

1997, Li and Love 1997, Chassiakos and Sakellaropoulos 2005), quality (Zhang and Xing 

2010), resource (Hegazy 1999, Cheng et al. 2013), space (Akinci et al. 2002, Bansal 2010), 

and information (Sriprasert and Dawood 2003). 

(2) Simulation-based constraint modelling and analysis 

This approach has been proposed as a definitive method for analysing time and resource 

constraints since 1960s (AbouRizk 2011). A series of popular tools such as CYCLONE 

(Halpin 1977), COSYE (AbouRizk and Hague 2009), STROBOSCOPE (Martinez and 

Ioannou 1996) have been developed to facilitate the implementation of this approach 

(AbouRizk 2011).  Mohamed et al (2007) applied a Discrete-Event Simulation model to 

analyse project main constraints such as time, space, crews, and physical constraints. Shi and 
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AbouRizk (1997) applied construction simulation technique to optimise resource constraints. 

Use of simulation techniques in the construction domain has long been mostly limited to the 

academic community for research purposes (AbouRizk 2011). Some late efforts to transfer the 

technology to day-to-day use in the industry have been successful. However, the adoption of 

the technology by the construction industry is still in its infancy (AbouRizk 2011). 

(3) Visualisation-based constraint modelling and analysis 

Recently, visualisation technologies such as Four-Dimensional Computer-Aided Design (4D 

CAD) and BIM are widely applied to improve constraint modelling and analysis. For instance, 

4D CAD had been successfully implemented to support the analysis of site constraints such as 

technological dependency (McKinney and Fischer, 1998; Koo and Fischer, 2000), space 

(Akinci et al., 2000; Dawood et al., 2002), and safety (Hadikusumo and Rowlinson, 2002).  

BIM has been also utilised to support the modelling process of all the three types of constraints 

(i.e. engineering constraints, supply-chain constraints, and site constraints) (Shou et al. 2014). 

With the help of BIM, the project manager can simulate the overall construction process within 

a computer, and visually analyse constraints based on the pre-determined path of construction. 

In addition, some hidden constraints such as workspace and safety can be also analysed 

through 4-D simulation. The most useful capabilities of 4D CAD and BIM is to provide a 

collaborative platform for the project team to share their knowledge and experience to improve 

the overall performance of constraint analysis (Fox and Hietanen 2007; Demian and Walters 

2014; Wang et al. 2014).  

(4) Pull-driven constraint modelling and analysis 

Constraint modelling and analysis within this approach are performed during the look-ahead 

planning stage. Spreadsheet is one of the most popular tools to list constraints for each 

individual task (Nieto-Morote and Ruz-Vila 2011, Fernandez-Solis et al. 2012, AlSehaimi et 

al. 2014). Most of the constraint types within the pull planning methods can be considered, 

however, the interrelationships among constraints are normally ignored (LCI 2007). The 

resulted constraint lists/models are tree-structure based (as shown in Figure 2-1).  
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Figure 2-1: Tree-Structure based Constraint Modelling 

Table 2-1 illustrates the comparison of the above four approaches in terms of their constraint 

coverage and capability in constraint modelling and analysis. The first two approaches (i.e. 

mathematical model-based, and simulation-based approaches) have a very limited constraint 

coverage. However, both of them are strong in both constraint modelling and constraint 

analysis. The last two approaches (i.e. visualisation-based, and pull-driven approaches) have 

a broad coverage of the listed constraints (i.e. engineering, supply chain, and site constraints). 

However, their capability in constraint modelling and analysis is very low.  

Considering the complexity of LNG projects, more than thousands of constraints will be 

involved in a project. Moreover, these constraints may be interconnected with each other. 

Therefore, it is impossible to analyse their relationships and impacts by using anyone of the 

above four existing approaches. There is a need to develop another method that can not only 

handle all of the three types of constraints but work efficiently in constraint modelling and 

analysis. 

Network science has the potential to fill this gap because (1) Constraints in LNG projects are 

multi-tiered which means that a given constraint can be exploded into multiple sub-constraints 

which in turn constrain other constraints and activities. Therefore, the structure of these 

constraints is a multi-level network rather than a simple tree map; (2) Network science is 

focused on studying complex networks such as telecommunication networks, computer 
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networks, biological networks, cognitive and semantic networks, and social networks; (3) 

Network science draws on a number of mature theories and methods which includes graph 

theory from mathematics, statistical mechanics from physics, data mining and information 

visualization from computer science, inferential modelling from statistics, and social structure 

from sociology.  These theories and methods are useful to help project stakeholders to 

understand the relationships and evolution of the constraints that involved in a complex LNG 

project. 

Table 2-1: Comparison of the current four approaches for constraint modelling and analysis 

Approaches 

Constraint Coverage Capability 

Engineering 
Constraint* 

Supply 

Chain 
Constraint** 

Site 
Constraint*** 

Constraint 
Modelling 

Constraint 
Analysis 

(1) 

Mathematical 

Model-based 

No No Yes (Partial) 
High 
(Mathematical 

Model) 

High 
(Algorithm-

driven) 

(2)  
Simulation-

based 

No No Yes (Partial) 

Medium 
(Discrete 

Event 

Simulation) 

High 
(Simulation 

results-

driven) 

(3)  

Visualisation-
based 

Yes 

(Partial) 
Yes Yes (Partial) 

Low  
(No well-

defined 

modelling 

engines ) 

Medium  
(Human-

driven; 

central 

visualisation 

platform-
based ) 

(4)  
Pull-driven 

Yes Yes Yes 

Low  
(No well-

defined 

modelling 

engines ) 

Low  
(Human-

driven; 

coordination 

meeting-

based) 
*Engineering constraints: incomplete drawings, lack of assembly specifications, and incomplete 3D 

models are related to engineering constraints, which affect the start time of procurement, fabrication 

and site installation. 

**Supply chain constraints: late procurement and delivery of bulk materials and project-specific 
instruments and equipment.  

***Site constraints: shortage of workforce, lack of temporary structures, limited work space, 

uncompleted preceding works, bad weather, lack of work permits, and safety issues. 

 

In network science, there are five main network analysis methods that have been developed so 

far which include: Social Network Analysis (SNA), Electric Network Analysis (ENA), 

Narrative Network Analysis (NNA), Biological Network Analysis (BNA), and Dynamic 

Network Analysis (DNA). The aim of the first four network analysis methods is similar (i.e. 

examining the structure of relationships between nodes in a network) but focused on different 

domains. The last one (i.e. DNA) is an emergent method that built on top of the traditional 

methods (e.g. SNA, ENA, NNA, or BNA), which aims to examine the shifting structure of 

relationships among different classes of nodes in a complex network. In the following two 
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sections (i.e. Sections 2.2.2-2.2.3), SNA (representing the traditional network analysis 

methods) and DNA are explained in detail, respectively.  

2.2.2 SNA method  

SNA examines the structure of relationships between social entities (Pryke 2012). These 

entities are often persons, but may also be groups, organisations, nation states, web sites, 

scholarly publications, or project constraints. The concept was introduced by Moreno in 1934 

(Moreno 1960). It involves the representation of organisational relationships as a system of 

nodes or actors linked by precisely classified connections, along with the mathematics that 

defines the structural characteristics of the relationship between the nodes (Pryke 2012). In 

SNA, there are two distinct levels of abstraction. Scott (2012) focused on social networks as 

an interesting social construct and explore the implications for society of such networks while 

Wasserman and Faust (1994) adopted a wide range of definitions in their networks and tried 

to understand the mathematical structure of the networks. Wasserman and Faust (1994) argued 

that any activity requires a transfer of information and knowledge. As such, the transfer of 

information and knowledge can be mapped within sociograms where actors (e.g. people, 

departments within a firm, contractors and subcontractors) and information exchange become 

nodes and arcs within the graph (Wasserman and Faust 1994).  

SNA has been considered as an effective tool in analysing project performance in the 

construction industry (Ruan et al. 2013). The implementation of SNA in the construction 

industry is on various levels from information exchange, collaboration between project 

participants to contractual relationships. Early studies focus on interpersonal level in specific 

conditions and how SNA can be implemented to solve these interpersonal level issues to raise 

productivity. For example, Loosemore (1998) used SNA in crisis management and found that 

SNA, as a quantitative tool grounded in an interpretative context, has its strategic advantage 

in understanding and providing explanations of peoples with interconnected social roles, 

positions and behaviours. Recent studies begin to apply SNA to construction organisations 

and place more focus on organisations and governance. These studies cover the roles and 

relationships of project teams (Di Marco et al. 2010), knowledge sharing between project 

teams (Chinowsky et al. 2009) and facilitating communication of design teams (Boddy et al. 

2009). Given the increasing recognition of globalisation, there are several studies which focus 

on the implementation of SNA in construction organisations in a global context. For example, 

Nayak and Taylor (2009) used SNA to examine key issues with outsourcing engineering 

services across national boundaries. Wong et al. (2009) examined the differences in robust 

project network designs between domestic and global projects. Park et al. (Park et al. 2010) 
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investigated the formation of construction firms’ collaborative networks for performing 

international projects. 

2.2.3 DNA method  

DNA was developed to analyse the rich relational models that represent entities, relations, 

their properties and how all of those change over time (Carley et al. 2007). Meta-matrix is the 

basis of DNA and combines knowledge management, operations research and social networks 

techniques. As the complexity of network increases, the number, type and value of measures 

in the network analysis will change. It is a key problem in meta-matrix to decide appropriate 

metrics for describing and measuring dynamic network. For example, Pattison et al. (2003) 

used four entities of interests, including people, knowledge/resources, events/tasks and 

organisations. Ten inter-linked networks can therefore be created, including social network 

(people - people), knowledge network (people – knowledge/resources), attendance network 

(people - events/tasks), membership network (people - organisations), information network 

(knowledge/resources - knowledge/resources), needs network (knowledge/resources - 

events/tasks), organisational capability (knowledge/resources - organisations), temporal 

ordering (events/tasks - events/tasks), institutional support (events/tasks - organisations) and 

inter-organisational network (organisations - organisations). Diesner and Carley (2004) added 

location to the entities of interests and this new addition has created six additional inter-linked 

networks, which are agent location network, knowledge location network, resource location 

network, task/event network, organisational location network and proximity network. As the 

complexity of the problem increases, more entities of interests and inter-linked networks will 

be created. 

In meta-matrix, the inter-linked networks are probabilistic. Various techniques, mostly 

computational techniques, have been developed to estimate the probability and incorporate 

dynamic network information. For example, Butts (2003) used Bayesian updating techniques 

to draw direct inferences regarding posterior probabilities. The technique helps to address the 

problem of network inference and informant accuracy in traditional network analysis. Other 

systematic algorithmic approaches have also been developed in recent years mainly in the 

context of information networks. For instance, Kempe et al. (2003) developed a discrete 

optimization model to choose the most influential members of the network. Kleinberg (2002) 

used a general model of group structures to address the problem of decentralized search in 

networks with partial information about the underlying structure. Berger-Wolf and Saia (2006) 

proposed a new mathematical and computational framework that enables analysis of dynamic 

social networks and that explicitly makes use of information about the time that social 

interactions occur.  
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Table 2-2 illustrates the comparison between SNA and DNA. SNA is focused on single or at 

most two mode data and facilitate the analysis of only one type of link at a time (Carley 2003). 

In contrast, DNA is developed for large-scale networks that contain multi-nodes, multi-links, 

and multi-levels. Multi-node means that there are many types of nodes such as people, 

locations, and organisations. Multi-link means that there are many types of edges such as, 

friendship, and membership. Multi-level means that some nodes may be members of other 

nodes, such as a network composed of people and organisations and one of the edges is who 

is a member of which organisation. In addition, the links in DNA are not binary. They represent 

the probability that there is a link. 

According to the comparison results shown in Table 2-2, DNA technique is selected as a main 

method for constraint modelling and analysis in LNG construction. The reasons are listed as 

below: 

 The structure of constraints in LNG construction is a multi-node network. There are 

at least four types of nodes existed in the Constraint Network, i.e. Agents, Work 

Packages, Constraints, and Organisations. 

 The structure of constraints in LNG construction is a multi-link network. There are 

more than four types of links should be defined in the Constraint Network. For 

instance, “sequence link” needs to be defined between work packages (i.e. CWPs 

and/or IWPs) to indicate which one will be executed firstly; “superintendent link” 

needs to be defined between work packages and agents to indicate who is in charge of 

which work package; “membership link” needs to be defined between agents and 

organisations to indicate who is belong to which organisation; and “constraint link” 

needs to be defined between work packages and constraints to indicate which 

constraints should be removed before executing a work package.  

 The structure of constraints in LNG construction is a multi-level network. The nodes 

of work package have two levels: Level 1 includes CWPs, EWPs, and PWPs; Level 2 

contains IWPs (because a CWP can be further divided into a number of IWPs). 

 The structure of constraints in LNG construction is a dynamic network because new 

constraint will be added and/or old constraints will be removed as project progresses. 

 The “constraint link” defined between work packages and constraints is not a binary 

link.  

Table 2-2: Comparison between SNA and DNA 

No. Comparison SNA DNA 

1 Network type Static  Dynamic 

2 Network size Small  Large  

3 Network level Single-level Multi-level 
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4 Node type 
Single-node or at most 

two types of nodes 
Multi-node 

5 Edge type One type Multi-plex 

6 Link type Binary link [0, 1] Probability-based link (0, 1) 

7 Network measures 

Measures from Network 

Science (e.g. Density, 

Centrality, and Degree) 

Measures from Network 

Science, and Simulation 

Models 

 

2.2.4 Summary 

The structure of constraints in LNG construction is a dynamic network with multi-levels, 

multi-nodes, and multi-links. Current approaches (i.e. mathematical model-based, simulation-

based, visualisation-based, and pull-driven approaches) cannot efficiently model and analyse 

this type of constraints. Both SNA and DNA methods have potentials to solve this problem. 

However, compared with SNA, DNA is more powerful and focused on large-scale networks 

that contain multi-nodes, multi-links, and multi-levels. In addition, DNA method treats links 

as probabilistic not binary.  

 

  



29 
 

2.3 Cross-domain Constraint Information Sharing 

In this section, current approaches for constraint information sharing are reviewed. The 

challenges of current approaches are then summarised and presented. In order to address these 

challenges, semantic web technology in information management is reviewed. In order to 

improve the use of semantic web technology in improving cross-domain constraint 

information sharing in the LNG industry, two new concepts are also introduced: (1) ISO 15926, 

which is a standard for integrating life-cycle data for process plants including LNG production 

facilities; and (2) linked data technology, which complements the semantic web. 

2.3.1 Current approaches and challenges in constraint information sharing 

Constraint information sharing across domains is essential for determining the status of tasks 

in the look-ahead window. Currently, these sources of constraint information are stored in 

different ways, at various locations and by multiple vendors from different domains. It is 

difficult for project participants to efficiently access these sources of information through 

simple searchings. Moreover, due to the increasing complexity and size of LNG plants, more 

vendors are engaged in a project than before which makes the situation of constraint 

information sharing even worse.  

Current approaches for constraint information sharing can be classified into the following three 

categories: (1) Meeting- and paper-based approaches; (2) Internet/Web-based approaches; and 

(3) Building Information Modelling (BIM)-based approaches. Each of them is explained in 

detail as follows. 

(1) Meeting- and paper-based approaches 

This type of approaches is widely used in current construction projects, especially those of 

small and middle scale size. Regular meetings that are conducted weekly or monthly provide 

opportunities for project participants to share and update constraint information. For instance, 

engineering participants can bring their latest drawings or design progress reports to the 

meetings to help project planners update the status of the engineering constraints. In some 

cases, meeting minutes are circulated for participants to review (Liston et al. 2003). Using 

periodic reports is another way to share constraint information. Each project party (i.e. 

designers, contractors, subcontractors, and suppliers) needs to prepare weekly, monthly or 

quarterly progress report to the client. If the contractors want to understand the delivery status 

of a specific material, they can ask for the progress reports from the corresponding supplier. 

The main advantage of this type of approaches is easy implementation, however, a number of 

drawbacks need to be highlighted. Project participants, who are involved in either meetings or 
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paper-based reporting processes, spend most of their time trying to understand the project 

information rather than using the information to address “What-If” questions. According to 

Liston et al. (2003), four issues have been identified: (1) Information is not interactive and 

real-time; (2) Focus of information, either used or referenced, is not shared; (3) Views don't 

visually represent critical relationships, such as relationships between time, cost, space, safety 

requirement, and permit; and (4) Views are inappropriate for group use, such as the Gantt chart 

which only provides an overall context, but is not adequate for any group task. 

(2) Internet/Web-based approaches 

The Internet provides a nearly ubiquitous platform for information sharing among various 

project participants (Kong et al. 2004). It also provides well-established protocols for data 

security and reliability (Kong et al. 2004). Abdelsayed and Navon (1999) developed a simple 

internet-based model, which is based on a single repository of multiple project database, to 

enhance information sharing and access in construction projects. Tsai et al. (2006) proposed a 

web-based information sharing system for facilitating collaborative product development. 

Furthermore, a role-based access control mechanism was also developed to allow secure and 

fine-grained access control for each piece of data (Tsai et al. 2006). In order to solve the 

interface issue among various project stakeholders, Huesemann (2006) developed a web-based 

platform which adopts a service-oriented architecture for improving information exchange. 

In the construction industry, a number of internet/web-based applications have been developed 

to improve project management performance and information exchange. Deng et al. (2001) 

developed an Internet-based project management system to facilitate information sharing with 

the functions of Internet chat, live video-cam, and search engine. Dawood et al. (2002) 

proposed an automated integrated environment for communication, retrieval, storage and 

distribution of project documents among project teams. Chassiakos and Sakellaropoulos (2008) 

presented a data-centric web databases in enhancing construction information management 

and communication. 

While the Internet providing a convenient and inexpensive approach for information sharing, 

unstructured information is the main concern faced by project stakeholders when searching a 

specific piece of data (Huesemann 2006, Tsai et al. 2006, Forcada et al. 2010). Search results 

are limited by search conditions such as keywords, full texts and the use of natural language 

(Forcada et al. 2010). Each project discipline, such as engineering or construction, uses 

different terminologies to describe their work activities and statuses. Therefore, the search 

terms must also be discipline-specific so as to improve the probability of finding the expected 

document. 
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(3) Building Information Modelling-based approaches 

BIM is emerging as a method of creating, sharing, exchanging and managing the information 

throughout life cycle among all stakeholders (Eastman et al. 2011, Pour Rahimian et al. 2014, 

Wang et al. 2014). Constraint information such as engineering, supply-chain, and construction 

site constraints can be all linked or integrated into a central BIM platform. 

In the project planning and design stages, BIM platforms such as Autodesk Buzzsaw 

(Autodesk 2017a) and Bentley ProjectWise (Bentley 2017) are widely used for managing and 

sharing engineering constraint information, such as design progress and engineering drawings. 

Plume and Mitchell (2007) presented a BIM-enabled collaborative design case using a shared 

Industry Foundation Classes (IFC) building model. Oh, et al. (2015) developed an integrated 

BIM system for improving design information sharing among different disciplines. Kassem et 

al. (2014) proposed a number of protocols that could be utilised at project level to increase the 

efficiency and consistency of information flow and BIM deliverables. Issues like 

interoperability of BIM and other tools of managing constraint information were also 

discussed by Grilo and Jardim-Goncalves (2010). 

In the project construction stage, BIM combined with other sensing technologies can be used 

for site constraints information sharing, such as the availability of equipment, tools, labour, 

and materials. For instance, Costin et al. (2015) utilised passive Radio Frequency 

Identification (RFID) to track and update the site constraint of personnel, and upload the real-

time information into BIM model for referencing by other construction teams. Fang et al. 

(2016) introduced an integrated system of BIM and cloud-enabled RFID for indoor location 

tracking of mobile construction resources including equipment, tools, and labour. In terms of 

site constraint of predecessor work, Golparvar-Fard et al. (2012) proposed an automated 

approach for recognition of physical progress or percentage completion of preceding works 

based on unordered daily construction photos and BIM models. Kim et al. (2013) developed 

another automated method which used a BIM in concert with 3D laser scanning data for 

construction progress measurement.  

Despite many efforts spent on exploring emerging information technologies to improve 

constraint information sharing, there are still a number of challenges faced by project teams. 

The four most prominent challenges are discussed as follows: 

(1) Lack of single source of truth 

Corporations in an LNG project always have their own information systems to store constraint 

data. Most of these systems are directly purchased from software vendors and cannot be 

modified in non-trivial ways. Therefore, data is duplicated in many places, often updated on a 
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casual basis, and has little clarity related to which copy of the data is the most current. For 

instance, drilling system designed by a speciality company will store the engineering drawings 

(i.e. engineering constraint data) in their internal information system. Corporations such as 

other related engineering companies, plant operators, general contractors, and speciality sub-

contractors will get and store a copy of the drilling design drawings. Drill supplier or 

manufacturer will also need a copy of the same data. Because of the lack of a synchronisation 

mechanism among these isolated systems, it is very common that each system maintains 

different versions of the same data. Therefore, the status of each constraint cannot be 

accurately shared which in turn will have a negative impact on the construction work flow. 

(2) Inefficient data exchange  

To achieve an efficient constraint data exchange, data formats need to be harmonised in order 

to improve syntactic interoperability (Mead 2006). Currently, most of the structured constraint 

data are stored in relational databases with different schemas. A unified schema-enabled data 

exchange across multiple databases is the mainstream in the last few decades, however, when 

the schema evolves, information systems using this type of scheme need to be adapted 

accordingly. Over time maintaining these schemas requires significant effort and can be quite 

inflexible. 

(3) Lack of a common vocabulary 

There is not a common vocabulary developed for LNG Plant construction and constraint 

management. Each system uses its own domain vocabularies to describe the same constraint 

data. For instance, manufacturers use the ISO 10303 (Automation systems and integration — 

Product data representation and exchange) to specify a centrifugal pump while plant operators 

use ISO 15926 (Industrial automation systems and integration—Integration of life-cycle data 

for process plants including oil and gas production facilities). An experienced mechanical 

engineer is needed to figure out which data have value and need to be transferred from the 

manufacturer’s data sheet to the owner’s data sheet. Without human intervention, the problem 

of implied meaning based on context becomes a serious barrier for data transfer. 

(4) Lack of efficient searching tools 

For structured constraint data stored in relational databases, Structured Query Language (SQL) 

is the main searching tool to get demand information (Bosc et al. 1988). Due to the limitation 

of the relational dataset, constraint relationships are very hard to be stored and maintained. 

Therefore, it is difficult to find all the constraints of one work pack in one time. In addition, 

the SQL query reflects the specific structure of a database and how the data is stored in tables 

within it, not the user’s understanding of the domain. 
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For unstructured constraint data stored in various formats such as Microsoft Word documents, 

Adobe Portable Document Format (PDF) files, spreadsheets, and Hypertext Markup Language 

(HTML) pages, a text/keyword-based search can be conducted. However, the performance of 

the search is heavily relying on the keyword selection. If the keyword is too specific, the search 

results exclude documents that may be relevant. On the contrary, if the keyword is too generic, 

the search results include too many irrelevant documents. Even if the document is stored in a 

well-classified and structured format, various carefully selected keywords should be used to 

get the desired information. 

2.3.2 Semantic web technology 

Semantic web technology originated from web development has brought new tools, concepts, 

and methodologies which are increasingly employed in project/product lifecycle information 

exchange management (Fortineau et al. 2013). For instance, Niknam and Karshenas (2015) 

applied semantic web technology to integrate distributed sources of information for 

construction cost management such as a BIM models created by designers, estimating 

assembly and work item information maintained by contractors, and construction material cost 

data provided by material suppliers. Pauwels et al. (2011) adopted semantic web technology 

for improving 3D information exchange in the domain of architecture, engineering, and 

construction.  

Ontology is one of the major cornerstones of semantic web technology, and has been 

successfully applied as a semantic enabler of communication between both users and 

applications in fragmented, heterogeneous multinational project environments (Sure et al. 

2002, Beetz et al. 2009, El Kadiri and Kiritsis 2015). In building and construction projects, 

there are a number of ontologies which have been developed to improve cross-domain 

information sharing, such as safety ontology (Zhang et al. 2015), IfcOWL (Beetz et al. 2009), 

defect ontology (Park et al. 2013, Lee et al. 2016), construction event ontology (Le and Jeong 

2016), and condition survey ontology (Le and Jeong 2016). In LNG industry, ISO 15926 is 

the major standard that used for integrating life-cycle data of process plants including oil and 

gas production facilities. The following two sections review the ISO 15926 and linked data 

technology in detail, respectively. 

2.3.3 ISO 15926 

ISO 15926 is a standard for data integration, sharing, exchange, and hand-over between 

computer systems (Wikipedia 2017). The full title of ISO 15926 is “Industrial automation 

systems and integration—Integration of life-cycle data for process plants including oil and 

gas production facilities”. Currently, there are thirteen parts: 
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(1) Part 1: ISO 15926-1:2004 (Overview and fundamental principles) 

This part specifies a representation of information associated with engineering, construction 

and operation of process plants (ISO 2004). This representation supports the information 

requirements of the process industries in all phases of a plant's life-cycle and the sharing and 

integration of information amongst all parties involved in the plant's life cycle (ISO 2004). 

(2) Part 2: ISO 15926-2:2003 (Data model) 

This part specifies a representation of process plant life-cycle information (ISO 2003). This 

representation is specified by a generic, conceptual data model designed to be used in 

conjunction with reference data: standard instances that represent information common to a 

number of users, process plants, or both (ISO 2003). The use and definition of reference data 

for process plants is the subject of Parts 4, 5 and 6 of ISO 15926 (ISO 2003). 

(3) Part 3: ISO/TS 15926-3:2009 (Reference data for geometry and topology) 

This part specifies geometric and topological concepts, enabling the recording of geometric 

and topological data using ISO 15926-2 and in a way consistent with first order logic (ISO 

2009). 

(4) Part 4: ISO/TS 15926-4:2007 (Initial reference data) 

This part defines the initial set of reference data for use with the ISO 15926 and ISO 10303-

221 industrial data standards (ISO 2007). ISO issues the reference data in the form of 

spreadsheets, and currently, there are almost 20,000 individual terms (Fiatech 2011). 

(5) Part 5: ISO 15926-5 

This part specifies the procedures for registration and maintenance of reference data. This 

function has been taken over by an SC4 commission for class library maintenance not only of 

ISO 15926 but of other ISO reference data libraries contained in databases (Fiatech 2011). 

(6) Part 6: ISO/TS 15926-6:2013 (Methodology for the development and validation of 

reference data) 

This part defines a methodology for the stewarding of reference data for process plants (ISO 

2013). It describes how to validate a reference data item to ensure that it is genuine (Fiatech 

2011). It also describes the information required for a new reference data item and how to have 

it approved. It lists the metadata used for the provenance of the objects in an RDL (Fiatech 

2011). 

(7) Part 7: ISO/TS 15926-7:2011 (Implementation methods for the integration of distributed 

systems: Template methodology) 
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This part provides a methodology for data integration of ontologies using mathematical first-

order logic, which makes it independent of computer languages (ISO 2011a). 

(8) Part 8: ISO/TS 15926-8:2011 (Implementation methods for the integration of distributed 

systems: web ontology language implementation) 

This part provides rules for implementing the upper ontology specified by ISO 15926-2 and 

the template methodology specified by ISO 15926-7 into the RDF and Web Ontology 

Language (OWL) languages, including models for reference data as specified by ISO/TS 

15926-3 and ISO/TS 15926-4, and for metadata (ISO 2011b). 

(9) Part 9: ISO 15926-9 (Implementation methods for the integration of distributed systems: 

Façade implementation) 

This part is still under development. 

(10) Part 10: ISO/NP 15926-10 (Conformance testing) 

This part is still under development. 

(11) Part 11: ISO/TS 15926-11:2015 (Methodology for simplified industrial usage of 

reference data) 

This part defines a methodology for simplified industrial usage of reference data as defined in 

ISO/TS 15926-4 and is applicable to the plant life cycle phases in the process industry supply 

chain (ISO 2015). The methodology is based on RDF triples, RDF Named Graphs and a 

standardised set of natural engineering language relationships resulting in a table that can be 

exchanged and shared easily in industry (ISO 2015). 

(12) Part 12: ISO/CD 15926-11 (Life cycle integration ontology) 

This part is still under development. 

(13) Part 13: ISO/CD 15926-13 (Integrated asset planning life-cycle) 

This part is still under development. 

2.3.4 Linked data technology 

In terms of the relationship between linked data and semantic web, a widely held view is that 

the Semantic Web is made up of Linked Data; i.e. the Semantic Web is the whole, while 

Linked Data is the parts (Health 2009). According to Bizer et al. (2008), Linked Data is about 

using Uniform Resource Identifiers (URIs) and Resource Description Framework (RDF) to 

publish structured data on the Web and to connect data between different data sources. In RDF, 
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a description of a resource is represented as a number of triples (i.e. subject-predicate-object). 

The subject of a triple is the described resource; the object can either be a simple literal value 

or another resource that is related to the subject; the predicate indicates the relation exists 

between the subject and object. There are two principal types of RDF triples: literal triple and 

RDF link. The former one is used to describe the properties of a resource. For instance, literal 

triple can be used to describe the name or age of a person. The latter one explains the 

relationship between two resources, which can be further divided into internal and external 

RDF links. Internal RDF links connect resources within a single linked data source, while 

external RDF links connect resources that are managed by different linked data sources. 

Therefore, RDF has features that facilitate data merging even if the underlying schemas differ, 

and it specifically supports the evolution of schemas over time without requiring all the data 

consumers to be changed (Heath and Bizer 2011, Karagiannis and Buchmann 2016). 

Four principles of Linked Data were set out by Berners-Lee (2006) to guide the linked data 

publishing, which include: (1) Use URIs as names for things; (2) Use Hypertext Transfer 

Protocol (HTTP) URIs, so that people can look up those names; (3) When someone looks up 

a URI, provide useful information by using the standards (RDF); and (4) Include links to other 

URIs, so that they can discover more things. A published linked data resource can be queried 

using linked data browser, which is similar to the traditional Web of documents accessed 

through HTML browsers. However, instead of following hyperlinks between HTML pages, 

linked data browsers enable users to navigate between different data sources by following RDF 

links (Hartig et al. 2009, Hausenblas 2009, Heath and Bizer 2011). 

Linked data enables the flexible virtual integration of multiple data sources, through linking, 

without requiring to redesign information systems and to centralise data in data silos. This will 

facilitate the collaboration between different project participants through project life cycle. 

Commonly-agreed metadata (e.g. vocabularies and ontologies) and common identifiers (i.e. 

URIs) ensures semantic interoperability when information systems exchange data, thus 

making the provision of cross-domain information sharing easier. Moreover, the Linked data 

paradigm does not impact the ownership of the original data. Although RDF links among data 

sources are established, data owners still keep full control of their original data (Berners-Lee 

2006, Bizer et al. 2009). 

2.4 Constraint Tracking Technologies 

In this section, a number of sensing technologies for constraint tracking are reviewed including 

their advantages and disadvantages. Dynamic planning and real-time constraint tracking are 

critical to improve schedule reliability and work flow. Activities in LNG projects are very 
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complicated due to tremendous pressure to complete projects under conditions of uncertainty 

in less time and without sacrifice to safety and quality (Sriprasert and Dawood 2003). However, 

manual constraint tracking is time-consuming and inefficient. Without increased information-

technology support, constraint management is generally brute force, left up to instinctive 

decision making by the experienced project manager and field supervision (Blackmon et al. 

2011). A substantial amount of literature related to tracking technologies has been published 

over the past 20 years. The following review covers technologies of: (1) Barcode, RFID, and 

Global Position System (GPS); (2) Laser Scanning and Photogrammetry; and (3) Other 

tracking technologies.  

2.4.1 Barcode, RFID and GPS 

Barcode, RFID and GPS are widely used for supply chain constraint tracking from material 

procurement to delivery on site. Barcode is an automatic identification technology that 

streamlines identification and data collection. The applications for supply-chain nowadays 

have massively adopted barcodes in order to control the traceability of the goods, such as 

instruments and materials tracking, and electronic document management (Lin et al. 2014). 

As a robust tracking approach, barcode still suffers from a certain amount of problems such as 

line-of-sight restrictions, and that they are easily damaged (Schmidt et al. 2013), which create 

obstacles in supply-chain scenarios. Nevertheless, barcoding is still an essential approach in 

industrial logistics. 

RFID technologies have been progressively adopted in tracking material’s transportation and 

status during construction in the past ten years (Schmidt et al. 2013). The RFID system usually 

contains two main components: readers and tags. RFID readers acquire the information from 

tags based on radio waves communications between tags and antennas on the readers (Liu et 

al. 2014). Once the tags of interest have been located within the detecting range of readers, the 

IDs of these tags can be received and related information regarding the tagged objects can be 

identified. The RFID systems can be classified into two types: passive and active RFID 

systems (Kelm et al. 2013). The communication of a passive system only relies on the signal 

emitted from the antenna of the reader. Tags are responsible for the signal reflection based on 

their induction coils without battery support, which only offers a short communication range. 

On the contrary, the active system identifies information by triggering tags and receiving tags’ 

active signal responses.  

Due to its decreasing cost and relatively long range communication, RFID has attracted a lot 

of interests from both researchers and industry professionals. Examples of their use include 

indoor location identification for construction projects (Montaser and Moselhi 2014), 

construction components localisation (Ergen et al. 2007), and material supply chain tracking 
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(Young et al. 2011, Demiralp et al. 2012). However, the tracking system is still suffering from 

environmental factors, which negatively impact the reliability of massive utilisation for total 

supply-chain management. The environmental factors affect the magnetic flux and weaken the 

radio frequency signal (Jeffery et al. 2006). They include multipath fading issues (Sabesan et 

al. 2012), the presence of metal and liquid in the vicinity of the tag and so on.  

GPS, as an outdoor localisation technology, can provide logistic information frequently. It can 

be utilised for transportation tracking in a medium-or long-range area, such as tracking 

material movement from a warehouse to a construction site. GPS was firstly initialized in the 

United States during the 1970s. With the assistance of satellites running on the orbit of the 

earth, the ground-based equipment contains a transmitter and a receiver which is usually 

combined into a single unit and is responsible for collecting and decoding the signal from 

satellites (Brewer et al. 1999). The latitude, longitude, and altitude of the unit can be 

determined by triangulation calculations according to the positions and time off-sets of four 

satellites. Such tracking approaches are now commonly used in the trucking industry.  

2.4.2 Laser scanning and photogrammetry 

Accurate and rapid assessment of the as-built model is important for project planners to 

manage and track site constraints such as predecessor work, work space, and quality. Rapid 

project assessment further identifies discrepancies between the as-built and as-planned model, 

and facilitates decision making on the necessary remedial actions (Golparvar-Fard et al. 2011). 

Currently, there are two types of technologies for creating as-built model: laser scanning and 

photogrammetry. 

Laser scanning is an active sensor technique that captures geospatial information of a scene, 

delivering thousands of points with Cartesian (x-y-z) or spherical (Φ-θ-r) coordinates 

(Becerik-Gerber et al. 2011, Bhatla et al. 2012). To capture all aspects of the objects, scans 

from multiple locations are needed because they only capture data within their line of sight 

(Becerik-Gerber et al. 2011). In construction industry, laser scanning is used for progress 

tracking (Shih et al. 2007, Kim et al. 2013, Zhang and Arditi 2013), quality control (Wang et 

al. 2014), as-built model development (Bosché 2010, Turkan et al. 2012), indoor mapping 

(Surmann et al. 2003, Biber et al. 2004), and construction metrology (Hashash et al. 2005, 

Walters et al. 2008). Despite high accuracy of laser scanners and dense reconstruction of the 

as-built models, a set of limitations and challenges have been found during implementation. 

These limitations include (1) high cost needed to purchase equipment, train workers and 

process point cloud data; (2) long time required to perform a single scan when using high 

angular resolution; and (3) massive number of scan-positions necessary to acquire accurate 

and complete information (Golparvar-Fard et al. 2011).  
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Photogrammetry feeds the measurements from remote sensing and the results of imagery 

analysis into computational models in an attempt to successively estimate actual site 

environment (El-Omari and Moselhi 2008, Bohn and Teizer 2009, Yang et al. 2010, Brilakis 

et al. 2011, Yang et al. 2011, Bhatla et al. 2012). In the construction industry, high-speed 

imaging and remote sensing devices are employed to detect, measure and record complex 3D 

fields. Kim et al. (2013) presented an image-processing-based methodology for the automatic 

updating of a 4D CAD model. Bhatla et al. (2012) evaluated the accuracy of as-built 3D 

modelling from photos taken by handheld digital cameras. When compared with laser 

scanning technology, photogrammetry in the current state is not suitable for modelling 

infrastructure projects, however, technological developments can enable it to be an efficient 

way to extract measurements of inaccessible objects for progress tracking and decision-

making purposes (Bhatla et al. 2012). 

2.4.3 Other tracking technologies 

Apart from the three types of tracking technologies mentioned above, Ultra-wide Bandwidth 

(UWB), Bluetooth and Wireless local area network (WLAN) are also used to track 

construction equipment, labour and material. UWB belongs to the radio frequency positioning 

family (Li et al. 2016). The feature of UWB is its short pulse which allows the filtering of the 

reflected signal and further helps overcome multi-path distortion for more accurate positioning 

results (Ingram et al. 2004); Bluetooth, which can only obtain two-dimensional positioning 

data, are known to be extremely accurate in indoor environments (Li et al. 2016). WLAN 

system can reuse the existing network infrastructure of the site and be used to calculate the 

position of the subject based on signal strength as well (Khoury and Kamat 2009). The 

limitation is the need for the target to be connected to the WLAN (Li et al. 2016). 

2.4.4 Summary 

Regarding the performance of the state-of-the-art tracking approaches, it is believed that one 

or two single identification technologies are not likely to meet the need of comprehensive 

constraint tracking in LNG projects. In order to tackle this issue, there is a need to develop a 

hybrid solution through integrating multiple tracking devices and methods. By selecting the 

most appropriate group of tracking technologies, the advantages of these technologies can be 

amplified while the drawbacks are minimized because they are complementary to each other. 

This is especially important for complicated cases, such as LNG projects and the development 

of a total constraint tracking method is therefore necessary.  
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Chapter 3: Research Methodology 

This chapter examines the research methodology adopted in this thesis. It first outlines the 

research philosophy that underpins the approach taken with the research, discussing the 

researcher’s positivism stance to research and the consequent choice of a mixed research 

approach (i.e. qualitative and quantitative approaches). The next section discusses the rationale 

for the research design, and the reasons for adoption of Focus Group Study and Experimental 

Research Method. It also provides an overview of the data collection methods used for the 

thesis, as well as the methods used to analyse the data.  

3.1 Research Philosophy 

3.1.1 Paradigm 

Guba (1990) defined paradigm as a basic set of beliefs that guide action. Paradigms deal with 

principles, or ultimates (Denzin and Lincoln 2011). Denzin and Lincoln (2008) (p. 245) 

suggested paradigms as basic belief systems based on ontological, epistemological, and 

methodological assumptions. They are the philosophical stances of the research. Ontology 

discusses the beliefs of the nature of reality and humanity, epistemology is the theory of 

knowledge that informs the research, and methodology focuses on how the knowledge can be 

acquired. A comprehensive consideration of ontology, epistemology, and methodology is a 

central feature of social science research (Guba and Lincoln 1994). 

Ontology is the study of reality (Crotty 1998). Blaikie defined ontology as the study of “claims 

and assumptions that are made about the nature of social reality, claims about what exists, 

what it looks like, what units make it up and how these units interact with each other” (Guba 

and Lincoln 1994, p.10). The ontological position of a research is the investigation of the 

nature of the reality. The popular example of ontological positions includes objectivism vs. 

constructivism (Sutrisna 2009). Objectivism claims that the empirical fact is the objective 

reality which exists independently from personal ideas or thoughts, so that everyone 

experiences the same way to the reality (Sutrisna 2009, Crotty 1998). Constructivism claims 

that the world is continually being constructed, interpreted, and accomplished by people in 

their interactions with each other and with wider social society, so that everyone constructs 

the reality differently (Sutrisna 2009, Marczyk, DeMatteo, and Festinger 2005).  

Epistemology concerns the claim of “what is assumed to exist can be known by the knower or 

to-be-knower” (Guba and Lincoln 1994). It is defined as “the theory of knowledge embedded 

in the theoretical perspective and thereby in the methodology” (Crotty 1998) (p.3). It deals 

with what it means to know of the nature, sources, and processes of knowledge and knowing 
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that to be created, acquired and communicated (Cohen et al. 2013). Epistemology is the view 

of how one acquires knowledge. Epistemology looks at especially the methods and the 

possible ways of gaining knowledge in the assumed reality (Sutrisna 2009). The two broad 

epistemological positions are positivism vs. interpretivism (Sutrisna 2009). Positivism 

advocates the application of methods to observe, study the reality and discover the truth 

according to the same principles of natural science (Sutrisna 2009, Bryman 1984). 

Interpretivism claims that the reality separates from the observers/researchers, the truth of the 

reality is constructed individually and interpreted from their own viewpoint (Sutrisna 2009). 

Objectivism is the basis of positivist to understand reality with the focus on experiencing only 

one reality by all observers/researchers. Constructivism is the basis of interpretivist to 

understand reality with different viewpoints. It is argued that the philosophical view may be 

divided into two dimensions: one with objectivist ontology and positivist epistemology, 

another with constructivist ontology and interpretivist epistemology.  

3.1.2 Deductive and Inductive Research  

The next level of research methodology is the discussion on the reasoning of research (Sutrisna 

2009). It refers to the logic of the research, which focuses on exploring the role of existing 

body of knowledge gathered from the literature study, the way researchers utilise the data 

collection and subsequent data analysis (Sutrisna 2009). Deductive and inductive research are 

the two ways of reasoning. The logic of deductive research is composing hypothesis based on 

current body of knowledge (one objective truth), followed by data collection and analysis to 

test the hypothesis, whilst the logic of inductive research starts by conducting data collection 

and analysis to come up with findings, then using the current body of knowledge to inform the 

data analysis when researchers see appropriate (Sutrisna 2009). 

3.1.3 Qualitative and Quantitative Research  

The research methodology used in social science can generally be divided into qualitative and 

quantitative. Quantitative approaches follow the ontological position of objectivism. They are 

based on the positivistic ideal – an idea of independently existing reality that can be observed 

as it is. Quantitative methodology is routinely described as an approach to test theories 

deductively, a focus on gathering factual data, carrying on controlled inquiry against bias, and 

quantifying objective explanation (Steckler et al. 1992). Researchers are verification and 

outcome-oriented, and the results are viewed as generalisable, replicable and capable of 

isolation from reality (Slevitch 2011, Tuli 2011).  Quantitative research is usually designed 

under experimental conditions to test theories. It is conducted in an attempt to answer 

questions such as why something happens, what causes some events, or under what conditions 
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an event does occur (Hughes 2012). 

Qualitative methodology is inductive. It is based on constructivism and interpretivism 

(Steckler et al. 1992). Qualitative methods focus on investigating the quality of phenomena, 

taking into account the interactions between reality and researchers, and explaining the 

phenomena from the viewpoint of participants. The data used in qualitative research are 

subjective as the events are understood and explained when researchers immersed in the 

context. Qualitative approaches are discovery and process oriented; the results are less 

concerned with generalisability and replicability (Tolley et al. 2016, Tuli 2011). Qualitative 

research is usually used to suggest possible relationships, effects and dynamic processes 

(Hughes 2012).  Mixed methods are the combination of both qualitative and quantitative 

research approaches. It involves the mixed use of qualitative and quantitative methods 

concurrently or subsequently in the study of the same phenomenon (Creswell and Clark 2007).  

This study aims to develop and validate a TCM method to improve plan reliability and work 

productivity in LNG construction. A positivist epistemology was adopted in this research. 

Mixed methods of both qualitative and quantitative methods were conducted subsequently in 

this research. More specifically, focus group study method was conducted to facilitate the 

development of the TCM framework while experimental methods including lab-based 

experiments (i.e. Lean Simulation Game) and field experiments were conducted to validate 

the effectiveness and efficiency of the proposed TCM framework. 

3.2 Research Design 

Within a positivist epistemology stance, this thesis is focused on developing and validating a 

TCM method to improve plan reliability and work productivity in LNG construction. The 

review of existing constraint theories, and constraint management practices in Chapter 2 has 

shown that there are significant research gaps in constraint modelling, constraint information 

sharing, and constraint monitoring. Figure 3-1 illustrates the overall research design for this 

thesis. Three types of research methods were applied: Focus Group Study, Experimental 

Research (i.e. Laboratory and Field Experiments), and Linked Data Development Method. 

Each of them is discussed in detail in the following sections. 
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Need for Research: 64% of LNG projects (capital investment above US$ 1 

billion) were facing cost overruns while 73% of the projects were reporting 

schedule delays

Problem Statement:

 Deficient process for constraint life cycle management

 Insufficient methods for constraint modelling 

 Inefficient methods for cross-domain constraint information sharing

 Inefficient approaches for constraint monitoring 

Research Aim: To develop and validate a Total Constraint Management 

(TCM) method to improve plan reliability and work flow in LNG construction 

Step 1: Develop a hierarchical 

constraint management process (i.e. 

Objective 1)

Step 2: Develop a DNA-based 

method for constraint modelling and 

analysis (i.e. Objective 2)

Step 3: Develop a semantic approach 

for cross-domain constraint 

information sharing (i.e. Objective 3)

Step 4: Develop a cost-effective 

tracking solutions for real-time 

constraint monitoring (i.e. Objective 4)

Step 5: Develop a TCM 

method to improve plan 

reliability and work flow in 

LNG construction (i.e. 

Objective 5)

Findings, Conclusions and Recommendations

Literature Review

Focus Group Study 1

Focus Group Study 2&3

Field Experiment 1&2

Laboratory Experiment 1

Ontology Development

Laboratory Experiment 2

 

Figure 3-1: Research Design  

3.2.1 Focus Group Study 

Focus group study aims to obtain data from a purposely selected group of individuals rather 

than from a statistically representative sample of a broader population (O.Nyumba et al. 2017). 

The discussion is guided by a skilled facilitator who provides the topics. Focus groups are 

conducted with 7–12 people. Participants should be relaxed, and the discussion should flow 

naturally to maximize the sharing of ideas (EI-Sabek et al. 2018). This method is frequently 

used as a qualitative approach to gain an in-depth understanding of social issues (O.Nyumba 

et al. 2017). In construction research area, a significant number of researchers had applied this 

method in their studies to explore stressors of construction professionals (Leung and Chan 

2011), identify critical factors of public engagement in project development phase (Leung and 

Chan 2013), analyse risk factors in high-rise construction (Kim et al. 2016), and validate 

framework of managing integration challenges (EI-Sabek et al. 2018). According to Figure 3-
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1, three focus group studies had been conducted. Each of them is explained in detail as follows 

including data collection and analysis. 

(1) Focus Group Study 1 

Participants 

The aim of this focus group study is to facilitate the development of the TCM framework 

(Objective 1). An optimal group size of 5-12 participants was preferred to create a balance 

between depth and breadth of data collection (EI-Sabek et al. 2018).  To control data quality, 

purposive sampling was adopted (Patton 1990). Participants in the focus group were selected 

according to the following two criteria: (i) they had work experience of project planning and 

control in LNG construction; (ii) they had been involved in at least one LNG project in 

Australia in the last ten years. To allow interindividual variation within each group, within-

group design was also applied (Schwartz and Meyer 2010). The first four columns on the left 

of Table 3-1 summarise the profile of the thirteen selected participants including their 

companies, expertise, and years of experience. Their expertise covers the LNG project life 

cycle, including design, procurement, logistics and supply chain, engineering and construction 

management, as well as maintenance. All industry experts had a minimum of 10-year 

experience in developing, delivering and managing LNG projects. It is therefore expected that 

these industry experts can offer a fair and useful recommendations to the development of the 

proposed TCM framework. 

Data Collection and Analysis 

At the beginning of the focus group study, the moderator described the purpose of the study, 

followed by the ground rules (e.g., equal status and voice of each participant; allowance to 

provide any suggestions, objections, and doubts freely), confidentiality of the discussion, and 

self-introductions. The ground rules and confidentiality agreements aimed to mitigate the 

effect of groupthink in the discussion process (Leung and Chan 2011). Data was collected by 

(1) voice recorder, (2) worksheets, and (3) white board (for discussion notes taking) in order 

to ensure the reliability of the data. 

An initial TCM framework developed from the literature review was presented to the group 

firstly by the moderator. Then, the participants wrote down their personal views on the 

worksheet based on their experiences. These worksheets were collected and analysed through 

Semantical Content Analysis method which seeks to classify signs according to their 

meanings. The data was summarised into tables by keywords and phrase identifications. The 

right-most column of Table 3-1 shows their contributions in terms of the framework 
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development. From the various aspects of Constraints and Constraint Management identified 

in this exercise, participants further discussed how those aspects would shape the initial TCM 

framework. Following each discussion, the moderator asked the participants for any further 

suggestions within or outside those aspects. The final version of the framework is explained 

in Chapter 4.  
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Table 3-1: Profile of the Thirteen Industry Experts and Their Contribution 

No. 
Organisation 
(types) 

Expertise  
Years of 

experience Main Contribution 

1 

Woodside 

(Client) 

Construction 

Management 
20+ 

Long-lead constraints 

management 

2 
Logistics and 

Supply Chain 
20+ 

Supply chain constraint 

monitoring 

3 
Turnaround 

Maintenance 
15+ 

Long-lead constraints 

identification 

4 WorleyParsons 
(Engineering, 

Procurement and 

Construction) 

Engineering 

Management 
10+ 

Engineering constraint 

monitoring 

5 
Logistics and 

Supply Chain 
10+ 

Alignment between 

procurement and 
construction 

6 Monadelphous 

(Construction 
and 

Maintenance) 

Construction 
Management 

15+ 
Constraint identification 
for safety and permits 

7 Site Logistics 10+ 
Material constraint 
tracking  

8 
Track’em 

(Software) 

Supply Chain 

Management 
10+ 

Supply chain constraint 

monitoring 

9 

AVEVA 
(Software) 

Engineering Design 20+ 
Maturity index 
development for 

engineering constraint  

10 

Construction 

Management and 

Procurement 

10+ 

Alignment of removal 

plans among engineering, 
supply-chain and site 

constraints  

10 
Fremantle Steel 

(Manufacturer) 
Offsite Fabrication 20+ 

Constraint modelling for 

offsite fabrication 

11 
KAEFER 

(Contractor) 

Construction 

Management 
15+ 

Constraint management 

for temporary structures 

12 
Bentley 
(Software) 

Construction 
Management 

15+ Site constraint monitoring 

13 
SECORA 
(Lean 

Consultancy) 

Lean Construction 10+ Pull planning 

 

(2) Focus Group Study 2 & 3 

Participants 

The aim of these two focus group studies are to facilitate the development of a coordinated 

approach for supply-chain constraint tracking (Objective 4). More specifically, Focus Group 

Study 2 was for the development of the total supply chain process in LNG construction, while 

Focus Group Study 3 was for the selection of the alternative tracking technologies to improve 

the visibility of the supply chain process. To decrease dominant voices, homogenous 
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participants were invited to the two focus groups according to their stakeholder status 

(Smithson, 2000). Five industry experts were invited to participate Focus Group Study 2, who 

were from five different companies. The majority of participants were middle aged (40% aged 

30–39; 40% aged 40–49, and 20% aged  50), had amassed certain years  experience in 

LNG construction and/or supply-chain management (20% with 3–5 years; 60% with 5–10 

years; and 20% with >10 years), and currently held senior positions (40% were construction 

managers; 20% were site managers; 20% were supply-chain managers; and 20% were project 

managers). 

Focus Group Study 3 involved seven people. Two of them were from Focus Group Study 2 

and another five from five different tracking solution providers, respectively. The majority of 

participants were middle aged (14% aged 20–29; 43% aged 30–39; 29% aged 40–49, and 14% 

aged  50), had amassed certain years  experience in LNG construction and/or tracking 

technologies (29% with 3–5 years; and 43% with 5–10 years; and 28% with >10 years), and 

currently held senior positions (14% were construction managers; 14% were site managers; 

and 72% were business development managers). 

Data Collection and Analysis 

The process at the beginning of Focus Group Study 2 and 3 was same as Focus Group Study 

1. The moderator described the purpose of the study, followed by the ground rules, 

confidentiality of the discussion, and self-introductions. Data was collected by (1) voice 

recorder, (2) worksheets, and (3) white board. 

For Focus Group Study 2, A draft version of the total supply chain process map was firstly 

introduced, which was developed by the author based on the previous literatures. Then a series 

of short questions were asked to check the reasonability and authenticity of the proposed 

process map. During the discussion, the owner pointed out that there were two different types 

of materials in LNG construction, namely general materials and project-specific materials, and 

each of them had different SCM strategies. The former included standard materials and tools; 

and the latter contained specified instruments and offsite fabricated modules. The logistics 

solution provider emphasized the shipping difference between the two delivery strategies: Free 

on Board (FOB) and Ex Works (EXW). Under the FOB agreement, there is no line item 

payment by the buyer for the cost of getting the goods onto the transport. EXW means that a 

buyer incurs the risks for bringing the goods to their final destination. The fabricator confirmed 

the process during fabrication, however, he emphasised that the process was not constant and 

would be adjusted based on client’s requirement. For instance, surface treatment and/or pre-

assembly were not always necessary for all productions. The general contractor pointed out 
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the difficulties of site logistics management, especially for warehouse management. The final 

version of the total supply chain process map is explained in Chapter 7. 

For Focus Group Study 3, Seven types of tracking technologies were introduced and discussed 

at the beginning, namely barcode, passive RFID, active RFID, GPS, UWB, Wi-Fi, and 

Bluetooth. Due to the intrinsic safety requirement in LNG industry (pointed out by the client), 

the last three technologies (i.e. UWB, Wi-Fi, and Bluetooth) were excluded in the following 

discussion because they had not been certified so far against explosion protection concepts. 

Subsequently, the validated version of the total supply chain process for LNG construction 

which came from Focus Group Study 2, was introduced to the participants. For each detailed 

process, they needed to evaluate the feasibility of the four alternative tracking solutions (i.e. 

barcode, passive RFID, active RFID, and GPS). Five factors were considered during the 

evaluation: (1) the type of the object to be tracked; (2) indoor or outdoor environment; (3) line-

of-sight requirement; (4) Location information requirement; and (5) Tag removal. Finally, 

suggested solutions were given in terms of their low complexity in practice and cost-

effectiveness. The final tracking solution is explained in Chapter 7. 

3.2.2 Experimental Research Method 

The experimental research method is a quantitative approach designed to discover the effects 

of presumed causes. The key feature of this approach is that one thing is deliberately varied to 

see what happens to something else, or to discover the effects of presumed causes. This 

approach can be used in both laboratory settings and field settings. A Field Experiment “is an 

experimental research study that is conducted in a real-life setting. The experimenter actively 

manipulates variables and carefully controls the influence of as many extraneous variables as 

the situation will permit”. A Laboratory Experiment “is a study that is conducted in the 

laboratory and in which the investigator precisely manipulates one or more variables and 

controls the influence of all or nearly all of the extraneous variables”. 

The experimental approach has the primary advantage of being able to infer causal 

relationships. However, it is easier to identify causal description, which describes the 

consequences of deliberately varying a treatment, than it is to achieve a causal explanation, 

which clarifies the mechanisms by which a causal relationship holds. A second advantage of 

the experiment is that it controls for the influence of extraneous variables. Other advantages 

are that it permits the precise manipulation of one or more variables, produces lasting results, 

suggests new studies, and suggests solutions to practical problems. The experimental approach 

has the disadvantages of not being able to test for the effects of nonmanipulated variables, 

creating an artificial environment, and frequently being time consuming and difficult to design. 
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In a field setting, the author makes use of a real-life situation and thereby avoids criticism for 

having created an artificial environment. Typically, however, there is not as much control over 

extraneous variables. In a laboratory setting, the experimenter brings the participants into the 

laboratory, where there is maximum control over extraneous variables; however, this usually 

means creating an artificial environment. 

Two Laboratory Experiments and two Field Experiments had been conducted to validate the 

approaches proposed in this thesis. More specifically, Laboratory Experiment 1 was to 

evaluate the performance of the proposed DNA-based constraint modelling method in LNG 

construction; Laboratory Experiment 2 was to evaluate the performance of the proposed TCM 

method. Field Experiment 1 and 2 was to validate the effectiveness and efficiency of the 

selected tracking technologies (i.e. barcode for offsite fabrication tracking, GPS for shipping 

and delivery tracking, and Active RFID for construction site logistics tracking). 

(1) Laboratory Experiment 

The two Laboratory Experiments were conducted based on a LNG Construction Simulation 

Game. Game-based experiments (Camerer and Fehr 2004) had been widely used to set up 

situations for strategic interaction and test many of the fundamental assumptions of 

construction management theory such as lean and pull planning. Most games involve 

anonymous agents, physical tools, real small-scale buildings (made by woods or plastics), and 

paper-based instructions or drawings. Players cannot communicate with each other unless 

allowed. Conventions often favour minimal and vague description of the game to the subjects 

when recruited, the use of private spaces where the game is explained with a standard script, 

the inclusion of a question and answer session and sometimes a test is administered to ensure 

subjects understand the game (Jackson 2011). In the game the players make choices according 

to the information they have in their hands such as construction progress, resource constraints, 

and permit issues.  

Tommelein et al. (1999) used a Parade Game to evaluate the impact of work flow variability 

on trade performance. The game consists of simulating a construction process in which 

resources produced by one trade are prerequisite to work performed by the next trade. Perng 

et al. (2006) utilised a Bidding Game to explore the bidding situation for economically most 

advantageous tender projects. 24 participants played the game and the results revealed that the 

game had the potential to identify important factors in the bidding situation, simulate 

competitive bidding behaviours, and explore competitive advantages in the bidding process. 

Sacks and Goldin (2007) and Sacks et al. (2007) had successfully tested lean construction 

concepts on high-rise apartment buildings through a lean simulation game named LEAPCON. 
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Van-den-Berg et al. (2017) developed a serious gaming approach and applied it to train 

students to learn how to improve the performance of a construction supply chain. 

LNG Construction Simulation Game 

This is a pre-existing game that is used to demonstrate LNG construction process including 

procurement and supply chain. Construction works within this game include: site preparation, 

module installation (the modules are manufactured off-site), pipework installation, wiring 

installation, and major equipment installation. Figure 3-2 illustrates the detailed construction 

work flows. Engineering constraints in this game include engineering drawings and 

instructions (as shown in Figure 3-3); Supply-chain constraints include materials, instruments, 

and off-site fabricated modules (as shown in Figure 3-4); and Site constraints include tools, 

preceding works, permits, work space, workforce, and safety (as shown in Figure 3-5). Table 

3-2 shows the number of people and roles needed to play the game. 

 

Figure 3-2: Construction Work Flows of the LNG Construction Simulation Game 
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Figure 3-3: Engineering Drawings and Instructions 
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Figure 3-4: Materials, Instruments, and Off-site Fabricated Modules 

 

Figure 3-5: Construction Site of the Game 
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Table 3-2: The Roles of the People in the LNG Construction Simulation Game 

Roles  Quantity 

Project Manager 1 

Plant Manager 1 

Engineering Manager 1 

Procurement Manager 1 

Site Manager 1 

Module Manufacturing 6 

Civils Contractor 2 

Mechanical Contractor 1 

Pneumatic Contractor 2 

Electrical Contractor 1 

Major Equipment Installation 1 

Shipping 1 

Commissioning 1 

Total 20 

 

Participants 

Theoretically, a large enough random sample of males and females provides the best basis for 

generalising results over the general population and avoiding a gender bias (Järvelä 2014). 

However, in practice this goal is often problematic to achieve. Although many women study 

construction management courses and work for LNG construction, male population still 

accounts for the vast majority. Therefore, acquiring comparable numbers of experiment 

participants of both genders with good sample size can sometimes be difficult. Similarly, it is 

hard to conduct an experimental study that would have enough participants in each age group 

to provide statistically significant results without limiting the amount of relevant variables 

through participant selection. Instead, these factors have to be taken into account when 

analysing the data, interpreting the results, and generalising them (Järvelä 2014). 

For Laboratory Experiment 1, the aim is to evaluate the performance of the proposed DNA-

based constraint modelling method in LNG construction. Therefore, participants with basic 

construction management knowledge are required. 20 students from a construction 

management course were randomly selected based on their Student Identifications. The 

majority of participants were male and around 20 years old (75% male and 25% female). 

For Laboratory Experiment 2, the aim is to evaluate the performance improvement of the 
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proposed TCM method compared with conventional approach. Therefore, two groups are 

needed. All the 40 participants were graduate students (i.e. same knowledge level) and had 

very limited knowledge on lean and TCM. Meanwhile, there were both male and female 

subjects (82.5% male and 17.5% female), which aligned to the real project team. The 

participants were randomly split into two groups: Group A with TCM implementation and 

Group B without. In order to reduce the learning curve issues, there was a basic training session 

(30 minutes) for both groups, and they were also guided to play once before starting the test. 

Two additional players were assigned to represent the clients of the LNG project. One selected 

design variations at regular time intervals through the game and delivered them to the project 

manager; the other checked completed tasks and issued permits to site managers. 

Data Collection and Analysis 

The raw experimental data was collected by (1) video recorders, and (2) predefined worksheets 

(i.e. module quality reports, progress reports, and commissioning reports). These data were 

then processed for further statistical analysis and interpretation based on predefined indicators. 

In Laboratory Experiment 1, five indicators were developed to analyse the performance of 

constraint removal during the experiment, such as Number of Unconnected Components at 

time i (NUCi), Variance of Constraint Removal at time i (VCRi), Variance of IWP Released 

to Site at time i (VIRSi), Out-Degree of a Constraint Node (ODCN), and In-Degree of a 

CWP/IWP Node (IDCN/IDIN). Detailed explanation of each indicator, experiment design, 

and experiment results can be found at Chapter 5.  

In Laboratory Experiment 2, indicator of Cumulative Progress (CP) was developed to measure 

the actual progress at the end of each time interval; and productivity indicator was defined to 

measure the performance of each construction trade. Other indicators such as the number of 

defective LNG modules, and actual duration were also defined and calculated. Detailed 

explanation of each indicator, experiment design, and experiment results can be found at 

Chapter 8.  

(2) Field Experiment 

Field Experiment 1 was conducted at a real fabrication facility owned by Fremantle Steel 

Group. Barcode technology was deployed to a small batch of products to track its fabrication 

processes including cutting, drilling, assembly, welding, surface treatment, pre-assembly, and 

despatch. Field Experiment 2 was conducted at a real LNG plant facility owned by the 

Australian Centre for Energy and Process Training (ACEPT). GPS and Active RFID were 

deployed to track the shipping process and construction site logistics, respectively. Detailed 

experiment design of these two field experiments are explained in Section 7.4, Chapter 7. 
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Data Collection 

Two types of data were collected during the two experiments. The first one was the sensor 

data. In Field Experiment 1, Barcodes were scanned manually by workers as required and 

uploaded to a 3D-based data platform which was developed by the researcher. In Field 

Experiment 2, GPS tags were read by the satellite (i.e. no human needed). Active RFID tags 

were read by the fixed readers installed on the test bed. Data from GPS and RFID were also 

sent to the 3D-based data platform for data integration and visualisation. The second type of 

data was secondary data that collected from Fremantle Steel Group and ACEPT. These data 

included historical fabrication data (i.e. time spent for generating progress reports, time spent 

for progress checking, time spent for locating missing components, etc.), norms, site maps, 

and facility details. 

Data Analysis 

For Field Experiment 1, the secondary data such as site maps and facility details were 

interpreted by the researcher so as to design an overall tracking scenario. Data generated from 

barcodes included the scanned time and locations. The location data was firstly transformed 

to the status of each tracked object such as “in cutting and drilling”.  Then, the status 

information together with the scanned time were transformed to progress information. Finally, 

Microsoft Project tool was utilised to generate S-Curves (i.e. accumulated progress curves 

with normal distribution) for project progress monitoring and measurement. The efficiency of 

the barcode-based fabrication tracking solution was measured based on the time and cost 

reduction analysis compared with historical project information. 

For Field Experiment 2, RFID signals were received by the four Fixed RFID Readers at a 

predefined period. The locations of these RFID tags were determined through triangulation 

calculations. In order to assess the accuracy of the active RFID system, a performance analysis 

of the RFID tags localisation was conducted. Given that the magnitude of Radio Signal 

Strength (RSS) was related to the distance between reader and tag, the researcher first validated 

the relationship of RSS between each RFID tags in the simulated LNG plant construction 

environment. Two randomly selected RFID tags were put at the same position on a trolley 

located within the detection range of the four fixed readers. The results showed that the RSS 

distributions of the dynamic cases were more fluctuated than that of the static cases. However, 

both tags at the same place responded different RSS values but the patterns of changes were 

similar with each other. It suggested that there was a relationship between RSS responses and 

the distances of RFID tags, which could be utilised to further improve measurements as long 

as it could be formed. Once the tags with known locations were obtained as reference tags, the 
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measured location of the target tag was calibrated by the RSS responses from those tags 

through the determined relationship.   

3.2.3 Linked Data Development Method 

Figure 3-6 shows the research steps and methods implemented for developing the linked data-

enabled cross-domain constraint information sharing platform. Linked data is the core 

technique to break down the constraint information silos that exist between various formats 

and brings down the fences between various sources. The detailed research steps and related 

research methods are explained as follows. 

Step 1: Define 

purpose of 

ontology

Step 2: 

Ontology 

development

Step 3: RDF data transformation

Step 5: 

Inference rule 

development

Legacy data 1 Legacy data 2 Legacy data 3

RDF Dataset 1 RDF Dataset 2 RDF Dataset 3

Disparate RDF datasets (output of Step 3 & input of 

Step 4)

Heterogeneous data sources (input of Step 3)

Step 4: RDF data interconnection

RDF Dataset 1 RDF Dataset 2 RDF Dataset 3

Linked RDF data cloud (output of Step 4)

Step 6: 

Validation and 

improvement

Research step

Legends

Research method Input and/or output

 

Figure 3-6: Linked Data Development Method 

 

Step 1: Defining Purpose of Ontology 

In this step, the researcher clearly defined two purposes of the ontology: (i) to formalise the 

constraint knowledge; (ii) to support data wrapper (i.e. RDFisation process) and publication 
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for existing legacy data. In addition, the scope of the ontologies covered domains of LNG 

project planning, engineering, supply chain, and construction.  

Step 2: Developing Ontology  

The ontology development method deployed in this study was derived from the method 

developed by Noy and McGuinness (2001), which includes the following five steps: (1) 

Determine the domain and scope of the ontology; (2) Enumerate important terms in the 

ontology; (3) Define the classes and the class hierarchy; (4) Define the properties of the classes; 

and (5) Define the facets of the properties.  

Two types of ontologies were developed: constraint ontology and AWP ontology. The 

knowledge sources considered for identifying relevant concepts and coding the two ontologies 

include the ISO 15926 standard (Fiatech 2011), Project Management Body of Knowledge 

(PMI 1987), AWP implementation guidance (CII 2013), WFP execution manual (PMP 2009), 

and LPS specifications (Ballard 2000). A Description Logic (DL) reasoner was conducted to 

check the consistency of the proposed ontologies. 

Reuse of existing vocabularies or ontologies was highly recommended in this study. Existing 

ontologies, such as the Reference Data Library (ISO 2007) presented in ISO 15926-Part 4, was 

reused to describe the engineering constraints. Existing vocabularies, such as FOAF (Brickley 

and Miller 2007) and Dublin Core (Initiative 2004) were reused to define the people and 

organisations involved in a LNG project and basic constraint information, respectively. 

Step 3: Developing RDF Data Transformation Method 

The method of RDF data transformation was used to convert the existing legacy data (i.e. 

engineering constraint data, supply chain constraint data, site constraint data, and project 

planning data) to RDF data. In LNG industry, the legacy data is normally stored in three types: 

(1) Drawing data, such as Piping and Instruments Diagram, and Isometric drawings; (2) 

Tabular data, such as spreadsheets and relational databases: and (3) Raw document data, such 

as Microsoft Word, Adobe PDF, and Image. Accordingly, three types of RDF data 

transformation methods were developed, namely, Drawing data to RDF, Table data to RDF, 

and Document Meta-data to RDF.  

Step 4: Developing RDF Datasets Interconnection Method 

The result of the Step 3 was a set of disparate RDF datasets. To fully support the decision 

making, these disparate resources were required to be interconnected to each other. The 

objective of this step is to create a global, interconnected data space for cross-domain 

constraint information sharing and management. Two types of data interconnections were 
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developed, namely, data interconnection among RDF datasets and data interconnection 

between RDF datasets and documents. 

Step 5: Inference Rule Development 

Inference is the process of discovering new facts from existing triples on a set of rules. There 

were two types of rules utilised in this study. The first one was the standard ruleset which 

included rdfs, rdfs+ and OWL-Horst. The second one was the pre-defined rulesets created by 

users. New facts could be added to the RDF triple store through forward-chaining inference, 

or be inferred at query time through backward chaining inference (Kiryakov et al. 2009, 

Kolovski et al. 2010, Meditskos and Bassiliades 2010).  

Step 6: Validation and Improvement 

A prototype of the proposed approach was developed to demonstrate its capabilities in cross-

domain constraint information sharing. A pilot case study was conducted to test the 

effectiveness and efficiency of the prototype. Detailed information in terms of case 

background, data preparation and processing, and evaluation method can be found in Section 

6.6, Chapter 6. Feedbacks from the testing results then went back to Step 2 to make continues 

improvement. 

3.3 Conclusions 

This chapter examined the research methodology used in the thesis. The first section discussed 

the research philosophy within which the researcher has undertaken the research. The 

research’s positivism stance was shown as partly determining the mixed research methods (i.e. 

qualitative and quantitative approaches) to the study. The second section explained the reason 

why choose Focus Group Study and Experimental Research Method as the main research 

methods in this thesis. In addition, participant selection, data collection and analysis, and 

limitations for each method were also discussed. This chapter also included a sub-section on 

the issues of linked data development. 
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Chapter 4: A Hierarchical Constraint Management Process to 

Identify and Remove Constraints through Project Life Cycles  

4.1 Introduction 

Chapter 4 proposes a hierarchical constraint management process (i.e. Research Objective 1), 

which consists of three levels of loops: Loop 1 happens in project stage one and involves 

modules of constraint modelling and monitoring at CWA level; Loop 2 happens in project 

stage two and involves modules of constraint modelling, monitoring, and removal at CWP 

level; and Loop 3 happens in project stage three and involves modules of constraint modelling, 

monitoring, and removal at IWP level. In addition, how to align this hierarchical constraint 

management process to a project’s different stages (i.e. preliminary planning, detailed 

engineering, construction, and commissioning) is also discussed. Focuse Group Study 1 

explained in Section 3.2.1, Chapter 3 was the main method used to develop the hierarchical 

constraint management process. 

4.2 Framework of the Hierarchical Constraint Management Process 

This section describes a framework of the hierarchical constraint management process which 

aims to identify and remove constraints through project life cycles. During the review stage of 

the proposed framework by the selected industry experts, the client and manufacturer pointed 

out that there were two different types of constraints in LNG construction, namely long-lead 

and short-lead constraints, which needed to be distinguished. For instance, most of the project-

specified instruments were long-lead constraints because they were needed to be designed and 

fabricated overseas which took a long time to deliver. Standard materials and tools such as 

valves and bolts, could be short-lead constraints if they are available in local market. There 

should be different management strategies to handle these two types of constraints. People 

from engineering company emphasized the alignment among engineering, procurement and 

construction plans. In addition, they mentioned constraint-removal plan should be developed 

from a construction-centred perspective. The contractor highlighted the importance of 

identifying other long lead-time constraints like safety and permits, because there were more 

rigorous standards in LNG industry. The delay of temporary structures was another type of 

constraint identified by the sub-contractor, which had a big negative impact on construction 

work flow.  The lean consultancy confirmed the AWP process, however, he emphasized that 

the process was not constant and would be adjusted based on client’s requirement.  

Figure 4-1 shows the final version of the proposed hierarchical constraint management process. 

In the left part, AWP method is selected as a basis to express the work flow of the project 
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execution in LNG industry. The underlying reasons are threefold: (1) AWP method is 

developed from and increasingly used in oil and gas industry when compared with LPS 

(Hamdi 2013); (2) AWP method is an extension of WFP which covers both construction and 

initial early stages of projects (CII 2013); (3) AWP is an overall process flow of all the detailed 

work packages (CWPs, EWPs, and IWPs), which is more close to the current practice of LNG 

construction (confirmed by the thirteen industry experts). Three stages are defined within the 

work flow: preliminary planning, detailed engineering, and construction. The right part of 

Figure 4-1 shows a general constraint management process, which can be further classified 

into three modules: constraint modelling, constraint monitoring, and constraint removal. The 

level of detail of each module depends on the project stages. For instance, in detailed 

engineering stage, the level of detail of all the three modules is in CWP level. There are three 

levels (i.e. levels of CWA, CWP, and IWP) of loops existed between the project stages and 

the core modules. Each of them is explained in detail as follows. 

 

Figure 4-1: A Hierarchical Constraint Management Process 
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4.2.1 Constraint modelling  

Constraint modelling is key to allow project managers and engaged partners to have a thorough 

understanding of interconnections among activities. There are three processes within this 

module. The first one is constraint identification which needs to accurately detect all the 

constraints. The traditional process for constraint identification always happens once and close 

to the construction stage, and only important constraints are taken into consideration, such as 

material, workforce, and equipment. In order to assure a full constraint identification, 

constraints in LNG construction are classified into three main categories (as shown in Figure 

4-2): engineering, supply chain, and site constraints. Constraints such as incomplete drawings, 

lack of assembly specifications and 3D models are engineering constraints, which decide the 

start time of procurement, fabrication and site installation. Supply chain constraints include 

the late procurement of bulk materials and project-specific instruments and equipment. 

Without timely purchasing and delivering these resources to the site, detailed construction 

activities cannot be planned and executed. Site constraints contain the shortage of workforce, 

lack of temporary structures, limited work space, uncompleted preceding works, bad weather, 

lack of work permits, and safety issues. If these site constraints are not timely removed, 

construction work crews cannot perform their daily tasks. The underlying reasons for this type 

of classification are twofold: (1) most of LNG project are delivered by the strategy of 

Engineering Procurement and Construction (EPC), hence, it is easy to conduct constraint 

identification; and (2) work packages are widely used in LNG construction, such as EWP, 

CWP, IWP, Procurement Work Package (PWP), inspection work package and commissioning 

work package. Therefore, it is easy to manage these constraints.  
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Figure 4-2: Constraint Classification 

The second process is constraint relationship mapping. In real project situation, constraints are 

not independent and have inter-relationships among each other. Hence, having a thorough 

understanding of these relationships is very helpful for removing constraint in time. Figure 4-

3 shows a single example which contains only one EWP, one PWP, one CWP and one IWP. 

When the designers start to develop EWP, initial vendor data to perform detailed design needs 

to be obtained, final vendor data is then needed to conduct production design, final approvals 

from the client are necessary to release the EWP to construction. An interesting finding is that 

both the two types of vendor data come from PWP, and the development of the PWP needs to 

rely on conceptual design outputs which come from the EWP. Therefore, any delay of the 

activities within the two work packages will result in late constraint removal, thus causing 

whole project delay. From the IWP perspective, before released to the site, it needs to satisfy 

all the different types of constraints including site constraints and constraints from EWP, CWP, 

and PWP. 
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Figure 4-3: A Simple Example of Constraint Relationship Mapping 

The last process is constraint-removal planning. In order to assure all the constraints are timely 

removed, a detailed timeline for each constraint removal is needed to be pre-planned while 

considering the requirement of project completion. The pull-driven approach is applied to 

determine the deadline of each constraint. For example, when the sequence of the CWPs are 

decided and agreed by all project stakeholders, the planning of EWP and PWP should be 

aligned with the CWPs. In addition, each deliverable from EWP or PWP must be early defined 

and communicated so that engineering or procurement can be proceeded with a clear 

understanding of the level of detail. 

4.2.2 Constraint monitoring  

In a real LNG construction situation, the statuses of constraints change over time. The latest 

constraint information is important for project managers to assess progress and release 

constraint-free work packages. When project suffers delay, the up-to-date status of constraints 

can also be used as references for decision-making. There are three processes within the 

module of constraint monitoring. The first one is constraint tracking which focuses on tracking 

each individual constraint. The approaches for constraint tracking can be automated, semi-

automated or manually which depend on project requirement and technology maturity. For 
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example, material constraints can be automated tracked by RFID (Navon and Berkovich 2006), 

while safety constraints maybe still need to be manually checked by site workers.  

The second process is constraint status updating which focuses on calculating the maturity of 

a task or a work package. The maturity index is intended to support both short-term decision 

making by team leaders, before they commit to performing tasks, and also to support weekly-

planning activities (Sacks et al. 2010). All the tracking data from the first sub-step are collected 

for the maturity index calculation. Table 4-1 shows an example of maturity index for a piping 

EWP. 

Table 4-1: An Example of Maturity Index for A Piping EWP 

Tasks  Maturity (%) 

EWP identified and mapped to CWP 5 

Initial scope identified (line numbers) 20 

Preliminary equipment data received 25 

Initial routing of lines established 45 

Initial bulk material to supply chain 55 

Piping studies received for critical lines 60 

Final vendor data received 70 

Final routings completed 75 

Process and Instrumentation Diagrams and Line Designation Table 

issued for construction 

80 

Stress analysis for large bore completed 85 

Bill of Materials completed 90 

EWP complete with all drawings/specs issued for construction  95 

EWP accepted by Construction 100 

 

The final process within this module is constraint checking and action, which is focused on 

comparing as-actual constraint status with an as-planned constraint-removal plan. The 

frequency of constraint checking is dependent on the project stages and characteristics. For 

example, the frequency can be quarterly or monthly at project early stage, and then change to 

weekly or daily at construction stage. Different action strategies should be performed 



65 
 

according to the checking results. If the results indicate several delays of constraint removal, 

catch up action needs to be conducted.  

4.2.3 Constraint removal  

Constraint removal is mainly executed in the stage of look-ahead planning. Constraints cannot 

be removed unless either of the following two conditions is satisfied: (1) the maturity index of 

the constraint is 100%; or (2) the maturity index can be updated to 100% based on forecasting 

or reliable commitment.  

4.2.4 Loop 1 (CWA Level) 

Loop 1 happens in project stage one and involves the modules of constraint modelling and 

monitoring at CWA level. CWAs are manageable areas from a large project, and are developed 

according to the path of construction and requirement of integrated planning. The main 

objective of loop 1 is to identify and monitor long lead-time constraints and align engineering 

and procurement plans to the construction plan. In project definition phase, it is important for 

design engineers to embrace a total project view in order to position the project for effective 

implementation of TCM. In construction and engineering planning phase, construction 

planning is key to establishing alignment with engineering. The sequence of construction 

activities should be established so as to ensure that engineering can sequence its work to 

support construction. This allows construction to drive the engineering plan which can realize 

the greatest potential of TCM to manage engineering constraints. The constraints of temporary 

structures (e.g. site traffic flow, temporary roads, general parking, laydown areas, site security, 

subassembly areas, field office locations, offsite storage, and the related power, water and air 

requirement) should be identified and well managed because they can affect construction work 

flow. Engineering plan is developed based on the sequence of construction, and engineering 

feedbacks are also needed to refine the sequence. All major constraints should be addressed at 

this point, including any resulting from the contracting and procurement plan. In schedule 

refinement phase, key long lead-time constraints of the supply chain should be identified and 

scheduled based on procurement expertise. In CWP and EWP boundary development phase, 

a list of deliverables for CWP and EWP has been developed. Constraints of labour and 

materials should be considered. Identifying at a high level the necessary workforce by 

discipline, including support craft services for each CWP, and then assessing the availability 

of these resources are key in this phase. The material requirement should be estimated based 

on material specification from engineering, and unique and/or long-lead material items should 

be identified, such as certain alloy piping materials and many process equipment items. 
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4.2.5 Loop 2 (CWP Level) 

Loop 2 happens in project stage two and involves all the three modules of constraint modelling, 

monitoring, and removal at CWP level. A CWP defines a logical and manageable division of 

work within the construction scope and is typically aligned with a bid package. A typical CWP 

includes schedule, budget, environment requirements, quality requirements, and special 

resource requirements. The objective of loop 2 is to manage constraints from a CWP-centred 

perspective, and continually involve owner, engineers, purchasers and contractors to find new 

constraints and detect potential constraint-removal issues. Monitoring and removing 

constraints of engineering and long-lead supply chain should be given high priorities in this 

loop. During the schedule development phase, detailed resource constraints should be 

considered with progressing for work packaging. There must be alignment with areas that plan 

to have an early start-up. Owner operations requirement should also be accommodated in this 

phase. In engineering phase, all engineering deliverables (i.e. engineering constraints for 

CWPs) need to be clearly mapped to EWPs and CWPs. Changes need to be managed to assess 

their impact on CWPs. In the detailed construction schedule phase, site constraints must be 

considered and reflected in the constraint relationship map. 

4.2.6 Loop 3 (IWP Level) 

Loop 3 happens in project stage three and involves all the three main modules within TCM at 

IWP level.  An IWP is a deliverable that enables a construction work crew to perform work in 

a safe, predictable, measurable, and efficient manner. The objective of loop 3 is to maintain, 

monitor and remove constraints from an IWP-centred perspective based on IWP look-ahead 

schedule. Modelling, monitoring, and removal of detailed site constraints such as materials, 

equipment, tools, labour, safety, permits, weather and work space are the focus of this loop. 

Once the IWP scope is identified, a rough schedule and sequence can be developed. Foremen 

should be notified of the requirement to support this initial plan. After the initial allocations 

have been made, constraints should be monitored on the basis of the constraint-removal plan. 

All the related constraints of an IWP should be removed prior to release the IWP to the field. 

Once issued, the superintendent should review and coordinate the execution of the work with 

the general foreman, foreman, and craft. The superintendent, with support from the project 

planner, is responsible for follow-up on the execution and progress of the IWP. After IWP 

closeout, the project team should continue to improve TCM process by looking for ways to 

increase accuracy, reduce information collection errors and redundancy, and develop a specific 

continuous improvement/best practices plan to implement TCM in practice. 
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4.3 Conclusions 

A hierarchical constraint management process with three levels (i.e. Levels of CWA, CWP, 

and AWP) had been developed in this chapter through literature reviews and a focus group 

study.  The constraint management process at CWA level (i.e. Loop 1) aims to identify and 

monitor constraints that have a long lead time and align engineering and procurement plans to 

the construction plan; The constraint management process at CWP level (i.e. Loop 2) aims to 

manage constraints from a construction-centred perspective, and continually involve owner, 

engineers, purchasers and contractors to find new constraints and detect potential constraint-

removal issues; and The constraint management process at IWP level (i.e. Loop 3) is to 

maintain, monitor and remove constraints from an installation-centred perspective. 
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Chapter 5: DNA for Constraint Modelling and Management in LNG 

Construction 

5.1 Introduction 

Chapter 5 develops a network-based method for constraint modelling and analysis by 

leveraging the DNA technique (i.e. Research Objective 2).  DNA varies from traditional social 

network analysis, and can handle large, dynamic, multi-mode, multi-link, and multi-level 

networks with varying levels of uncertainty. The DNA technique provides a promising way to 

understand the complex interactions within a constraint network which includes a variety of 

nodes and relations, such as people, work packages, and constraints. Equipped with time-

dimensional analysis and complex modelling capabilities, DNA can efficiently detect conflicts 

between construction plans and constraint-removal plans, and dynamically identify critical 

constraints before and/or during project execution. A laboratory experiment (i.e. Laboratory 

Experiment 1 explained in Section 3.2.2, Chapter 3) was developed to demonstrate and 

evaluate the proposed method. The results show that DNA can significantly improve the 

performance of constraint modelling and removal, which in turn increase construction 

workflow and productivity. 

5.2 Meta-network for Constraint Modelling 

A meta-network is a multi-node, multi-link, multi-level network. Figure 5-1 shows an example 

of constraint meta-network in LNG construction. From the network, multi-node (e.g., agents, 

work packages and constraints) and multi-link (e.g., superintendent, hierarchy, sequence and 

constraint) can be found. Multi-level is another dimension, which describes the hierarchy of 

nodes, for instance, the nodes of CWP contains two IWP nodes (i.e. IWP 1 and 2). With agents, 

constraints, and work packages involved, constraint meta-network can effectively present and 

analyse the dynamic evolution process as project progresses. 

For analysing project constraints evolution, the meta-network possesses two unique attributes 

that distinguish DNA from other network analysis methods such as SNA. The first one is the 

dynamic property which enables the meta-network to adapt easily to constraint updating and 

removal. When the statuses of constraints are updated, the nodes in the meta-network will be 

changed accordingly so as to reflect the latest project situation. Similarly, the links between 

any two nodes can be restructured, revised, or removed (Li et al. 2015). All of these changes 

trigger the evolution of a sub-network, or even a whole new meta-network (Li et al. 2015). 

The second one is the complex attribute which is embodied in network structure and 

connections. Multiple types of nodes and their sub-nodes are identified and incorporated into 



69 
 

the meta-network, which increases its structural complex. In addition, a network connection 

between two nodes can be probabilistic, directed and undirected. For example, whether a 

constraint can be removed or not depends on its maturity index which is a measure of the 

degree to which the constraints on work have been removed (Sacks et al. 2010). Therefore, the 

weight of constraint-link can be used to reflect the maturity of the constraint. Meanwhile, 

connections could be either one way, such as a sequence-link for CWPs or IWPs, or two way, 

such as engineering information exchange between EWP and PWP.  

 

Figure 5-1: An Example of Constraint Network in LNG Construction 

The pluralities of both network nodes and connections elevate the complexity of the system 

exponentially and make the effects of a meta-network far beyond the capacity of conventional 

network analysis (Li et al. 2015). A constraint network in LNG construction (as shown in 

Figure 5-1), which has many dynamic and complex characteristics, is an appropriate example 

of a meta-network. Meta-networks can be simply expressed by the meta-matrix, which 

describes the nodes and their connecting links (Carley 2003, Li et al. 2015). Table 5-1 presents 

a meta-matrix for constraint network in LNG construction, which includes five different types 

of nodes: agents, CWP/AWPs, engineering constraints, supply chain constraints and site 

constraints. Fifteen inter-linked networks (also called sub-networks) are also defined based on 

the interactions among these nodes, such as Construction Assignment Network, Engineering 
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Constraint Network and Site Demand Network. Changes in one network cascade into changes 

in the others, and relationships in one network imply relationships in another (Carley et al. 

2007, Li et al. 2015). For example, once a small change occurs in the Construction Precedence 

Network (CPN), the Engineering Precedence Network (EPN), Supply Chain Precedence 

Network (SCPN) and Site Precedence Network (SPN) will have ripple effects.  

Table 5-1: Meta-Matrix for Constraint Network 

Nodes Agents CWP/IWPs 
Engineering 

Constraints  

Supply Chain 

Constraints  

Site 

Constraints  

Agents 

Social 

Network  

(SN) 

Construction 

Assignment 

Network 

(CAN) 

Engineering 

Management 

Network 

(EMN) 

Supply-

Chain 

Management 

Network 

(SCMN) 

Site 

Management 

Network 

(SMN) 

CWP/IWPs  

Construction 

Precedence 

Network 

(CPN) 

Engineering 

Constraint 

Network 

(ECN) 

Supply Chain 

Constraint 

Network 

(SCCN) 

Site 

Constraint 

Network 

(SCN) 

Engineering 

Constraints 
  

Engineering 

Precedence 

Network 

(EPN) 

Interdepende

ncy Network 

(IN) 

Change 

Management 

Network 

(CMN) 

Supply Chain 

Constraints 
   

Supply Chain 

Precedence 

Network 

(SCPN) 

Site Demand 

Network 

(SDN) 

Site 

Constraints 
    

Site 

Precedence 

Network 

(SPN) 

 

In the LNG construction practices, numerous constraints identified in Section 3 frequently 

interact with each other and any delays of constraint removal results in schedule and cost 

overruns. Meanwhile, the continuous emergence of design and construction changes, as well 

as additional or restructured project teams, is common in LNG construction projects and 
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requires dynamic network change. Therefore, it is necessary and essential to use DNA to 

improve the constraint management in terms of its complexity and dynamic characteristics.  

5.3 A Framework of DNA for Constraint Management 

This section describes a framework of DNA for constraint management in LNG construction 

(as shown in Figure 5-2). There are three main parts within the framework: Constraint Meta-

network Development (CMD), constraint tracking and removal, and dynamic constraint 

analysis. Each of them is explained in detail as follows. 

Level 1: CWP-Oriented Constraint Meta-

network Model

Step 1.1: Modelling CWP Network 

Step 1.2: Incorporating Engineering Constraints

Step 1.3: Incorporating Supply Chain Constraints

Level 2: IWP-Oriented Constraint Meta-

network Model

Step 2.1: Modelling IWP Network 

Step 2.2: Detailing Engineering Constraints

Step 2.3: Detailing Supply Chain Constraints

Step 2.4: Incorporating Site Constraints

Timeline for CWP-Oriented Constraint 

Network 

Step 1.4: Adding Timeline for CWP Network 

Step 1.5: Developing Plan for Engineering 

Constraint Removal

Step 1.6: Developing Plan for Supply Chain 

Constraint Removal

Timeline for IWP-Oriented Constraint 

Network 

Step 2.5:Adding Timeline for IWP Network 

Step 2.6: Developing Detailed Plan for 

Engineering Constraint Removal

Step 2.7: Developing Detailed Plan for Supply 

Chain Constraint Removal

Step 2.8: Developing Detailed Plan for Site 

Constraint Removal

Constraint Tracking and Removal

Dynamic Constraint Analysis 

Constraint Meta-network Development

  

Figure 5-2: Framework of DNA for Constraint Management in LNG Construction 
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5.3.1 Constraint meta-network development 

CMD is key to allow project managers and engaged partners to have a thorough understanding 

of interconnections among constraints. There are two levels of constraint meta-network which 

need to be developed as project progresses: CWP-oriented Constraint Meta-network Model 

(CCMM) and IWP-oriented Constraint Meta-network Model (ICMM). The former one is 

established in the project planning stage, and aims to identify long lead-time constraints and 

align engineering and procurement plans to construction plan. The latter one is firstly created 

in detailed design stage and then maintained through the whole construction stage. The 

purpose of ICMM is to identify detailed constraint information especially site constraints such 

as materials, equipment, tools, labour, safety, permits, weather and work space. 

(1) Level 1: CCMM 

The development of CCMM includes six steps from step 1.1 to 1.6. The first three steps can 

be grouped as a toolbox to construct a static network; the last three steps are another cluster 

which aims to add time dimension to the network. The detailed description of each step is as 

follows: 

Step 1.1: Modelling CWP Network 

A CWP is a grouping or breakdown of work with logical geographical limits (CII 2013). The 

CWP network can be established in three sub-steps: (1) Determining the boundaries and 

scopes of CWPs (i.e. nodes); (2) Formulating the sequence (i.e. connections) for the execution 

of the CWPs; and (3) Assigning superintendent or coordinator (i.e. agents) to each individual 

CWP. Assumptions for the first sub-step are initial engineering deliverables (e.g. pilot plan of 

general arrangement drawings, major equipment list, piping line list, and project milestone 

schedule), work processes and project execution philosophies (CII 2013). In the first sub-step, 

the process of boundary determination is mainly driven by project physical location, 

construction methods, and best practices. The size and scope of a CWP depend on the 

construction plan and contracting and procurement strategies. When CWPs are defined, the 

next sub-step is to establish connections between the CWP nodes. When deciding the sequence 

of the CWPs, project planners need to consider geographical layout of systems, client contract 

milestones, and system turnover sequence. After the first two sub-steps, people in charge of 

each CWP should be added into the network. Figure 5-3 illustrates an example of the CWP 

network. The nodes of agents are not shown in this network and the following two examples, 

because the connections among CWPs, engineering constraints and supply chain constraints, 

can be clearly demonstrated in this way. However, a complete example of all types of nodes 

is given in the Validation Section. The sizes of the nodes are decided by their degree within 
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the network (Degree indicates the connectivity of nodes which provides information on how 

many other nodes are connected to a particular node). 

 

Figure 5-3: An Example of CWP Network 

 

Step 1.2: Incorporating Engineering Constraints 

In the LNG industry, in order to effectively manage engineering constraints, project managers 

prefer to define engineering into workable packages (i.e. EWPs) that can be engineered 

separately, or that can be scheduled to support engineering workflow (CII 2013). In this thesis, 

EWPs are used to represent engineering constraints in the constraint meta-network. The 

boundaries of EWPs need to be consistent with CWPs, and the scope of each EWP should 

clearly show the final engineering deliverables (i.e. individual engineering constraints such as 

General Arrangements, 3D models, isometrics and Bill of Materials). It is not necessary to 

make a one-to-one correspondence between a CWP and an EWP. In general, one CWP can 

connect with more than one EWPs, however, one EWP should have only one connection with 

a CWP. Figure 5-4 shows the result after incorporating engineering constraints. The sizes of 

the nodes are determined by their out-degree (The number of tail ends adjacent to a node is 

called the out-degree of the node) within the directed network. 
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Figure 5-4: Result after Incorporating Engineering Constraints 

 

Step 1.3: Incorporating Supply Chain Constraints 

Supply chain constraints are also represented by PWPs within the constraint meta-network. 

There are three types of PWPs which are used for purchasing bulk materials, instruments and 

offsite fabricated modules, respectively. The last two types of PWPs should be focused upon 

because of their long-lead time. Lots of uncertainties could happen during the processes of 

production, delivery, and handling and lifting into the final locations. PWPs can interact with 

both EWPs and CWPs. Engineers need information from PWPs such as instrument and vendor 

data to finish their EWPs; Purchasers also require information from EWPs such as Bill of 

Materials and specifications to develop their PWPs. Knowing the supply chain constraints, 

especially the unique and/or long-lead material items, can help facilitate the execution of 

CWPs and EWPs. Figure 5-5 shows the result after incorporating supply chain constraints. 
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Figure 5-5: Result after Incorporating Supply Chain Constraints 

 

Step 1.4: Adding Timeline to CWP Network 

Timeline for CWP execution is key to establish alignment with engineering. There are three 

assumptions for this step. The first one is to identify the major schedule milestones; the second 

step is to understand project permit requirements; and the last one is to determine the long 

lead-time items with rough delivery times and rough weights and dimensions. It is better to 

engage engineers and purchasers to develop the timeline, because the reliability of the 

construction planning can be limited by the timing of the engineer’s deliverables. In extremely 

cold climates, weather risks also need to be considered. The timeline should be updated as the 

project matures.  

Step 1.5: Developing Removal plan for Engineering Constraints  

The objective of this step is to achieve effective project execution through early collaborative 

planning with construction managers according to the output of Step 1.5. If engineers have 

already developed their work plan based on the EWPs defined in Step 1.2, the work plan can 
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be used as a reference to estimate the removal time for each engineering constraints; If not, 

the engineering plan can be developed on the basis of the CWP execution plan. Ultimately, 

engineers should timely deliver the EWPs (i.e. remove the engineering constraints) to support 

construction work plans. The output of this step is a preliminary engineering constraint-

removal plan, consistent with the preliminary CWP execution plan. At the end of this step, the 

engineering team should understand its role in providing EWPs. 

Step 1.6: Developing Removal Plan for Supply Chain Constraints 

The procurement and logistics plan (both offsite and onsite) must support construction and 

engineering plans. The plan for the offsite fabricated module, with logistics onsite, should be 

carefully developed. Methods for materials management and inventory need to be determined 

in this step. The outputs include a feasible removal plan of supply chain constraints, and a 

process for expediting vendor drawings and vendor surveillance. At the end of this step, the 

procurement team should have a good understanding of the PWPs including delivery durations 

and lead-times.  

(2) Level 2: ICMM 

In general, IWPs are developed based on CWPs, and do not across CWP boundaries (CII 2013). 

The development of ICMM includes eight steps from step 2.1 to 2.8. Compared with CCMM, 

ICMM has another two extra steps (i.e. 2.4 and 2.8) which are related to site constraints. The 

remaining six steps (i.e. 2.1 to 2.3 and 2.5 to 2.7) are similar to the development of CCMM. 

In addition, in the Validation Section (i.e. Section 5.4), a complete ICMM is created for the 

selected case. Hence, only step 2.4 and 2.8 are described as follows. 

Step 2.4: Incorporating Site Constraints 

In this step, the major dependencies and boundaries that support IWP development are 

identified. The detailed EWPs for each IWP installation are defined in Step 2.1. The detailed 

supply chain constraints such as bulk materials are also packaged into PWPs and connect to 

IWPs in Step 2.3. Additional constraints from tools and equipment, labour, permits, work 

space and other sources need to be recorded and managed, which is the purpose of this step.  

Step 2.8: Developing Detailed Plan for Site Constraints Removal 

When a rough schedule and sequence of the IWPs is in place, site constraints identified in Step 

2.4 should be well planned so as to support the initial IWP execution plan. The outputs of this 

step include, but not limited to: workforce plans, construction equipment allocation plans, site 

logistic plans and permit management plans. At the end of this step, the construction team 

should have an in-depth understanding of the site constraint management.  
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5.3.2 Constraint monitoring and removal 

In a real LNG construction situation, the statuses of constraints change over time. The latest 

constraint information is important for project managers to assess progress and release 

constraint-free work packages. When project suffers delay, the up-to-date status of constraints 

can also be used as references for catching up. There are three processes within constraint 

monitoring. The first one is constraint tracking which focuses on tracking each individual 

constraint. The approaches for constraint tracking can be automated, semi-automated or 

manual which depend on project requirement and technology maturity. For example, material 

constraints can be automatically tracked by RFID (Navon and Berkovich 2006), while safety 

constraints may still need to be manually checked by site workers.  

The second process is constraint status updating which focuses on calculating the maturity of 

a task or a work package. The maturity index is intended to support both short-term decision 

making by team leaders, before they commit to performing tasks, and also to support weekly-

planning activities (Sacks et al. 2010). All the tracking data from the first sub-step are collected 

for the maturity index calculation. Table 5-2 shows an example of maturity index for a piping 

EWP. 
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Table 5-2: An Example of Maturity Index for A Piping EWP 

Tasks  Maturity Probability 

of the 

Connection 

EWP identified and mapped to CWP 5% 95% 

Initial scope identified (line numbers) 20% 80% 

Preliminary equipment data received 25% 75% 

Initial routing of lines established 45% 55% 

Initial bulk material to supply chain 55% 45% 

Piping studies received for critical lines 60% 40% 

Final vendor data received 70% 30% 

Final routings completed 75% 25% 

Process and Instrumentation Diagrams and Line Designation 

Table issued for construction 

80% 20% 

Stress analysis for large bore completed 85% 15% 

Bill of Materials completed 90% 10% 

EWP complete with all drawings/specs issued for construction  95% 5% 

EWP accepted by Construction 100% 0% 

 

The final process is constraint checking, which focuses on comparing as-actual constraint 

status with an as-planned constraint-removal plan. The frequency of constraint checking is 

dependent on the project stages and characteristics. For example, the frequency can be monthly 

or weekly at project early stage, and then updated daily at construction stage. Different action 

strategies should be performed according to the checking results. If the results indicate several 

delays of constraint removal, catch up action needs to be conducted.  

Constraint removal is mainly executed in the stage of look-ahead planning. Constraints cannot 

be removed unless either of the following two conditions is satisfied: (1) the probability of the 

constraint connection is zero; or (2) the probability index can be estimated as zero based on 

forecasting or reliable commitment.  
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5.3.3 Dynamic constraint analysis 

The purpose of dynamic constraint analysis is to help project managers to efficiently detect 

conflicts within the constraint meta-network from a dynamic perspective, and identify critical 

constraints in real time before and during project execution. The constraint meta-network 

developed in Section 4.1 can be analysed by a series of quantitative measures, predominately 

in two categories: network-level measures and node-level measures. The former describes the 

entire network or a subnetwork, and the latter describes the features of a single node. Table 5-

3 shows the selected five measures and their functions.  

The first measure is Number of Unconnected Components at time i (NUCi) which is used to 

calculate the number of unconnected components at time i. Figure 5-6 shows an example to 

demonstrate the usage of the NUCi measure. The filed circles represent IWPs, and the hollow 

circles are constraints. The date near the cycle is the planned date for constraint removal or 

IWP execution. When i=14/05/2015, there are three constraints connected to the IWP, and the 

value of NUC is zero; when the time changes to 19/05/2015, the constraint of ID 1 is removed, 

and the value of NUC remains the same; When i=20/05/2015, the IWP has been released to 

construction site while the two constraints still exist, and the value of NUC is two. However, 

according to the Pull concept, the IWP cannot be released unless all the three constraints are 

mitigated. Hence, we can conclude that if NUC is not zero, there will be conflicts between 

construction plan and constraint-removal plan, and the value means the number of the conflicts.  

The second measure is Variance of Constraint Removal at time i (VCRi) that indicates the 

variance of constraint removal at time i. For instance, at a given time point, if the value of 

Actual Number of Constraint Links (ANCL) is greater than the value of Planned Number of 

Constraint Links (PNCL), that means there are delays in constraint removal. The value of the 

VCRi indicates the number of constraints that are not timely removed. 

The third measure is Variance of IWP Released to Site at time i (VIRSi) that indicates the 

variance of IWP released to the site at time i. The value of the VIRSi is decided by the 

difference between the Actual Number of IWP Nodes (ANIN) and Planned Number of IWP 

Nodes (PNIN). At a given time point i, if the value of the VIRSi is positive, it means that the 

progress of the field execution is behind schedule, otherwise, before schedule. 

The last two measures, i.e. Out-Degree of a Constraint Node (ODCN), and In-Degree of a 

CWP/IWP Node (IDCN/IDIN), are used to help decision-makers to identify the critical 

constraints and work packages within a constraint meta-network, respectively. The value of 

the ODCN is calculated based on the out-degree of a constraint node. While the value of IDCN 

or IDIN is based on the in-degree of a work package node.  
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Table 5-3: Five Measures for the Dynamic Constraint Analysis 

Measures Referenced algorithms Functions 

Network-level: 

Number of 

Unconnected 

Components at time i 

(NUCi) 

(Tarjan 1972) 

Detecting conflicts between 

construction plans and constraint-

removal plans 

Network-level: 

Variance of  Constraint 

Removal  at time i 

(VCRi) 

VCRi=ANCLi-PNCLi 

ANCLi: Actual Number 

of Constraint Links at 

time i; 

PNCLi: Planned Number 

of Constraint Links at 

time i. 

Evaluating the delay of constraint 

removal 

Network-level: 

Variance of  IWP 

Released to Site at time 

i (VIRSi) 

VIRSi=ANINi-PNINi 

ANINi: Actual Number of 

IWP Nodes at time i; 

PNINi: Planned Number 

of IWP Nodes at time i. 

Evaluating field installation 

progress 

Node-level: 

Out-Degree of a 

Constraint Node  

(ODCN) 

- 

Identifying critical constraints 

before or during construction 

execution 

Node-level: 

In-Degree of a 

CWP/IWP Node  

(IDCN/IDIN) 

- 

Identifying critical CWPs/IWPs 

before or during construction 

execution 

 



81 
 

 

Figure 5-6: An Example of the Use of NUCi Measure 

 

5.4 Validation 

In order to validate the proposed framework of DNA, Laboratory Experiment 1 explained in 

Section 3.2.2, Chapter 3, was developed and implemented based on a LNG lean construction 

simulation game (as shown in Figure 5-7). The objective of the simulation game was to build 

an LNG train. The construction tasks contained: site preparation, module installation (the 

modules are manufactured off-site), pipework installation, wiring installation, and major 

equipment installation. 
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Figure 5-7: LNG Lean Construction Simulation Game 

 

5.1 Experiment Design 

In order to simulate engineering constraints removal, all the drawings and specifications were 

taken into predefined engineering offices respectively. The releasing time for these drawings 

and specifications to the construction site was planned by engineering manager. 83 EWPs, 92 

PWPs, and 172 IWPs were developed for the simulation game. The project manager was 

provided with a construction plan, an engineering plan, and a procurement plan. ICMM was 

created (as shown in Figure 5-8a and Figure 5-8b) before starting the game. There were 1766 

nodes and 2589 links (1947 constraint links, 297 sequence links, and 345 superintendent links) 

within the network. The value of the modularity was 0.855 and twenty communities were 

identified. The network diameter was thirty-four, and the average path length was about eleven. 

Detailed constraints for each IWP could also be checked (as shown in Figure 5-9). For example, 

when clicked “IWP 2.10”, the project manager could find all related constraints and the 

superintendent. In order to simulate the process of constraint tracking and removal, the project 

manager was allowed to walk around to get all the latest status of the constraints. The play was 

finished after 28 minutes.  
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Figure 5-8a: Global View of the ICMM 
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Figure 5-8b: Partial Enlarged View of the ICMM  

 

Figure 5-9: Detailed Constraint Check for IWP 2.10 
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5.4.1 Results  

Measures developed in Table 5-3 were calculated during the experiment. Figure 5-10 showed 

the results of conflicts between the given construction plan and constraint-removal plans. Five 

engineering constraints were planned to be removed behind the releasing time of the related 

IWPs, and twelve for supply chain constraints and twenty-three for site constraints. The 

detection process was conducted three times in three different sub-networks defined in Section 

3: ECN, SCCN and SCN, respectively.  

 

Figure 5-10: Results of Conflicts between the Given Construction Plans and Constraint-

Removal plans 

 

Figure 5-11 shows the progress of constraint removal during the experiment. Because of the 

ideal play environment and the sound project execution plans, the constraints were removed 

quite smoothly. When comparing the values of ANCLi and PNCLi, they were almost 

coincident. Tiny fluctuations occurred after nine minutes playing, and lasted about five 

minutes. The underlying reason was that one offsite fabricated module did not meet the quality 

requirement and needed to return back for repairing.  
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Figure 5-11: Progress of Constraint Removal during the Experiment 

 

Figure 5-12 illustrates the progress of IWP installation. The delay came ten minutes late after 

the game started. A total of six IWPs were influenced and released later than the planned time. 

Knock-on impact was the main reason, hence, it was necessary to add more buffer to the 

hardest and least controllable constraints. 

The measures of ODCN and IDIN were only calculated at the beginning of the game. Four 

engineering constraints were recognised as critical which were related to civil and mechanical 

design, and their values of ODCN were six; thirty supply chain constraints were detected as 

critical which were associated with the module fabrication. The maximal value of IDIN was 

nineteen, and eighteen IWPs were identified as critical, and they were all related to the wooden 

box assembly. 
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Figure 5-12: Progress of IWP Installation 

 

5.4.2 Limitations 

There are a few limitations that should be highlighted. First, the research is limited to an LNG 

project and is based on the AWP method. This research does not take into account the Last 

Planner System which may be considered in future research. Second, the measures developed 

in this research are basic and do not consider the weight and probability of the links. In a real 

constraint meta-network, the weight of each constraint link should be assigned a different 

value because their uncertainties are different. In addition, during project execution, the 

weights of the constraints should be changed as the constraints mature. The last limitation is 

related to the validation. Field test is needed to bring the proposed framework into the real 

world to assess its performance. 

5.5 Conclusions 

Results from the simulation game indicate a positive effect of facilitations when implementing 

DNA in LNG construction. The intellectual merit of this research is twofold. This is the first 

use of DNA in LNG construction project and it is the first application of the measures of NUCi, 

VCRi, VIRSi, ODCNi  and IDINi in constraint management research. Although this concept 

was developed and applied in the LNG project, it can have an extended impact on the 

construction community, such as building and infrastructure. The steps used to develop a meta-

network as well as the defined measures, are thoroughly outlined and can be applied to other 
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projects or aspects related to construction. Project management teams can use the DNA to 

visualise the interconnected nature of the various constraints and use these links to see how a 

delay of a specific constraint can influence other constraints or construction works. 
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Chapter 6: Improving Cross-domain Constraint Information Sharing 

in LNG Construction through Linked Data Technology 

6.1 Introduction 

Effectively accessing constraint information is critical to reduce planning uncertainties and 

improve construction work flow. However, these constraint information is still locked in 

isolated systems and databases, and uses different, usually not aligned, vocabularies and 

schemes. For instance, the development of the Shell Floating-LNG project involves teams 

from more than seven countries including Australia, South Korea, Dubai, Malaysia, Singapore, 

France and Spain. Currently, there is not an efficient way to access all these constraint 

information. Take the engineering constraint as an example, for a typical LNG project, there 

are at least three main design groups who are in charge of offshore platform, onshore plant, 

and subsea infrastructure, respectively. In each design group, there are a number of specialty 

engineering companies such as civil infrastructure, mechanical system, piping system, 

electrical system, and security service. They all prefer to use their own platforms or 

applications to perform their engineering works. Therefore, it is impossible to build an 

integrated platform for project participants to get access to these information.  

Chapter 6 develops a semantic approach for cross-domain constraint information sharing by 

using linked data technology (i.e. Research Objective 3).  Compared with conventional 

approaches for data integration, linked data principles enable data to be delivered in both 

machine- and human-readable formats. Making constraint data on the Web enables greater 

transparency and accountability, and helps project participants to access required information 

more efficiently. All project participants can access the various constraint data through a 

Simple Protocol and Resource Description Framework Query Language (SPARQL) endpoint. 

6.2 A Linked Data-enabled Approach for Cross-domain Constraint Information 

Sharing 

In order to address the four issues discussed in Section 2, a linked data-enabled approach for 

cross-domain constraint information sharing is proposed (as shown in Figure 6-1) which 

includes four layers: (1) Data wrapper and publication; (2) Linked constraint cloud data; (3) 

Data access and inference; and (4) Applications.  
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Figure 6-1: A Linked Data-enabled Approach for Cross-domain Constraint Information 

Sharing 

 

In the first layer, the linked data wrappers perform the “RDFisation” process, which transforms 

existing legacy data into linked data according to the relevant vocabularies or ontologies. Four 

types of constraint data need to be converted to RDF format which include: Engineering 

constraint data, Supply chain constraint data, Site constraint data, and Project planning data. 

The process of data wrapper and publication consists of two main steps, namely, vocabulary 

& ontology selection and development, and RDF data transformation. The purpose of the first 

step is to provide domain-specific terms for describing resources in the world and how they 

relate to each other. The second step is to utilise the developed terms to convert existing 

multiple data formats into RDF. Detailed explanations of the vocabularies & ontologies 

selection and development, and RDF data transformation is presented in Sections 5 and 6 

respectively. 

In the second layer, the separate RDF graphs of data developed from the first layer are 

interconnected together to create a global data cloud. The interconnection network is created 

by adding external RDF links between data entities across isolated data graphs. In Figure 6-1, 
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the links within a domain data set are represented by the solid lines, and the external links 

among multiple data sets are represented by the dashed lines. With these links, a global, 

interconnected data space for cross-domain constraint information sharing and management 

can be generated. The details of the data interconnection process are discussed in Section 7. 

In the third layer, the linked constraint data cloud can be searched and queried through linked 

data search engines. The basic approach to access the data cloud is to dereference HTTP URIs 

into RDF descriptions and to discover additional data sources by traversing RDF links. In 

addition, parts of the graph may also be accessed via SPARQL endpoints or downloaded in 

the form of RDF data set dumps. Because of the caching function of the linked data search 

engines, instead of directly accessing the original linked constraint data cloud, applications 

can also access the data via the Application Programming Interfaces (APIs)  provided by these 

search engines. The inference rules in this layer concentrate on defining a general mechanism 

on discovering and generating new relationships based on existing data cloud. Inference based 

techniques can also detect potential inconsistencies within the linked constraint data cloud. 

Section 8 presents more details about these two modules. 

In the fourth layer, applications that consume the resulting data and events from the linked 

constraint data cloud are developed. The application of cross-domain constraint information 

searching can help users who are not familiar with SPARQL language to conduct efficient 

data query. The application of constraint relationships visualisation is developed to help 

constraint managers get a global view of the whole constraints, and identify the critical 

constraint(s) which have a significant impact on construction work flow.  The application of 

constraint tracking and status visualisation is useful for contractors to get the real-time 

constraint status and adjust their weekly or daily schedules if some constraints are not timely 

removed as planned. The three applications are demonstrated in details in Section 6.6.3. 

6.3 Vocabulary & Ontology Selection and Development  

Reuse of existing terms is highly desirable as it maximises the probability that data can be 

consumed by applications that may be tuned to well-known vocabularies, without requiring 

further pre-processing of the data or modification of the application (Fensel et al. 2001). Table 

6-1 shows the reused vocabularies or ontologies and their descriptions. 
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Table 6-1: The Reused Vocabularies or Ontologies and Their Descriptions 

No. Reused Vocabularies or Ontologies Descriptions 

1 
Simple Knowledge Organization 

System (SKOS) 

Used to express conceptual hierarchies (i.e. 

taxonomies) 

2 RDFS and OWL 
Used to describe conceptual models in 

terms of classes and their properties. 

3 Friend-of-a-Friend (FOAF) 
Used to describe persons, their activities, 

and their relationships 

4 
Dublin Core Metadata Initiative 

(DCMI) Metadata Terms 

Used to general metadata attributes such as 

title, creator, date, and subject. 

5 Basic Geo (WGS84) 
Used to describe geographically-located 

things 

6 ISO 15926 
Used to describe LNG plant product such as 

pipeline, instrumentation, and equipment. 

 

ISO 15926 is designed for data integration, sharing, and exchange between computer systems 

for life-cycle information in process plants, including LNG production facilities. ISO 15926 

is organised into a number of parts which can be classified into two categories (Kim et al. 

2011): (1) data model and reference data including Parts 2-4; and (2) implementation methods 

including Part 7-10.  

In the first category, Part 2 defines a generic 4D model that can support all disciplines, supply-

chain company types, and lifecycle stages regarding information about functional 

requirements, physical solutions, types of objects and individual objects, as well as activities. 

Part 3 defines information resources for the representation of geometry and topology in OWL. 

Part 4 specifies an initial set of common reference data items that can be used to record 

information about process plants.  

In the second category, the Part 7 (ISO 2011a) provides information resources for defining 

templates and specifies a verification method using First-Order Logic. The Part 8 (ISO 2011b) 

defines information requirements for the representation of ISO 15926-based plant data in 

OWL. The Part 9 will specify the implementation method for a triple data repository called 

façade, which stores ISO 15926-based plant data. The Part 10 will specify an abstract test 

method. 
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The ISO15926 ontology consists of several interrelated and distributed modules which can be 

classified into four main partitions and two auxiliary partitions (as shown in Figure 6-2) 

(ISO15926 2015). The main partitions include (1) the ISO 15926 upper ontologies (meta 

models); (2) the Reference Data Library (RDL) and extensions of the RDL; (3) the 

“workhorses” of lifecycle information and local reference data; and (4) a selection of the 

lifecycle information, mapped to OWL, for reasoning purpose. The two auxiliary partitions 

are (1) Template Specifications in eXtensive Makeup Language (XML) format; and (2) Part 7 

Proto Templates in First-Order Logic format. 

 

Figure 6-2: Architecture of the ISO 15926 Ontology (ISO15926 2015) 

 

In order to support the data wrappers of the constraint and project planning data, two new 

domain-specific terms were developed, namely, Constraint ontology and AWP ontology. 

Protégé (an open-source platform) (Musen 2015) was utilised to construct these two domain 

ontologies. The ontology development method deployed in this study is derived from the 

method developed by Noy and McGuinness (2001), and includes the following steps:  

1) Determine the domain and scope of the ontology. Consider the constraint ontology, 

the representation of constraints is the domain of the ontology. This ontology is 

planned to be used for constraint management during LNG construction. The users 
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and operators of the constraint ontology can be project managers, contractors or 

owners. 

2) Enumerate important terms in the ontology. In this step, a list of all terms involved in 

the domain area needs to be written down. For instance, important terms of constraint 

ontology include different types of constraints, such as engineering constraint, supply 

chain constraint, and site constraint; subtypes of site constraint include labour, 

equipment, safety, permit, temporary structure, tool, work space and so on. The 

development of this list was supported by answering the following questions: What 

are the terms that are frequently used? What properties do those terms have? What 

glossaries are used for defining the terms? 

3) Define the classes and the class hierarchy. A bottom-up development process was 

deployed to build up the class hierarchy. The process started with the definition of the 

most specific classes, the leaves of the hierarchy, with subsequent grouping of these 

classes into more general concepts.  

4) Define the properties of the classes. This step aimes to describe the internal structure 

of concepts. For instance, planned-removal time and actual-removal time are two 

properties should be attached to the constraint class. 

5) Define the facets of the properties. Properties can have different facets describing the 

value type, allowed values, the number of the values (cardinality), and other features 

of the values the property can take. For instance, the value of a plannedRemovalDate 

property (as in “the planned-removal time of a constraint”) is one date. That is, 

plannedRemovalDate is a property with value type Date. A property inChargeOf (as 

in “a person is in charge of these constraints”) can have multiple values and the values 

are instances of the class Constraint. That is, inChargeOf is a property with value type 

Instance with Constaint as allowed class. A value-type facet describes what types of 

values can fill in the property. The common value types include String, Number, 

Boolean, Enumerated and Instance. Properties with value type Instance must define a 

list of allowed classes from which the instances are originated. The allowed classes 

are called a range of a property. In the above example, the class Constraint is the range 

of the inChargeOf property. 

Figure 6-3 illustrates the proposed constraint ontology for LNG plant construction. The classes 

involved in this ontology were built on the constraint classification developed by Wang et al. 

(2016). The head class of this ontology is Constraint which contains three sub-classes: 

EngineeringConstraint, SupplyChainConstraint and SiteConstraint. The properties of the 

Constraint class can be classified into two categories. The first category describes the basic 

information of the class such as hasName, hasStatus, hasPriority, and hasMaturity. The 
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second category represents the date-related information such as createdDate, 

plannedRemovalDate, and actualRemovalDate. 

Figure 6-4 shows the proposed ontology for AWP method. The classes involved in this 

ontology were built on the concepts of AWP developed by CII (2013) and WFP (PMP 2009) 

developed by Constructions Owners Association of Alberta. WFP is the process of organizing 

and delivering all elements necessary before work is started, to enable craft persons to perform 

quality work in a safe, effective and efficient manner (Slootman 2007). Within WFP, three 

different levels of work packages are defined and used to describe different levels of project 

plans: Construction Work Area (CWA), Construction Work Package (CWP) and Field 

Installation Work Package (FIWP) (PMP 2009). AWP is a more complete work packaging 

system than WFP. It covers both the construction and the initial early stages of the project and 

allows a system more control over the breakdown of the project through its lifecycle (Hamdi 

2013). The three key deliverables of AWP are CWP, Engineering Work Package (EWP) and 

Installation Work Package (IWP). 

The root concept of the AWP ontology is the WorkPackage which contains five different sub-

classes, namely, EngineeringWorkPackage, ProcurementWorkPackage, 

ConstructionWorkArea, ConstructionWorkPackage, and InstallationWorkPackage. Each sub-

class is broken into sub-sub-classes so that the ontology can best reflect project execution 

planning and control system. The properties of the WorkPackage class includes name (i.e. 

hasName), schedule information such as startDate and finishDate, man-hour data (i.e. 

hasManhour) and so on. 
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Figure 6-3: A Snippet of the Constraint Ontology 
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Figure 6-4: A Snippet of the AWP ontology 
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Domain ontologies (i.e. ISO 15926 ontology, Constraint ontology, and AWP ontology) 

provide only data architectures and semantic formalisations for diverse data sources. The 

purpose of the merged ontology (as shown in Figure 6-5) is to interlink these isolated data 

islands into a unified data space so that the cross-domain constraint information can be shared. 

In this thesis, the three main developed ontologies were merged by matching synonymous 

concepts using the equivalentClass property. The mapping process could be semi-automated 

by performing ontology merging and alignment algorithms (Noy and Musen 2000). However, 

the efficiency and accuracy of the current mapping approaches are not high enough (Noy and 

Musen 2000). In order to assure the accuracy of the mappings, this study utilised a manual 

method to define semantic equivalence among entities from the proposed ontologies. The 

Constraint concepts in the constraint ontologies are linked to the Constraint in the AWP 

ontology through the equivalentClass property. In addition, sub-classes of 

SupplyChainConstraint (i.e. FabricatedMaterial) and EngineeringConstraint (i.e. 

IsometricDrawing) in the constraint ontology also have corresponding equivalent classes in 

the AWP ontology. The WorkPackage concept is the bridge between ISO 15926 ontology and 

AWP ontology. The equivalent classes include EngineeringWorkPackage, 

ProcurementWorkPackage, ConstructionWorkPackage, and InstallationWorkPackage. Based 

on this merged ontology, any WorkPackage instances generated by engineers and Constraint 

instances generated by project planners can be legally linked to data graphs in the downstream 

phases. 
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Figure 6-5: The Merged Ontology 

  

6.4 RDF Data Transformation 

In order to support the interlinkage of data from isolated sources, these data are required to be 

converted into the RDF format. There are two components in a data wrapper, namely, domain 

ontology and mapping rules. During the data transformation process, the domain ontology is 

used as the source of vocabularies, and mapping rules are utilised to assure the converted RDF 

data model is expressed in a structured and targeted vocabulary. In this study, three types of 

data wrappers were developed to translate the existing legacy data (i.e. engineering constraint 

data, supply chain constraint data, site constraint data, and project planning data) to the RDF 

format: (1) Drawing data to RDF; (2) Table data to RDF; and (3) Document meta-data to RDF. 

Each of them is described in detail in the following sections. 
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6.4.1 Drawing data to RDF 

This type of data wrapper is used to convert engineering constraint data, such as Process and 

Instrumentation Diagram (P&ID), Isometric, and Process Flow Diagram (PFD) into RDF 

format. There are two main steps during the data transformation: (1) Plant items identification; 

and (2) RDF data generation. Figure 6-6 shows a sample P&ID drawing and it will be used as 

an example to demonstrate the converting process. Firstly, all of the items on the drawing were 

extracted which include equipment (e.g. Water Injection Pump, Inlet Gas Exchange, and Inlet 

Separator), and piping systems (e.g. Pipeline 100-SG-120-6SO). Then, the ISO 15926 

ontology was used to describe these plant items and their relationships. Figure 6-7(a) illustrates 

the converted RDF data model in RDF/XML format. In order to help users to visually check 

the accuracy of the conversion process, the converted RDF data can be further visualised into 

a graph format (as shown in Figure 6-7(b)). 

 

Figure 6-6: A Snippet of the Sample P&ID Drawing 
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Figure 6-7(a): A Snippet of the Converted RDF Data Model in RDF/XML Format 

 

Figure 6-7(b): A Snippet of the Converted RDF Data Model in a Graph Format 
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6.4.2 Table data to RDF 

This type of data wrapper is designed for the transformation of table data to the proposed 

ontologies compliant RDF. In this study, a pattern-based mapping method was utilised to 

perform the conversion. A pattern is a formally defined as a list of alternative ways 

(representations) to express particular ontological relation between two or more entities. Each 

pattern contains three predefined keys with values: (1) key 'name' with string value; (2) key 

'signature' with dictionary value; and (3) key 'options' with list value. Pattern name is the name 

of the pattern. Pattern signature is a dictionary containing pattern role names and textual 

description of inverse relations corresponding to roles, for use in output forms. Each item in 

pattern's options list contains definition of one specific way the pattern is realised. 

A simple example is given to demonstrate the process. Table 6-2 shows the work package 

information from the source of the project planning data. Table 6-3 shows the supply chain 

constraint information from the source of the supply chain constraint data. The many-to-many 

relationship is captured by the content of Table 6-4. Three patterns were developed (as shown 

in Figure 6-8) to convert the three tables into RDF, respectively. They are 

WorkPackage_EXAMPLE_R2RML, SupplyChainConstraint_EXAMPLE_R2RML, and 

WorkPackage_2_SupplyChainConstraint_EXAMPLE_R2RML. Figure 6-9 is the screenshot 

of the converted RDF data model.  

Table 6-2: Work Package Information 

WPNo WPManager WPType 

CWP10001-Equipment Jun_Wang Construction_work_package 

CWP10002-Equipment Wenchi_Shou Construction_work_package 

IWP20001-Piping Peng_Wu Installation_work_package 

 

Table 6-3: Supply Chain Constraint Information 

SupplyChainConstraint TrackedBySensor SensorTagNo 

Pump101 RFID 0E05070211000729 

Vassel100 RFID 0E05070211000895 

Spool101 RFID 0E05070211000326 
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Table 6-4: Relationship between Work Packages and Supply Chain Constraints 

WPNo SupplyChainConstraint 

CWP10001-Equipment Pump101 

CWP10002-Equipment Vassel100 

IWP20001-Piping Spool101 

 

 

Figure 6-8: Patterns for Mapping and Transformation 
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Figure 6-9: A Snippet of the Converted RDF Data Model in RDF/XML Format 

 

6.4.3 Document meta-data to RDF 

This type of data wrapper is developed for mapping document meta-data into RDF triples. In 

most LNG projects, documents are always stored in an Electronic Document Management 

System (EDMS) which provides a solution for managing the creation, capture, indexing, 

storage, retrieval, and disposition of records (Johnston and Bowen 2005, Adam 2007). Each 
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document has its own URI and a user-extendable set of meta-data. There are two types of 

meta-data: internal and external. The former one is normally included in mark-up language 

documents (i.e. XML and HTML) and embedded within descriptive elements (start and end 

tags). The latter one exists in all types of documents and is a set of properties that describe a 

document, such as: "title", "author", "subject", and "date". Dublin Core is the main vocabulary 

that is used to convert these meta-data into RDF format. 

6.5 Linked Constraint Data Cloud 

The result of the data transformation is a set of disparate RDF datasets. To fully support the 

decision making, these disparate resources are required to be interconnected to each other. The 

objective of linking constraint data in the cloud is to create a global, interconnected data space 

for cross-domain constraint information sharing and management. In this section, two types 

of data interconnections are discussed as follows, namely, data interconnection among RDF 

data sets and data interconnection between RDF triples and documents. 

6.5.1 Data interconnection among RDF data sets 

The merged ontology developed in Section 5 plays a critical role to set external RDF links 

among multiple RDF data sets. Technically, such an RDF link is an RDF triple in which the 

subject of the triple is a URI reference in the namespace of one data set, while the predicate 

and/or object of the triple are URI references pointing into the namespaces of other data sets 

(Heath and Bizer 2011). In this study, two types of external RDF links are used for linking the 

disparate RDF data sets. The first one is relationship link which points at related things in other 

data sets (Heath and Bizer 2011). For instance, relationship links enable an instance of 

SupplyChainConstraint class (i.e. purchasing a pump) to point to a related instance of 

InstallationWorkPackage class (i.e. installing the pump) which has this constraint, or to an 

instance of EngineeringWorkPackage class which provides required specifications (i.e. 

specifications and quantities of the pump). The second one is identity link which points at URI 

aliases used by other data sources to identify the same real-world object or abstract concept 

(Heath and Bizer 2011). Currently, there is limited agreement on the use of common URIs for 

the entities across different data sets, which results in multiple URIs identifying the same entity. 

Expressing equivalences such as owl:sameAs can be used to state that entities in different data 

sets are actually the same, for example, awp:iwp_1001_ec_pump_101 owl:sameAs 

cons:ec_pump_101 which means the two entities of iwp_1001_ec_pump_101 in AWP data set 

and ec_pump_101 in Constraint data set are the same world object. When entities are 

determined to be the same by these associations, information about them from different data 

sets can be merged.  
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6.5.2 Data interconnection between RDF triples and documents 

Data interconnection between RDF triples and documents is significant in cases where the user 

is aware of a specific term and needs to make a search within the related domain to access 

certain documents of his interest. For example, a project manager of a contractor firm might 

be willing to retrieve all the engineering drawings or specifications related to the term 

“Pump_101”. Figure 6-10 depicts the architecture of how to interconnect RDF triples and 

documents. The module of the “Document Meta-data to RDF” developed in Section 6.3 builds 

the connection between EDMS and RDF Triple Store. For each document in EDMS, there is 

a corresponding small RDF graph (i.e. several connected RDF triples converted from the 

document meta-data) in Triple Store. Through the user interface, the user can perform a 

SPARQL query based on the RDF Triple Store to get a document URI value and using this 

value to conduct a GET call from the EDMS resource to retrieve the raw document. 

EDMS
RDF Triple 

Store

Document Meta-data 

to RDF

Ontology

User Interface

Query Map

GET call for a document using URI

SPARQL 

Query

Query

 Result

Raw Document 

 

Figure 6-10: Data Interconnection between RDF Triples and Documents 

 

6.6 Pilot Case Study 

The purpose of this pilot case study is to illustrate how the proposed approach can be 

implemented in an LNG plant construction project for improving cross-domain constraint 

information sharing. A real LNG plant module (as shown in Figure 6-11), located in the 

Australian Centre for Energy and Process Training (ACEPT) was selected as the case because 
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it suitably represents the complex nature of a modern process plant. The main items contained 

within the LNG plant module include: a Dehydration Vessel, an Inlet Separator, a Three-Phase 

Separator, an Exchanger, 50 Pipes, 40 Valves, 25 Gratings, 30 platforms, and 30 columns. 

 

Figure 6-11: A real LNG Plant Module 

6.6.1 Data preparation and processing 

To achieve the objective, four types of data sources (i.e. engineering constraint, supply chain 

constraint, site constraint, and project planning) with sample data sets were used. The 

engineering constraint data sets include drawings (i.e. general arrangement, isometric, and 

plant & instrumentation diagram), sheets (i.e. piping insulation and cable schedule), and 

specifications. The supply chain constraint data sets contain two procurement lists of pipelines 

and instruments. The site constraint data sets consist of permits, labour, temporary structures 

(i.e. scaffolds), and tools. The project planning data was developed by the company of the 

Fremantle Steel Group using Primavera 6. 

First, the sample datasets listed above from the four separate data sources were converted into 

the RDF files using the proposed three types of data wrappers developed in Section 6.4. These 

separate RDF data graphs were then interconnected with each other to generate a linked data 

cloud based on the two types of interconnection methods developed in Section 6.5. The step 
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of transforming drawing data to RDF was conducted based on the open source of dot15926 

editor (TechInvestLab 2015), while the other steps were performed using the Apache Jena 

Framework (Jena 2015). Figure 6-12 illustrates a snippet of the final linked data cloud in the 

RDF/XML format. There are 103766 RDF triples in total in this dataset which are enough for 

demonstrating the capabilities of the proposed approach. However, in a real LNG project, the 

quantity of the triples is much larger than this number. 

1. ISO 15926 Ontology

2. AWP Ontology

3. Constraint Ontology

4. Engineering Drawing Data

5. Work Package Data

6. Constraint Data

 

Figure 6-12: A Snippet of the Final Linked Data Cloud in the RDF/XML Format 
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6.6.2 Data access and inference 

Once these data are linked, query strategies and reasoning rules can be applied to extract 

specific information based on the objective of the cross-domain constraint information 

searching and sharing. Data access through SPARQL and information reasoning process is 

presented in the following sections. 

(1) Data Access  

The suite of SPARQL1.1 specification was used in this study to query and update triples and 

graphs. There are four types of SPARQL queries: SELECT, CONSTRUCT, DESCRIBE, and 

ASK. A SPARQL SELECT query returns a solution, which is a set of bindings of variables 

and values. A SPARQL CONSTRUCT query returns triples as a sequence of triple values in 

a RDF graph. These triples are constructed by substituting variables in a set of triple templates 

to create new triples from existing triples. A SPARQL DESCRIBE query returns a sequence 

of triple values as a RDF graph that describes the resources found. A SPARQL ASK query 

returns a boolean (true or false) indicating whether a query pattern matches the dataset. 

(2) Information Inference 

Inference is the process of discovering new facts from existing triples on a set of rules. In this 

study, a type of automatic inference method was applied which used rulesets and ontologies. 

New facts can be added to the RDF triple store through forward-chaining inference (Meditskos 

and Bassiliades 2010), or be inferred at query time through backward chaining inference 

(Kiryakov et al. 2009, Kolovski et al. 2010). Rulesets utilised in this study included the 

standard rulesets, such as rdfs, rdfs+ and OWL-Horst, and pre-defined rulesets. Users can also 

create their own rulesets by importing some of these rulesets and/or writing their own rules. 

Figure 6-13 shows an example of the rule domain.rules which states that if all the things in the 

second set of braces match a triple (p has domain o - that is, for every triple that has the 

predicate p, the object must be in the domain o), then construct the triple in the first set of 

braces (if you see s p x, then s is a o). 

 

Figure 6-13: Example of A “domain_type” Rule 
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6.6.3 Linked Data applications  

With the linked constraint data cloud, three types of applications have been developed 

including (1) cross-domain constraint information searching, (2) constraint data visualisation, 

and (3) constraint-related reference data/document searching. Each of them is discussed in 

detail as follows. 

Application 1: Cross-domain constraint information searching 

This application aims to help project participants quickly find constraint information. Figure 

6-14(a) shows an example of using SPARQL Query to search all of the site constraints related 

to the IWP10001-Piping-SG-108. Users can also narrow down their searching results with 

some conditions, for instance, users can only ask for the site constraints with the status of 

“unremoved” (as shown in Figure 6-14(b)). If a project planner tries to list all the constraints 

of an IWP, including site, supply-chain, and engineering constraints through an SPARQL 

Query, inference rules are needed due to the lack of directional links between IWPs and 

engineering/supply-chain constraints in the raw linked constraint data cloud. Figure 6-15(a) 

shows the two required inference rules. Rule 1 is used for listing all the engineering constraints 

for a specific work package. The rule sentence itself declares that if we find a triple where ?s 

awp:hasRelatedEWP ?o and another triple where ?o awp:hasEngineeringItem ?item, in 

addition with the ?item has a number of members ?member, we can infer that the work 

package ?s cons:hasEngineeringConstraint ?member. Following the same guide, Rule 2 is 

also developed which aims to list all the supply-chain constraints for a specific work package. 

Together with the constraint ontology which declares the properties of 

cons:hasEngineeringConstraint and cons:hasSupplyChainConstraint, which are sub-classes 

of cons:hasConstraint, we can find all the 13 constraints of the IWP10001-Piping-SG-108 (as 

shown in Figure 6-15(b)). 

Other types of searching may include getting the status/maturity of a specific constraint, list 

all the constraints within a specific time window, list all the constraints which have maturity 

values less than 50%, and list all the constraints from a specific sub-contractor. 
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1. SPARQL 

Endpoint

3. SPARQL Query (1)

4. Query Results: 

Four site 

constraints are 

found

2. SPARQL Prefix: 

There are 16 

prefixes in total for 

this study

 

Figure 6-14(a): SPARQL Query for Searching All of the Site Constraints Related to 

IWP10001-Piping-SG-108. 

 

SPARQL Query (2)

Query Results: two “unremoved” site 

constraints are found

 

Figure 6-14(b): SPARQL Query for Searching All of the Unremoved Constraints Related to 

the IWP10001-Piping-SG-108 
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Inference Rule 1:

Inference Rule 2:

 

Figure 6-15(a): Inference Rules for Listing All the Constraints  

 

SPARQL Query (3): Find all 

of the constraints related to 

IWP10001-Piping-SG-108, 

and list each of them

Supply-chain constraints

Site constraints

Engineering constraints

Engineering constraints

Site constraints

Site constraints

Engineering constraints

 

Figure 6-15(b): SPARQL Query for Searching All the Constraints Related to the IWP10001-

Piping-SG-108 
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Application 2: Constraint data visualisation 

This application aims to visualise the linked constraint data cloud especially for the query 

results visualisation. The Semantic Web Importer Plugin (Demairy 2017) was utilised in this 

study to query an SPARQL endpoint and represent the result as a graph in Gephi (Bastian et 

al. 2009). The URL of “http://localhost:3030/JunWang/query” was selected as the remote 

SPARQL Endpoint (as shown in Figure 6-16(a)). Figure 6-16(b) illustrates a subset data 

visualisation which covers all the directional links and nodes to the IWP10001-Piping-SG-108. 

From the graph, project participants can efficiently identify the site constraints, and related 

EWPs and PWPs of the IWP10001-Piping-SG-108. The basic information of the work package 

itself can be also recognised, such as Creator, Creation Date, Start Date and Finish Date, and 

Required Man-hours. 

SPARQL Endpoint in Gephi Semantic Web Import plugin

 

Figure 6-16 (a): Setup a Remote REST SPARQL Endpoint in the Gephi Semantic Web Import 

Plugin 

 

http://wiki.gephi.org/index.php/SemanticWebImport
http://wiki.gephi.org/index.php/SemanticWebImport
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Figure 6-16 (b): Data Visualisation of the IWP10001-Piping-SG-108 

 

Application 3: Constraint-related Reference Data/Document Searching 

This application aims to help project participants obtain additional data/documents for a 

specific constraint through SPARQL queries. In real projects, the general contractor or sub-

contractors need to know not only the status but the detailed raw documents of each constraint. 

The former one can help them develop their weekly/daily plans while the latter one guides 

them to execute their work correctly.  

With regards to the reference data, in this study, a public data set named POSC Caesar 

Association Reference Data Library (PCA-RDL), was linked to our constraint data cloud. In 

terms of the reference document linking, all of the documents for this pilot study, such as 

isometric drawings, design specifications, and permits were stored in a Dropbox account 

which can be treated as a simplified document management system. Each document stored in 

the Dropbox has a unique URL which is used as the range of the property of awp:docLink 

within the linked constraint data cloud.  
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A scenario of searching engineering constraints and their corresponding reference data and 

documents is formulated. Figure 6-17 (a) illustrates the SPARQL Query of listing all the 

engineering constraints of the IWP10001-Piping-SG-108. Detailed information of the 

constraint of “qn3:IsometricDrawing-Piping-SG-108” is queried in Figure 6-17 (b). The query 

results include the raw engineering document links and their types. Project participants can 

simply look up these resources by dereferencing the corresponding URIs over the HTTP 

protocol. Figure 6-17 (c) shows the dereferenced result of the URI: 

“https://www.dropbox.com/s/qa4b4k6fjmjxuup/4416DP09.pdf?dl=0”, which is an isometric 

drawing named 4416DP09 in PDF format. Figure 6-17 (d) shows the dereferenced result of 

the URI: “pcardl:RDS331559 (i.e. http://data.posccaesar.org/rdl/RDS331559)”, which 

indicates the document type is a “PIPING ISOMETRIC DRAWING” defined in the PCA-RDL.  

SPARQL Query: Find all of the engineering 

constraints related to IWP10001-Piping-SG-108, 

and list each of them

Detailed information of this constraint is searched in Figure 6-17(b)

 

Figure 6-17 (a): SPARQL Query for Searching All the Engineering Constraints Related to the 

IWP10001-Piping-SG-108 
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SPARQL Query: Find the raw documents of the 

constraint of “IsometricDrawing-Piping-SG-108”, 

and its type

The link will go to the 

raw document (as shown 

in Figure 6-17(c))

The link will go to the external 

reference data library (as 

shown in Figure 6-17(d))

 

Figure 6-17 (b): SPARQL Query for Searching Additional Information of the Engineering 

Constraint of IsometricDrawing-Piping-SG-108 

 

 

Figure 6-17 (c): Raw Isometric Drawing 
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This  ID is same as the ID in the Query Results of Figure 6-17(b))

 

Figure 6-17 (d): External Reference Data Library 

 

6.6.4 Evaluations and limitations 

The accuracy of the SPARQL Query results from the above three applications was evaluated 

by comparing with the facts from the raw project sample data. The result shows that the query 

accuracy is 100%. In order to improve the confidence level, another 5 IWPs were randomly 

selected from the rest 40 IWPs including: IWP10001-Piping-HC-118, IWP10001-Piping-PL-

124, IWP10001-Piping-VF-138, IWP10001-Piping-SG-137, and IWP10001-Piping-MW-103. 

Similar SPARQL Queries were conducted and the query accuracy was calculated accordingly. 

All of the query results were checked manually and the accuracy was still 100%. 

According to the results of the simple evaluation, the proposed linked data-enabled approach 

can assist project planners in (1) interlinking constraint data from fragmented and 

heterogeneous data sources; (2) finding constraint information for specific work packages by 

a simple search; (3) inferring new constraint relationships with predefined reasoning rules; and 

(4) visualising constraint data sets.  

This research is limited to the small size of the data and the low complexity of the LNG module. 

In addition, in order to simplify the pilot case study, the Dropbox is used as the document 

management system instead of various commercial platforms such as M-Files, Alfresco, and 
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OnBase. The Excel is used as the database for store the raw project data including work 

packages (e.g. ID, Name, Type, Creator, etc.), scheduling data, and constraint data. In the 

future, the proposed approach especially the RDF data transformation methods should be 

further enhanced so that data stored in the existing document management systems and/or 

databases can be automatically converted to RDF format.  

6.7 Conclusions 

In this chapter, a linked data-enabled platform was developed for improving cross-domain 

constraint information sharing in LNG construction, which includes: (1) two newly developed 

ontologies: constraint ontology and AWP ontology; (2) three types of RDF data transformation 

methods: Drawing data to RDF, Table data to RDF, and Document meta-data to RDF; and (3) 

two types of data interconnection methods: data interconnection among RDF data sets, and 

data interconnection between RDF triples and documents. A pilot case study was conducted 

to demonstrate the capability of the proposed approach. The results show that the proposed 

approach can successfully interlink constraint data from multiple sources, efficiently extract 

and visualise a subset of the linked constraint data cloud, and infer extra information with 

predefined reasoning rules and ontologies.  
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Chapter 7: A Coordinated Approach for Supply-chain Constraint 

Tracking in LNG Industry 

7.1 Introduction 

Chapter 7 proposes a framework of a coordinated approach towards supply-chain constraint 

tracking in LNG construction (i.e. Research Objective 4). The framework was developed 

according to the discussion results of the two focus group studies (i.e. Focus Group Study 2&3 

explained in Section 3.2.1, Chapter 3). Three main elements are developed within the proposed 

framework: (1) Supply-chain constraint tracking for general materials; (2) Supply-chain 

constraint tracking for project-specific materials; and (3) A supply-chain constraint control 

platform. Two field experiments (i.e. Field Experiment 1&2 explained in Section 3.2.2, 

Chapter 3) were conducted in the field to evaluate the feasibility of the proposed approach.  

7.2 Tracking Technologies Selection  

A typical supply chain in LNG construction contains three main stages (i.e. off-site fabrication, 

shipping & delivery, and construction site logistics) and fifteen sub-processes (as shown in 

Table 7-1). The forth column of Table 7-1 shows the Types of the objects to be tracked in each 

process. It is very straightforward to decide the objects in processes of number 1, 5-15. 

However, for the processes of number 2-4 (i.e. Programming & Processing, Cutting & Drilling, 

and Welding), it is difficult because there is either no physical components or massive small 

steel pieces inside the processes. According to the fabricator’s suggestion, shop drawings can 

be treated as the objects to reflect the status of the three processes. The reasons are threefold: 

(1) the fabrication plan is developed based on the shop drawings; (2) workers need to reference 

the shop drawings frequently so as to finish their tasks; and (3) the shop drawings are always 

transferred from the end of the last process to the next one.  

Tag removal is another significant factor needed to be considered during field execution. It is 

ideal to attach tag once and keep it through the project lifecycle. However, in the following 

three situations, tags should be considered to be removed: (1) the physical tags will have a 

negative impact on the quality of the following processes, such as surface treatment; (2) 

massive tags are attached within one large module which would reduce the efficiency of 

searching a right tag to be scanned during the following processes. For instance, large LNG 

offsite modules always start from small components or modules, and end with several times 

of assemblies; (3) the price of the tags is so high that they need to be reused so as to lower the 

hardware cost for each implementation. 
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Feasibility assessment of the four alternative tracking solutions is critical to the effectiveness 

of the proposed framework. A detailed comparison of four technologies has been conducted 

(as shown in Table 7-2). When compared with passive RFID, barcode is more convenient to 

be generated and implemented in a real project. In addition, barcode is much cheaper than 

passive RFID (Qian et al. 2012). However, passive RFID is more powerful in terms of tracking 

capability, such as ruggedness, reliability, data storage and read speed. Considering the five 

factors for each detailed process, barcode and RFID are feasible for tracking all processes in 

the stages of offsite fabrication and construction site logistics. Although both technologies 

cannot directly record the location information, there are two indirect approaches. The first 

one is GPS-enabled locating which relies on the GPS data from the mobile reader. If the GPS 

data is within any of the predefined location areas, the mobile reader can automatically set the 

predefined location to the scanned barcode. Predefined locations should be assigned to a 

rectangular area (geo-fence) using four GPS Coordinates (top left, top right, bottom left, 

bottom right). If the predefined location is not assigned a geo-fence, the second method can 

be used. The user can manually choose a predefined location for a component if needed.  
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Table 7-1: Tracking Technology Selection for Each Process (Items with * are explained in detail in the Section 7.2) 

Stages 

Detailed processes Factors 
Feasibility of the alternative tracking 

solutions 
Suggested 

tracking 

solutions* No. Name 

(1) Types of 

the objects to 

be tracked* 

(2) 

Indoor 

or 

Outdoor 

(3) Line 

of sight 

required 

(4) 

Location 

required 

(5) Tags 

removal

* 

(a) 

Barcode 

(b) 

Passive 

RFID 

(c) 

Active 

RFID 

(d) 

GPS 

 

Offsite 

fabrication 

1 Shop Detailing Drawings Indoor Yes No No √ √ ×  × (a) 

2 
Programming 

& Processing 
Drawings* Indoor Yes No No √ √ × × (a) 

3 
Cutting & 

Drilling 
Drawings* Indoor Yes Yes No √ √ × × (a) 

4 Welding Drawings* Indoor Yes Yes No √ √ × × (a) 

5 
Surface 

Treatment 

Components 

after welding 
Indoor  Yes Yes 

Yes/No

* 
√ √ √ × (a) or (b) 

6 Pre-assembly 

Components 

after 

treatment 

Indoor Yes Yes 
Yes/No

* 
√ √ √ × (a) or (b) 
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7 
Ready for 

Delivery 
Final goods Outdoor No Yes No √ √ √ √ 

(b), (c) or 

(d) 

Shipping & 

delivery 

 

8 
Alongside 

Ship 
Trucks Outdoor No Yes No × × × √ (d) 

9 On Board Ships Outdoor No Yes No × × × √ (d) 

10 Ship’s Arrive Ships Outdoor No Yes 
Yes/No

* 
× × × √ (d) 

11 
Goods 

Unloaded 
Trucks Outdoor No Yes No × × × √ (d) 

12 Arrival Onsite Trucks Outdoor No Yes No × × × √ (d) 

Construction 

site logistics 

13 Warehouse Goods Indoor No Yes No √ √ √ × 
(a),(b) or 

(c) 

14 Laydown Yard Goods Outdoor No Yes No √ √ √ √ (c) or (d) 

15 Installation Goods Outdoor No Yes 
Yes/No

* 
√ √ √ √ (c) or (d) 
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Table 7-2: Comparison of the Barcode, Passive RFID, active RFID and GPS Tags 

 Barcode Passive 

RFID 

Active RFID GPS 

Ruggedness low medium high high 

Reliability Wrinkled or 

smeared labels 

will not be 

read 

Nearly 

flawless read 

rate 

flawless read 

rate 

flawless read rate 

Tag size Small  Medium  Medium (varies 

depending on 

application) 

Large 

Tag battery No  No  Yes Yes 

Orientation 

dependence 

Yes No No No 

Communication 

range 

Very short, 

must be line of 

sight 

Short (3m or 

less) 

Long (100m or 

more) 

Very long 

Data collection Manually scan Passive (via 

portals and 

smart 

shelves) 

Active (via 

portals) 

Active (via cellular 

or satellite) 

Read speed Slow Medium  Fast Fast 

Data storage < 20 

characters 

with linear 

Small 

read/write 

data (e.g. 128 

bytes) 

Medium 

read/write data 

(e.g. 128 KB) 

with 

sophisticated 

data search and 

access 

capabilities 

Large read/write 

data with either a 

memory card slot, 

or internal flash 

memory card and a 

USB port. 

Updateable No Yes Yes Yes 

Simultaneous 

scanning of 

multiple 

codes/tags 

No Yes  Yes Yes 

Cost per tag ($) 0.01  0.05-1.00  5-30  100 or more  
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Fixed 

infrastructure 

cost 

No low high No 

Tag/sensor 

capability 

Ability to read 

and transfer 

tag values 

only when tag 

is scanned by 

reader; no 

date/time 

stamp 

Ability to 

read and 

transfer 

sensor values 

only when 

tag is 

powered by 

reader; no 

date/time 

stamp 

Ability to 

continuously 

monitor and 

record sensor 

input; data/time 

stamp for sensor 

events 

Ability to 

continuously 

monitor and record 

sensor input; 

data/time stamp for 

sensor events 

Best area of use Tracking 

small objects 

and low-value 

assets 

Tracking 

within a 

building or a 

facility 

Tracking within 

a large area (i.e. 

construction 

site) 

Tracking within a 

geographical area 

or tracking 

transoceanic 

shipments and very 

high-value assets 

 

In shipping and delivery stage, the ability to continuously monitor and record sensor input is 

necessary. This is why both barcode and passive RFID are supposed to be infeasible. Although 

active RFID has the ability, it is impossible to set up massive portals across a geographical 

area, let alone for transoceanic shipments. GPS technology is nominated as a feasible approach 

because of its continuous location tracking abilities and easy implementation with no 

additional infrastructure requirement. 

Due to the large size of the active RFID and GPS tags, both of them are not applicable to track 

the processes of shop detailing, programming and processing, cutting and drilling, and welding, 

because it is difficult to attach these two types of tags to a drawing. GPS technology is also 

infeasible in tracking processes of surface treatment, pre-assembly, and warehouse 

management because it is unable to record location information in an indoor environment. 

The last column of Table 7-1 illustrates the suggested tracking solutions for each process. 

Cost-effectiveness and easy implementation are the two main selection criteria. Barcode has 

dominated advantages to track the processes of 1 to 4 because it can be designed and printed 

together with the drawings. GPS technology is suggested to track the five processes within the 
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shipping and delivery stages because most of the shipments are transoceanic in LNG industry 

and can take several weeks or months to deliver. It should be noted that the detection windows 

of GPS signal can vary from half days, one day to one week, depending on the scale of 

traveling distance and the frequency of the report needed. In the other processes, there are at 

least two options. Usage of either barcode or passive RFID is mostly dependent on the value 

of the assets. Compared with active RFID, passive RFID is preferred to perform tracking 

within a building or a facility (i.e. warehouse) while active RFID is utilised to track assets 

within a large outdoor area with location information requirement, such as tracking 

instruments or pipe spools in an onshore LNG construction site. 

7.3 Framework of A Coordinated Approach for Supply-chain Constraint 

Tracking in LNG Construction 

Figure 7-1 shows the proposed framework for supply-chain constraint tracking in LNG 

construction. There are three modules within the framework: (1) Supply-chain constraint 

tracking for general materials, which is a cycling process that will occur more than once as the 

project progresses; (2) Supply-chain tracking for project-specific materials, which is always a 

one-off process and needs to be well managed and controlled because any delays will have a 

big impact on project construction; and (3) Supply-chain constraint control platform, which 

can integrate all the data collected from various tracking technologies (i.e. GPS, barcode, and 

RFID) so as to visualise constraint statuses and calculate the deviations between as-planned 

and as-actual constraint-removal schedules. The details of each part are discussed in the 

subsequent sections. 
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Figure 7-1: Framework of a Coordinated Approach for Supply-Chain Constraint Tracking in 

LNG Construction 
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7.3.1 Supply-chain constraint tracking for general materials 

There are five main processes needed to be tracked during general-materials management, 

namely Bill of Materials (BOM), Requisitions, Purchasing, Shipping and Delivery, and 

Warehouse and Installation. From engineering documents, BOM is generated and presents the 

demands of materials items. The purchaser needs to summarize all the materials requirements 

into requisitions, then goes to the purchasing process which is to basically buy the materials 

from suppliers. When all the materials are ready for delivery, shipment is the next process and 

needs to be well organized so as to make sure the delivery to site warehouse is at the right time. 

A staging area is used for staging materials from an initial storage location to construction 

storage location. Material staging is necessary for the general materials which are staged 

irrespective of construction orders.  

Changes are very common during LNG plant construction due to design alterations, material 

damages, and missing items, which are revolving around the five processes in a circle for the 

material supply-chain. All the processes need to be compared and analysed all the time so as 

to avoid materials surplus or shortages. For example, if the purchaser wants to analyze how 

much materials are needed, he needs to check the engineering drawings or the BOMs, and 

know how much in the requisitions and site warehouse, and how much is damaged during 

shipping for the latest procurement. 

7.3.2 Supply-chain constraint tracking for project-specific materials 

Project-specific materials mainly refer to offsite fabricated LNG modules. Three stages have 

been developed for managing the total material supply chain: offsite fabrication, shipping and 

delivery, and construction site logistics (as shown in Figure 7-1). There are seven processes in 

Stage 1 which start from shop detailing and end with ready for delivery. Completed shop 

drawings are transferred from shop detailing to welding. After welding, welded components 

will be sent out for surface treatment or pre-assembly if required. When ready for delivery, 

small individual components are always needed to be packaged into a single pallet.  

After the fabrication process, five milestones are designed in Stage 2 for the shipping progress 

tracking, namely (1) alongside ship, (2) on board, (3) ship’s arrival, (4) goods unloaded in a 

material offloading facility, and (5) arrival at a construction site. If the vessel is ready to be 

shipped, a fabricator is required to notice the owner to arrange the shipment. After the vessel 

is transported to a harbor, which is typically a milestone, the vessel is considered as alongside 

the ship. The next milestone is to ensure the boarding of the vessel. In a Free On Board contract, 

suppliers are responsible for the two milestones. When the ship arrives at the destination 

harbor, the third milestone is achieved. Owners need to arrange trucks for the unloading of 
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goods and transferring them to a construction site. If the construction sites of the LNG plants 

are in the area of Nature Reserve, another milestone of quarantine inspection is necessary to 

be incorporated after goods are unloaded.  

All construction tasks related to site logistics can be categorised into three main types: 

transportation, search and identification, and layout arrangement. Transportation represents all 

kinds of activities related to the movement of construction materials, equipment and personnel 

among warehouses, laydown yard and final installation area. Material search and identification 

represent all the activities related to the check points such as discovering the delivered goods, 

determining the construction status, and evaluating the construction performance. The layout 

arrangement represents the planning activities related to determine the construction resource 

distribution. Based on different features of logistics tasks, all work tasks among site related 

logistics require different tracking approaches. They should be adopted based on the 

availability of human presence and the efficiency of information collection.  

7.3.3 Supply-chain constraint control platform 

The supply-chain constraint control platform combines three-dimensional (3D) computer-

aided design (CAD) models with as-planned supply-chain constraint information and as-actual 

tracking data. The purpose of this platform is to visualise all the constraint statuses, and detect 

any potential conflicts between supply-chain constraint-removal plans and construction plans. 

Decisions can be made in a timely fashion when there are variances detected between the plans 

and actuals. Data provided by various tracking technologies and 3D CAD can significantly 

improve and speed up the process of constraint monitoring and deviation analysis.  

7.4 Experiments and Results 

It is difficult to test all the suggested tracking solutions for the two types of the supply-chain 

constraints (i.e. project-specific and general materials). Considering the major impact of the 

project-specific materials (i.e. any delays will result in significant cost and time overruns), the 

validation of the proposed framework for the general material tracking will not be covered in 

this research. Two field experiments were conducted to validate the feasibility and efficiency 

of the proposed coordinated approach for project-specific material tracking: the first 

experiment covered the whole process tracking during Stage 1 (i.e. offsite fabrication), and the 

second one focused on the process tracking during Stage 2 and 3 (i.e. shipping and delivery, 

and construction site logistics).  

Based on the benefit of easy implementation and not interrupting the normal production work, 

barcode was implemented in the first experiment. In the second experiment, active RFID was 
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selected for site logistics tracking because there had been several examples for using barcode 

or passive RFID for warehouse management and it was not necessary to repeat the work. GPS 

was also tested for shipping and delivery tracking.   

In order to visualise the statuses of the supply chain constraints, three plugins based on a 3D 

platform have been developed for barcode, RFID and GPS data reading, configuration, 

mapping and synchronisation. Figure 7-2 illustrates the architecture of the system integration. 

All the tracking data, including the received scanning records of barcodes and signals from 

GPS and RFID tags, will be collected to the web portals. For example, the transportation status 

of material can be monitored in a geographical-level map by retrieving GPS signals through 

time. Furthermore, the RFID signals of every site component tagged with an active RFID tag 

can be collected. The triangulation processes can then be performed in near real-time in order 

to determine the position information of the components. Navisworks software (Autodesk 

2017b) is selected as the basis of the 3D environment, and the web-based APIs are applied to 

transfer data from the web portals to the 3D platform. By integrating all the tracking data into 

a 3D virtual plant environment, the status information of the corresponding supply-chain 

constraints can be visualised and color-coded. Through the comparison of the tracking data 

and the as-planned constraint-removal schedule, all situations, including delays, can be 

dynamically captured. The results can be further used to notify site managers or crews by Short 

Message Service on short notice. Progress reports (i.e. items completed, items dispatched, 

items delivered, and items installed) are generated from the web portals while the overall S-

curve graphs are from the 3D platform. 
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Figure 7-2: Architecture of the Proposed Supply-Chain Constraint Control Platform 

7.4.1 Experiment one: offsite fabrication tracking 

Through a research agreement with Fremantle Steel Group, the participants were granted 

access to the fabrication facilities which utilise state of the art Computerized Numerical 

Control equipment in a combined covered workshop space of 36,000 square meters and can 

produce over 40,000 tonnes of fabricated steelwork annually. Pre-assembly and laydown areas 

of 60,000 square meters with mobile cranes up to 350-tonne lifting capacity enable the pre-

assembly of large modules and storage of large volumes of fabricated steelwork to suit 

customer delivery schedules. 

(1) Experiment design 

Two steel columns and one beam from a real construction project were selected as the tracking 

objects from cutting and drilling to ready for delivery. Detailed manufacturing activities and 

their corresponding locations are defined in Table 7-3. In order to calculate the overall 

fabrication progress, the weight for each activity was also added. The weight coefficient was 

determined based on the existing practices and validated by the project manager. Moreover, 

the same weight coefficient was also applied in the real project for measuring production 
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progress. Five zones were recognised based on the fabrication processes and their geographical 

locations are shown in Figure 7-3. 

Fabrication started with cutting and drilling of standard steel plates in Zone 1 and then went 

to Zone 2 for assembly and welding. As the three selected components all needed to be painted, 

hence, after welding, they were transferred to Zone 3 for surface treatment. The next step was 

returning them back to Zone 4 for pre-assembly. At the end, the finished products would be 

moved to Zone 5 for temporary store purpose, and ready for delivery if necessary. 

Table 7-3: Activities during Fabrication and Their Corresponding Locations and Weights for 

Progress Calculation 

Activities Locations Progress 

Cutting and Drilling Zone 1 20% 

Assembly  Zone 2 24% 

Welding Zone 2 24% 

Surface Treatment Zone 3 15% 

Pre-assembly Zone 4 15% 

Ready for Delivery Zone 5 2% 
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Figure 7-3. Location Definition for Fabrication Tracking 

 

(2) Barcoding technology implementation 

Five different barcodes were developed for this experiment: Drawing Barcode (DB), 

Treatment Barcode (TB), Pre-assembly Barcode (PAB), Site Barcode (SB), and Pallet Barcode 

(PB). Figure 7-4 illustrates the roles of these five kinds of barcodes and the whole fabrication 

tracking process map. At the early stage, shop drawings were received and uploaded into the 

proposed tracking system. Physical barcodes were designed and printed based on information 

extracted from engineering drawings. Links between barcodes and virtual 3D models should 

be correctly created including the internal relationships among barcodes. For example, a PB 

might link to several SBs. Physical barcodes were not attached to real components during the 

process of cutting, drilling, assembly, and welding. DBs attached the shop drawings were 

scanned to update the progress because: (1) the process of cutting and drilling was always 

designed for a batch of components, instead of one single component; (2) there were lots of 

small bits and pieces after cutting and drilling which was difficult to affix barcodes to; and (3) 

shop drawings were sent through these processes from one work team to another. 

After welding, TBs were attached to the three components individually and scanned before 

being shipped to the surface treatment yard. When the components arrived, treatment workers 

needed to scan the TBs, update the status, and remove the TBs so as to conduct treatment work. 

Zone 1

Zone 5

Zone 2

Zone 3

Deliver  to simulated  
construction site (Figure 9)

Imagery ©2016 Google, Map data ©2016 Google 

Imagery ©2016 Google, Map data ©2016 Google 
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After surface treatment, PABs should be affixed to the components. When the PABs were 

scanned, workers could get detailed pre-assembly information. SBs were affixed after pre-

assembly for load out tracking. In this experiment, the two columns and one beam were 

packaged into one pallet, hence, a PB was needed to put on the pallet. Quality Assurance (QA) 

and Quality Control (QC) were also embedded into the tracking process and could be 

automatically triggered through barcode scanning. 

All the physical barcodes were attached by the workers involved in each process. Therefore, 

it was unnecessary to assign a dedicated worker to handle these attaching activities. In addition, 

the usage of barcodes would not significantly increase workers’ workload because they needed 

to manually mark each steel item by using a chalk in a conventional way. 
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Link between pre-
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Figure 7-4: Field Implementation Map for Barcoding Technology 
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(3) Location tracking 

There were two methods for location tracking during fabrication as illustrated in Figure 7-5. 

The first one was GPS-enabled locating which relied on the GPS data from the mobile reader. 

If the GPS was unable to work, the second method would be used, i.e. the user could manually 

choose a predefined location for a component if needed. In this experiment, the first locating 

method was used during the stages of surface treatment and ready for delivery because both 

of them were conducted outside. The second locating method was adopted for the remaining 

processes. 

 

Figure 7-5: Two Locating Methods for Fabrication Tracking 

 

(4) Results and discussions for experiment one 

Two different types of data collected from barcoding were interpreted. Table 7-4 shows the 

locations of the three components at the end of each day during the experiment. Figure 7-6 

illustrates the progress data for each individual component and the overall project. Colum 1 

and Beam 1 could be located and were produced faster than Column 2, however, both of them 

needed to wait for Column 2 at the Zone 4 for the pre-assembly. In this experiment, a planned 

schedule for these three components was not set. However, if the overall progress was behind 

the schedule, it would be straightforward for the fabrication manager to find the root cause 

(the delay of Column 2), and quickly remedy the delay (i.e. assign more resource to Column 

2 fabrication). 

Compared with conventional methods (periodic reports-driven and weekly basis), three 

benefits of the proposed barcoding system were identified and quantified:  
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 Cost reduction by avoiding lost/missing piece-marks: According to the historical data 

of Fremantle Steel Group, 1% of piece-marks were lost/misplaced during the whole 

fabrication process. For this pilot project, there were nearly 28,000 pieces, which 

means 280 pieces of them would have been lost without barcoding. Considering each 

piece would cost $150 to reconcile/find, a total of $42,000 would be saved. This did 

not include the emergency fabrication costs of lost pieces which would cost a 

minimum of $1,000 per piece. Considering the technology adoption cost, including: 

barcode printing cost ($0.01*28,000=$280), mobile readers ($200*6=1200), software 

cost ($11.95/month/user*6*6=$430), and training cost ($100/hour*8=$800), the total 

net saving was $39,290. 

 Time and cost savings for checking fabrication progress: A clerk position, who needed 

to input progress data from weekly field reports into a planning system, could be made 

redundant. It could save about $60,000 annually. In order to quantify the time savings, 

the research team had selected a welding process as an example and calculated the 

time of generating a progress report, which indicated the number of welds produced 

per welder by type and x-ray percentage. The time spent compiling this information 

was reduced from 3 hours to an average of 20 minutes. 

 More detailed progress data for decision-making. The frequency of progress tracking 

with barcoding was nearly real-time, which enabled the shop manager to identify 

progress delays and bottlenecks faster. Therefore, with the help of the proposed 

barcoding system, it was easy to answer questions including: which piece-marks 

needed to be pre-assembled together? Where were the individual piece-marks? Which 

activity was behind the schedule, and when would the specific materials required to 

arrive on site? 

The experiment has achieved its primary aim of testing the proposed barcoding system for 

fabrication tracking, and the quantitative and qualitative findings are very promising. Certain 

limitations need to be considered, which are discussed as follows: 

 Barcode scanners needed a direct line of sight to the barcode. Scanners could easily 

find the right barcodes to be scanned before the pre-assembly stage. However, during 

the stages of pre-assembly and delivering to site, the efficiency of scanning actions 

declined because scanners spent most of their time to identify the right barcode. One 

of the site managers in Fremantle Steel Group suggested that the barcodes could be 

designed in different colors or sizes so that workers could recognise them quickly and 

easily. 

 Barcodes are more easily damaged because they have to be exposed on the outside of 

the steel product. If a barcode is ripped or damaged, there is no way to scan and update 
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the statuses of the product. In order to minimize this complication, the longstanding 

barcodes such as SBs and PBs are suggested to be printed with a plastic protective 

layer. 

 Barcode management is a challenging process. Five different types of barcodes were 

developed for this experiment based on the requirement of fabrication tracking. It was 

effortless to design and print these barcodes with the help of a computer. However, it 

was difficult to ensure that the activities of attaching and removing barcodes were 

absolutely correct because of the human errors. In order to eliminate the error-prone 

tasks, basic training for site workers is necessary. In addition, a guideline for barcode 

management is also needed. For example, for each type of steel components (i.e. 

column, beam and pipe spool), the best positions for barcodes attachment should be 

defined.  

 

Table 7-4: Location Change for the Three Components during Fabrication 
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Figure 7-6: Progress for Each Individual Component and the Overall Project 

 

7.4.2 Experiment two: site logistics tracking 

To simulate the delivery of construction materials and related logistics activities, the 

experiment utilised a real LNG plant training facility as a test bed. The targeted facility was 

the Australian Centre for Energy and Process Training (ACEPT), run by the Challenger 

Institute of Technology, located in Perth, Western Australia.  

(1) Experiment design 

The simulation scenario can be seen in Figure 7-7. The materials delivery process started from 

a remote place which could be assumed as a warehouse area. The transportation between the 

warehouse and the facility was monitored by GPS-based tracking. A GPS tag was mounted on 

a vehicle and communicated with the satellites frequently. Data about the vehicle’s location 

could be monitored through a web interface, and the progress of delivery could be recorded. 

Once the materials had been delivered into the simulated construction site, a customized RFID 

system, running in both active and passive modes, was established and used to monitor the 

logistics among the laydown yard and construction (or installation) area. The targeted 

construction area contained a dehydration module which was independent of other process 

units in the field. In addition, the laydown area had laid some spare module components which 

could be assumed as delivered construction materials. A simulation of the materials delivery 

was conducted through the use of the above-mentioned systems, and the entire experiment 

followed the operation protocol of LNG plant, such as the usage of intrinsically-safe devices, 

and performing gas leak detection before conducting any experiments. 
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Figure 7-7: The Simulated Scenario of Construction Site Logistics in the Oil and Gas Training 

Facility 

 

(2) RFID technology implementation 

The experiment particularly focused on the use of the active RFID given that the system was 

rarely used comparing with that of passive mode and it had the potential in improving the 

tracking of certain non-line-of-sight activities. The architecture of the active RFID system can 

be seen in Figure 7-8, and the reader was put in an explosion proof enclosure for fulfilling the 

intrinsically-safe requirement of the LNG operation field. The antennas mounted on the top of 

the four-meter-high pole were responsible for receiving Radio Signal Strength (RSS) from 

each RFID tags for the reader to capture and upload the processed information to servers 

through WIFI. As for the content of the enclosure, there was a power supply, a reader and a 

wireless radio. The wireless radio was used as a transmitter for converting the processed 

information in order to upload through the Internet. Like such settings, there were four 

different sets have been distributed around the facility. As shown in Figure 7-9, they were 

located at four corners of the simulated construction area and formed a rectangle (around 30m 

by 15m) covering the dehydration module. By synchronizing all four received RSS at an 

acceptable short time period, the locations of tags could thus be identified through 

triangulation calculations. 
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Figure 7-8: The System Architecture of the Installed RFID Reader  

 

 

 

Figure 7-9: Four Fixed RFID Readers around the Dehydration Module 

 

As shown in Figure 7-10, the dehydration module consisted of vessels, pumps, pipes, 

electronic lines, and other related components and was located in the simulated construction 

area. Multiple RFID tags were attached to the selected components of the module. The tag 

could be read through handheld scanners or the four fixed readers, which means that the 

detection methods could be either active or passive way. The received information could be 

updated on the materials management system by through the Internet. The dehydration module 

: Reader position

: Dehydration module



139 
 

and its surrounding regions including the laydown area were used as experiment fields in the 

simulated construction site. They were used to test the performance of active RFID in static 

and dynamic situations as well as to conduct a material search test by comparing different 

combinations of tracking approaches. These tests are described in the following sections in 

detail. 

 

 

Figure 7-10: The Attachment of RFID Tags on the Dehydration Module 

 

(3) Location tracking 

To assess the accuracy of the active RFID system, a performance analysis of the RFID tags 

localization was conducted. In order to understand the status of each attached components in 

general for site managers and help field workers to search specific ones, accurate location 

information will be essentially important to shorten the data collection and search time. It 

could even be extended to monitor the movements of construction equipment or personnel for 

safety purposes. Given that the magnitude of RSS is related to the distance between reader and 

tag, the researcher first validated the relationship of RSS between each RFID tags in the 

simulated LNG plant construction environment. Two randomly selected RFID tags were put 

at the same position on a trolley located within the detection range of the four fixed readers. 

Figure 7-11 illustrates the RSS distributions of the two tags. The trolley was still at the 

beginning. After around 2500 seconds, the trolley started to be pushed and moved around the 

dehydration module. The results showed that the RSS distributions of the dynamic cases were 
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more fluctuated than that of the static cases. However, both tags at the same place responded 

different RSS values but the patterns of changes were similar with each other. It suggests that 

there was a relationship between RSS responses and the distances of RFID tags, which could 

be utilised to further improve measurements as long as it could be formed. Once the tags with 

known locations were obtained as reference tags, the measured location of the target tag could 

be calibrated by the RSS responses from those tags through the determined relationship.   

 

 

Figure 7-11: The Relationship of RSS Distribution between Two Different RFID Tags at the 

Same Place 

 

(4) Results and discussions for experiment two 

A summarised table for all the tests done for site logistic tracking is provided in Table 7-5. 

The researcher collected the RSS data of each RFID tags on the module. The sampling rate 

was 3-8 seconds per RSS record. 16 tags with known locations were treated as reference tags 

for calibration. Similar calibration research had been conducted by Razavi and Haas (2011). 

Compared to the true positions identified through survey technologies, the positioning errors 

of static RFID tags through RSS data with reference tags calibration are illustrated in Figure 

7-12. Among these 7 tags attached to the module, the errors can be controlled within 3 meters, 

which suggests that using the active RFID system was capable of tracking non-line-of-sight 

activities such as knowing where the multiple construction resources were in a relativity large-

scale LNG plant construction site. In addition, site managers could easily discover the objects 

of interest and request field workers to locate it in a short duration. This is because the search 
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instead of following rough directions to search, causing potential waste of time. It also helped 

conduct deviation analysis at a short duration so that the delay of logistic can be found at the 

early stage for further decision making. 

Table 7-5: An Overview of the Tests Done for Site Logistic Tracking 

 Material localization 

(static case) 

Material tracking 

(dynamic case) 

Material search 

Technology Active RFID Active RFID Paper instruction, 

Passive and Active 

RFID 

Subject 7x RFID tags on the 

module 

1x RFID tag on the 

trolley 

50+ plant components 

in the lay down area 

Frequency 3-8 secs/record 

(sampling rate) 

3-8 secs/record 

(sampling rate) 

30 search cases/search 

methods 

Area Dehydration module Area around 

dehydration module 

6m x 36m lay down 

area 

Time 

duration 

40 mins Around 13 mins (800 

secs) 

Around 1.5hr 

 

 

Figure 7-12: Positioning Errors of RFID Tags with Reference Tags Calibration (Static Case) 
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Regarding the monitoring of dynamic objects on the site, the targeted RFID tag was put on the 

trolley and moved around the dehydration module. The sampling rate of RSS is the same as 

the static case and the total recorded time is around 13 minutes. Figure 7-13 shows the tracking 

errors with time. The range of average errors distribution was from 2 meters to 12 meters and 

the change pattern of the error was unpredictable. It shows that the RSS of a moving RFID tag 

was significantly affected by the surrounding environmental factors associated with the time 

and the location, such as metal, liquid, and other electromagnetic interferences. The results 

also indicate that improvements on the active RFID system were required for certain tracking 

tasks, such as equipment movement monitoring or personnel tracking for safety purposes. 

However, depending on the accuracy requirement, it was still applicable for non-line-of-sight 

tracking activities which only required rough positions of the target resource, such as work 

permit monitoring and materials tracking at a large-scale LNG construction site. It is also 

worthy to note that improving the localization performance of dynamic materials could be a 

future research direction for optimizing the accuracy of the active RFID with reasonable cost 

and time.   

 

 

Figure 7-13: Tracking Errors of RFID Tags with Reference Tags Calibration (Dynamic Case) 
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managers according to the existing drawings or layout plans. They were estimated without 

prior activities of "manually" recording accurate laydown positions when the materials arrived 

in the area. Based on the feedbacks from field crews and managers, the accuracy of instructions 

significantly relied on how much experience the site managers had regarding the arrangement 

of the laydown area.   

30 items were identified within the material laydown yard and used as the targets for 

participants to search by using the three approaches, respectively. Detailed experiment data 

was collected and analysed.  Figure 7-14 shows that the average time spent on searching 

materials by using both active and passive modes of RFID in the simulated lay down area 

(Mean: 25.07s, Standard Deviation: 8.238s) was generally faster than those of using passive 

RFID with paper-based instructions (Mean: 58.83s, Standard Deviation: 19.596s), and those 

of using only instructions (Mean: 111.47s, Standard Deviation: 36.72s). The average time 

savings were 33.76s and 86.4s, respectively. It is due to the accurate information that the active 

RFID could provide for non-light-of-sight tracking activities, like material storage decisions 

and monitoring, which narrowed the search area down to 3 meters instead of rough search 

instructions. Using only passive RFID or paper-based instructions might achieve the same 

efficiency but required extra human and arrangement effort in recording the statuses of 

materials when materials arrived in positions, while active RFID could acquire such 

information timely and automatically. It further reduced the preparation time of search tasks 

and helped improve management from the global perspectives.    
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Figure 7-14: Time Spent on Searching Materials in the Simulated Laydown Area 
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resource at the site, the tracking approaches still need further investigations, especially 

on improving tracking results of the dynamic objects within reasonable ranges.  

 These results conducted in the material search test may present a certain degree of bias 

attributed to a number of reasons. Firstly, the scale of the laydown area in practice is 

much higher than the tested one, which could amplify the uncertainties of searching 

target items. Secondly, there were biases among participants’ skills in searching 

materials. Although participants were randomly selected, there was a chance of 

uneven prior knowledge or learning ability.  Finally, the accuracy of the paper-based 

instructions also had a significant impact on the material search. Poor-quality 

instructions would result in a longer time. However, the results are still helpful to 

validate the benefits of the proposed approach. The generalization of the test results is 

acceptable given that the simulated site is exactly "a real process plant" following all 

the operation and intrinsically-safe regulations for training purposes. The 

arrangements and layouts of all components followed the designs in practice.  

 The integration of the proposed tracking approaches is feasible to establish a total site 

logistics management mechanism of a technical perspective. However, supply-chain 

experts also raised concerns as to whether the integrated approach could be adopted 

due to various factors, such as cost-effectiveness and complicated working processes. 

Essentially, the LNG industry needs to be closely engaged in order to provide an 

appropriate platform for the adoption.    

7.5 Conclusions 

This chapter presents a coordinated approach for total supply-chain constraint tracking in LNG 

construction. The feasibility of the proposed approach for the project-specific material tracking 

is validated by the two field experiments. Although not all alternative tracking solutions within 

the framework are tested, this research has indeed validated the usage of barcode for 

fabrication tracking. Besides, the capabilities of GPS and active RFID are also tested and 

validated in tracking non-line-of-sight tracking tasks at a simulated LNG plant construction 

site. Both GPS and active RFID can cooperate with passive RFID, and allow site managers to 

get a global view of the materials flow and identify relatively close search range for field 

workers to locate the materials of interest efficiently.  

To sum up the outcomes of this chapter, the benefits identified from the two field experiments 

are listed as follows: 
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 The proposed coordinated approach has been validated as a feasible solution for 

tracking various supply-chain constraints in LNG modular construction. It helps 

increase the visibility of the total supply chain for complicated and large-scale projects. 

 The two field experiments have demonstrated the feasibility of the combination of the 

barcode, RFID and GPS for the total supply chain constraint tracking in the LNG 

industry. Despite of the increase of the cost in order to purchase and install the tracking 

infrastructure, its impact on the overall cost is minimal but can bring significant 

benefits in terms of time reduction and productivity improvement.  

 The experiment conducted in the off-site factory suggests several tangible benefits: 

$42,000 will be saved for lost/missing piece-mark reconciliation in the pilot project; 

$60,000 will be saved annually due to the reduction of a clerk position; and time spent 

in welding progress tracking can be reduced from 3 hours to an average of 20 minutes.  

 Based on the observations of site logistic experiment, the search range of material has 

been narrowed down through active RFID used in cooperation with scanners through 

passive RFID. Compared with conventional approaches in material searching, the 

proposed tracking solution is two times faster than those of using passive RFID with 

paper-based instructions, and four times faster than those of using instructions only. 

Although the improvement is identified, further validations should be conducted which include: 

(1) validating the feasibility of the proposed framework for the general material tracking in an 

LNG construction project; (2) evaluating the capabilities of other suggested tracking solutions, 

such as the utilisation of passive RFID with a handheld reader for fabrication tracking. 

Compared with the barcode technology, passive RFID has all the advantages except its higher 

implementation cost. The first two limitations of barcode found in this research can be easily 

addressed by using passive RFID; (3) applying the proposed framework in a real LNG 

construction project and measure its performance; and (4) extending the application of the 

proposed framework to other industries, such as mining, infrastructure, and building.   
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Chapter 8: TCM Method for Improving Construction Work Flow 

and Productivity 

8.1 Introduction 

Chapter 8 proposes a TCM method developed based on the research outcomes from Chapter 

4-7 (i.e. Research Objective 5). Other information technologies (i.e. BIM, Laser scanning and 

Photogrammetry) were also discussed and incorporated into the TCM method so as to make it 

more practical and effective. A laboratory experiment (i.e. Laboratory Experiment 2 explained 

in Section 3.2.2, Chapter 3) was developed to validate the effectiveness and efficiency of the 

proposed TCM method. The results show that successful implementation of TCM can 

significantly improve construction workflow and productivity. 

8.2 Overall Design of the TCM Method  

This section describes an overall design of the TCM method (as shown in Figure 8-1) which 

aims to improve work flow and productivity in LNG construction. The proposed TCM method 

includes four main modules:  

 Module 1 (i.e. Research outcome of Chapter 4): A hierarchical constraint 

management process module (highlighted in light yellow colour);  

 Module 2 (i.e. Research outcome of Chapter 5):  A DNA-based constraint modelling 

and analysis module (highlighted in light blue colour);  

 Module 3 (i.e. Research outcome of Chapter 6): A linked data-enabled cross-domain 

constraint information sharing module (highlighted in light green colour); and  

 Module 4 (i.e. Research outcome of Chapter 7):  A sensor-based constraint monitoring 

module (highlighted in light red colour). 

Module 1 defines when to start the constraint management process, and how to efficiently 

identify project constraints; Module 2 defines how to dynamically model and analyse these 

constraints identified in Module 1; and Module 4 defines how to use emerging sensor 

technologies to automatically monitor constraint status. All the data and information generated 

from Module 1, 2, and 4 are collected and stored in Module 3 (i.e. a linked data-enabled cross-

domain constraint information management and sharing platform). Due to the advantages of 

the Linked Data technology, project participants can efficiently access all the constraint 

information (e.g. constraint type, links to other constraints, constraint priority, constraint 

maturity, constraint status, constraint delay impact, etc.) even they are stored in multiple 

isolated databases.  
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Figure 8-1: Overall Design of the TCM Method 

8.3 Validation of the TCM Method 

A laboratory experiment (i.e. Laboratory Experiment 2 explained in Section 3.2.2, Chapter 3) 

was developed to validate the effectiveness and efficiency of the proposed TCM method. A 

total of 83 EWPs, 10 CWPs and 172 IWPs were developed for the LNG Construction 

Simulation Game. In order to simulate engineering works, all the drawings and specifications 
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were taken into predefined engineering offices respectively according to different disciplines, 

such as mechanical, electrical, civil and piping. The released time for these drawings and 

specifications to the construction site was planned based on the design of the experiment. 

Twelve long-lead constraints designed by the author were incorporated into the game. 

Examples of long-lead items in this experiment were equipment (i.e. Compressor, Convert, 

Pressure, Battery and Power) that was designed and built specifically for the project, and tools 

(i.e. Allen keys) and materials (Circuit board, Bar, Connector, Metal pin, Long pipe, and 

Switch) that were purchased in other countries. If the project team could not identify these 

constraints as early as possible, the game would suffer delay. 

In the first round of play to simulate the TCM method, the project manager of Group A was 

provided with a construction plan and a constraint meta-network (as shown in Figure 8-2). He 

can efficiently check constraint information through sample clicks. For example, when 

clicking “IWP 6.2”, the project manager could find all related constraints and their planned 

removal time. With TCM implementation, Group A found all the long-lead constraints in the 

first ten minutes through DNA method, and developed proper action strategies to assure them 

could be timely removed. After the first five minutes, the first client representative began to 

select design variations at random for LNG modules and civil foundations in random sequence. 

Figure 8-3 showed an example of design variations in civil foundations. Two typical variations 

(B and C) were developed to the standard default design (A). Each design changes needed to 

be addressed even the modules were delivered to the site or finished the installation. Moreover, 

only the appropriate subcontractors could make the changes called for in the variation change 

order. In order to reduce rework, Group A changed the work sequence to follow the random 

sequence in which design variations were selected. Work was started on an LNG module only 

after its design variation had been selected.  
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Figure 8-2: Constraint Meta-network 

Regarding constraint monitoring, it was not feasible to implement the proposed sensor-based 

tracking solutions (i.e. RFID, GPS, and Barcode) in this simulation game. However, in order 

to simulate the real-time constraint tracking and status updating, the project manager was 

allowed to walk around to get all the latest status of the constraints. The second client 

representative inspected each completed IWP and recorded the time. The play was finished 

after 31 minutes, and the performance of Group A was assessed in terms of progress, defective 

LNG modules, productivity, and duration. 
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(a) Standard default design 

 

(b) Design variation-1 

 

(c) Design variation-2 

Figure 8-3: An Example of Design Variations in Civil Foundations 
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In the second round to simulate the conventional constraint removal approach, the following 

changes were made, while all other conditions remained as before: 

(1) Constraint analysis was late implemented and only happened at the IWP development 

stage. Currently, in most cases, constraint analysis started at the look-ahead planning 

phase, and was done by examining each activity that was scheduled to perform within 

the next six to eight weeks. In this regards, it was reasonable to assume the action of 

constraint analysis only happened at the IWP level, not CWP or higher level. 

(2) Project manager of Group B was not allowed to walk around, and could only perform 

constraint removal in his own office based on progress reports and commitments. 

Most companies traditionally performed constraint removal based on their regular 

coordination meetings. Constraint status was manually updated according to paper-

based reports and oral commitments. In this experiment, all the contractors and 

subcontractors were worked within a small area. The action of “walk around” could 

make the project manager got nearly real-time constraint information including status. 

Therefore, in order to largely reflect the real world experience, this assumption was 

formulated. 

(3) Constraint relationship map and removal plan were not provided to Group B. In the 

conventional approach, constraint analysis and removal were conducted informally, 

thus the experience, foresight, and general capabilities of the managers made a great 

deal of difference. According to the feedbacks of the thirteen industry experts, very 

few projects developed constraint relationship map and removal plan. The most 

common practice was identifying and listing all the constraints for each activity from 

a local perspective, not the globe. 

Without TCM implementation, all the twelve long-lead constraints were not timely found until 

the third ten minutes. Delays were suffered at the end of the first ten minutes because of 

materials and tools shortage. The performance of group B was also measured by the second 

client representative.  

8.4 Results and discussions 

After the two rounds of simulation, the performance data of the two groups were calculated. 

The parameters of interest were the number of defective LNG modules, the actual duration, 

the actual progress for each time interval and the productivity for each trade. The first two 

were easily measured; the latter two were calculated according to the following two rules, 

respectively: 
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(1) Index of Cumulative Progress (CP) was developed to measure the actual progress at 

the end of each time interval. In this study, the time interval was set to 10 minutes. 

The formula was:  CP = A1*A1w + A2*A2w + A3*A3w +…+ An*Anw. The value of An 

was the actual progress of construction trade n, which could be measured based on the 

finished quantity divided by the total quantity. Anw was the weight of the trade n for 

CP calculation. The specified values of Anw were listed in Table 8-1. 

(2) The productivity index was calculated based on each construction trade. The formula 

was:  Pn = Qn / (Tf-Ts). Pn: productivity of trade n; Qn: total quantity of trade n; Tf: 

finish time of trade n; and Ts: start time of trade n. 

Table 8-1: The Weight of Each Trade for CP Calculation  

Construction 

trades (n) 

Descriptions  Weight (%) (Anw)  

1 Site preparation 30 (A1w) 

2 Off-site module manufacturing  10 (A2w) 

3 Module installation 15 (A3w) 

4 Pipework installation 28 (A4w) 

5 Wiring installation 10 (A5w) 

6 Major equipment installation 5 (A6w) 

7 Commissioning 2 (A7w) 

 

Table 8-2 showed the actual duration and CP values of the two groups. Group B took 43 

minutes to finish the whole construction works while Group A took 31 minutes, which meant 

28% of the project duration was reduced. At the end of the second ten minutes, the CP of 

Group A was 63%, however, the value for Group B was only 47%. The main underlying reason 

was related to the long-lead constraints. Group B spent more time to wait for the constraints 

to be removed because of the late implementation of the constraint analysis. 

Table 8-3 illustrated the number of the defective modules and productivity index of the two 

groups. The measurement of the defective module was based on a comparison between as-

built and as-designed modules. If the difference(s) were found in a module which would be 

treated as a defective module. Figure 8-4(c) showed a defective module built by Group B 

which in line with the original design (as shown in Figure 8-4(a)), not the latest design (as 

shown in Figure 8-4(b)). The correct module was showed in Figure 8-4(d). The defective 
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modules were significantly reduced in Group A when compared with Group B. The reason 

was that Group A could effectively reduce the impact of the design changes with TCM 

implementation. The values of productivity index of Group A were higher than Group B 

except commissioning. Because the commissioning was the last work of the simulation game, 

and the value of the productivity was only dependent on the operation proficiency. 

Productivity was dramatically improved in the works of off-site module manufacturing, 

module installation, and major equipment installation because the work flow in Group A was 

more stable than Group B. 

Table 8-2: Actual Duration and CP of the Two Groups 

Groups  Actual 

duration 

(minutes) 

CP at the 

end of the 

first ten 

minutes 

(%) 

CP at the 

end of the 

second ten 

minutes 

(%) 

CP at the 

end of the 

third ten 

minutes 

(%) 

CP at the 

end of the 

forth ten 

minutes 

(%) 

CP at the 

end of the 

fifth ten 

minutes 

(%) 

Group A 31 21 63 95 100 - 

Group B 43 16 47 71 92 100 

 

 

Figure 8-4: An Example of Defective Module 
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Table 8-3: The Number of the Defective Modules and Productivity Index of the Two Groups 

Construction trades 

Defective modules Productivity (unit/min) 

Group A Group B Group A Group B 

Site preparation 0 1 1.315 1.214  

Off-site module manufacturing  0 5 1.307 0.662  

Module installation 0 3 4.348 1.887  

Pipework installation 0 0 1.603 1.216  

Wiring installation 0 0 2.384 2.096  

Major equipment installation 0 1 0.352 0.263  

Commissioning 0 0 15.625 15.214  

 

These results may present some normal degree of error and bias attributable to a number of 

reasons (González et al. 2015). Firstly, the nature of the simulation game revolves around 

human participation, some error may occur when measuring the performance metrics during 

each round. Various playing attitudes (i.e. positive and negative) or motivations can interfere 

with the accuracy of results. Secondly, there are biases between the two groups. Although 

participants were randomly allocated to groups, there is a chance of uneven prior knowledge 

or learning ability. Enhanced prior knowledge would cause the simulation game to be easier 

for those people than completely new players. Finally, it is likely there is a learning curve 

effect for the two groups, which could impact the observed improvement. In general, the author 

argue that some errors and biases may be present; however, the results still can validate the 

benefits of TCM implementation in LNG construction.  

8.5 Conclusions 

Results from the simulation game indicate a positive effect of facilitations when implementing 

the proposed TCM method in LNG construction. 28% of project duration was reduced while 

no defective modules were found during TCM implementation. Productivity was also 

improved, especially in the works of off-site module manufacturing and module installation 

which increased by around two times.  
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The size of the lean game is relatively small, and the duration is only within one hour. Although 

the observed improvement is clear, further validation should be conducted to drawing more 

definitive conclusions as to this scale of improvement. Potential research includes engaging 

LNG industry experts to play the lean game and measuring their performance, and conducting 

several Field Tests to evaluate the improvement of TCM implementation.  
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Chapter 9: Conclusions, Implications, and Future Recommendations 

Summaries presented at the end of previous chapters have already given a detailed account of 

the works and main findings of this research. This chapter closes this thesis by presenting those 

main conclusions relating to the research objectives defined at Chapter 1. It also summarises 

theoretical contributions and practical implications of this research. Recommendations for 

future research are presented at the end of this Chapter. 

9.1 Conclusions 

The aim of this section is to summarise the research findings in order to (1) draw unambiguous 

conclusions from the results; and (2) provide empirical evidence to demonstrate the 

capabilities of the developed methods.  

This research aims to develop and validate a TCM method for improving plan reliability and 

work productivity in LNG construction. A positivist epistemology was adopted as the main 

research methodology. Mixed methods of both qualitative and quantitative methods were 

conducted subsequently, for instance, focus group study method was conducted to facilitate 

the development of the TCM framework while experimental methods including lab-based 

experiments (i.e. Lean Simulation Game) and field experiments were conducted to validate 

the effectiveness and efficiency of the proposed TCM framework. 

The review of existing constraint theories, and constraint management practices in Chapter 2 

has clearly shown that there are significant research gaps in constraint modelling, constraint 

information sharing, and constraint monitoring. The structure of constraints in LNG 

construction is a dynamic network with multi-levels, multi-nodes, and multi-links. When 

modelling and analysing such types of constraints, existing approaches (i.e. mathematical 

model-based, simulation-based, visualisation-based, or pull-driven approaches) have either a 

very limited constraint coverage or a weak capability in constraint analysis. In addition, 

information of these constraints including their statuses are stored in different ways (i.e. 

different data schemas), at various locations and managed by multiple vendors from different 

domains (i.e. different vocabularies). Therefore, it is difficult for project participants to 

efficiently access these sources of information by using existing approaches such as (1) 

Meeting- and paper-based approaches; (2) Internet/Web-based approaches; or (3) BIM-based 

approaches.  

In order to fill these gaps, this thesis developed a TCM method which includes four main 

modules: A hierarchical constraint management process module (Module 1); A DNA-based 

constraint modelling and analysis module (Module 2); A linked data-enabled cross-domain 
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constraint information sharing module (Module 3); and A sensor-based constraint monitoring 

module (Module 4). Module 1 defines when to start the constraint management process, and 

how to efficiently identify project constraints; Module 2 defines how to dynamically model 

and analyse these constraints identified in Module 1; and Module 4 defines how to use 

emerging sensor technologies to automatically monitor constraint status. All the data and 

information generated from Module 1, 2, and 4 are collected and stored in Module 3. The 

evaluation revealed that the proposed TCM method could significantly improve plan reliability 

and work productivity. The following sub-sections provide detailed conclusions for each of 

the five main research objectives posed in Chapter 1. These findings have clearly proven the 

achievement of the research aim, and explicitly confirmed the overarching research 

proposition: “The proposed TCM method can perform better in constraint identification, 

modelling, monitoring, and removal, and thus, can significantly improve construction 

productivity”.  

9.1.1 Research findings for Objective 1 

Objective 1 

To develop a hierarchical constraint management process to identify and remove constraints 

through project life cycles. 

Summarised Research Findings 

 A hierarchical constraint management process was developed through literature 

review and Focus Group Study 1.  

 The proposed process consists of three levels of loops: 

 Loop 1 at CWA level which aims to identify and monitor constraints that has a 

long lead time and align engineering and procurement plans to the construction 

plan;  

 Loop 2 at CWP level which aims to manage constraints from a construction-

centred perspective, and continually involve owner, engineers, purchasers and 

contractors to find new constraints and detect potential constraint-removal 

issues; and  

 Loop 3 at IWP which aims to maintain, monitor and remove constraints from 

an installation-centred perspective. 
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9.1.2 Research findings for Objective 2 

Objective 2 

To develop a network-based constraint modelling method for describing the 

interdependencies among constraints. 

Summarised Research Findings 

 A DNA-enabled constraint modelling method was developed to understand the 

complex interactions in a constraint network. 

 The proposed method was tested based on a laboratory-based experiment. Five 

measures were developed to analyse the constraint meta-network evolution, 

including: NUCi, VCRi, VIRSi, ODCN, IDCN, and IDIN (Detailed explanation of 

these measures can be found in Table 5-3, Section 5.3.3). An IWP-oriented 

constraint meta-network was developed which contained 1766 nodes and 2589 

links (1947 constraint links, 297 sequence links, and 345 superintendent links). The 

network diameter was thirty-four, and the average path length was about eleven. 

Detailed experiment results are summarised as follows: 

 Five out of five conflicts (100% accuracy) were successfully detected between 

construction plan and engineering constraint-removal plan ( 𝑁𝑈𝐶𝑡𝑜𝑡𝑎𝑙  = 

∑ 𝑁𝑈𝐶𝑖
28
0  = 5, 𝑁𝑈𝐶𝑖  is calculated based on the Engineering Constraint 

Network); 

 Twelve out of twelve conflicts (100% accuracy) were successfully detected 

between construction plan and supply-chain constraint-removal plan (𝑁𝑈𝐶𝑡𝑜𝑡𝑎𝑙 

= ∑ 𝑁𝑈𝐶𝑖
28
0  = 12, 𝑁𝑈𝐶𝑖  is calculated based on the Supply-Chain Constraint 

Network); 

 Twenty-three out of twenty-three conflicts (100% accuracy) were successfully 

detected between construction plan and site constraint-removal plan (𝑁𝑈𝐶𝑡𝑜𝑡𝑎𝑙 

= ∑ 𝑁𝑈𝐶𝑖
28
0  = 23, 𝑁𝑈𝐶𝑖 is calculated based on the Site Constraint Network); 

 Four engineering constraints were recognised as critical constraints (i.e. four 

engineering constraint nodes have the maximal value of the ODCN: 

ODCNmax=6); 

 Thirty supply chain constraints were detected as critical constraints (i.e. thirty 

supply chain constraint nodes have the maximal value of the ODCN: 

ODCNmax=6); 

 Eighteen IWPs were identified as critical work packages (i.e. eighteen IWP 

nodes have the maximal value of the IDCN: IDCNmax=19). 

Limitations  
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 The constraint meta-network is manually created which is time-consuming and 

labour-intensive; 

 The five measures developed for analysing the constraint meta-network evolution 

are simplified and do not include the weight and probability of the links.  

 

9.1.3 Research findings for Objective 3 

Objective 3 

To develop a data management platform for cross-domain constraint information sharing. 

Summarised Research Findings 

 A linked data-enabled platform was developed for improving cross-domain 

constraint information sharing, which includes: 

 Two newly developed ontologies, i.e. constraint ontology, and AWP ontology; 

 Three RDF data transformation methods: Drawing data to RDF, Table data to 

RDF, and Document meta-data to RDF; 

 Two data interconnection methods: data interconnection among RDF data sets, 

and data interconnection between RDF triples and documents.  

 A pilot case study was conducted to demonstrate the capabilities of the proposed 

approach. Detailed results are listed as follows: 

 Cross-domain constraint information searching can be successfully executed 

through SPARQL Query with or without inference rules;  

 The SPARQL Query results can be precisely visualised in tabular and/or graph 

formats;  

 External reference data libraries and document systems can be linked and 

queried;  

 The accuracy of the executed SPARQL Queries is 100%. 

Limitations 

 The size of the RDF dataset is relatively small (there are only 103766 RDF triples 

included);  

 The complexity of the selected LNG module is relatively low because only 

dehydration systems are included; 

 The prototype is not mature enough and require users to be familiar with the 

SPARQL language in order to use the prototype efficiently. 
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9.1.4 Research findings for Objective 4 

Objective 4 

To investigate current tracking technologies for real-time constraint tracking. 

Summarised Research Findings 

 A framework of a coordinated approach for supply-chain constraint tracking was 

developed. 

 A prototype was developed for sensor data (i.e. barcode, RFID, and GPS) reading, 

configuration, mapping, and synchronization.  

 The experiment conducted in the off-site factory suggests that:  

 $42,000 could be saved for lost/missing piece-mark reconciliation in the pilot 

project;  

 $60,000 could be saved annually due to the reduction of a clerk position; and  

 Time spent in welding progress tracking was reduced from 3 hours to an 

average of 20 minutes.  

 The experiment conducted in the construction site suggests that: 

 The search range of material has been significantly narrowed down through 

active RFID used in cooperation with scanners through passive RFID;  

 Compared with conventional approaches in material searching, the proposed 

tracking solution is two times faster than those of using passive RFID with 

paper-based instructions, and four times faster than those of using instructions 

only. 

Limitations 

 The two experiments are all conducted in a controlled environment which may not 

represent a fully realistic situation; 

 

9.1.5 Research findings for Objective 5 

Objective 5 

To develop a TCM method based on the research outcomes from Objective 1-4 

Summarised Research Findings 

 A TCM method was developed which includes the following four main inter-

connected modules: 

 Module 1 (i.e. Research outcome of Objective 1): A hierarchical constraint 

management process module (highlighted in light yellow colour);  
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 Module 2 (i.e. Research outcome of Objective 2):  A DNA-based constraint 

modelling and analysis module (highlighted in light blue colour);  

 Module 3 (i.e. Research outcome of Objective 3): A linked data-enabled cross-

domain constraint information sharing module (highlighted in light green 

colour); and  

 Module 4 (i.e. Research outcome of Objective 4):  A sensor-based constraint 

monitoring module (highlighted in light red colour). 

 The TCM method was tested in an LNG construction simulation game (i.e. 

Laboratory Experiment 2), significant improvement had been achieved when 

compared with the conventional approach: 

 All of the twelve long-lead constraints were successfully identified in the 

first ten minutes, and detailed constraint-removal strategies were also 

developed. When using conventional approach, the twelve long-lead 

constraints were not timely identified until the third ten minutes. Delays 

happened at the end of the first ten minutes because of the materials and 

tools shortage); 

 28% of project duration was reduced; 

 No quality issues were found during the testing. When using the 

conventional approach, 10 defective modules were identified); 

 Significant productivity improvement has been achieved in Module 

installation (130%), Off-site module manufacturing (97%), Major 

equipment installation (34%), and Pipework installation (32%). 

Limitations 

 The size of the lean game is relatively small, and the duration of the simulation 

game (i.e. within one hour) is relatively short; 

 Compared with the real construction site, the environment of playing the lean game 

is simplified. Site constraints such as weather, safety, and permit were not 

considered during the lab-based testing. 
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9.2 Summary of Theoretical Contributions 

This research was motivated by the increasing challenges of constraint management faced by 

project planners when using pull planning methods in LNG construction. The main theoretical 

contributions of this study include:  

(1) A TCM method that enhances the role of constraint management within pull 

planning methods (i.e. AWP, WFP, and LPS) 

Traditionally, shielding assignments are the main approach to improving work flow. 

Constraint removal in this context is passive and often late implemented. In this thesis, 

it is assumed that the best way to improve workflow reliability is not only to shield 

assignments, but also to remove the constraints on-time. In order to actively perform 

constraint removal, the TCM framework proposed in this thesis consists of:  

 A complete process for constraint lifecycle management from constraint 

identification to removal. Constraint modelling module provides a global 

view of constraint relationships and interconnections, which is useful for 

identifying key constraints. In addition, delay impact of each constraint can 

be assessed at an early stage which leaves enough time for project teams to 

catch up with the planned schedule. Constraint monitoring includes a small 

cycle of constraint tracking, status updating, and checking and action. 

Constraint removal is executed when: (i) the maturity index of the constraint 

is 100%; or (ii) the maturity index can be updated to 100% based on 

forecasting or reliable commitment.  

 Three loops (i.e. Loop 1, 2 and 3) for managing constraints in three work-

package levels (i.e. CWA, CWP, and IWP), respectively. Loop 1 happens in 

the preliminary planning stage which aims to identify and monitor long lead-

time constraints and align engineering and procurement plans to the 

construction plan. Loop 2 happens in project detailed engineering stage which 

aims to manage constraints from a CWP-centred perspective, and continually 

involve owner, engineers, purchasers, and contractors to find new constraints 

and detect potential constraint-removal issues. Monitoring and removing the 

engineering constraints and long-lead supply chain constraints should be 

given high priorities in this loop. Loop 3 happens in the project construction 

stage which aims to maintain, monitor and remove constraints from an IWP-

centred perspective based on IWP look-ahead schedule. Modelling, 

monitoring, and removal of detailed site constraints such as materials, 
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equipment, tools, labour, safety, permits, weather and work space are the 

focus of this loop. 

(2) A network-based method for dynamic constraint modelling and analysis 

Traditional approaches for constraint modelling are either mathematic-driven or 

human-driven. The former one does not have the capability of modelling all types of 

constraints, while the latter one cannot efficiently present the interrelationships 

between constraints. The network-based method proposed in this thesis can 

significantly address the above two challengers by leveraging the advantages of the 

DNA technique. There are two key modules developed within the proposed method: 

 Constraint Meta-Network, which has two levels: CWP-oriented Constraint 

Meta-network Model and IWP-oriented Constraint Meta-network Model. 

Five different types of nodes, including agents, CWP/AWPs, engineering 

constraints, supply chain constraints and site constraints, are identified, along 

with fifteen inter-linked networks (also called sub-networks). A detailed 

explanation of the meta-network can be found in Chapter 5.  

 Dynamic Constraint Network Analysis, which is key to allow project 

managers and involved partners to obtain a thorough understanding of the 

interconnections among constraints. Five measures (i.e. NUCi, VCRi, VIRSi, 

ODCN and IDIN) are developed to analysis the network evolution. The 

experiment discussed in Chapter 5 demonstrates the power of these measures 

in detecting conflicts between construction plans and constraint-removal 

plans, and identifying critical constraints before and during project execution. 

(3) A semantic method for cross-domain constraint information sharing 

Currently, constraint information is often stored in various isolated systems and 

databases, and uses different, usually not aligned, vocabularies and schemes. Existing 

solutions are too rigid and potentially cumbersome. The semantic method proposed in 

this thesis tackles these challenges by leveraging linked data techniques. Isolated 

constraint data sources are interconnected by means of ontologies, mitigating the 

problem of ambiguities. The pilot case study discussed in Chapter 6 demonstrates the 

power of this method in interlinking multi-domain constraint data, extracting required 

constraint information, and inferring extra constraint information. Compared with 

conventional approaches for data integration and sharing, the proposed semantic 

method enables data to be delivered in both machine- and human-readable formats. 

For instance, arbitrary things can be identified by URIs so that people and computers 

can look them up.  
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9.3 Practical Implications 

This research represents an effort to help project stakeholders in LNG industry (i.e. owners, 

engineering managers, contractors, procurement managers, suppliers, and project planners) 

improve their work efficiency in constraint management including constraint identification, 

modelling, monitoring, and removal. Four key practical contributions are explained as follows: 

(1) The proposed hierarchical constraint management process, detailed in 

Chapter 4, provides a step-by-step guidance for project team to efficiently 

identify and remove constraints from project planning stage to the end of 

commissioning 

First, the constraint classification for LNG construction (as discussed in Section 4.2.1) 

can help project planners efficiently identify constraints for each work package.  In 

addition, the detailed constraint management process including constraint 

identification, relationship mapping, removal planning, tracking, status updating, and 

removal (as discussed in Section 4.2.1-4.2.3), can assist project planners to well 

manage each constraint and make sure all of them are timely removed. The three loops 

(as discussed in Section 4.2.4-4.2.6) can make sure project planners focus on 

managing the constraints that have high priorities than others as project progresses.  

(2) The DNA-enabled constraint modelling approach, detailed in Chapter 5, 

ensures transparent communication and coordination among design engineers, 

suppliers, contractors, subcontractors, and clients 

The DNA-enabled approach can visualise the constraint meta-network in a graph, 

which is useful for project teams to get a quick understanding of the whole constraints 

and their relationships with each other. In addition, project team members can easily 

check the constraints that are related to a specific work package. This approach can 

also generate the evolution of the constraint meta-network as project progresses, 

which can help project participants: (i) automatically identify the critical constraints 

in a given time interval; (ii) automatically detect conflicts between constraint-

removals plans and construction plans; (iii) automatically collect free IWPs (i.e. IWPs 

that have no constraints linked with) for the weekly plan development. 

(3) The Linked Data-enabled approach for constraint information sharing, 

detailed in Chapter 6, provides an efficient way for project participants to access 

constraint data across multiple domains. 
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This approach can eliminate the need for project participants to reconcile various 

datasets because all the entities within the linked constraint data cloud have their own 

unique explicit identifiers (i.e. URI).  With the prototype developed in Chapter 6, 

project participants can obtain not only the real-time status of each constraint, but also 

some additional useful context. For instance, if a work package, such as IWP10001-

Piping-SG-108, needs to be released to the field, a SPARQL Query can be conducted 

to list all the constraints and their statuses (i.e. removed or unremoved) related to this 

IWP. If all the constraints are marked as “removed”, the IWP can be released. Work 

instructions to execute the IWP tasks can also be identified using the linked data 

approach. 

 (4) The coordinated approach for supply-chain constraint tracking, detailed in 

Chapter 7, provides a practical way for using multiple sensing technologies to 

track constraints in LNG construction 

Information technologies play a key role in the current LNG construction industry. 

This study serves as the foundation for developing a cost-effective tracking solution. 

The advantages and disadvantages of a few commonly seen sensing technologies are 

discussed in Section 7.2, which is useful for project decision-makers to select the most 

suitable tracking technologies for their projects. In addition, the prototype developed 

in Chapter 7 provides a method of integrating sensor data into a 3D LNG plant model, 

and automatically colour-coding the model to reflect the constraint status. For instance, 

if a sensor (e.g. a GPS tag) indicates that an offsite fabricated LNG module has been 

successfully delivered to site, the colour of this module within the 3D platform will 

be automatically changed. The two experiments discussed in Section 7.4 provide a 

guideline for industry people to implement these sensing and tracking technologies.  

9.4 Recommendations for Future Research  

According to the limitations summarised in Section 8.1, recommendations for future research 

and development can be drawn as follows: 

(1) Developing methods and tools for automatically generating the constraint-

meta network 

The constraint-meta networks used in this thesis are created manually. The time spent 

is acceptable for small-scale LNG projects, however, for large-scale projects, this will 

become a main barrier for adopting the DNA method. A number of open source 

libraries/packages such as Sigma.js (Sigma 2017), Cytoscape.js (Shannon et al. 2003), 
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and NetworkX (Network X 2017) can be leveraged to automate the network creation 

and visualisation. 

(2) Applying graph theory to the constraint network analysis 

The five indicators for measuring the constraint network in this thesis are based on a 

given graph. Subgraphs inside the constraint network, such as communities, are not 

considered. Communities are unstable patterns that can evolve in both membership 

and content (Oliveira et al 2014). In dynamic scenarios, communities may undergo a 

series of evolutionary events, such as growth, split and disappearance, which can 

provide another dimension to analyse the interactions among constraints, work 

packages, and agents. Graph theory has a well-established theoretical and 

mathematical foundation, which should be investigated in the future research to 

develop more meaningful metrics and algorithms for community constraint detection 

and mining.  

(3) Integrating the cross-domain constraint information sharing system with 

existing enterprise data/document management systems 

In order to automatically convert application data from an application-specific format 

into RDF, a number of data adaptors should be developed on the top of the existing 

relational databases and/or document management systems. The D2RQ Platform is a 

system for accessing relational databases as virtual, read-only RDF graphs (D2RQ 

2017). It offers RDF-based access to the content of relational databases without having 

to replicate it into an RDF store. Future researchers can consider to develop the system 

integrations based on the R2RQ platform. 

(4) Implementing the TCM method in real LNG construction projects 

The TCM method including the approaches developed in Chapter 5-7 should be 

further tested with more case studies in the LNG industry. This would help to evaluate 

the wider applicability of the TCM as well as creating best practices for future 

implementation of TCM in the LNG construction industry.  
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